

Operating Systems

A01_STAL4290_09_GE_FM.indd 1 5/9/17 4:40 PM

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

Operating Systems
Internals and Design
Principles

Ninth Edition

Global Edition

William Stallings

A01_STAL4290_09_GE_FM.indd 3 5/9/17 4:40 PM

Senior Vice President Courseware Portfolio
Management:  Marcia J. Horton

Director, Portfolio Management:  Engineering, Computer
Science & Global Editions: Julian Partridge

Higher Ed Portfolio Management:  Tracy Johnson
(Dunkelberger)

Acquisitions Editor, Global Editions:  Sourabh Maheshwari
Portfolio Management Assistant:  Kristy Alaura
Managing Content Producer:  Scott Disanno
Content Producer:  Robert Engelhardt
Project Editor, Global Editions:  K.K. Neelakantan
Web Developer:  Steve Wright
Rights and Permissions Manager:  Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side

Communications Inc (LSC):  Maura Zaldivar-Garcia

Senior Manufacturing Controller, Global Editions:  Trudy
Kimber

Media Production Manager, Global Editions:  Vikram
Kumar

Inventory Manager:  Ann Lam
Marketing Manager:  Demetrius Hall
Product Marketing Manager:  Yvonne Vannatta
Marketing Assistant:  Jon Bryant
Cover Designer:  Lumina Datamatics
Cover Art:  Shai_Halud/Shutterstock
Full-Service Project Management:  Bhanuprakash Sherla,

SPi Global

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
page CL-1.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The right of William Stallings to be identified as the author of this work has been asserted by him in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Operating Systems: Internals and Design Principles, 9th Edition,
ISBN 978-0-13-467095-9, by William Stallings published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency
Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-21429-5
ISBN 13: 978-1-292-21429-0

Typeset by SPi Global

Printed and bound in Malaysia.

A01_STAL4290_09_GE_FM.indd 4 5/9/17 4:40 PM

http://www.pearsonglobaleditions.com

For Tricia

A01_STAL4290_09_GE_FM.indd 5 5/9/17 4:40 PM

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

Contents

Online Chapters and Appendices 13

VideoNotes 15

Preface 17

About the Author 27

PART 1 Background 29

Chapter 1	 Computer System Overview 29

	 1.1	 Basic Elements 30
	 1.2	 Evolution of the Microprocessor 32
	 1.3	 Instruction Execution 32
	 1.4	 Interrupts 35
	 1.5	 The Memory Hierarchy 46
	 1.6	 Cache Memory 49
	 1.7	 Direct Memory Access 53
	 1.8	 Multiprocessor and Multicore Organization 54
	 1.9	 Key Terms, Review Questions, and Problems 58
	 1A	 Performance Characteristics of Two-Level Memories 61

Chapter 2	 Operating System Overview 68

	 2.1	 Operating System Objectives and Functions 69
	 2.2	 The Evolution of Operating Systems 73
	 2.3	 Major Achievements 83
	 2.4	 Developments Leading to Modern Operating Systems 92
	 2.5	 Fault Tolerance 95
	 2.6	 Os Design Considerations for Multiprocessor and Multicore 98
	 2.7	 Microsoft Windows Overview 101
	 2.8	 Traditional Unix Systems 108
	 2.9	 Modern Unix Systems 110
	 2.10	 Linux 113
	 2.11	 Android 118
	 2.12	 Key Terms, Review Questions, and Problems 127

Part 2 Processes 129

Chapter 3	 Process Description and Control 129

	 3.1	 What is a Process? 131
	 3.2	 Process States 133
	 3.3	 Process Description 148

7

A01_STAL4290_09_GE_FM.indd 7 5/9/17 4:40 PM

8   Contents

	 3.4	 Process Control 157
	 3.5	 Execution of the Operating System 163
	 3.6	 Unix Svr4 Process Management 166
	 3.7 	 Summary 171
	 3.8	 Key Terms, Review Questions, and Problems 171

Chapter 4	 Threads 176

	 4.1	 Processes and Threads 177
	 4.2	 Types of Threads 183
	 4.3	 Multicore and Multithreading 190
	 4.4	 Windows Process and Thread Management 195
	 4.5	 Solaris Thread and Smp Management 202
	 4.6	 Linux Process and Thread Management 206
	 4.7	 Android Process and Thread Management 211
	 4.8	 Mac OS X Grand Central Dispatch 215
	 4.9	 Summary 217
	 4.10 	 Key Terms, Review Questions, and Problems 218

Chapter 5	 Concurrency: Mutual Exclusion
and Synchronization 223

	 5.1	 Mutual Exclusion: Software Approaches 226
	 5.2	 Principles of Concurrency 232
	 5.3	 Mutual Exclusion: Hardware Support 241
	 5.4	 Semaphores 244
	 5.5	 Monitors 257
	 5.6	 Message Passing 263
	 5.7	 Readers/Writers Problem 270
	 5.8	 Summary 274
	 5.9	 Key Terms, Review Questions, and Problems 275

Chapter 6	 Concurrency: Deadlock and Starvation 289

	 6.1	 Principles of Deadlock 290
	 6.2	 Deadlock Prevention 299
	 6.3	 Deadlock Avoidance 300
	 6.4	 Deadlock Detection 306
	 6.5	 An Integrated Deadlock Strategy 308
	 6.6	 Dining Philosophers Problem 309
	 6.7	 Unix Concurrency Mechanisms 313
	 6.8	 Linux Kernel Concurrency Mechanisms 315
	 6.9	 Solaris Thread Synchronization Primitives 324
	 6.10	 Windows Concurrency Mechanisms 326
	 6.11	 Android Interprocess Communication 330
	 6.12	 Summary 331
	 6.13	 Key Terms, Review Questions, and Problems 332

A01_STAL4290_09_GE_FM.indd 8 5/9/17 4:40 PM

Contents   9

Part 3 Memory 339

Chapter 7	 Memory Management 339

	 7.1	 Memory Management Requirements 340
	 7.2	 Memory Partitioning 344
	 7.3	 Paging 355
	 7.4	 Segmentation 358
	 7.5	 Summary 360
	 7.6	 Key Terms, Review Questions, and Problems 360
	 7A	 Loading and Linking 363

Chapter 8	 Virtual Memory 370

	 8.1	 Hardware and Control Structures 371
	 8.2	 Operating System Software 388
	 8.3	 Unix and Solaris Memory Management 407
	 8.4	 Linux Memory Management 413
	 8.5	 Windows Memory Management 417
	 8.6	 Android Memory Management 419
	 8.7	 Summary 420
	 8.8	 Key Terms, Review Questions, and Problems 421

PART 4 Scheduling 425

Chapter 9	 Uniprocessor Scheduling 425

	 9.1	 Types of Processor Scheduling 426
	 9.2	 Scheduling Algorithms 430
	 9.3	 Traditional Unix Scheduling 452
	 9.4	 Summary 454
	 9.5	 Key Terms, Review Questions, and Problems 455

Chapter 10	Multiprocessor, Multicore, and Real-Time Scheduling 460

	 10.1	 Multiprocessor and Multicore Scheduling 461
	 10.2	 Real-Time Scheduling 474
	 10.3	 Linux Scheduling 489
	 10.4	 Unix Svr4 Scheduling 492
	 10.5	 Unix Freebsd Scheduling 494
	 10.6	 Windows Scheduling 498
	 10.7 	 Summary 500
	 10.8	 Key Terms, Review Questions, and Problems 500

Part 5 Input/Output And Files 505

Chapter 11	 I/O Management and Disk Scheduling 505

	 11.1	 I/O Devices 506
	 11.2	 Organization of the I/O Function 508
	 11.3	 Operating System Design Issues 511

A01_STAL4290_09_GE_FM.indd 9 5/9/17 4:40 PM

10   Contents

	 11.4	 I/O Buffering 514
	 11.5	 Disk Scheduling 517
	 11.6	 Raid 524
	 11.7	 Disk Cache 533
	 11.8	 Unix Svr4 I/O 537
	 11.9	 Linux I/O 540
	 11.10	 Windows I/O 544
	 11.11	 Summary 546
	 11.12	 Key Terms, Review Questions, and Problems 547

Chapter 12	 File Management 550

	 12.1	 Overview 551
	 12.2	 File Organization and Access 557
	 12.3	 B-Trees 561
	 12.4	 File Directories 564
	 12.5	 File Sharing 569
	 12.6	 Record Blocking 570
	 12.7	 Secondary Storage Management 572
	 12.8	 Unix File Management 580
	 12.9	 Linux Virtual File System 585
	 12.10	 Windows File System 589
	 12.11	 Android File Management 594
	 12.12	 Summary 595
	 12.13	 Key Terms, Review Questions, and Problems 596

Part 6 Embedded Systems 599

Chapter 13	 Embedded Operating Systems 599

	 13.1	 Embedded Systems 600
	 13.2	 Characteristics of Embedded Operating Systems 605
	 13.3	 Embedded Linux 609
	 13.4	 Tinyos 615
	 13.5	 Key Terms, Review Questions, and Problems 625

Chapter 14	Virtual Machines 627

	 14.1	 Virtual Machine Concepts 628
	 14.2	 Hypervisors 631
	 14.3	 Container Virtualization 635
	 14.4	 Processor Issues 642
	 14.5	 Memory Management 644
	 14.6	 I/O Management 645
	 14.7	 Vmware Esxi 647
	 14.8	 Microsoft Hyper-V and Xen Variants 650
	 14.9	 Java Vm 651
	 14.10	 Linux Vserver Virtual Machine Architecture 652
	 14.11	 Summary 655
	 14.12	 Key Terms, Review Questions, and Problems 655

A01_STAL4290_09_GE_FM.indd 10 5/9/17 4:40 PM

Contents   11

Chapter 15	Operating System Security 657

	 15.1	 Intruders and Malicious Software 658
	 15.2	 Buffer Overflow 662
	 15.3	 Access Control 670
	 15.4	 Unix Access Control 678
	 15.5	 Operating Systems Hardening 681
	 15.6	 Security Maintenance 685
	 15.7	 Windows Security 686
	 15.8	 Summary 691
	 15.9	 Key Terms, Review Questions, and Problems 692

Chapter 16	Cloud and IoT Operating Systems 695

	 16.1	 Cloud Computing 696
	 16.2	 Cloud Operating Systems 704
	 16.3	 The Internet of Things 720
	 16.4	 IoT Operating Systems 724
	 16.5	 Key Terms and Review Questions 731

Appendices

Appendix A  Topics in Concurrency A-1
	 A.1	 Race Conditions and Semaphores A-2
	 A.2	 A Barbershop Problem A-9
	 A.3	 Problems A-14

Appendix B  Programming and Operating System Projects B-1
	 B.1	 Semaphore Projects B-2
	 B.2	 File Systems Project B-3
	 B.3	 OS/161 B-3
	 B.4	 Simulations B-4
	 B.5	 Programming Projects B-4
	 B.6	 Research Projects B-6
	 B.7	 Reading/Report Assignments B-7
	 B.8	 Writing Assignments B-7
	 B.9	 Discussion Topics B-7
	 B.10	 BACI B-7

References R-1

Credits CL-1

Index I-1

A01_STAL4290_09_GE_FM.indd 11 5/9/17 4:40 PM

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

Online Chapters and Appendices1

13

1Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book.

Chapter 17	Network Protocols

	 17.1	 The Need for a Protocol Architecture 17-3
	 17.2	 The TCP/IP Protocol Architecture 17-5
	 17.3	 Sockets 17-12
	 17.4	 Linux Networking 17-16
	 17.5 	 Summary 17-18
	 17.6 	 Key Terms, Review Questions, and Problems 17-18
	 17A 	 The Trivial File Transfer Protocol 17-21

Chapter 18	Distributed Processing, Client/Server, and Clusters

	 18.1	 Client/Server Computing 18-2
	 18.2	 Distributed Message Passing 18-12
	 18.3	 Remote Procedure Calls 18-16
	 18.4	 Clusters 18-19
	 18.5	 Windows Cluster Server 18-25
	 18.6	 Beowulf and Linux Clusters 18-27
	 18.7 	 Summary 18-29
	 18.8 	 References 18-29
	 18.9 	 Key Terms, Review Questions, and Problems 18-30

Chapter 19	Distributed Process Management

	 19.1	 Process Migration 19-2
	 19.2	 Distributed Global States 19-9
	 19.3	 Distributed Mutual Exclusion 19-14
	 19.4	 Distributed Deadlock 19-23
	 19.5 	 Summary 19-35
	 19.6 	 References 19-35
	 19.7 	 Key Terms, Review Questions, and Problems 19-37

Chapter 20	Overview of Probability and Stochastic Processes

	 20.1	 Probability 20-2
	 20.2	 Random Variables 20-7
	 20.3	 Elementary Concepts of Stochastic Processes 20-12
	 20.4 	 Problems 20-20

Chapter 21	Queueing Analysis

	 21.1	 How Queues Behave—A Simple Example 21-3
	 21.2	 Why Queueing Analysis? 21-8

A01_STAL4290_09_GE_FM.indd 13 5/9/17 4:40 PM

	 21.3	 Queueing Models 21-10
	 21.4	 Single-Server Queues 21-17
	 21.5	 Multiserver Queues 21-20
	 21.6	 Examples 21-20
	 21.7	 Queues With Priorities 21-26
	 21.8	 Networks of Queues 21-27
	 21.9	 Other Queueing Models 21-31
	 21.10	 Estimating Model Parameters 21-32
	 21.11	 References 21-35
	 21.12	 Problems 21-35

Programming Project One  Developing a Shell

Programming Project Two  The HOST Dispatcher Shell

Appendix C	 Topics in Concurrency C-1

Appendix D	 Object-Oriented Design D-1

Appendix E		 Amdahl’s Law E-1

Appendix F		 Hash Tables F-1

Appendix G	 Response Time G-1

Appendix H	 Queueing System Concepts H-1

Appendix I		 The Complexity of Algorithms I-1

Appendix J		 Disk Storage Devices J-1

Appendix K	 Cryptographic Algorithms K-1

Appendix L		 Standards Organizations L-1

Appendix M	 Sockets: A Programmer’s Introduction M-1

Appendix N	 The International Reference Alphabet N-1

Appendix O	 BACI: The Ben-Ari Concurrent Programming System O-1

Appendix P		 Procedure Control P-1

Appendix Q	 ECOS Q-1

Glossary

14  O nline Chapters and Appendices

A01_STAL4290_09_GE_FM.indd 14 5/9/17 4:40 PM

	 VideoNotes

Locations of VideoNotes

http://www.pearsonglobaleditions.com/stallings

Chapter 5	 Concurrency: Mutual Exclusion and Synchronization 223

	 5.1	 Mutual Exclusion Attempts 227
	 5.2	 Dekker’s Algorithm 230
	 5.3	 Peterson’s Algorithm for Two Processes 231
	 5.4	 Illustration of Mutual Exclusion 238
	 5.5	 Hardware Support for Mutual Exclusion 242
	 5.6	 A Definition of Semaphore Primitives 246
	 5.7	 A Definition of Binary Semaphore Primitives 247
	 5.9	 Mutual Exclusion Using Semaphores 249
	 5.12	 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem

Using Binary Semaphores 252
	 5.13	 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem

Using Binary Semaphores 254
	 5.14	 A Solution to the Infinite-Buffer Producer/Consumer Problem

Using Semaphores 255
	 5.16	 A Solution to the Bounded-Buffer Producer/Consumer Problem

Using Semaphores 256
	 5.17	 Two Possible Implementations of Semaphores 257
	 5.19	 A Solution to the Bounded-Buffer Producer/Consumer Problem

Using a Monitor 260
	 5.20	 Bounded-Buffer Monitor Code for Mesa Monitor 262
	 5.23	 Mutual Exclusion Using Messages 268
	 5.24	 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Messages 269
	 5.25	 A Solution to the Readers/Writers Problem Using Semaphore:

Readers Have Priority 271
	 5.26	 A Solution to the Readers/Writers Problem Using Semaphore:

Writers Have Priority 273
	 5.27	 A Solution to the Readers/Writers Problem Using Message Passing 274
	 5.28	 An Application of Coroutines 277

Chapter 6	 Concurrency: Deadlock and Starvation 289

	 6.9	 Deadlock Avoidance Logic 305
	 6.12	 A First Solution to the Dining Philosophers Problem 311
	 6.13	 A Second Solution to the Dining Philosophers Problem 311
	 6.14	 A Solution to the Dining Philosophers Problem Using a Monitor 312
	 6.18	 Another Solution to the Dining Philosophers Problem Using a Monitor 337

Chapter 13	 Embedded Operating Systems 599

	 13.12	 Condition Variable Example Code 626

VideoNote

15

A01_STAL4290_09_GE_FM.indd 15 5/9/17 4:40 PM

http://www.pearsonglobaleditions.com/stallings

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

Preface

WHAT’S NEW IN THE NINTH EDITION

Since the eighth edition of this book was published, the field of operating systems
has seen continuous innovations and improvements. In this new edition, I have tried
to capture these changes while maintaining a comprehensive coverage of the entire
field. To begin the process of revision, the eighth edition of this book was extensively
reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clari-
fied and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user friendliness, the
technical content of the book has been updated throughout to reflect the ongo-
ing changes in this exciting field, and the instructor and student support has been
expanded. The most noteworthy changes are as follows:

•	 Updated Linux coverage: The Linux material has been updated and expanded
to reflect changes in the Linux kernel since the eighth edition.

•	 Updated Android coverage: The Android material has been updated and
expanded to reflect changes in the Android kernel since the eighth edition.

•	 New Virtualization coverage: The chapter on virtual machines has been com-
pletely rewritten to provide better organization and an expanded and more
up-to-date treatment. In addition, a new section has been added on the use of
containers.

•	 New Cloud operating systems: New to this edition is the coverage of cloud
operating systems, including an overview of cloud computing, a discussion of
the principles and requirements for a cloud operating system, and a discussion
of a OpenStack, a popular open-source Cloud OS.

•	 New IoT operating systems: New to this edition is the coverage of operating
systems for the Internet of Things. The coverage includes an overview of the
IoT, a discussion of the principles and requirements for an IoT operating sys-
tem, and a discussion of a RIOT, a popular open-source IoT OS.

•	 Updated and Expanded Embedded operating systems: This chapter has been
substantially revised and expanded including:

—�The section on embedded systems has been expanded and now includes
discussions of microcontrollers and deeply embedded systems.

—�The overview section on embedded OSs has been expanded and updated.
—�The treatment of embedded Linux has been expanded, and a new discussion

of a popular embedded Linux system, mClinux, has been added.

•	 Concurrency: New projects have been added to the Projects Manual to better
help the student understand the principles of concurrency.

17

A01_STAL4290_09_GE_FM.indd 17 5/9/17 4:40 PM

18  P reface

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems. Its
purpose is to present, as clearly and completely as possible, the nature and charac-
teristics of modern-day operating systems.

This task is challenging for several reasons. First, there is a tremendous range
and variety of computer systems for which operating systems are designed. These
include embedded systems, smart phones, single-user workstations and personal
computers, medium-sized shared systems, large mainframe and supercomputers,
and specialized machines such as real-time systems. The variety is not just con-
fined to the capacity and speed of machines, but in applications and system support
requirements. Second, the rapid pace of change that has always characterized com-
puter systems continues without respite. A number of key areas in operating system
design are of recent origin, and research into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply
consistently throughout. To be sure, the application of these concepts depends on
the current state of technology and the particular application requirements. The in-
tent of this book is to provide a thorough discussion of the fundamentals of operat-
ing system design, and to relate these to contemporary design issues and to current
directions in the development of operating systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and imple-
mentation issues of contemporary operating systems. Accordingly, a purely concep-
tual or theoretical treatment would be inadequate. To illustrate the concepts and
to tie them to real-world design choices that must be made, four operating systems
have been chosen as running examples:

•	 Windows: A multitasking operating system for personal computers, worksta-
tions, servers, and mobile devices. This operating system incorporates many of
the latest developments in operating system technology. In addition, Windows
is one of the first important commercial operating systems to rely heavily on
object-oriented design principles. This book covers the technology used in the
most recent version of Windows, known as Windows 10.

•	 Android: Android is tailored for embedded devices, especially mobile phones.
Focusing on the unique requirements of the embedded environment, the book
provides details of Android internals.

•	 UNIX: A multiuser operating system, originally intended for minicomputers,
but implemented on a wide range of machines from powerful microcomput-
ers to supercomputers. Several flavors of UNIX are included as examples.
FreeBSD is a widely used system that incorporates many state-of-the-art fea-
tures. Solaris is a widely used commercial version of UNIX.

•	 Linux: An open-source version of UNIX that is widely used.

A01_STAL4290_09_GE_FM.indd 18 5/9/17 4:40 PM

Preface   19

These systems were chosen because of their relevance and representativeness.
The discussion of the example systems is distributed throughout the text rather than
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the
motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples. For convenience, all of the material for each of the example sys-
tems is also available as an online document.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one-semester or two-semester undergraduate course in operating
systems for computer science, computer engineering, and electrical engineering majors.
This edition is designed to support the recommendations of the current (December
2013) version of the ACM/IEEE Computer Science Curricula 2013 (CS2013). The
CS2013 curriculum recommendation includes Operating Systems (OS) as one of the
Knowledge Areas in the Computer Science Body of Knowledge. CS2013 divides all
course work into three categories: Core-Tier 1 (all topics should be included in the cur-
riculum), Core-Tier 2 (all or almost all topics should be included), and Elective (desir-
able to provide breadth and depth). In the OS area, CS2013 includes two Tier 1 topics,
four Tier 2 topics, and six Elective topics, each of which has a number of subtopics. This
text covers all of the topics and subtopics listed by CS2013 in these three categories.

Table P.1 shows the support for the OS Knowledge Areas provided in this text-
book. A detailed list of subtopics for each topic is available as the file CS2013-OS
.pdf at box.com/OS9e.

PLAN OF THE TEXT

The book is divided into six parts:

1.	 Background

2.	 Processes

3.	 Memory

4.	 Scheduling

5.	 Input/Output and files

6.	 Advanced topics (embedded OSs, virtual machines, OS security, and cloud and
IoT operating systems)

The book includes a number of pedagogic features, including the use of anima-
tions and videonotes and numerous figures and tables to clarify the discussion. Each
chapter includes a list of key words, review questions, and homework problems.
The book also includes an extensive glossary, a list of frequently used acronyms,
and a bibliography. In addition, a test bank is available to instructors.

A01_STAL4290_09_GE_FM.indd 19 5/9/17 4:40 PM

http://box.com/OS9e

20  P reface

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool as possible for
this fundamental yet evolving subject. This goal is reflected both in the structure of
the book and in the supporting material. The text is accompanied by the following
supplementary material to aid the instructor:

•	 Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

•	 Projects manual: Suggested project assignments for all of the project catego-
ries listed in this Preface.

•	 PowerPoint slides: A set of slides covering all chapters, suitable for use in
lecturing.

•	 PDF files: Reproductions of all figures and tables from the book.

•	 Test bank: A chapter-by-chapter set of questions with a separate file of answers.

Table P.1  Coverage of CS2013 Operating Systems (OSs) Knowledge Area

Topic Coverage in Book

Overview of Operating Systems (Tier 1) Chapter 2: Operating System Overview

Operating System Principles (Tier 1) Chapter 1: Computer System Overview
Chapter 2: Operating System Overview

Concurrency (Tier 2) Chapter 5: Mutual Exclusion and Synchronization
Chapter 6: Deadlock and Starvation
Appendix A: Topics in Concurrency
Chapter 18: Distributed Process Management

Scheduling and Dispatch (Tier 2) Chapter 9: Uniprocessor Scheduling
Chapter 10: Multiprocessor and Real-Time
Scheduling

Memory Management (Tier 2) Chapter 7: Memory Management
Chapter 8: Virtual Memory

Security and Protection (Tier 2) Chapter 15: Operating System Security

Virtual Machines (Elective) Chapter 14: Virtual Machines

Device Management (Elective) Chapter 11: I/O Management and Disk Scheduling

File System (Elective) Chapter 12: File Management

Real Time and Embedded Systems (Elective) Chapter 10: Multiprocessor and Real-Time
Scheduling
Chapter 13: Embedded Operating Systems
Material on Android throughout the text

Fault Tolerance (Elective) Section 2.5: Fault Tolerance

System Performance Evaluation (Elective) Performance issues related to memory management,
scheduling, and other areas addressed throughout
the text

A01_STAL4290_09_GE_FM.indd 20 5/9/17 4:40 PM

Preface   21

•	 VideoNotes on concurrency: Professors perennially cite concurrency as per-
haps the most difficult concept in the field of operating systems for students to
grasp. The edition is accompanied by a number of VideoNotes lectures discuss-
ing the various concurrency algorithms defined in the book. This icon appears
next to each algorithm definition in the book to indicate that a VideoNote is
available:

•	 Sample syllabuses: The text contains more material that can be conveniently
covered in one semester. Accordingly, instructors are provided with several
sample syllabuses that guide the use of the text within limited time. These
samples are based on real-world experience by professors with the seventh
edition.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached through the publisher’s website http://
www.pearsonglobaleditions.com/stallings. To gain access to the IRC, please contact
your local Pearson sales representative.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of an OS course is a project or set of
projects by which the student gets hands-on experience to reinforce concepts from
the text. This book has incorporated a projects component in the course as a result
of an overwhelming support it received. In the online portion of the text, two major
programming projects are defined. In addition, the instructor’s support materials
available through Pearson not only includes guidance on how to assign and struc-
ture the various projects, but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can
assign work in the following areas:

•	 OS/161 projects: Described later.

•	 Simulation projects: Described later.

•	 Semaphore projects: Designed to help students understand concurrency
concepts, including race conditions, starvation, and deadlock.

•	 Kernel projects: The IRC includes complete instructor support for two dif-
ferent sets of Linux kernel programming projects, as well as a set of kernel
programming projects for Android.

•	 Programming projects: Described below.

•	 Research projects: A series of research assignments that instruct the student to
research a particular topic on the Internet and write a report.

•	 Reading/report assignments: A list of papers that can be assigned for reading
and writing a report, plus suggested assignment wording.

•	 Writing assignments: A list of writing assignments to facilitate learning the
material.

VideoNote

A01_STAL4290_09_GE_FM.indd 21 5/9/17 4:40 PM

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings

22  P reface

•	 Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster
student collaboration.

In addition, information is provided on a software package known as BACI that
serves as a framework for studying concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor
to use the book as one component in a rich and varied learning experience and to
tailor a course plan to meet the specific needs of the instructor and students. See
Appendix B in this book for details.

OS/161

This edition provides support for an active learning component based on OS/161.
OS/161 is an educational operating system that is becoming increasingly rec-
ognized as the preferred teaching platform for OS internals. It aims to strike a
balance between giving students experience in working on a real operating sys-
tem, and potentially overwhelming students with the complexity that exists
in a full-fledged operating system, such as Linux. Compared to most deployed
operating systems, OS/161 is quite small (approximately 20,000 lines of code and
comments), and therefore it is much easier to develop an understanding of the
entire code base.

The IRC includes:

1.	 A packaged set of html files that the instructor can upload to a course server
for student access.

2.	 A getting-started manual to be distributed to students to help them begin using
OS/161.

3.	 A set of exercises using OS/161, to be distributed to students.

4.	 Model solutions to each exercise for the instructor’s use.

5.	 All of this will be cross-referenced with appropriate sections in the book, so the
student can read the textbook material then do the corresponding OS/161
project.

SIMULATIONS

The IRC provides support for assigning projects based on a set of seven simulations
that cover key areas of OS design. The student can use a set of simulation packages
to analyze OS design features. The simulators are written in Java and can be run
either locally as a Java application or online through a browser. The IRC includes
specific assignments to give to students, telling them specifically what they are to do
and what results are expected.

A01_STAL4290_09_GE_FM.indd 22 5/9/17 4:40 PM

Preface   23

ANIMATIONS

This edition also incorporates animations. Animations provide a powerful tool for
understanding the complex mechanisms of a modern OS. A total of 53 animations
are used to illustrate key functions and algorithms in OS design. The animations are
used for Chapters 3, 5, 6, 7, 8, 9, and 11.

PROGRAMMING PROJECTS

This edition provides support for programming projects. Two major programming
projects, one to build a shell, or command line interpreter, and one to build a process
dispatcher are described in the online portion of this textbook. The IRC provides
further information and step-by-step exercises for developing the programs.

As an alternative, the instructor can assign a more extensive series of pro-
jects that cover many of the principles in the book. The student is provided with
detailed instructions for doing each of the projects. In addition, there is a set of
homework problems, which involve questions related to each project for the
student to answer.

Finally, the project manual provided at the IRC includes a series of program-
ming projects that cover a broad range of topics and that can be implemented in any
suitable language on any platform.

ONLINE DOCUMENTS AND VIDEONOTES FOR STUDENTS

For this new edition, a substantial amount of original supporting material for stu-
dents has been made available online, at two online locations. The book’s website,
at http://www.pearsonglobaleditions.com/stallings (click on Student Resources
link), includes a list of relevant links organized by chapter and an errata sheet for
the book.

Purchasing this textbook new also grants the reader twelve months of access
to the Companion Website, which includes the following materials:

•	 Online chapters: To limit the size and cost of the book, 5 chapters of the book,
covering security, are provided in PDF format. The chapters are listed in this
book’s table of contents.

•	 Online appendices: There are numerous interesting topics that support mate-
rial found in the text, but whose inclusion is not warranted in the printed text.
A total of 15 online appendices cover these topics for the interested student.
The appendices are listed in this book’s table of contents.

•	 Homework problems and solutions: To aid the student in understanding the
material, a separate set of homework problems with solutions is available.

A01_STAL4290_09_GE_FM.indd 23 5/9/17 4:40 PM

http://www.pearsonglobaleditions.com/stallings

24  P reface

•	 Animations: Animations provide a powerful tool for understanding the com-
plex mechanisms of a modern OS. A total of 53 animations are used to illus-
trate key functions and algorithms in OS design. The animations are used for
Chapters 3, 5, 6, 7, 8, 9, and 11.

•	 VideoNotes: VideoNotes are step-by-step video tutorials specifically designed
to enhance the programming concepts presented in this textbook. The book is
accompanied by a number of VideoNotes lectures discussing the various con-
currency algorithms defined in the book.

To access the Premium Content site, click on the Companion website link at
www.pearsonglobaleditions.com/stallings and enter the student access code found
on the card in the front of the book.

ACKNOWLEDGMENTS

I would like to thank the following for their contributions. Rami Rosen contributed
most of the new material on Linux. Vineet Chadha made a major contribution to the
new chapter on virtual machines. Durgadoss Ramanathan provided the new mate-
rial on Android ART.

Through its multiple editions this book has benefited from review by hun-
dreds of instructors and professionals, who generously spared their precious time
and shared their expertise. Here I acknowledge those whose help contributed to
this latest edition.

The following instructors reviewed all or a large part of the manuscript for this
edition: Jiang Guo (California State University, Los Angeles), Euripides Montagne
(University of Central Florida), Kihong Park (Purdue University), Mohammad
Abdus Salam (Southern University and A&M College), Robert Marmorstein
(Longwood University), Christopher Diaz (Seton Hill University), and Barbara
Bracken (Wilkes University).

Thanks also to all those who provided detailed technical reviews of one
or more chapters: Nischay Anikar, Adri Jovin, Ron Munitz, Fatih Eyup Nar,
Atte Peltomaki, Durgadoss Ramanathan, Carlos Villavieja, Wei Wang, Serban
Constantinescu and Chen Yang.

Thanks also to those who provided detailed reviews of the example sys-
tems. Reviews of the Android material were provided by Kristopher Micinski,
Ron Munitz, Atte Peltomaki, Durgadoss Ramanathan, Manish Shakya, Samuel
Simon, Wei Wang, and Chen Yang. The Linux reviewers were Tigran Aivazian,
Kaiwan Billimoria, Peter Huewe, Manmohan Manoharan, Rami Rosen, Neha
Naik, and Hualing Yu. The Windows material was reviewed by Francisco Cotrina,
Sam Haidar, Christopher Kuleci, Benny Olsson, and Dave Probert. The RIOT ma-
terial was reviewed by Emmanuel Baccelli and Kaspar Schleiser, and OpenStack
was reviewed by Bob Callaway. Nick Garnett of eCosCentric reviewed the material
on eCos; and Philip Levis, one of the developers of TinyOS reviewed the material
on TinyOS. Sid Young reviewed the material on container virtualization.

A01_STAL4290_09_GE_FM.indd 24 5/9/17 4:40 PM

http://www.pearsonglobaleditions.com/stallings

Preface   25

Andrew Peterson of the University of Toronto prepared the OS/161 supple-
ments for the IRC. James Craig Burley authored and recorded the VideoNotes.

Adam Critchley (University of Texas at San Antonio) developed the simula-
tion exercises. Matt Sparks (University of Illinois at Urbana-Champaign) adapted a
set of programming problems for use with this textbook.

Lawrie Brown of the Australian Defence Force Academy produced the mate-
rial on buffer overflow attacks. Ching-Kuang Shene (Michigan Tech University)
provided the examples used in the section on race conditions and reviewed the
section. Tracy Camp and Keith Hellman, both at the Colorado School of Mines,
developed a new set of homework problems. In addition, Fernando Ariel Gont con-
tributed a number of homework problems; he also provided detailed reviews of all
of the chapters.

I would also like to thank Bill Bynum (College of William and Mary) and
Tracy Camp (Colorado School of Mines) for contributing Appendix O; Steve Taylor
(Worcester Polytechnic Institute) for contributing the programming projects and
reading/report assignments in the instructor’s manual; and Professor Tan N. Nguyen
(George Mason University) for contributing the research projects in the instruction
manual. Ian G. Graham (Griffith University) contributed the two programming
projects in the textbook. Oskars Rieksts (Kutztown University) generously allowed
me to make use of his lecture notes, quizzes, and projects.

Finally, I thank the many people responsible for the publication of this book,
all of whom did their usual excellent job. This includes the staff at Pearson, par-
ticularly my editor Tracy Johnson, her assistant Kristy Alaura, program manager
Carole Snyder, and project manager Bob Engelhardt. Thanks also to the marketing
and sales staffs at Pearson, without whose efforts this book would not be in front
of you.

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge Moumita Mitra Manna (Bangabasi
College) for contributing to the Global Edition, and A. Kannamal (Coimbatore
Institute of Technology), Kumar Shashi Prabh (Shiv Nadar University), and Khyat
Sharma for reviewing the Global Edition.

A01_STAL4290_09_GE_FM.indd 25 5/9/17 4:40 PM

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

About the Author

Dr. William Stallings has authored 18 titles, and including the revised editions, over
40 books on computer security, computer networking, and computer architecture.
His writings have appeared in numerous publications, including the Proceedings of
the IEEE, ACM Computing Reviews and Cryptologia.

He has received the Best Computer Science textbook of the Year award 13
times from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical
manager, and an executive with several high-technology firms. He has designed
and implemented both TCP/IP-based and OSI-based protocol suites on a variety
of computers and operating systems, ranging from microcomputers to mainframes.
As a consultant, he has advised government agencies, computer and software ven-
dors, and major users on the design, selection, and use of networking software and
products.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety
of subjects of general interest to computer science students (and professionals). He
is a member of the editorial board of Cryptologia, a scholarly journal devoted to all
aspects of cryptology.

Dr. Stallings holds a Ph.D. from M.I.T. in Computer Science and a B.S. from
Notre Dame in electrical engineering.

27

A01_STAL4290_09_GE_FM.indd 27 5/9/17 4:40 PM

http://ComputerScienceStudent.com

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

29

1.1	 Basic Elements

1.2	 Evolution of the Microprocessor

1.3	 Instruction Execution

1.4	 Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts

1.5	 The Memory Hierarchy

1.6	 Cache Memory
Motivation
Cache Principles
Cache Design

1.7	 Direct Memory Access

1.8	 Multiprocessor and Multicore Organization
Symmetric Multiprocessors
Multicore Computers

1.9	 Key Terms, Review Questions, and Problems

APPENDIX 1A	 Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

Computer System Overview

Chapter

BackgroundPart 1

M01_STAL4290_09_GE_C01.indd 29 5/9/17 4:36 PM

30   Chapter 1 / Computer System Overview

An operating system (OS) exploits the hardware resources of one or more processors
to provide a set of services to system users. The OS also manages secondary memory
and I/O (input/output) devices on behalf of its users. Accordingly, it is important to
have some understanding of the underlying computer system hardware before we
begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most areas,
the survey is brief, as it is assumed that the reader is familiar with this subject. How-
ever, several areas are covered in some detail because of their importance to topics
covered later in the book. Additional topics are covered in Appendix C. For a more
detailed treatment, see [STAL16a].

	 1.1	 BASIC ELEMENTS

At a top level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

•	 Processor: Controls the operation of the computer and performs its data pro-
cessing functions. When there is only one processor, it is often referred to as the
central processing unit (CPU).

•	 Main memory: Stores data and programs. This memory is typically volatile;
that is, when the computer is shut down, the contents of the memory are lost.
In contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or primary
memory.

Learning Objectives

After studying this chapter, you should be able to:
•	 Describe the basic elements of a computer system and their interrelationship.
•	 Explain the steps taken by a processor to execute an instruction.
•	 Understand the concept of interrupts, and how and why a processor uses

interrupts.
•	 List and describe the levels of a typical computer memory hierarchy.
•	 Explain the basic characteristics of multiprocessor systems and multicore

computers.
•	 Discuss the concept of locality and analyze the performance of a multilevel

memory hierarchy.
•	 Understand the operation of a stack and its use to support procedure call

and return.

M01_STAL4290_09_GE_C01.indd 30 5/9/17 4:36 PM

1.1 / BASIC ELEMENTS   31

•	 I/O modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.

•	 System bus: Provides for communication among processors, main memory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s functions
is to exchange data with memory. For this purpose, it typically makes use of two
internal (to the processor) registers: a memory address register (MAR), which speci-
fies the address in memory for the next read or write; and a memory buffer register
(MBR), which contains the data to be written into memory, or receives the data read
from memory. Similarly, an I/O address register (I/OAR) specifies a particular I/O
device. An I/O buffer register (I/OBR) is used for the exchange of data between an
I/O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as either

Figure 1.1  Computer Components: Top-Level View

CPU Main memory

System
bus

I/O module

Bu�ers

Instruction

n22
n21

Data

Data

Data

Data

Instruction

Instruction

PC 5 Program counter
IR 5 Instruction register
MAR 5 Memory address register
MBR 5 Memory bu�er register
I/O AR 5 Input/output address register
I/O BR 5 Input/output bu�er register

0
1
2

PC MAR

IR MBR

I/O AR

I/O BR
Execution

unit

M01_STAL4290_09_GE_C01.indd 31 5/9/17 4:36 PM

32   Chapter 1 / Computer System Overview

an instruction or data. An I/O module transfers data from external devices to proces-
sor and memory, and vice versa. It contains internal buffers for temporarily storing
data until they can be sent on.

	 1.2	 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

Not only have microprocessors become the fastest general-purpose processors
available, they are now multiprocessors; each chip (called a socket) contains multiple
processors (called cores), each with multiple levels of large memory caches, and mul-
tiple logical processors sharing the execution units of each core. As of 2010, it is not
unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads, for a
total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of com-
puting, there is increasing demand for numerical computation. Graphical Processing
Units (GPUs) provide efficient computation on arrays of data using Single-Instruction
Multiple Data (SIMD) techniques pioneered in supercomputers. GPUs are no lon-
ger used just for rendering advanced graphics, but they are also used for general
numerical processing, such as physics simulations for games or computations on
large spreadsheets. Simultaneously, the CPUs themselves are gaining the capability
of operating on arrays of data–with increasingly powerful vector units integrated into
the processor architecture of the x86 and AMD64 families.

Processors and GPUs are not the end of the computational story for the mod-
ern PC. Digital Signal Processors (DSPs) are also present for dealing with stream-
ing signals such as audio or video. DSPs used to be embedded in I/O devices, like
modems, but they are now becoming first-class computational devices, especially in
handhelds. Other specialized computational devices (fixed function units) co-exist
with the CPU to support other standard computations, such as encoding/decoding
speech and video (codecs), or providing support for encryption and security.

To satisfy the requirements of handheld devices, the classic microprocessor is
giving way to the System on a Chip (SoC), where not just the CPUs and caches are
on the same chip, but also many of the other components of the system, such as DSPs,
GPUs, I/O devices (such as radios and codecs), and main memory.

	 1.3	 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored in
memory. In its simplest form, instruction processing consists of two steps: The pro-
cessor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch

M01_STAL4290_09_GE_C01.indd 32 5/9/17 4:36 PM

1.3 / INSTRUCTION EXECUTION   33

and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle.
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2.
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs,
or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so it will fetch the next instruction
in sequence (i.e., the instruction located at the next higher memory address). For
example, consider a simplified computer in which each instruction occupies one 16-bit
word of memory. Assume that the program counter is set to location 300. The proces-
sor will next fetch the instruction at location 300. On succeeding instruction cycles, it
will fetch instructions from locations 301, 302, 303, and so on. This sequence may be
altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The instruc-
tion contains bits that specify the action the processor is to take. The processor inter-
prets the instruction and performs the required action. In general, these actions fall
into four categories:

•	 Processor-memory: Data may be transferred from processor to memory, or
from memory to processor.

•	 Processor-I/O: Data may be transferred to or from a peripheral device by trans-
ferring between the processor and an I/O module.

•	 Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

•	 Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor sets the
program counter to 182. Thus, on the next fetch stage, the instruction will be
fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical processor that includes the

characteristics listed in Figure 1.3. The processor contains a single data register, called

Figure 1.2  Basic Instruction Cycle

START HALTFetch next
instruction

Fetch stage Execute stage

Execute
instruction

M01_STAL4290_09_GE_C01.indd 33 5/9/17 4:36 PM

34   Chapter 1 / Computer System Overview

the accumulator (AC). Both instructions and data are 16 bits long, and memory is
organized as a sequence of 16-bit words. The instruction format provides 4 bits for
the opcode, allowing as many as 24 = 16 different opcodes (represented by a single
hexadecimal1 digit). The opcode defines the operation the processor is to perform.
With the remaining 12 bits of the instruction format, up to 212 = 4,096 (4K) words of
memory (denoted by three hexadecimal digits) can be directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant portions
of memory and processor registers. The program fragment shown adds the contents of
the memory word at address 940 to the contents of the memory word at address 941
and stores the result in the latter location. Three instructions, which can be described
as three fetch and three execute stages, are required:

1.	 The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)
and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

2.	 The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

3.	 The next instruction (5941) is fetched from location 301 and the PC is incremented.

1A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at ComputerScienceStudent.com.

Figure 1.3  Characteristics of a Hypothetical Machine

0 3 4 15

15

Opcode Address

0 1
S Magnitude

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(a) Instruction format

(b) Integer format

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

M01_STAL4290_09_GE_C01.indd 34 5/9/17 4:36 PM

http://ComputerScienceStudent.com

1.4 / INTERRUPTS   35

4.	 The old contents of the AC and the contents of location 941 are added, and the
result is stored in the AC.

5.	 The next instruction (2941) is fetched from location 302, and the PC is
incremented.

6.	 The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and an
execute stage, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer instruction cycles would be needed.
Most modern processors include instructions that contain more than one address.
Thus, the execution stage for a particular instruction may involve more than one
reference to memory. Also, instead of memory references, an instruction may specify
an I/O operation.

	 1.4	 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, memory)
may interrupt the normal sequencing of the processor. Table 1.1 lists the most com-
mon classes of interrupts.

Figure 1.4 � Example of Program Execution (contents of
memory and registers in hexadecimal)

2

PC300
CPU registersMemory

Fetch stage Execute stage

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

PC300
CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300
CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300
CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300
CPU registersMemory

3 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300
CPU registersMemory

3 0 31 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 + 2 = 5

M01_STAL4290_09_GE_C01.indd 35 5/9/17 4:36 PM

36   Chapter 1 / Computer System Overview

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 109 instructions per second.2 A typical hard disk has a rotational speed
of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is 4 mil-
lion times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. The solid vertical lines represent seg-
ments of code in a program. Code segments 1, 2, and 3 refer to sequences of instruc-
tions that do not involve I/O. The WRITE calls are to an I/O routine that is a system
utility and will perform the actual I/O operation. The I/O program consists of three
sections:

•	 A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O
operation. This may include copying the data to be output into a special buffer
and preparing the parameters for a device command.

•	 The actual I/O command. Without the use of interrupts, once this command is
issued, the program must wait for the I/O device to perform the requested func-
tion (or periodically check the status of, or poll, the I/O device). The program
might wait by simply repeatedly performing a test operation to determine if
the I/O operation is done.

•	 A sequence of instructions, labeled 5 in the figure, to complete the opera-
tion. This may include setting a flag indicating the success or failure of the
operation.

The dashed line represents the path of execution followed by the processor; that
is, this line shows the sequence in which instructions are executed. Thus, after the first

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting document
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

Program Generated by some condition that occurs as a result of an instruction execu-
tion, such as arithmetic overflow, division by zero, attempt to execute an illegal
machine instruction, or reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to
perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation or
to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

Table 1.1  Classes of Interrupts

M01_STAL4290_09_GE_C01.indd 36 5/9/17 4:36 PM

http://ComputerScienceStudent.com

1.4 / INTERRUPTS   37

WRITE instruction is encountered, the user program is interrupted and execution
continues with the I/O program. After the I/O program execution is complete, execu-
tion resumes in the user program immediately following the WRITE instruction.

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program is
stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As before,
the user program reaches a point at which it makes a system call in the form of a
WRITE call. The I/O program that is invoked in this case consists only of the prepa-
ration code and the actual I/O command. After these few instructions have been
executed, control returns to the user program. Meanwhile, the external device is
busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.

When the external device becomes ready to be serviced (that is, when it is
ready to accept more data from the processor) the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service

Figure 1.5  Program Flow of Control Without and With Interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

= interrupt occurs during course of execution of user program

M01_STAL4290_09_GE_C01.indd 37 5/9/17 4:36 PM

38   Chapter 1 / Computer System Overview

that particular I/O device (known as an interrupt handler); and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execution.
When the interrupt processing is completed, execution resumes (see Figure 1.6). Thus,
the user program does not have to contain any special code to accommodate inter-
rupts; the processor and the OS are responsible for suspending the user program,
then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction cycle,
as shown in Figure 1.7 (compare with Figure 1.2). In the interrupt stage, the proces-
sor checks to see if any interrupts have occurred, indicated by the presence of an

Figure 1.6  Transfer of Control via Interrupts

1

2

i

i 1 1

M

Interrupt
occurs here

User program Interrupt handler

Figure 1.7  Instruction Cycle with Interrupts

Fetch stage Execute stage Interrupt stage

START

HALT

Interrupts
disabled

Interrupts
enabled

Fetch next
instruction

Execute
instruction

Check for
interrupt;

initiate interrupt
handler

M01_STAL4290_09_GE_C01.indd 38 5/9/17 4:36 PM

1.4 / INTERRUPTS   39

interrupt signal. If no interrupts are pending, the processor proceeds to the fetch
stage and fetches the next instruction of the current program. If an interrupt is
pending, the processor suspends execution of the current program and executes an
interrupt-handler routine. The interrupt-handler routine is generally part of the OS.
Typically, this routine determines the nature of the interrupt and performs whatever
actions are needed. In the example we have been using, the handler determines
which I/O module generated the interrupt, and may branch to a program that will
write more data out to that I/O module. When the interrupt-handler routine is com-
pleted, the processor can resume execution of the user program at the point of
interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the
interrupt and to decide on the appropriate action. Nevertheless, because of the
relatively large amount of time that would be wasted by simply waiting on an I/O
operation, the processor can be employed much more efficiently with the use of
interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8 assume

Figure 1.8  Program Timing: Short I/O Wait

Time

4

1

5 5

2

5

3

4

I/O operation;
processor waits

I/O operation
concurrent with

processor executing

I/O operation
concurrent with

processor executing

I/O operation;
processor waits

4

2a

1

2b

4

3a

5

3b

(a) Without interrupts

(b) With interrupts

M01_STAL4290_09_GE_C01.indd 39 5/9/17 4:36 PM

40   Chapter 1 / Computer System Overview

that the time required for the I/O operation is relatively short: less than the time to
complete the execution of instructions between write operations in the user program.
The more typical case, especially for a slow device such as a printer, is that the I/O
operation will take much more time than executing a sequence of user instructions.
Figure 1.5c indicates this state of affairs. In this case, the user program reaches the
second WRITE call before the I/O operation spawned by the first call is complete.
The result is that the user program is hung up at that point. When the preceding
I/O operation is completed, this new WRITE call may be processed, and a new I/O
operation may be started. Figure 1.9 shows the timing for this situation with and
without the use of interrupts. We can see there is still a gain in efficiency, because
part of the time during which the I/O operation is underway overlaps with the execu-
tion of user instructions.

Figure 1.9  Program Timing: Long I/O Wait

4

1

5

2

5

3

4

Time

4

2

1

5

4

(a) Without interrupts

(b) With interrupts

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with

processor executing;
then processor

waits

I/O operation
concurrent with

processor executing;
then processor

waits

M01_STAL4290_09_GE_C01.indd 40 5/9/17 4:36 PM

1.4 / INTERRUPTS   41

Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an I/O
operation, the following sequence of hardware events occurs:

1.	 The device issues an interrupt signal to the processor.

2.	 The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 1.7.

3.	 The processor tests for a pending interrupt request, determines there is one,
and sends an acknowledgment signal to the device that issued the interrupt. The
acknowledgment allows the device to remove its interrupt signal.

4.	 The processor next needs to prepare to transfer control to the interrupt routine.
To begin, it saves information needed to resume the current program at the
point of interrupt. The minimum information required is the program status
word3 (PSW) and the location of the next instruction to be executed, which is

3The PSW contains status information about the currently running process, including memory usage infor-
mation, condition codes, and other status information such as an interrupt enable/disable bit and a kernel/
user-mode bit. See Appendix C for further discussion.

Figure 1.10  Simple Interrupt Processing

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

M01_STAL4290_09_GE_C01.indd 41 5/9/17 4:36 PM

42   Chapter 1 / Computer System Overview

contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

5.	 The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program, one
for each type of interrupt, or one for each device and each type of interrupt.
If there is more than one interrupt-handling routine, the processor must deter-
mine which one to invoke. This information may have been included in the
original interrupt signal, or the processor may have to issue a request to the
device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the next
instruction cycle, which begins with an instruction fetch. Because the instruction fetch
is determined by the contents of the program counter, control is transferred to the
interrupt-handler program. The execution of this program results in the following
operations:

6.	 At this point, the program counter and PSW relating to the interrupted program
have been saved on the control stack. However, there is other information that
is considered part of the state of the executing program. In particular, the con-
tents of the processor registers need to be saved, because these registers may be
used by the interrupt handler. So all of these values, plus any other state infor-
mation, need to be saved. Typically, the interrupt handler will begin by saving
the contents of all registers on the stack. Other state information that must be
saved will be discussed in Chapter 3. Figure 1.11a shows a simple example. In
this case, a user program is interrupted after the instruction at location N. The
contents of all of the registers plus the address of the next instruction (N + 1),
a total of M words, are pushed onto the control stack. The stack pointer is
updated to point to the new top of stack, and the program counter is updated
to point to the beginning of the interrupt service routine.

7.	 The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

8.	 When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (see Figure 1.11b).

9.	 The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

It is important to save all of the state information about the interrupted pro-
gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time, and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

M01_STAL4290_09_GE_C01.indd 42 5/9/17 4:36 PM

1.4 / INTERRUPTS   43

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however, that
one or more interrupts can occur while an interrupt is being processed. For example,
a program may be receiving data from a communications line, and printing results at
the same time. The printer will generate an interrupt every time it completes a print
operation. The communication line controller will generate an interrupt every time a
unit of data arrives. The unit could either be a single character or a block, depending
on the nature of the communications discipline. In any case, it is possible for a com-
munications interrupt to occur while a printer interrupt is being processed.

Figure 1.11  Changes in Memory and Registers for an Interrupt

Start

N 1 1

Y 1 L

N

Y

Y

T

Return

User’s
program

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

N + 1

T 2 M

T 2 M

T

Control
stack

Interrupt
service
routine

User’s
program

Interrupt
service
routine

(a) Interrupt occurs after instruction
at location N

(b) Return from interrupt

Start

N 1 1

Y 1 L

N

Y

T

Return

Main
memory

Processor

General
registers

Program
counter

Stack
pointer

Y 1 L 1 1

T 2 M

T 2 M

T

Control
stack

N 1 1

M01_STAL4290_09_GE_C01.indd 43 5/9/17 4:36 PM

44   Chapter 1 / Computer System Overview

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means the processor ignores any new interrupt request signal. If an interrupt
occurs during this time, it generally remains pending and will be checked by the
processor after the processor has reenabled interrupts. Thus, if an interrupt occurs
when a user program is executing, then interrupts are disabled immediately. After
the interrupt-handler routine completes, interrupts are reenabled before resuming
the user program, and the processor checks to see if additional interrupts have
occurred. This approach is simple, as interrupts are handled in strict sequential
order (see Figure 1.12a).

Figure 1.12  Transfer of Control with Multiple Interrupts

User program

Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

User program

Interrupt
handler X

Interrupt
handler Y

M01_STAL4290_09_GE_C01.indd 44 5/9/17 4:36 PM

1.4 / INTERRUPTS   45

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the com-
munications line, it may need to be absorbed rapidly to make room for more input. If
the first batch of input has not been processed before the second batch arrives, data
may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(see Figure 1.12b). As an example of this second approach, consider a system with
three I/O devices: a printer, a disk, and a communications line, with increasing pri-
orities of 2, 4, and 5, respectively. Figure 1.13 illustrates a possible sequence. A user
program begins at t = 0. At t = 10, a printer interrupt occurs; user information
is placed on the control stack and execution continues at the printer interrupt
service routine (ISR). While this routine is still executing, at t = 15 a commu-
nications interrupt occurs. Because the communications line has higher priority
than the printer, the interrupt request is honored. The printer ISR is interrupted,
its state is pushed onto the stack, and execution continues at the communications
ISR. While this routine is executing, a disk interrupt occurs (t = 20). Because
this interrupt is of lower priority, it is simply held, and the communications ISR
runs to completion.

When the communications ISR is complete (t = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine is
complete (t = 35) is the printer ISR resumed. When that routine completes (t = 40),
control finally returns to the user program.

Figure 1.13  Example Time Sequence of Multiple Interrupts

User program Printer
interrupt service routine

Communication
interrupt service routine

Disk
interrupt service routine

t 5
 10

t 5 40

t 5
 15

t 5 25

t 5 25

t 5 35

t 5 0

M01_STAL4290_09_GE_C01.indd 45 5/9/17 4:36 PM

46   Chapter 1 / Computer System Overview

	 1.5	 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open-ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to keep
up with the processor. That is, as the processor is executing instructions, we would not
want it to have to pause waiting for instructions or operands. The final question must
also be considered. For a practical system, the cost of memory must be reasonable in
relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

•	 Faster access time, greater cost per bit

•	 Greater capacity, smaller cost per bit

•	 Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance require-
ments, the designer needs to use expensive, relatively lower-capacity memories with
fast access times.

The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

a.	 Decreasing cost per bit

b.	 Increasing capacity

c.	 Increasing access time

d.	 Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the decreas-
ing frequency of access at lower levels. We will examine this concept in greater detail
later in this chapter when we discuss the cache, and when we discuss virtual memory
later in this book. A brief explanation is provided at this point.

Suppose the processor has access to two levels of memory. Level 1 contains
1000 bytes and has an access time of 0.1 ms; level 2 contains 100,000 bytes and has
an access time of 1 ms. Assume that if a byte to be accessed is in level 1, then the
processor accesses it directly. If it is in level 2, the byte is first transferred to level 1,
then accessed by the processor. For simplicity, we ignore the time required for the
processor to determine whether the byte is in level 1 or level 2. Figure 1.15 shows the
general shape of the curve that models this situation. The figure shows the average
access time to a two-level memory as a function of the hit ratio H, where H is defined

M01_STAL4290_09_GE_C01.indd 46 5/9/17 4:36 PM

1.5 / THE MEMORY HIERARCHY   47

Figure 1.14  The Memory Hierarchy

Inboardmemory

Outboardstorage

O�-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 1.15 � Performance of a Simple Two-Level
Memory

0

T1

T2

T1 1 T2

1

Fraction of accesses involving only level 1 (Hit ratio)

A
ve

ra
ge

 a
cc

es
s

tim
e

M01_STAL4290_09_GE_C01.indd 47 5/9/17 4:36 PM

48   Chapter 1 / Computer System Overview

as the fraction of all memory accesses that are found in the faster memory (e.g., the
cache), T1 is the access time to level 1, and T2 is the access time to level 2.4 As can be
seen, for high percentages of level 1 access, the average total access time is much
closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache
(H = 0.95). Then, the average time to access a byte can be expressed as

(0.95)(0.1 ms) + (0.05)(0.1 ms + 1 ms) = 0.095 + 0.055 = 0.15 ms

The result is close to the access time of the faster memory. So the strategy of
using two memory levels works in principle, but only if conditions (a) through (d)
in the preceding list apply. By employing a variety of technologies, a spectrum of
memory systems exists that satisfies conditions (a) through (c). Fortunately, condition
(d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENN68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or subrou-
tine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data bytes. Over
a long period of time, the clusters in use change, but over a short period of time, the
processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2
memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have
to be swapped back to level 2 to make room for a new cluster coming in to level 1.
On average, however, most references will be to instructions and data contained in
level 1.

This principle can be applied across more than two levels of memory. The fast-
est, smallest, and most expensive type of memory consists of the registers internal to
the processor. Typically, a processor will contain a few dozen such registers, although
some processors contain hundreds of registers. Skipping down two levels, main
memory is the principal internal memory system of the computer. Each location in
main memory has a unique address, and most machine instructions refer to one or
more main memory addresses. Main memory is usually extended with a higher-speed,
smaller cache. The cache is not usually visible to the programmer or, indeed, to the
processor. It is a device for staging the movement of data between main memory and
processor registers to improve performance.

The three forms of memory just described are typically volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical

4If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

M01_STAL4290_09_GE_C01.indd 48 5/9/17 4:36 PM

1.6 / CACHE MEMORY   49

storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory. These are used to store program and data files, and are usually
visible to the programmer only in terms of files and records, as opposed to individual
bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which will be discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For
example, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (to be examined in detail in Chapter 11), improves performance in two ways:

1.	 Disk writes are clustered. Instead of many small transfers of data, we have
a few large transfers of data. This improves disk performance and minimizes
processor involvement.

2.	 Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the software
cache rather than slowly from the disk.

Appendix 1A examines the performance implications of multilevel memory
structures.

	 1.6	 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (to be discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch the
instruction, and often one or more additional times, to fetch operands and/or store
results. The rate at which the processor can execute instructions is clearly limited by
the memory cycle time (the time it takes to read one word from or write one word
to memory). This limitation has been a significant problem because of the persistent
mismatch between processor and main memory speeds. Over the years, processor
speed has consistently increased more rapidly than memory access speed. We are
faced with a trade-off among speed, cost, and size. Ideally, main memory should be
built with the same technology as that of the processor registers, giving memory
cycle times comparable to processor cycle times. This has always been too expensive
a strategy. The solution is to exploit the principle of locality by providing a small, fast
memory between the processor and main memory, namely the cache.

Cache Principles

Cache memory is intended to provide memory access time approaching that of the
fastest memories available, and at the same time support a large memory size that
has the price of less expensive types of semiconductor memories. The concept is
illustrated in Figure 1.16a. There is a relatively large and slow main memory together
with a smaller, faster cache memory. The cache contains a copy of a portion of main

M01_STAL4290_09_GE_C01.indd 49 5/9/17 4:36 PM

50   Chapter 1 / Computer System Overview

memory. When the processor attempts to read a byte or word of memory, a check
is made to determine if the byte or word is in the cache. If so, the byte or word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of bytes, is read into the cache then the byte or word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that many of
the near-future memory references will be to other bytes in the block.

Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically larger
than the L2 cache.

Figure 1.17 depicts the structure of a cache/main memory system. Main memory
consists of up to 2n addressable words, with each word having a unique n-bit address.
For mapping purposes, this memory is considered to consist of a number of fixed-
length blocks of K words each. That is, there are M = 2n/K blocks. Cache consists of
C slots (also referred to as lines) of K words each, and the number of slots is consider-
ably less than the number of main memory blocks (C 6 6 M).5 Some subset of the
blocks of main memory resides in the slots of the cache. If a word in a block of
memory that is not in the cache is read, that block is transferred to one of the slots
of the cache. Because there are more blocks than slots, an individual slot cannot be
uniquely and permanently dedicated to a particular block. Therefore, each slot
includes a tag that identifies which particular block is currently being stored. The tag
is usually some number of higher-order bits of the address, and refers to all addresses
that begin with that sequence of bits.

5The symbol 6 6 means much less than. Similarly, the symbol 7 7 means much greater than.

Figure 1.16  Cache and Main Memory

(b) Three-level cache organization

Fast Slow

CPU Cache Main memory

Fastest Fast Less
fast

Slow

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Block transfer
Word transfer

(a) Single cache

M01_STAL4290_09_GE_C01.indd 50 5/9/17 4:36 PM

1.6 / CACHE MEMORY   51

As a simple example, suppose we have a 6-bit address and a 2-bit tag. The tag 01
refers to the block of locations with the following addresses: 010000, 010001, 010010,
010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011, 011100,
011101, 011110, 011111.

Figure 1.18 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache, and
the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book. Key elements
are briefly summarized here. We will see that similar design issues must be addressed
in dealing with virtual memory and disk cache design. They fall into the following
categories:

•	 Cache size

•	 Block size

Figure 1.17  Cache/Main Memory Structure

Memory
address

0
1
2

0
1
2

C 2 1

3

2n 2 1
Word
length

Block length
(K words)

Block 0
(K words)

Block M – 1

Line
number Tag Block

(b) Main memory

(a) Cache

M01_STAL4290_09_GE_C01.indd 51 5/9/17 4:36 PM

52   Chapter 1 / Computer System Overview

•	 Mapping function

•	 Replacement algorithm

•	 Write policy

•	 Number of cache levels

We have already dealt with the issue of cache size. It turns out that reasonably
small caches can have a significant impact on performance. Another size issue is that
of block size: the unit of data exchanged between cache and main memory. Consider
beginning with a relatively small block size, then increasing the size. As the block size
increases, more useful data are brought into the cache with each block transfer. The
result will be that the hit ratio increases because of the principle of locality: the high
probability that data in the vicinity of a referenced word are likely to be referenced
in the near future. The hit ratio will begin to decrease, however, as the block becomes
even bigger, and the probability of using the newly fetched data becomes less than
the probability of reusing the data that have to be moved out of the cache to make
room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design

Figure 1.18  Cache Read Operation

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
slot for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache slot

START

No

RA—read address

Yes

M01_STAL4290_09_GE_C01.indd 52 5/9/17 4:36 PM

1.7 / DIRECT MEMORY ACCESS   53

of the mapping function. First, when one block is read in, another may have to be
replaced. We would like to do this in such a way as to minimize the probability that we
will replace a block that will be needed in the near future. The more flexible the map-
ping function, the more scope we have to design a replacement algorithm to maximize
the hit ratio. Second, the more flexible the mapping function, the more complex is the
circuitry required to search the cache to determine if a given block is in the cache.

The replacement algorithm chooses (within the constraints of the mapping
function) which block to replace when a new block is to be loaded into the cache
and the cache already has all slots filled with other blocks. We would like to replace
the block that is least likely to be needed again in the near future. Although it is
impossible to identify such a block, a reasonably effective strategy is to replace the
block that has been in the cache longest with no reference to it. This policy is referred
to as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write it
back to main memory before replacing it. The write policy dictates when the memory
write operation takes place. At one extreme, the writing can occur every time that
the block is updated. At the other extreme, the writing occurs only when the block
is replaced. The latter policy minimizes memory write operations, but leaves main
memory in an obsolete state. This can interfere with multiple-processor operation,
and with direct memory access by I/O hardware modules.

Finally, it is now commonplace to have multiple levels of cache, labeled L1
(cache closest to the processor), L2, and in many cases L3. A discussion of the perfor-
mance benefits of multiple cache levels is beyond our current scope (see [STAL16a]
for a discussion).

	 1.7	 DIRECT MEMORY ACCESS

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven
I/O, and direct memory access (DMA). Before discussing DMA, we will briefly define
the other two techniques; see Appendix C for more detail.

When the processor is executing a program and encounters an instruction relat-
ing to I/O, it executes that instruction by issuing a command to the appropriate I/O
module. In the case of programmed I/O, the I/O module performs the requested
action, then sets the appropriate bits in the I/O status register but takes no further
action to alert the processor. In particular, it does not interrupt the processor. Thus,
after the I/O instruction is invoked, the processor must take some active role in
determining when the I/O instruction is completed. For this purpose, the processor
periodically checks the status of the I/O module until it finds that the operation is
complete.

With programmed I/O, the processor has to wait a long time for the I/O module
of concern to be ready for either reception or transmission of more data. The pro-
cessor, while waiting, must repeatedly interrogate the status of the I/O module. As a
result, the performance level of the entire system is severely degraded.

An alternative, known as interrupt-driven I/O, is for the processor to issue an
I/O command to a module then go on to do some other useful work. The I/O module

M01_STAL4290_09_GE_C01.indd 53 5/9/17 4:36 PM

54   Chapter 1 / Computer System Overview

will then interrupt the processor to request service when it is ready to exchange data
with the processor. The processor then executes the data transfer, as before, and
resumes its former processing.

Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the processor.
Thus, both of these forms of I/O suffer from two inherent drawbacks:

1.	 The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

2.	 The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by
a separate module on the system bus, or it can be incorporated into an I/O module.
In either case, the technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module by sending the
following information:

•	 Whether a read or write is requested

•	 The address of the I/O device involved

•	 The starting location in memory to read data from or write data to

•	 The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA mod-
ule sends an interrupt signal to the processor. Thus, the processor is involved only at
the beginning and end of the transfer.

The DMA module needs to take control of the bus to transfer data to and
from memory. Because of this competition for bus usage, there may be times when
the processor needs the bus and must wait for the DMA module. Note this is not
an interrupt; the processor does not save a context and do something else. Rather,
the processor pauses for one bus cycle (the time it takes to transfer one word across
the bus). The overall effect is to cause the processor to execute more slowly dur-
ing a DMA transfer when processor access to the bus is required. Nevertheless, for
a multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or
programmed I/O.

	 1.8	 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms as
sequences of instructions. A processor executes programs by executing machine
instructions in sequence and one at a time. Each instruction is executed in

M01_STAL4290_09_GE_C01.indd 54 5/9/17 4:36 PM

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION   55

a sequence of operations (fetch instruction, fetch operands, perform operation,
store results).

This view of the computer has never been entirely true. At the micro-
operation level, multiple control signals are generated at the same time. Instruction
pipelining, at least to the extent of overlapping fetch and execute operations, has
been around for a long time. Both of these are examples of performing functions
in parallel.

As computer technology has evolved and as the cost of computer hardware has
dropped, computer designers have sought more and more opportunities for paral-
lelism, usually to improve performance and, in some cases, to improve reliability. In
this book, we will examine three approaches to providing parallelism by replicating
processors: symmetric multiprocessors (SMPs), multicore computers, and clusters.
SMPs and multicore computers are discussed in this section; clusters will be examined
in Chapter 16.

Symmetric Multiprocessors

Definition  An SMP can be defined as a stand-alone computer system with the
following characteristics:

1.	 There are two or more similar processors of comparable capability.

2.	 These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

3.	 All processors share access to I/O devices, either through the same channels or
through different channels that provide paths to the same device.

4.	 All processors can perform the same functions (hence the term symmetric).

5.	 The system is controlled by an integrated operating system that provides inter-
action between processors and their programs at the job, task, file, and data
element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, individual
data elements can constitute the level of interaction, and there can be a high degree
of cooperation between processes.

An SMP organization has a number of potential advantages over a uniprocessor
organization, including the following:

•	 Performance: If the work to be done by a computer can be organized such that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type.

•	 Availability: In a symmetric multiprocessor, because all processors can perform
the same functions, the failure of a single processor does not halt the machine.
Instead, the system can continue to function at reduced performance.

M01_STAL4290_09_GE_C01.indd 55 5/9/17 4:36 PM

56   Chapter 1 / Computer System Overview

•	 Incremental growth: A user can enhance the performance of a system by adding
an additional processor.

•	 Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

It is important to note these are potential, rather than guaranteed, benefits. The oper-
ating system must provide tools and functions to exploit the parallelism in an SMP
system.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of tasks on
individual processors, and of synchronization among processors.

Organization  Figure 1.19 illustrates the general organization of an SMP. There are
multiple processors, each of which contains its own control unit, arithmetic-logic unit,
and registers. Each processor typically has two dedicated levels of cache, designated
L1 and L2. As Figure 1.19 indicates, each processor and its dedicated caches are
housed on a separate chip. Each processor has access to a shared main memory
and the I/O devices through some form of interconnection mechanism; a shared
bus is a common facility. The processors can communicate with each other through

Figure 1.19  Symmetric Multiprocessor Organization

L2 cache

L1 cache

I/O
subsystem

System bus

Main
memory

I/O
adapter

I/O
adapter

I/O
adapter

Processor

CHIP

L2 cache

L1 cache

Processor

CHIP

L2 cache

L1 cache

Processor

CHIP

M01_STAL4290_09_GE_C01.indd 56 5/9/17 4:36 PM

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION   57

memory (messages and status information left in shared address spaces). It may also
be possible for processors to exchange signals directly. The memory is often organized
so multiple simultaneous accesses to separate blocks of memory are possible.

In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new design
considerations. Because each local cache contains an image of a portion of main
memory, if a word is altered in one cache, it could conceivably invalidate a word in
another cache. To prevent this, the other processors must be alerted that an update
has taken place. This problem is known as the cache coherence problem, and is typi-
cally addressed in hardware rather than by the OS.6

Multicore Computers

A multicore computer, also known as a chip multiprocessor, combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, in some cases, L3 cache.

The motivation for the development of multicore computers can be summed
up as follows. For decades, microprocessor systems have experienced a steady, usually
exponential, increase in performance. This is partly due to hardware trends, such as an
increase in clock frequency and the ability to put cache memory closer to the processor
because of the increasing miniaturization of microcomputer components. Performance
has also been improved by the increased complexity of processor design to exploit
parallelism in instruction execution and memory access. In brief, designers have come
up against practical limits in the ability to achieve greater performance by means of
more complex processors. Designers have found that the best way to improve perfor-
mance to take advantage of advances in hardware is to put multiple processors and
a substantial amount of cache memory on a single chip. A detailed discussion of the
rationale for this trend is beyond our current scope, but is summarized in Appendix C.

An example of a multicore system is the Intel Core i7-5960X, which includes
six x86 processors, each with a dedicated L2 cache, and with a shared L3 cache (see
Figure 1.20a). One mechanism Intel uses to make its caches more effective is prefetch-
ing, in which the hardware examines memory access patterns and attempts to fill the
caches speculatively with data that’s likely to be requested soon. Figure 1.20b shows
the physical layout of the 5960X in its chip.

The Core i7-5960X chip supports two forms of external communications to
other chips. The DDR4 memory controller brings the memory controller for the
DDR (double data rate) main memory onto the chip. The interface supports four
channels that are 8 bytes wide for a total bus width of 256 bits, for an aggregate data
rate of up to 64 GB/s. With the memory controller on the chip, the Front Side Bus is
eliminated. The PCI Express is a peripheral bus and enables high-speed communi-
cations among connected processor chips. The PCI Express link operates at 8 GT/s
(transfers per second). At 40 bits per transfer, that adds up to 40 GB/s.

6A description of hardware-based cache coherency schemes is provided in [STAL16a].

M01_STAL4290_09_GE_C01.indd 57 5/9/17 4:36 PM

58   Chapter 1 / Computer System Overview

	 1.9	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Figure 1.20  Intel Core i7-5960X Block Diagram

(a) Block diagram

(b) Physical layout on chip

Core 0

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

256 kB
L2 Cache

Core 1

256 kB
L2 Cache

4 × 8B @ 2.133 GT/s

Core 6

256 kB
L2 Cache

Core 7

256 kB
L2 Cache

20 MB
L3 Cache

DDR4 Memory
Controllers

PCI Express

40 lanes @ 8 GT/s

Shared
L3 Cache

I/O

M
em

or
y

co
nt

ro
lle

r

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

Shared
L3 Cache

I/O

M
em

or
y

co
nt

ro
lle

r

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

address register
auxiliary memory
block
cache memory
cache slot
central processing unit
chip multiprocessor
data register
direct memory access (DMA)
hit
hit ratio
input/output
instruction

instruction cycle
instruction register
interrupt
interrupt-driven I/O
I/O module
locality of reference
main memory
memory hierarchy
miss
multicore
multiprocessor
processor
program counter

programmed I/O
register
replacement algorithm
secondary memory
slot
spatial locality
stack
stack frame
stack pointer
system bus
temporal locality

M01_STAL4290_09_GE_C01.indd 58 5/9/17 4:36 PM

1.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   59

Review Questions

	 1.1.	 List and briefly define the four main elements of a computer.
	 1.2.	 Define the two main categories of processor registers.
	 1.3.	 In general terms, what are the four distinct actions that a machine instruction can

specify?
	 1.4.	 What is an interrupt?
	 1.5.	 How can multiple interrupts be serviced by setting priorities?
	 1.6.	 What characteristics are observed while going up the memory hierarchy?
	 1.7.	 What are the trade-offs that determine the size of the cache memory?
	 1.8.	 What is the difference between a multiprocessor and a multicore system?
	 1.9.	 What is the distinction between spatial locality and temporal locality?
	1.10.	 In general, what are the strategies for exploiting spatial locality and temporal

locality?

Problems

	 1.1.	 Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
0011 = Load AC from I/O
0100 = SUB from AC

		 In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using the format of Figure 1.4) for the following program:
1.	 Load AC from device 7.
2.	 SUB from AC contents of memory location 880.
3.	 Store AC to memory location 881.

		 Assume that the next value retrieved from device 7 is 6 and that location 880 contains
a value of 5.

	 1.2.	 The program execution of Figure 1.4 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

	 1.3.	 Consider a hypothetical 64-bit microprocessor having 64-bit instructions composed
of two fields. The first 4 bytes contain the opcode, and the remainder an immediate
operand or an operand address.
a.	 What is the maximum directly addressable memory capacity?
b.	 What ideal size of microprocessor address buses should be used? How will system

speed be affected for data buses of 64 bits, 32 bits and 16 bits?
c.	 How many bits should the instruction register contain if the instruction register is

to contain only the opcode, and how many if the instruction register is to contain
the whole instruction?

	 1.4.	 Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume
the program counter and the address registers are 16 bits wide) and having a 16-bit
data bus.
a.	 What is the maximum memory address space that the processor can access directly

if it is connected to a “16-bit memory”?
b.	 What is the maximum memory address space that the processor can access directly

if it is connected to an “8-bit memory”?
c.	 What architectural features will allow this microprocessor to access a separate

“I/O space”?
d.	 If an input and an output instruction can specify an 8-bit I/O port number, how

many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

M01_STAL4290_09_GE_C01.indd 59 5/9/17 4:36 PM

60   Chapter 1 / Computer System Overview

	 1.5.	 Consider a 64-bit microprocessor, with a 32-bit external data bus, driven by a 16 MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across
the bus that this microprocessor can sustain in bytes/s? To increase its performance,
would it be better to make its external data bus 64 bits or to double the external
clock frequency supplied to the microprocessor? State any other assumptions you
make and explain. Hint: Determine the number of bytes that can be transferred per
bus cycle.

	 1.6.	 Consider a computer system that contains an I/O module controlling a simple
keyboard/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

INPR:	 Input Register, 8 bits
OUTR:	 Output Register, 8 bits
FGI:	 Input Flag, 1 bit
FGO:	 Output Flag, 1 bit
IEN:	 Interrupt Enable, 1 bit

		 Keystroke input from the Teletype and output to the printer are controlled by the I/O
module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and
decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit
word enters the input register from the Teletype. The Output flag is set when a word is
printed.
a.	 Describe how the CPU, using the first four registers listed in this problem, can

achieve I/O with the Teletype.
b.	 Describe how the function can be performed more efficiently by also

employing IEN.
	 1.7.	 In virtually all systems that include DMA modules, DMA access to main memory is

given higher priority than processor access to main memory. Why?
	 1.8.	 A DMA module is transferring characters to main memory from an external device

transmitting at 10800 bits per second (bps). The processor can fetch instructions at the
rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

	 1.9.	 A computer consists of a CPU and an I/O device D connected to main memory M via
a shared bus with a data bus width of one word. The CPU can execute a maximum of
106 instructions per second. An average instruction requires five processor cycles, three
of which use the memory bus. A memory read or write operation uses one processor
cycle. Suppose that the CPU is continuously executing “background” programs that
require 95% of its instruction execution rate but not any I/O instructions. Assume that
one processor cycle equals one bus cycle. Now suppose that very large blocks of data
are to be transferred between M and D.
a.	 If programmed I/O is used and each one-word I/O transfer requires the CPU to

execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b.	 Estimate the same rate if DMA transfer is used.
	1.10.	 Consider the following code:

for (i = 0; i < 20; i++)
    for (j = 0; j < 10; j++)

       a[i] = a[i] * j

a.	 Give one example of the spatial locality in the code.
b.	 Give one example of the temporal locality in the code.

	1.11.	 Extend Equations (1.1) and (1.2) in Appendix 1A to 3-level memory hierarchies.

M01_STAL4290_09_GE_C01.indd 60 5/9/17 4:36 PM

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   61

	1.12.	 Consider a memory system with cache having the following parameters:

Sc = 32 KB Cc = 0.1 cents>bytes TC = 10 ns
Sm = 256 MB Cm = 0.0001 cents>bytes Tm = 100 ns

a.	 What was the total cost prior to addition of cache?
b.	 What is the total cost after addition of cache?
c.	 What is the percentage decrease in time due to inclusion of cache with respect to a

system without cache memory considering a cache hit ratio of 0.85?
	1.13.	 Suppose that a large file is being accessed by a computer memory system comprising

of a cache and a main memory. The cache access time is 60 ns. Time to access main
memory (including cache access) is 300 ns. The file can be opened either in read or in
write mode. A write operation involves accessing both main memory and the cache
(write-through cache). A read operation accesses either only the cache or both the
cache and main memory depending upon whether the access word is found in the
cache or not. It is estimated that read operations comprise of 80% of all operations.
If the cache hit ratio for read operations is 0.9, what is the average access time of this
system?

	1.14.	 Suppose a stack is to be used by the processor to manage procedure calls and returns. Can
the program counter be eliminated by using the top of the stack as a program counter?

APPENDIX 1A  PERFORMANCE CHARACTERISTICS
OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, imple-
mented in hardware and typically invisible to the OS. Accordingly, this mechanism
is not pursued in this book. However, there are two other instances of a two-level
memory approach that also exploit the property of locality and that are, at least par-
tially, implemented in the OS: virtual memory and the disk cache (Table 1.2). These
two topics are explored in Chapters 8 and 11, respectively. In this appendix, we will
look at some of the performance characteristics of two-level memories that are com-
mon to all three approaches.

Main Memory
Cache

Virtual Memory
(Paging) Disk Cache

Typical access time ratios 5 : 1 106: 1 106: 1

Memory management
system

Implemented by special
hardware

Combination of hardware
and system software

System software

Typical block size 4 to 128 bytes 64 to 4096 bytes 64 to 4096 bytes

Access of processor to
second level

Direct access Indirect access Indirect access

Table 1.2  Characteristics of Two-Level Memories

M01_STAL4290_09_GE_C01.indd 61 5/9/17 4:36 PM

62   Chapter 1 / Computer System Overview

Locality

The basis for the performance advantage of a two-level memory is the principle of
locality, referred to in Section 1.5. This principle states that memory references tend
to cluster. Over a long period of time, the clusters in use change; but over a short
period of time, the processor is primarily working with fixed clusters of memory
references.

Intuitively, the principle of locality makes sense. Consider the following line of
reasoning:

1.	 Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

2.	 It is rare to have a long uninterrupted sequence of procedure calls followed by
the corresponding sequence of returns. Rather, a program remains confined to a
rather narrow window of procedure-invocation depth. Thus, over a short period
of time, references to instructions tend to be localized to a few procedures.

3.	 Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is therefore
confined to a small contiguous portion of a program.

4.	 In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference to
point (1), a variety of studies have analyzed the behavior of high-level language
programs. Table 1.3 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78]
published measurements collected from over 300 procedures used in OS programs
and written in a language that supports structured programming (SAL). Patterson
and Sequin [PATT82] analyzed a set of measurements taken from compilers and

Study
Language
Workload

[HUCK83]
Pascal

Scientific

[KNUT71]
FORTRAN

Student

[PATT82]
[TANE78]

SAL
System

Pascal
System

C
System

Assign 74 67 45 38 42

Loop   4   3   5   3   4

Call   1   3 15 12 12

IF 20 11 29 43 36

GOTO   2   9 –   3 –

Other –   7   6   1   6

Table 1.3  Relative Dynamic Frequency of High-Level Language Operations

M01_STAL4290_09_GE_C01.indd 62 5/9/17 4:36 PM

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   63

programs for typesetting, computer-aided design (CAD), sorting, and file comparison.
The programming languages C and Pascal were studied. Huck [HUCK83] analyzed
four programs intended to represent a mix of general-purpose scientific comput-
ing, including fast Fourier transform and the integration of systems of differential
equations. There is good agreement in the results of this mixture of languages and
applications that branching and call instructions represent only a fraction of state-
ments executed during the lifetime of a program. Thus, these studies confirm assertion
(1), from the preceding list.

With respect to assertion (2), studies reported in [PATT85] provide confirma-
tion. This is illustrated in Figure 1.21, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain within
a stationary window for long periods of time. A study by the same analysts of C and
Pascal programs showed that a window of depth 8 would only need to shift on less
than 1% of the calls or returns [TAMI83].

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory, and by exploiting a cache hierarchy. Spatial
locality is generally exploited by using larger cache blocks, and by incorporating

Figure 1.21  Example Call-Return Behavior of a Program

w 5 5

t 5 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

M01_STAL4290_09_GE_C01.indd 63 5/9/17 4:36 PM

64   Chapter 1 / Computer System Overview

prefetching mechanisms (fetching items whose use is expected) into the cache control
logic. Recently, there has been considerable research on refining these techniques to
achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as temporary storage for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1, and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

	 Ts = H * T1 + (1 - H) * (T1 + T2)

	 T1 + (1 - H) * T2� (1.1)

where

Ts = average (system) access time
T1 = access time of M1 (e.g., cache, disk cache)
T2 = access time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)

Figure 1.15 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level mem-
ory mechanism. First, consider cost. We have

	 CS =
C1S1 + C2S2

S1 + S2
� (1.2)

where

Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

We would like Cs ≈ C2. Given that C1 7 7 C2, this requires S1 6 6 S2. Figure 1.22
shows the relationship.7

7Note both axes use a log scale. A basic review of log scales is in the math refresher document on the
Computer Science Student Resource Site at ComputerScienceStudent.com.

M01_STAL4290_09_GE_C01.indd 64 5/9/17 4:36 PM

http://ComputerScienceStudent.com

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   65

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have Ts approximately equal to T1 Ts ≈ T1.
Given that T1 is much less than T2 Ts 7 7 T1, a hit ratio of close to 1 is needed.

So, we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

•	 What value of hit ratio is needed to satisfy the performance requirement?

•	 What size of M1 will assure the needed hit ratio?

•	 Does this size satisfy the cost requirement?

To get at this, consider the quantity T1/Ts, which is referred to as the access efficiency.
It is a measure of how close average access time (Ts) is to M1 access time (T1). From
Equation (1.1),

	
T1

TS
=

1

1 + (1 - H)
T2

T1

� (1.3)

In Figure 1.23, we plot T1/Ts as a function of the hit ratio H, with the quantity T2/T1 as
a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to satisfy
the performance requirement.

Figure 1.22 � Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

Relative size of two levels (S2/S1)

R
el

at
iv

e
co

m
bi

ne
d

co
st

 (
C

S
/C

2)

(C1/C2) 5 1000

(C1/C2) 5 10

(C1/C2) 5 100

2

3

4
5
6
7
8

1000

2 3 4 5 6 7 8 10002 3 4 5 6 7 8 10095 6 7 8 109

2

3

4
5
6
7
8

100

2

3

4
5
6
7
8

10

1

M01_STAL4290_09_GE_C01.indd 65 5/9/17 4:36 PM

66   Chapter 1 / Computer System Overview

We can now phrase the question about relative memory size more exactly. Is
a hit ratio of 0.8 or higher reasonable for S1 6 6 S2? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is the
same size as M2, then the hit ratio will be 1.0: All of the items in M2 are also stored
in M1. Now suppose there is no locality; that is, references are completely random.
In that case, the hit ratio should be a strictly linear function of the relative memory
size. For example, if M1 is half the size of M2, then at any time half of the items from
M2 are also in M1, and the hit ratio will be 0.5. In practice, however, there is some
degree of locality in the references. The effects of moderate and strong locality are
indicated in the figure.

So, if there is strong locality, it is possible to achieve high values of hit ratio even
with relatively small upper-level memory size. For example, numerous studies have
shown that rather small cache sizes will yield a hit ratio above 0.75 regardless of the
size of main memory ([AGAR89], [PRZY88], [STRE83], and [SMIT82]). A cache in
the range of 1K to 128K words is generally adequate, whereas main memory is now
typically in the gigabyte range. When we consider virtual memory and disk cache, we
will cite other studies that confirm the same phenomenon, namely that a relatively
small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the two
memories satisfy the cost requirement? The answer is clearly yes. If we need only a

Figure 1.23  Access Efficiency as a Function of Hit Ratio (r = T2/T1)

Hit ratio 5 H

r 5 1

r 5 10

r 5 100

r 5 1000

0.0 0.2 0.4 0.6 0.8 1.0

1

0.1

0.01

0.001

A
cc

es
s

e�
ci

en
cy

 5
 T

1/
T
s

M01_STAL4290_09_GE_C01.indd 66 5/9/17 4:36 PM

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES   67

relatively small upper-level memory to achieve good performance, then the average
cost per bit of the two levels of memory will approach that of the cheaper lower-level
memory. Please note that with L2 cache (or even L2 and L3 caches) involved, analysis
is much more complex. See [PEIR99] and [HAND98] for discussions.

Figure 1.24  Hit Ratio as a Function of Relative Memory Size

No locality

Moderate
locality

Strong
locality

H
it

 r
at

io

Relative memory size (S1/S2)
0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

M01_STAL4290_09_GE_C01.indd 67 5/9/17 4:36 PM

2.1	 Operating System Objectives and Functions
The Operating System as a User/Computer Interface
The Operating System as Resource Manager
Ease of Evolution of an Operating System

2.2	 The Evolution of Operating Systems
Serial Processing
Simple Batch Systems
Multiprogrammed Batch Systems
Time-Sharing Systems

2.3	 Major Achievements
The Process
Memory Management
Information Protection and Security
Scheduling and Resource Management

2.4	 Developments Leading to Modern Operating Systems
2.5	 Fault Tolerance

Fundamental Concepts
Faults
Operating System Mechanisms

2.6	 OS Design Considerations for Multiprocessor and Multicore
Symmetric Multiprocessor OS Considerations
Multicore OS Considerations

2.7	 Microsoft Windows Overview
Background
Architecture
Client/Server Model
Threads and SMP
Windows Objects

2.8	 Traditional Unix Systems
History
Description

2.9	 Modern Unix Systems
System V Release 4 (SVR4)
BSD
Solaris 11

2.10	 Linux
History
Modular Structure
Kernel Components

2.11	 Android
Android Software Architecture
Android Runtime
Android System Architecture
Activities
Power Management

2.12	 Key Terms, Review Questions, and Problems

Chapter

68

Operating System Overview

M02_STAL4290_09_GE_C02.indd 68 5/2/17 6:27 PM

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS   69

We begin our study of operating systems (OSs) with a brief history. This history
is itself interesting, and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems.
Then, we will look at how operating systems have evolved from primitive batch sys-
tems to sophisticated multitasking, multiuser systems. The remainder of the chapter
will look at the history and general characteristics of the two operating systems that
serve as examples throughout this book.

	 2.1	 OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs, and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

•	 Convenience: An OS makes a computer more convenient to use.

•	 Efficiency: An OS allows the computer system resources to be used in an effi-
cient manner.

•	 Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

Learning Objectives

After studying this chapter, you should be able to:
•	 Summarize, at a top level, the key functions of an operating system (OS).
•	 Discuss the evolution of operating systems for early simple batch systems to

modern complex systems.
•	 Give a brief explanation of each of the major achievements in OS research,

as defined in Section 2.3.
•	 Discuss the key design areas that have been instrumental in the development

of modern operating systems.
•	 Define and discuss virtual machines and virtualization.
•	 Understand the OS design issues raised by the introduction of multiproces-

sor and multicore organization.
•	 Understand the basic structure of Windows.
•	 Describe the essential elements of a traditional UNIX system.
•	 Explain the new features found in modern UNIX systems.
•	 Discuss Linux and its relationship to UNIX.

M02_STAL4290_09_GE_C02.indd 69 5/2/17 6:27 PM

70   Chapter 2 / Operating System Overview

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed
in a layered fashion, as depicted in Figure 2.1. The user of those applications (the
end user) generally is not concerned with the details of computer hardware. Thus,
the end user views a computer system in terms of a set of applications. An applica-
tion can be expressed in a programming language, and is developed by an applica-
tion programmer. If one were to develop an application program as a set of machine
instructions that is completely responsible for controlling the computer hardware,
one would be faced with an overwhelmingly complex undertaking. To ease this
chore, a set of system programs is provided. Some of these programs are referred
to as utilities, or library programs. These implement frequently used functions that
assist in program creation, the management of files, and the control of I/O devices.
A programmer will make use of these facilities in developing an application, and
the application, while it is running, will invoke the utilities to perform certain func-
tions. The most important collection of system programs comprises the OS. The OS
masks the details of the hardware from the programmer, and provides the program-
mer with a convenient interface for using the system. It acts as a mediator, making
it easier for the programmer and for application programs to access and use those
facilities and services.

Briefly, the OS typically provides services in the following areas:

•	 Program development: The OS provides a variety of facilities and services, such
as editors and debuggers, to assist the programmer in creating programs. Typi-
cally, these services are in the form of utility programs that, while not strictly
part of the core of the OS, are supplied with the OS, and are referred to as
application program development tools.

•	 Program execution: A number of steps need to be performed to execute a pro-
gram. Instructions and data must be loaded into main memory, I/O devices and

Figure 2.1  Computer Hardware and Software Structure

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction set
architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Application programs

Application
binary interface

Operating system

Libraries/utilities

M02_STAL4290_09_GE_C02.indd 70 5/2/17 6:27 PM

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS   71

files must be initialized, and other resources must be prepared. The OS handles
these scheduling duties for the user.

•	 Access to I/O devices: Each I/O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface that
hides these details so programmers can access such devices using simple reads
and writes.

•	 Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive), but
also the structure of the data contained in the files on the storage medium. In
the case of a system with multiple users, the OS may provide protection mecha-
nisms to control access to the files.

•	 System access: For shared or public systems, the OS controls access to the sys-
tem as a whole and to specific system resources. The access function must pro-
vide protection of resources and data from unauthorized users, and must resolve
conflicts for resource contention.

•	 Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors (such as
a memory error, or a device failure or malfunction), and various software errors,
(such as division by zero, attempt to access forbidden memory location, and inabil-
ity of the OS to grant the request of an application). In each case, the OS must
provide a response that clears the error condition with the least impact on running
applications. The response may range from ending the program that caused the
error, to retrying the operation, or simply reporting the error to the application.

•	 Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the informa-
tion can be used for billing purposes.

Figure 2.1 also indicates three key interfaces in a typical computer system:

•	 Instruction set architecture (ISA): The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the boundary
between hardware and software. Note both application programs and utilities
may access the ISA directly. For these programs, a subset of the instruction
repertoire is available (user ISA). The OS has access to additional machine
language instructions that deal with managing system resources (system ISA).

•	 Application binary interface (ABI): The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to the
operating system, and the hardware resources and services available in a system
through the user ISA.

•	 Application programming interface (API): The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same API.

M02_STAL4290_09_GE_C02.indd 71 5/2/17 6:27 PM

72   Chapter 2 / Operating System Overview

The Operating System as Resource Manager

The OS is responsible for controlling the use of a computer’s resources, such as I/O,
main and secondary memory, and processor execution time. But this control is exer-
cised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating system
is controlled by a thermostat, which is separate from the heat-generation and heat-
distribution apparatus.) This is not the case with the OS, which as a control mecha-
nism is unusual in two respects:

•	 The OS functions in the same way as ordinary computer software; that is, it is a
program or suite of programs executed by the processor.

•	 The OS frequently relinquishes control, and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS consists of instructions executed by the
processor. While executing, the OS decides how processor time is to be allocated
and which computer resources are available for use. But in order for the processor
to act on these decisions, it must cease executing the OS program and execute other
programs. Thus, the OS relinquishes control for the processor to do some “useful”
work, then resumes control long enough to prepare the processor to do the next piece
of work. The mechanisms involved in all this should become clear as the chapter
proceeds.

Figure 2.2 suggests the main resources that are managed by the OS. A por-
tion of the OS is in main memory. This includes the kernel, or nucleus, which
contains the most frequently used functions in the OS and, at a given time, other
portions of the OS currently in use. The remainder of main memory contains user
and utility programs and data. The OS and the memory management hardware
in the processor jointly control the allocation of main memory, as we shall see.
The OS decides when an I/O device can be used by a program in execution, and
controls access to and use of files. The processor itself is a resource, and the OS
must determine how much processor time is to be devoted to the execution of a
particular user program.

Ease of Evolution of an Operating System

A major OS will evolve over time for a number of reasons:

•	 Hardware upgrades plus new types of hardware: For example, early versions of
UNIX and the Macintosh OS did not employ a paging mechanism because they
were run on processors without paging hardware.1 Subsequent versions of these
operating systems were modified to exploit paging capabilities. Also, the use of
graphics terminals and page-mode terminals instead of line-at-a-time scroll
mode terminals affects OS design. For example, a graphics terminal typically
allows the user to view several applications at the same time through “windows”
on the screen. This requires more sophisticated support in the OS.

1Paging will be introduced briefly later in this chapter, and will be discussed in detail in Chapter 7.

M02_STAL4290_09_GE_C02.indd 72 5/2/17 6:27 PM

2.2 / THE EVOLUTION OF OPERATING SYSTEMS   73

•	 New services: In response to user demand or in response to the needs of system
managers, the OS expands to offer new services. For example, if it is found to
be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.

•	 Fixes: Any OS has faults. These are discovered over the course of time and fixes
are made. Of course, the fix may introduce new faults.

The need to regularly update an OS places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be
referred to as straightforward modularization is inadequate [DENN80a]. That is,
much more must be done than simply partitioning a program into modules. We will
return to this topic later in this chapter.

	 2.2	 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance
of the major features of a contemporary OS, it is useful to consider how operating
systems have evolved over the years.

Figure 2.2  The Operating System as Resource Manager

Memory

Computer system

I/O devices

Operating
system

software

Programs
and data

ProcessorProcessor

OS
Programs

Data

Storage

I/O controller

I/O controller

I/O controller Printers,
keyboards,
digital cameras,
etc.

M02_STAL4290_09_GE_C02.indd 73 5/2/17 6:27 PM

74   Chapter 2 / Operating System Overview

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the program-
mer interacted directly with the computer hardware; there was no OS. These
computers were run from a console consisting of display lights, toggle switches,
some form of input device, and a printer. Programs in machine code were loaded
via the input device (e.g., a card reader). If an error halted the program, the
error condition was indicated by the lights. If the program proceeded to a normal
completion, the output appeared on the printer. These early systems presented
two main problems:

•	 Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.

•	 Setup time: A single program, called a job, could involve loading the compiler
plus the high-level language program (source program) into memory, saving
the compiled program (object program), then loading and linking together
the object program and common functions. Each of these steps could involve
mounting or dismounting tapes or setting up card decks. If an error occurred,
the hapless user typically had to go back to the beginning of the setup sequence.
Thus, a considerable amount of time was spent just in setting up the program
to run.

This mode of operation could be termed serial processing, reflecting the fact that
users have access to the computer in series. Over time, various system software tools
were developed to attempt to make serial processing more efficient. These include
libraries of common functions, linkers, loaders, debuggers, and I/O driver routines
that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

To improve utilization, the concept of a batch OS was developed. It appears
that the first batch OS (and the first OS of any kind) was developed in the mid-1950s
by General Motors for use on an IBM 701 [WEIZ81]. The concept was subsequently
refined and implemented on the IBM 704 by a number of IBM customers. By the
early 1960s, a number of vendors had developed batch operating systems for their
computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is particularly
notable because of its widespread influence on other systems.

The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor. With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a

M02_STAL4290_09_GE_C02.indd 74 5/2/17 6:27 PM

2.2 / THE EVOLUTION OF OPERATING SYSTEMS   75

computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the monitor
automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of view:
that of the monitor, and that of the processor.

•	 Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (see Figure 2.3). That portion is referred to as the resident moni-
tor. The rest of the monitor consists of utilities and common functions that
are loaded as subroutines to the user program at the beginning of any job that
requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads
in the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.

•	 Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These instruc-
tions cause the next job to be read into another portion of main memory. Once
a job has been read in, the processor will encounter a branch instruction in
the monitor that instructs the processor to continue execution at the start of

Figure 2.3  Memory Layout for a Resident Monitor

Interrupt
processing

Device
drivers

Job
sequencing

Control language
interpreter

User
program

area

Monitor

Boundary

M02_STAL4290_09_GE_C02.indd 75 5/2/17 6:27 PM

76   Chapter 2 / Operating System Overview

the user program. The processor will then execute the instructions in the user
program until it encounters an ending or error condition. Either event causes
the processor to fetch its next instruction from the monitor program. Thus the
phrase “control is passed to a job” simply means the processor is now fetching
and executing instructions in a user program, and “control is returned to the
monitor” means the processor is now fetching and executing instructions from
the monitor program.

The monitor performs a scheduling function: a batch of jobs is queued up, and
jobs are executed as rapidly as possible, with no intervening idle time. The monitor
improves job setup time as well. With each job, instructions are included in a primitive
form of job control language (JCL). This is a special type of programming language
used to provide instructions to the monitor. A simple example is that of a user sub-
mitting a program written in the programming language FORTRAN plus some data
to be used by the program. All FORTRAN instructions and data are on a separate
punched card or a separate record on tape. In addition to FORTRAN and data lines,
the job includes job control instructions, which are denoted by the beginning $. The
overall format of the job looks like this:

$JOB
$FTN
~
~
~
 s FORTRAN instructions

$LOAD
$RUN
~
~
~
 s Data

$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates
the user’s program into object code, which is stored in memory or mass storage. If
it is stored in memory, the operation is referred to as “compile, load, and go.” If it is
stored on tape, then the $LOAD instruction is required. This instruction is read by the
monitor, which regains control after the compile operation. The monitor invokes the
loader, which loads the object program into memory (in place of the compiler) and
transfers control to it. In this manner, a large segment of main memory can be shared
among different subsystems, although only one such subsystem could be executing
at a time.

During the execution of the user program, any input instruction causes one line
of data to be read. The input instruction in the user program causes an input routine
that is part of the OS to be invoked. The input routine checks to make sure that the
program does not accidentally read in a JCL line. If this happens, an error occurs and
control transfers to the monitor. At the completion of the user job, the monitor will

M02_STAL4290_09_GE_C02.indd 76 5/2/17 6:27 PM

2.2 / THE EVOLUTION OF OPERATING SYSTEMS   77

scan the input lines until it encounters the next JCL instruction. Thus, the system is
protected against a program with too many or too few data lines.

The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to
alternately seize and relinquish control. Certain other hardware features are also
desirable:

•	 Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load in the
next job.

•	 Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

•	 Privileged instructions: Certain machine level instructions are designated as
privileged and can be executed only by the monitor. If the processor encounters
such an instruction while executing a user program, an error occurs causing con-
trol to be transferred to the monitor. Among the privileged instructions are I/O
instructions, so that the monitor retains control of all I/O devices. This prevents,
for example, a user program from accidentally reading job control instructions
from the next job. If a user program wishes to perform I/O, it must request that
the monitor perform the operation for it.

•	 Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to, and regaining control
from, user programs.

Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode, in which
certain areas of memory are protected from the user’s use, and in which certain
instructions may not be executed. The monitor executes in a system mode, or what
has come to be called kernel mode, in which privileged instructions may be executed,
and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

With a batch OS, processor time alternates between execution of user programs
and execution of the monitor. There have been two sacrifices: Some main memory is
now given over to the monitors and some processor time is consumed by the monitor.
Both of these are forms of overhead. Despite this overhead, the simple batch system
improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is I/O devices are slow compared to the processor.

M02_STAL4290_09_GE_C02.indd 77 5/2/17 6:27 PM

78   Chapter 2 / Operating System Overview

Figure 2.4 details a representative calculation. The calculation concerns a program
that processes a file of records and performs, on average, 100 machine instructions
per record. In this example, the computer spends over 96% of its time waiting for I/O
devices to finish transferring data to and from the file. Figure 2.5a illustrates this situ-
ation, where we have a single program, referred to as uniprogramming. The processor

Figure 2.5  Multiprogramming Example

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait Wait

Run
B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Read one record from file 15 ms

Execute 100 instructions 1 ms

Write one record to file 15 ms

Total 31 ms

Percent CPU utilization =
1
31

= 0.032 = 3.2,

Figure 2.4  System Utilization Example

M02_STAL4290_09_GE_C02.indd 78 5/2/17 6:27 PM

2.2 / THE EVOLUTION OF OPERATING SYSTEMS   79

spends a certain amount of time executing, until it reaches an I/O instruction. It must
then wait until that I/O instruction concludes before proceeding.

This inefficiency is not necessary. We know there must be enough memory to
hold the OS (resident monitor) and one user program. Suppose there is room for the
OS and two user programs. When one job needs to wait for I/O, the processor can
switch to the other job, which is likely not waiting for I/O (see Figure 2.5b). Further-
more, we might expand memory to hold three, four, or more programs and switch
among all of them (see Figure 2.5c). The approach is known as multiprogramming,
or multitasking. It is the central theme of modern operating systems.

To illustrate the benefit of multiprogramming, we give a simple example. Con-
sider a computer with 250 Mbytes of available memory (not used by the OS), a disk,
a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are submitted for
execution at the same time, with the attributes listed in Table 2.1. We assume minimal
processor requirements for JOB2 and JOB3, and continuous disk and printer use by
JOB3. For a simple batch environment, these jobs will be executed in sequence. Thus,
JOB1 completes in 5 minutes. JOB2 must wait until the 5 minutes are over, then com-
pletes 15 minutes after that. JOB3 begins after 20 minutes and completes at 30 minutes
from the time it was initially submitted. The average resource utilization, throughput,
and response times are shown in the uniprogramming column of Table 2.2. Device-
by-device utilization is illustrated in Figure 2.6a. It is evident that there is gross unde-
rutilization for all resources when averaged over the required 30-minute time period.

Now suppose the jobs are run concurrently under a multiprogramming OS.
Because there is little resource contention between the jobs, all three can run in

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min 15 min 10 min

Memory required 50 M 100 M 75 M

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 2.1  Sample Program Execution Attributes

Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

Table 2.2  Effects of Multiprogramming on Resource Utilization

M02_STAL4290_09_GE_C02.indd 79 5/2/17 6:27 PM

80   Chapter 2 / Operating System Overview

nearly minimum time while coexisting with the others in the computer (assuming
JOB2 and JOB3 are allotted enough processor time to keep their input and output
operations active). JOB1 will still require 5 minutes to complete, but at the end of that
time, JOB2 will be one-third finished and JOB3 half-finished. All three jobs will have
finished within 15 minutes. The improvement is evident when examining the multi-
programming column of Table 2.2, obtained from the histogram shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that is
useful for multiprogramming is the hardware that supports I/O interrupts and DMA
(direct memory access). With interrupt-driven I/O or DMA, the processor can issue
an I/O command for one job and proceed with the execution of another job while
the I/O is carried out by the device controller. When the I/O operation is complete,
the processor is interrupted and control is passed to an interrupt-handling program
in the OS. The OS will then pass control to another job after the interrupt is handled.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run, they
must be kept in main memory, requiring some form of memory management. In addi-
tion, if several jobs are ready to run, the processor must decide which one to run, and
this decision requires an algorithm for scheduling. These concepts will be discussed
later in this chapter.

Figure 2.6  Utilization Histograms

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

JOB1
JOB2

JOB3

Job history

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

M02_STAL4290_09_GE_C02.indd 80 5/2/17 6:27 PM

2.2 / THE EVOLUTION OF OPERATING SYSTEMS   81

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient. However,
for many jobs, it is desirable to provide a mode in which the user interacts directly
with the computer. Indeed, for some jobs, such as transaction processing, an interac-
tive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can also be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because processor time
is shared among multiple users. In a time-sharing system, multiple users simultane-
ously access the system through terminals, with the OS interleaving the execution of
each user program in a short burst or quantum of computation. Thus, if there are n
users actively requesting service at one time, each user will only see on the average
1/n of the effective computer capacity, not counting OS overhead. However, given
the relatively slow human reaction time, the response time on a properly designed
system should be similar to that on a dedicated computer.

Both batch processing and time sharing use multiprogramming. The key differ-
ences are listed in Table 2.3.

One of the first time-sharing operating systems to be developed was the Com-
patible Time-Sharing System (CTSS) [CORB62], developed at MIT by a group
known as Project MAC (Machine-Aided Cognition, or Multiple-Access Comput-
ers). The system was first developed for the IBM 709 in 1961 and later ported to
IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming 5,000
of those. When control was to be assigned to an interactive user, the user’s program
and data were loaded into the remaining 27,000 words of main memory. A program
was always loaded to start at the location of the 5,000th word; this simplified both
the monitor and memory management. A system clock generated interrupts at a rate
of approximately one every 0.2 seconds. At each clock interrupt, the OS regained
control and could assign the processor to another user. This technique is known as
time slicing. Thus, at regular time intervals, the current user would be preempted and
another user loaded in. To preserve the old user program status for later resumption,
the old user programs and data were written out to disk before the new user pro-
grams and data were read in. Subsequently, the old user program code and data were
restored in main memory when that program was next given a turn.

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to
operating system

Job control language commands
provided with the job

Commands entered at the
terminal

Table 2.3  Batch Multiprogramming versus Time Sharing

M02_STAL4290_09_GE_C02.indd 81 5/2/17 6:27 PM

82   Chapter 2 / Operating System Overview

To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7. Assume there
are four interactive users with the following memory requirements, in words:

•	 JOB1: 15,000

•	 JOB2: 20,000

•	 JOB3: 5,000

•	 JOB4: 10,000

Initially, the monitor loads JOB1 and transfers control to it (Figure 2.7a). Later,
the monitor decides to transfer control to JOB2. Because JOB2 requires more mem-
ory than JOB1, JOB1 must be written out first, and then JOB2 can be loaded (Figure
2.7b). Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than
JOB2, a portion of JOB2 can remain in memory, reducing disk write time (Figure
2.7c). Later, the monitor decides to transfer control back to JOB1. An additional por-
tion of JOB2 must be written out when JOB1 is loaded back into memory (Figure
2.7d). When JOB4 is loaded, part of JOB1 and the portion of JOB2 remaining in
memory are retained (Figure 2.7e). At this point, if either JOB1 or JOB2 is activated,
only a partial load will be required. In this example, it is JOB2 that runs next. This
requires that JOB4 and the remaining resident portion of JOB1 be written out, and
the missing portion of JOB2 be read in (Figure 2.7f).

The CTSS approach is primitive compared to present-day time sharing, but
it was effective. It was extremely simple, which minimized the size of the monitor.
Because a job was always loaded into the same locations in memory, there was no
need for relocation techniques at load time (discussed subsequently). The technique

Figure 2.7  CTSS Operation

Monitor

Free
Free Free

JOB 1

0

32000

5000

20000

20000

(a)

Monitor

JOB 2

0

32000

5000

25000 25000

(b)

Free

Monitor

JOB 2

0

32000

5000

25000

(f)

Monitor

JOB 3

(JOB 2)

0

32000

5000

10000

(c)

Free
25000

Monitor

JOB 1

(JOB 2)

0

32000

5000

(d)

20000

15000

Free
25000

Monitor

JOB 4

(JOB 2)

(JOB 1)

0

32000

5000

(e)

M02_STAL4290_09_GE_C02.indd 82 5/2/17 6:27 PM

2.3 / MAJOR ACHIEVEMENTS   83

of only writing out what was necessary minimized disk activity. Running on the 7094,
CTSS supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS. If
multiple jobs are in memory, then they must be protected from interfering with each
other by, for example, modifying each other’s data. With multiple interactive users,
the file system must be protected so only authorized users have access to a particular
file. The contention for resources, such as printers and mass storage devices, must
be handled. These and other problems, with possible solutions, will be encountered
throughout this text.

	 2.3	 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever developed.
This reflects the challenge of trying to meet the difficult and in some cases competing
objectives of convenience, efficiency, and ability to evolve. [DENN80a] proposes that
there have been four major theoretical advances in the development of operating
systems:

•	 Processes

•	 Memory management

•	 Information protection and security

•	 Scheduling and resource management

Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these four areas span many of
the key design and implementation issues of modern operating systems. The brief
review of these four areas in this section serves as an overview of much of the rest
of the text.

The Process

Central to the design of operating systems is the concept of process. This term was
first used by the designers of Multics in the 1960s [DALE68]. It is a somewhat
more general term than job. Many definitions have been given for the term process,
including:

•	 A program in execution.

•	 An instance of a program running on a computer.

•	 The entity that can be assigned to and executed on a processor.

•	 A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources.

This concept should become clearer as we proceed.
Three major lines of computer system development created problems in tim-

ing and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time-sharing, and real-time transaction
systems. As we have seen, multiprogramming was designed to keep the processor

M02_STAL4290_09_GE_C02.indd 83 5/2/17 6:27 PM

84   Chapter 2 / Operating System Overview

and I/O devices, including storage devices, simultaneously busy to achieve maximum
efficiency. The key mechanism is this: In response to signals indicating the completion
of I/O transactions, the processor is switched among the various programs residing
in main memory.

A second line of development was general-purpose time sharing. Here, the key
design objective is to be responsive to the needs of the individual user and yet, for
cost reasons, be able to support many users simultaneously. These goals are compat-
ible because of the relatively slow reaction time of the user. For example, if a typical
user needs an average of 2 seconds of processing time per minute, then close to 30
such users should be able to share the same system without noticeable interference.
Of course, OS overhead must be factored into such calculations.

A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a
database. An example is an airline reservation system. The key difference between
the transaction processing system and the time-sharing system is that the former
is limited to one or a few applications, whereas users of a time-sharing system can
engage in program development, job execution, and the use of various applications.
In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
of any job could be suspended by the occurrence of a defined event, such as an I/O
completion. The processor would save some sort of context (e.g., program counter
and other registers) and branch to an interrupt-handling routine which would deter-
mine the nature of the interrupt, process the interrupt, then resume user processing
with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming
errors whose effects could be observed only when certain relatively rare sequences
of actions occurred. These errors were difficult to diagnose, because they needed to
be distinguished from application software errors and hardware errors. Even when
the error was detected, it was difficult to determine the cause, because the precise
conditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENN80a]:

•	 Improper synchronization: It is often the case that a routine must be suspended
awaiting an event elsewhere in the system. For example, a program that initiates
an I/O read must wait until the data are available in a buffer before proceeding.
In such cases, a signal from some other routine is required. Improper design
of the signaling mechanism can result in signals being lost or duplicate signals
being received.

•	 Failed mutual exclusion: It is often the case that more than one user or program
will attempt to make use of a shared resource at the same time. For example,

M02_STAL4290_09_GE_C02.indd 84 5/2/17 6:27 PM

2.3 / MAJOR ACHIEVEMENTS   85

two users may attempt to edit the same file at the same time. If these accesses
are not controlled, an error can occur. There must be some sort of mutual exclu-
sion mechanism that permits only one routine at a time to perform an update
against the file. The implementation of such mutual exclusion is difficult to
verify as being correct under all possible sequences of events.

•	 Nondeterminate program operation: The results of a particular program nor-
mally should depend only on the input to that program, and not on the activities
of other programs in a shared system. But when programs share memory, and
their execution is interleaved by the processor, they may interfere with each
other by overwriting common memory areas in unpredictable ways. Thus, the
order in which various programs are scheduled may affect the outcome of any
particular program.

•	 Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to per-
form some operation (e.g., disk to tape copy). One of the programs has seized
control of one of the devices, and the other program has control of the other
device. Each is waiting for the other program to release the desired resource.
Such a deadlock may depend on the chance timing of resource allocation and
release.

What is needed to tackle these problems is a systematic way to monitor and
control the various programs executing on the processor. The concept of the process
provides the foundation. We can think of a process as consisting of three components:

1.	 An executable program

2.	 The associated data needed by the program (variables, work space, buffers, etc.)

3.	 The execution context of the program

This last element is essential. The execution context, or process state, is the
internal data by which the OS is able to supervise and control the process. This inter-
nal information is separated from the process, because the OS has information not
permitted to the process. The context includes all of the information the OS needs
to manage the process, and the processor needs to execute the process properly. The
context includes the contents of the various processor registers, such as the program
counter and data registers. It also includes information of use to the OS, such as the
priority of the process and whether the process is waiting for the completion of a
particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two processes,
A and B, exist in portions of main memory. That is, a block of memory is allocated to
each process that contains the program, data, and context information. Each process
is recorded in a process list built and maintained by the OS. The process list contains
one entry for each process, which includes a pointer to the location of the block
of memory that contains the process. The entry may also include part or all of the
execution context of the process. The remainder of the execution context is stored
elsewhere, perhaps with the process itself (as indicated in Figure 2.8) or frequently in
a separate region of memory. The process index register contains the index into the
process list of the process currently controlling the processor. The program counter

M02_STAL4290_09_GE_C02.indd 85 5/2/17 6:27 PM

86   Chapter 2 / Operating System Overview

points to the next instruction in that process to be executed. The base and limit reg-
isters define the region in memory occupied by the process: The base register is the
starting address of the region of memory, and the limit is the size of the region (in
bytes or words). The program counter and all data references are interpreted relative
to the base register and must not exceed the value in the limit register. This prevents
interprocess interference.

In Figure 2.8, the process index register indicates that process B is executing.
Process A was previously executing but has been temporarily interrupted. The con-
tents of all the registers at the moment of A’s interruption were recorded in its execu-
tion context. Later, the OS can perform a process switch and resume the execution
of process A. The process switch consists of saving the context of B and restoring
the context of A. When the program counter is loaded with a value pointing into A’s
program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be execut-
ing or awaiting execution. The entire state of the process at any instant is contained in
its context. This structure allows the development of powerful techniques for ensuring

Figure 2.8  Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
limit

Other
registers

i

b
h

j

b

h
Process

B

Process
A

Main
memory

Processor
registers

Process
list

Program
(code)

M02_STAL4290_09_GE_C02.indd 86 5/2/17 6:27 PM

2.3 / MAJOR ACHIEVEMENTS   87

coordination and cooperation among processes. New features can be designed and
incorporated into the OS (e.g., priority) by expanding the context to include any
new information needed to support the feature. Throughout this book, we will see a
number of examples where this process structure is employed to solve the problems
raised by multiprogramming and resource sharing.

A final point, which we introduce briefly here, is the concept of thread. In
essence, a single process, which is assigned certain resources, can be broken up into
multiple, concurrent threads that execute cooperatively to perform the work of the
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

The needs of users can be met best by a computing environment that supports modu-
lar programming and the flexible use of data. System managers need efficient and
orderly control of storage allocation. The OS, to satisfy these requirements, has five
principal storage management responsibilities:

1.	 Process isolation: The OS must prevent independent processes from interfering
with each other’s memory, both data and instructions.

2.	 Automatic allocation and management: Programs should be dynamically allo-
cated across the memory hierarchy as required. Allocation should be transpar-
ent to the programmer. Thus, the programmer is relieved of concerns relating
to memory limitations, and the OS can achieve efficiency by assigning memory
to jobs only as needed.

3.	 Support of modular programming: Programmers should be able to define pro-
gram modules, and to dynamically create, destroy, and alter the size of modules.

4.	 Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.

5.	 Long-term storage: Many application programs require means for storing infor-
mation for extended periods of time, after the computer has been powered down.

Typically, operating systems meet these requirements with virtual memory and
file system facilities. The file system implements a long-term store, with information
stored in named objects called files. The file is a convenient concept for the program-
mer, and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from a
logical point of view, without regard to the amount of main memory physically avail-
able. Virtual memory was conceived to meet the requirement of having multiple user
jobs concurrently reside in main memory, so there would not be a hiatus between
the execution of successive processes while one process was written out to secondary
store and the successor process was read in. Because processes vary in size, if the pro-
cessor switches among a number of processes, it is difficult to pack them compactly

M02_STAL4290_09_GE_C02.indd 87 5/2/17 6:27 PM

88   Chapter 2 / Operating System Overview

into main memory. Paging systems were introduced, which allow processes to be
comprised of a number of fixed-size blocks, called pages. A program references a
word by means of a virtual address consisting of a page number and an offset within
the page. Each page of a process may be located anywhere in main memory. The pag-
ing system provides for a dynamic mapping between the virtual address used in the
program and a real address, or physical address, in main memory.

With dynamic mapping hardware available, the next logical step was to eliminate
the requirement that all pages of a process simultaneously reside in main memory.
All the pages of a process are maintained on disk. When a process is executing, some
of its pages are in main memory. If reference is made to a page that is not in main
memory, the memory management hardware detects this and, in coordination with
the OS, arranges for the missing page to be loaded. Such a scheme is referred to as
virtual memory and is depicted in Figure 2.9.

Figure 2.9  Virtual Memory Concepts

Main memory Disk

User
program

A

0
A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User
program

B

0

1

2

3

4

5

6

Main memory consists of a
number of fixed-length frames,
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

Secondary memory (disk) can
hold many fixed-length pages. A
user program consists of some
number of pages. Pages of all
programs plus the OS are on
disk, as are files.

M02_STAL4290_09_GE_C02.indd 88 5/2/17 6:27 PM

2.3 / MAJOR ACHIEVEMENTS   89

The processor hardware, together with the OS, provides the user with a “virtual
processor” that has access to a virtual memory. This memory may be a linear address
space or a collection of segments, which are variable-length blocks of contiguous
addresses. In either case, programming language instructions can reference program
and data locations in the virtual memory area. Process isolation can be achieved by
giving each process a unique, nonoverlapping virtual memory. Memory sharing can be
achieved by overlapping portions of two virtual memory spaces. Files are maintained
in a long-term store. Files and portions of files may be copied into the virtual memory
for manipulation by programs.

Figure 2.10 highlights the addressing concerns in a virtual memory scheme.
Storage consists of directly addressable (by machine instructions) main memory,
and lower-speed auxiliary memory that is accessed indirectly by loading blocks into
main memory. Address translation hardware (a memory management unit) is inter-
posed between the processor and memory. Programs reference locations using virtual
addresses, which are mapped into real main memory addresses. If a reference is made
to a virtual address not in real memory, then a portion of the contents of real memory
is swapped out to auxiliary memory and the desired block of data is swapped in. Dur-
ing this activity, the process that generated the address reference must be suspended.
The OS designer needs to develop an address translation mechanism that generates
little overhead, and a storage allocation policy that minimizes the traffic between
memory levels.

Information Protection and Security

The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information. The
nature of the threat that concerns an organization will vary greatly depending on the
circumstances. However, there are some general-purpose tools that can be built into

Figure 2.10  Virtual Memory Addressing

Processor
Virtual
address

Real
address

Disk
address

Memory
management

unit

Main
memory

Secondary
memory

M02_STAL4290_09_GE_C02.indd 89 5/2/17 6:27 PM

90   Chapter 2 / Operating System Overview

computers and operating systems that support a variety of protection and security
mechanisms. In general, we are concerned with the problem of controlling access to
computer systems and the information stored in them.

Much of the work in security and protection as it relates to operating systems
can be roughly grouped into four categories:

1.	 Availability: Concerned with protecting the system against interruption.

2.	 Confidentiality: Assures that users cannot read data for which access is
unauthorized.

3.	 Data integrity: Protection of data from unauthorized modification.

4.	 Authenticity: Concerned with the proper verification of the identity of users
and the validity of messages or data.

Scheduling and Resource Management

A key responsibility of the OS is to manage the various resources available to it (main
memory space, I/O devices, processors) and to schedule their use by the various active
processes. Any resource allocation and scheduling policy must consider three factors:

1.	 Fairness: Typically, we would like all processes that are competing for the use
of a particular resource to be given approximately equal and fair access to that
resource. This is especially so for jobs of the same class, that is, jobs of similar
demands.

2.	 Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The
OS should attempt to make allocation and scheduling decisions to meet the
total set of requirements. The OS should also make these decisions dynamically.
For example, if a process is waiting for the use of an I/O device, the OS may
wish to schedule that process for execution as soon as possible; the process can
then immediately use the device, then release it for later demands from other
processes.

3.	 Efficiency: The OS should attempt to maximize throughput, minimize response
time, and, in the case of time sharing, accommodate as many users as possible.
These criteria conflict; finding the right balance for a particular situation is an
ongoing problem for OS research.

Scheduling and resource management are essentially operations-research
problems and the mathematical results of that discipline can be applied. In addition,
measurement of system activity is important to be able to monitor performance and
make adjustments.

Figure 2.11 suggests the major elements of the OS involved in the scheduling
of processes and the allocation of resources in a multiprogramming environment.
The OS maintains a number of queues, each of which is simply a list of processes
waiting for some resource. The short-term queue consists of processes that are in
main memory (or at least an essential minimum portion of each is in main mem-
ory) and are ready to run as soon as the processor is made available. Any one of
these processes could use the processor next. It is up to the short-term scheduler,

M02_STAL4290_09_GE_C02.indd 90 5/2/17 6:27 PM

2.3 / MAJOR ACHIEVEMENTS   91

or dispatcher, to pick one. A common strategy is to give each process in the queue
some time in turn; this is referred to as a round-robin technique. In effect, the
round-robin technique employs a circular queue. Another strategy is to assign prior-
ity levels to the various processes, with the scheduler selecting processes in priority
order.

The long-term queue is a list of new jobs waiting to use the processor. The OS
adds jobs to the system by transferring a process from the long-term queue to the
short-term queue. At that time, a portion of main memory must be allocated to the
incoming process. Thus, the OS must be sure that it does not overcommit memory or
processing time by admitting too many processes to the system. There is an I/O queue
for each I/O device. More than one process may request the use of the same I/O
device. All processes waiting to use each device are lined up in that device’s queue.
Again, the OS must determine which process to assign to an available I/O device.

The OS receives control of the processor at the interrupt handler if an inter-
rupt occurs. A process may specifically invoke some OS service, such as an I/O device
handler, by means of a service call. In this case, a service call handler is the entry point
into the OS. In any case, once the interrupt or service call is handled, the short-term
scheduler is invoked to pick a process for execution.

The foregoing is a functional description; details and modular design of this
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data
structures for this function that provide fairness, differential responsiveness, and
efficiency.

Figure 2.11  Key Elements of an Operating System for Multiprogramming

Service
call

handler (code)

Pass control
to process

Interrupt
handler (code)

Short-term
scheduler

(code)

Long-
term

queue

Short-
term

queue

I/O
queues

Operating system

Service call
from process

Interrupt
from process

Interrupt
from I/O

M02_STAL4290_09_GE_C02.indd 91 5/2/17 6:27 PM

92   Chapter 2 / Operating System Overview

	 2.4	 DEVELOPMENTS LEADING TO MODERN OPERATING
SYSTEMS

Over the years, there has been a gradual evolution of OS structure and capabilities.
However, in recent years, a number of new design elements have been introduced
into both new operating systems and new releases of existing operating systems that
create a major change in the nature of operating systems. These modern operating
systems respond to new developments in hardware, new applications, and new secu-
rity threats. Among the key hardware drivers are multiprocessor systems, greatly
increased processor speed, high-speed network attachments, and increasing size and
variety of memory storage devices. In the application arena, multimedia applications,
Internet and Web access, and client/server computing have influenced OS design.
With respect to security, Internet access to computers has greatly increased the poten-
tial threat, and increasingly sophisticated attacks (such as viruses, worms, and hacking
techniques) have had a profound impact on OS design.

The rate of change in the demands on operating systems requires not just modi-
fications and enhancements to existing architectures, but new ways of organizing the
OS. A wide range of different approaches and design elements has been tried in both
experimental and commercial operating systems, but much of the work fits into the
following categories:

•	 Microkernel architecture

•	 Multithreading

•	 Symmetric multiprocessing

•	 Distributed operating systems

•	 Object-oriented design

Until recently, most operating systems featured a large monolithic kernel. Most
of what is thought of as OS functionality is provided in these large kernels, including
scheduling, file system, networking, device drivers, memory management, and more.
Typically, a monolithic kernel is implemented as a single process, with all elements
sharing the same address space. A microkernel architecture assigns only a few essen-
tial functions to the kernel, including address space management, interprocess com-
munication (IPC), and basic scheduling. Other OS services are provided by processes,
sometimes called servers, that run in user mode and are treated like any other appli-
cation by the microkernel. This approach decouples kernel and server development.
Servers may be customized to specific application or environment requirements.
The microkernel approach simplifies implementation, provides flexibility, and is well
suited to a distributed environment. In essence, a microkernel interacts with local
and remote server processes in the same way, facilitating construction of distributed
systems.

Multithreading is a technique in which a process, executing an application, is
divided into threads that can run concurrently. We can make the following distinction:

•	 Thread: A dispatchable unit of work. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a

M02_STAL4290_09_GE_C02.indd 92 5/2/17 6:27 PM

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS   93

stack (to enable subroutine branching). A thread executes sequentially and is
interruptible so the processor can turn to another thread.

•	 Process: A collection of one or more threads and associated system resources
(such as memory containing both code and data, open files, and devices). This
corresponds closely to the concept of a program in execution. By breaking a
single application into multiple threads, the programmer has great control over
the modularity of the application and the timing of application-related events.

Multithreading is useful for applications that perform a number of essentially
independent tasks that do not need to be serialized. An example is a database server
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves less
processor overhead than a major process switch between different processes. Threads
are also useful for structuring processes that are part of the OS kernel, as will be
described in subsequent chapters.

Symmetric multiprocessing (SMP) is a term that refers to a computer hardware
architecture (described in Chapter 1) and also to the OS behavior that exploits that
architecture. The OS of an SMP schedules processes or threads across all of the pro-
cessors. SMP has a number of potential advantages over uniprocessor architecture,
including the following:

•	 Performance: If the work to be done by a computer can be organized so some
portions of the work can be done in parallel, then a system with multiple pro-
cessors will yield greater performance than one with a single processor of the
same type. This is illustrated in Figure 2.12. With multiprogramming, only one
process can execute at a time; meanwhile, all other processes are waiting for
the processor. With multiprocessing, more than one process can be running
simultaneously, each on a different processor.

•	 Availability: In a symmetric multiprocessor, because all processors can perform
the same functions, the failure of a single processor does not halt the system.
Instead, the system can continue to function at reduced performance.

•	 Incremental growth: A user can enhance the performance of a system by adding
an additional processor.

•	 Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

It is important to note that these are potential, rather than guaranteed, benefits.
The OS must provide tools and functions to exploit the parallelism in an SMP
system.

Multithreading and SMP are often discussed together, but the two are indepen-
dent facilities. Even on a uniprocessor system, multithreading is useful for structuring
applications and kernel processes. An SMP system is useful even for nonthreaded
processes, because several processes can run in parallel. However, the two facilities
complement each other, and can be used effectively together.

An attractive feature of an SMP is that the existence of multiple processors
is transparent to the user. The OS takes care of scheduling of threads or processes

M02_STAL4290_09_GE_C02.indd 93 5/2/17 6:27 PM

94   Chapter 2 / Operating System Overview

on individual processors and of synchronization among processors. This book dis-
cusses the scheduling and synchronization mechanisms used to provide the single-
system appearance to the user. A different problem is to provide the appearance
of a single system for a cluster of separate computers—a multicomputer system.
In this case, we are dealing with a collection of computers, each with its own main
memory, secondary memory, and other I/O modules. A distributed operating sys-
tem provides the illusion of a single main memory space and a single secondary
memory space, plus other unified access facilities, such as a distributed file system.
Although clusters are becoming increasingly popular, and there are many cluster
products on the market, the state of the art for distributed operating systems lags
behind that of uniprocessor and SMP operating systems. We will examine such
systems in Part Eight.

Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular exten-
sions to a small kernel. At the OS level, an object-based structure enables program-
mers to customize an OS without disrupting system integrity. Object orientation
also eases the development of distributed tools and full-blown distributed operat-
ing systems.

Figure 2.12  Multiprogramming and Multiprocessing

(a) Interleaving (multiprogramming; one processor)

Process 1

Process 2

Process 3

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

M02_STAL4290_09_GE_C02.indd 94 5/2/17 6:27 PM

2.5 / FAULT TOLERANCE   95

	 2.5	 FAULT TOLERANCE

Fault tolerance refers to the ability of a system or component to continue nor-
mal operation despite the presence of hardware or software faults. This typically
involves some degree of redundancy. Fault tolerance is intended to increase the
reliability of a system. Typically, increased fault tolerance (and therefore increased
reliability) comes with a cost, either in financial terms or performance, or both.
Thus, the extent adoption of fault tolerance measures must be determined by how
critical the resource is.

Fundamental Concepts

The three basic measures of the quality of the operation of a system that relate to
fault tolerance are reliability, mean time to failure (MTTF), and availability. These
concepts were developed with specific reference to hardware faults, but apply more
generally to hardware and software faults.

The reliability R(t) of a system is defined as the probability of its correct opera-
tion up to time t given that the system was operating correctly at time t = 0. For
computer systems and operating systems, the term correct operation means the cor-
rect execution of a set of programs, and the protection of data from unintended
modification. The mean time to failure (MTTF) is defined as

MTTF = L
∞

0
R(t)

The mean time to repair (MTTR) is the average time it takes to repair or
replace a faulty element. Figure 2.13 illustrates the relationship between MTTF and
MTTR.

The availability of a system or service is defined as the fraction of time the sys-
tem is available to service users’ requests. Equivalently, availability is the probability
that an entity is operating correctly under given conditions at a given instant of time.
The time during which the system is not available is called downtime; the time during

Figure 2.13  System Operational States

A1

B1

Down

Up

B2 B3

A2 A3

MTTF = MTTR =
B1� B2 � B3

3
A1� A2� A3

3

M02_STAL4290_09_GE_C02.indd 95 5/2/17 6:27 PM

96   Chapter 2 / Operating System Overview

which the system is available is called uptime. The availability A of a system can be
expressed as follows:

A =
MTTF

MTTF + MTTR

Table 2.4 shows some commonly identified availability levels and the corre-
sponding annual downtime.

Often, the mean uptime, which is MTTF, is a better indicator than availability.
A small downtime and a small uptime combination may result in a high availability
measure, but the users may not be able to get any service if the uptime is less than
the time required to complete a service.

Faults

The IEEE Standards Dictionary defines a fault as an erroneous hardware or software
state resulting from component failure, operator error, physical interference from the
environment, design error, program error, or data structure error. The standard also
states that a fault manifests itself as (1) a defect in a hardware device or component;
for example, a short circuit or broken wire, or (2) an incorrect step, process, or data
definition in a computer program.

We can group faults into the following categories:

•	 Permanent: A fault that, after it occurs, is always present. The fault persists
until the faulty component is replaced or repaired. Examples include disk head
crashes, software bugs, and a burnt-out communications component.

•	 Temporary: A fault that is not present all the time for all operating conditions.
Temporary faults can be further classified as follows:

—Transient: A fault that occurs only once. Examples include bit transmission
errors due to an impulse noise, power supply disturbances, and radiation that
alters a memory bit.
—Intermittent: A fault that occurs at multiple, unpredictable times. An example
of an intermittent fault is one caused by a loose connection.

In general, fault tolerance is built into a system by adding redundancy. Methods
of redundancy include the following:

•	 Spatial (physical) redundancy: Physical redundancy involves the use of mul-
tiple components that either perform the same function simultaneously, or are

Class Availability Annual Downtime

Continuous 1.0 0

Fault tolerant 0.99999 5 minutes

Fault resilient 0.9999 53 minutes

High availability 0.999 8.3 hours

Normal availability 0.99–0.995 44–87 hours

Table 2.4  Availability Classes

M02_STAL4290_09_GE_C02.indd 96 5/2/17 6:27 PM

2.5 / FAULT TOLERANCE   97

configured so one component is available as a backup in case of the failure of
another component. An example of the former is the use of multiple parallel
circuitry with the majority result produced as output. An example of the latter
is a backup name server on the Internet.

•	 Temporal redundancy: Temporal redundancy involves repeating a function or
operation when an error is detected. This approach is effective with temporary
faults, but not useful for permanent faults. An example is the retransmission of
a block of data when an error is detected, such as is done with data link control
protocols.

•	 Information redundancy: Information redundancy provides fault tolerance by
replicating or coding data in such a way that bit errors can be both detected
and corrected. An example is the error-control coding circuitry used with mem-
ory systems, and error-correction techniques used with RAID disks, as will be
described in subsequent chapters.

Operating System Mechanisms

A number of techniques can be incorporated into OS software to support fault toler-
ance. A number of examples will be evident throughout the book. The following list
provides examples:

•	 Process isolation: As was mentioned earlier in this chapter, processes are gener-
ally isolated from one another in terms of main memory, file access, and flow of
execution. The structure provided by the OS for managing processes provides
a certain level of protection for other processes from a process that produces
a fault.

•	 Concurrency controls: Chapters 5 and 6 will discuss some of the difficulties and
faults that can occur when processes communicate or cooperate. These chapters
will also discuss techniques used to ensure correct operation and to recover
from fault conditions, such as deadlock.

•	 Virtual machines: Virtual machines, as will be discussed in Chapter 14, pro-
vide a greater degree of application isolation and hence fault isolation. Virtual
machines can also be used to provide redundancy, with one virtual machine
serving as a backup for another.

•	 Checkpoints and rollbacks: A checkpoint is a copy of an application’s state
saved in some storage that is immune to the failures under consideration. A
rollback restarts the execution from a previously saved checkpoint. When a
failure occurs, the application’s state is rolled back to the previous checkpoint
and restarted from there. This technique can be used to recover from transient
as well as permanent hardware failures, and certain types of software failures.
Database and transaction processing systems typically have such capabilities
built in.

A much wider array of techniques could be discussed, but a full treatment of
OS fault tolerance is beyond our current scope.

M02_STAL4290_09_GE_C02.indd 97 5/2/17 6:27 PM

98   Chapter 2 / Operating System Overview

	 2.6	 OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR
AND MULTICORE

Symmetric Multiprocessor OS Considerations

In an SMP system, the kernel can execute on any processor, and typically each proces-
sor does self-scheduling from the pool of available processes or threads. The kernel
can be constructed as multiple processes or multiple threads, allowing portions of the
kernel to execute in parallel. The SMP approach complicates the OS. The OS designer
must deal with the complexity due to sharing resources (such as data structures)
and coordinating actions (such as accessing devices) from multiple parts of the OS
executing at the same time. Techniques must be employed to resolve and synchronize
claims to resources.

An SMP operating system manages processor and other computer resources so
the user may view the system in the same fashion as a multiprogramming uniproces-
sor system. A user may construct applications that use multiple processes or multiple
threads within processes without regard to whether a single processor or multiple
processors will be available. Thus, a multiprocessor OS must provide all the func-
tionality of a multiprogramming system, plus additional features to accommodate
multiple processors. The key design issues include the following:

•	 Simultaneous concurrent processes or threads: Kernel routines need to be reen-
trant to allow several processors to execute the same kernel code simultane-
ously. With multiple processors executing the same or different parts of the
kernel, kernel tables and management structures must be managed properly to
avoid data corruption or invalid operations.

•	 Scheduling: Any processor may perform scheduling, which complicates the task
of enforcing a scheduling policy and assuring that corruption of the sched-
uler data structures is avoided. If kernel-level multithreading is used, then the
opportunity exists to schedule multiple threads from the same process simul-
taneously on multiple processors. Multiprocessor scheduling will be examined
in Chapter 10.

•	 Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering. A common synchronization mechanism used in
multiprocessor operating systems is locks, and will be described in Chapter 5.

•	 Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor computers, and will be discussed in
Part Three. In addition, the OS needs to exploit the available hardware paral-
lelism to achieve the best performance. The paging mechanisms on different
processors must be coordinated to enforce consistency when several proces-
sors share a page or segment and to decide on page replacement. The reuse of
physical pages is the biggest problem of concern; that is, it must be guaranteed
that a physical page can no longer be accessed with its old contents before the
page is put to a new use.

M02_STAL4290_09_GE_C02.indd 98 5/2/17 6:27 PM

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE   99

•	 Reliability and fault tolerance: The OS should provide graceful degradation
in the face of processor failure. The scheduler and other portions of the OS
must recognize the loss of a processor and restructure management tables
accordingly.

Because multiprocessor OS design issues generally involve extensions to solu-
tions to multiprogramming uniprocessor design problems, we do not treat multi-
processor operating systems separately. Rather, specific multiprocessor issues are
addressed in the proper context throughout this book.

Multicore OS Considerations

The considerations for multicore systems include all the design issues discussed so
far in this section for SMP systems. But additional concerns arise. The issue is one of
the scale of the potential parallelism. Current multicore vendors offer systems with
ten or more cores on a single chip. With each succeeding processor technology gen-
eration, the number of cores and the amount of shared and dedicated cache memory
increases, so we are now entering the era of “many-core” systems.

The design challenge for a many-core multicore system is to efficiently har-
ness the multicore processing power and intelligently manage the substantial on-chip
resources. A central concern is how to match the inherent parallelism of a many-core
system with the performance requirements of applications. The potential for paral-
lelism in fact exists at three levels in contemporary multicore system. First, there is
hardware parallelism within each core processor, known as instruction level parallel-
ism, which may or may not be exploited by application programmers and compilers.
Second, there is the potential for multiprogramming and multithreaded execution
within each processor. Finally, there is the potential for a single application to execute
in concurrent processes or threads across multiple cores. Without strong and effective
OS support for the last two types of parallelism just mentioned, hardware resources
will not be efficiently used.

In essence, since the advent of multicore technology, OS designers have been
struggling with the problem of how best to extract parallelism from computing work-
loads. A variety of approaches are being explored for next-generation operating sys-
tems. We will introduce two general strategies in this section, and will consider some
details in later chapters.

Parallelism within Applications  Most applications can, in principle, be
subdivided into multiple tasks that can execute in parallel, with these tasks then
being implemented as multiple processes, perhaps each with multiple threads. The
difficulty is that the developer must decide how to split up the application work into
independently executable tasks. That is, the developer must decide what pieces can
or should be executed asynchronously or in parallel. It is primarily the compiler and
the programming language features that support the parallel programming design
process. But the OS can support this design process, at minimum, by efficiently
allocating resources among parallel tasks as defined by the developer.

One of the most effective initiatives to support developers is Grand Central
Dispatch (GCD), implemented in the latest release of the UNIX-based Mac OS X
and the iOS operating systems. GCD is a multicore support capability. It does not

M02_STAL4290_09_GE_C02.indd 99 5/2/17 6:27 PM

100   Chapter 2 / Operating System Overview

help the developer decide how to break up a task or application into separate con-
current parts. But once a developer has identified something that can be split off
into a separate task, GCD makes it as easy and noninvasive as possible to actually
do so.

In essence, GCD is a thread pool mechanism, in which the OS maps tasks onto
threads representing an available degree of concurrency (plus threads for blocking
on I/O). Windows also has a thread pool mechanism (since 2000), and thread pools
have been heavily used in server applications for years. What is new in GCD is the
extension to programming languages to allow anonymous functions (called blocks) as
a way of specifying tasks. GCD is hence not a major evolutionary step. Nevertheless,
it is a new and valuable tool for exploiting the available parallelism of a multicore
system.

One of Apple’s slogans for GCD is “islands of serialization in a sea of concur-
rency.” That captures the practical reality of adding more concurrency to run-of-the-
mill desktop applications. Those islands are what isolate developers from the thorny
problems of simultaneous data access, deadlock, and other pitfalls of multithreading.
Developers are encouraged to identify functions of their applications that would be
better executed off the main thread, even if they are made up of several sequential
or otherwise partially interdependent tasks. GCD makes it easy to break off the
entire unit of work while maintaining the existing order and dependencies between
subtasks. In later chapters, we will look at some of the details of GCD.

Virtual Machine Approach  An alternative approach is to recognize that with
the ever-increasing number of cores on a chip, the attempt to multiprogram individual
cores to support multiple applications may be a misplaced use of resources [JACK10].
If instead, we allow one or more cores to be dedicated to a particular process, then
leave the processor alone to devote its efforts to that process, we avoid much of the
overhead of task switching and scheduling decisions. The multicore OS could then
act as a hypervisor that makes a high-level decision to allocate cores to applications,
but does little in the way of resource allocation beyond that.

The reasoning behind this approach is as follows. In the early days of computing,
one program was run on a single processor. With multiprogramming, each application
is given the illusion that it is running on a dedicated processor. Multiprogramming
is based on the concept of a process, which is an abstraction of an execution envi-
ronment. To manage processes, the OS requires protected space, free from user and
program interference. For this purpose, the distinction between kernel mode and user
mode was developed. In effect, kernel mode and user mode abstracted the processor
into two processors. With all these virtual processors, however, come struggles over
who gets the attention of the real processor. The overhead of switching between all
these processors starts to grow to the point where responsiveness suffers, especially
when multiple cores are introduced. But with many-core systems, we can consider
dropping the distinction between kernel and user mode. In this approach, the OS
acts more like a hypervisor. The programs themselves take on many of the duties of
resource management. The OS assigns an application, a processor and some memory,
and the program itself, using metadata generated by the compiler, would best know
how to use these resources.

M02_STAL4290_09_GE_C02.indd 100 5/2/17 6:27 PM

2.7 / MICROSOFT WINDOWS OVERVIEW   101

	 2.7	 MICROSOFT WINDOWS OVERVIEW

Background

Microsoft initially used the name Windows in 1985, for an operating environ-
ment extension to the primitive MS-DOS operating system, which was a success-
ful OS used on early personal computers. This Windows/MS-DOS combination
was ultimately replaced by a new version of Windows, known as Windows NT,
first released in 1993, and intended for laptop and desktop systems. Although
the basic internal architecture has remained roughly the same since Windows
NT, the OS has continued to evolve with new functions and features. The latest
release at the time of this writing is Windows 10. Windows 10 incorporates fea-
tures from the preceding desktop/laptop release, Windows 8.1, as well as from
versions of Windows intended for mobile devices for the Internet of Things
(IoT). Windows 10 also incorporates software from the Xbox One system. The
resulting unified Windows 10 supports desktops, laptops, smart phones, tablets,
and Xbox One.

Architecture

Figure 2.14 illustrates the overall structure of Windows. As with virtually all operating
systems, Windows separates application-oriented software from the core OS software.
The latter, which includes the Executive, the Kernel, device drivers, and the hardware
abstraction layer, runs in kernel mode. Kernel-mode software has access to system
data and to the hardware. The remaining software, running in user mode, has limited
access to system data.

Operating System Organization  Windows has a highly modular architecture.
Each system function is managed by just one component of the OS. The rest of the
OS and all applications access that function through the responsible component
using standard interfaces. Key system data can only be accessed through the
appropriate function. In principle, any module can be removed, upgraded, or
replaced without rewriting the entire system or its standard application program
interfaces (APIs).

The kernel-mode components of Windows are the following:

•	 Executive: Contains the core OS services, such as memory management, process
and thread management, security, I/O, and interprocess communication.

•	 Kernel: Controls execution of the processors. The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multipro-
cessor synchronization. Unlike the rest of the Executive and the user levels, the
Kernel’s own code does not run in threads.

•	 Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates the OS
from platform-specific hardware differences. The HAL makes each comput-
er’s system bus, direct memory access (DMA) controller, interrupt controller,

M02_STAL4290_09_GE_C02.indd 101 5/2/17 6:27 PM

102   Chapter 2 / Operating System Overview

system timers, and memory controller look the same to the Executive and
kernel components. It also delivers the support needed for SMP, explained
subsequently.

•	 Device drivers: Dynamic libraries that extend the functionality of the Execu-
tive. These include hardware device drivers that translate user I/O function
calls into specific hardware device I/O requests, and software components for
implementing file systems, network protocols, and any other system extensions
that need to run in kernel mode.

•	 Windowing and graphics system: Implements the GUI functions, such as deal-
ing with windows, user interface controls, and drawing.

Figure 2.14  Windows Internals Architecture [RUSS11]

User mode

Kernel mode

Session
manager

System
threads

System service dispatcher

Winlogon

Lsass

Lsass = local security authentication server
POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link library

Colored area indicates Executive

System support
processes

Service processes Applications

Environment
subsystems

Service control
manager

Spooler

Winmgmt.exe

SVChost.exe

User
application

Subsytem DLLs Win32

Ntdll.dll

Windows
explorer

Task manager

(Kernel-mode callable interfaces)
Win32 USER,

GDI

Graphics
drivers

Hardware abstraction layer (HAL)

File system
 cache

O
bject m

anager

Plug-and-play
m

anager

Pow
er m

anager

Security reference
m

onitor

V
irtual m

em
ory

Processes and
threads

C
onfiguration

m
anager (registry)

L
ocal procedure

call

POSIX

Device
and file
system
drivers

I/O manager

Kernel

Services.exe

M02_STAL4290_09_GE_C02.indd 102 5/2/17 6:27 PM

2.7 / MICROSOFT WINDOWS OVERVIEW   103

The Windows Executive includes components for specific system functions and
provides an API for user-mode software. Following is a brief description of each of
the Executive modules:

•	 I/O manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device
drivers for further processing. The I/O manager implements all the Windows
I/O APIs and enforces security and naming for devices, network protocols,
and file systems (using the object manager). Windows I/O will be discussed
in Chapter 11.

•	 Cache manager: Improves the performance of file-based I/O by causing recently
referenced file data to reside in main memory for quick access, and by deferring
disk writes by holding the updates in memory for a short time before sending
them to the disk in more efficient batches.

•	 Object manager: Creates, manages, and deletes Windows Executive objects that
are used to represent resources such as processes, threads, and synchronization
objects. It enforces uniform rules for retaining, naming, and setting the security
of objects. The object manager also creates the entries in each process’s handle
table, which consist of access control information and a pointer to the object.
Windows objects will be discussed later in this section.

•	 Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.

•	 Power manager: Coordinates power management among various devices and
can be configured to reduce power consumption by shutting down idle devices,
putting the processor to sleep, and even writing all of memory to disk and shut-
ting off power to the entire system.

•	 Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uniform
view of security, right down to the fundamental entities that make up the Execu-
tive. Thus, Windows uses the same routines for access validation and for audit
checks for all protected objects, including files, processes, address spaces, and
I/O devices. Windows security will be discussed in Chapter 15.

•	 Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physical
pages in the computer’s memory. Windows virtual memory management will
be described in Chapter 8.

•	 Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management will be described in Chapter 4.

•	 Configuration manager: Responsible for implementing and managing the sys-
tem registry, which is the repository for both system-wide and per-user settings
of various parameters.

M02_STAL4290_09_GE_C02.indd 103 5/2/17 6:27 PM

104   Chapter 2 / Operating System Overview

•	 Advanced local procedure call (ALPC) facility: Implements an efficient cross-
process procedure call mechanism for communication between local processes
implementing services and subsystems. Similar to the remote procedure call
(RPC) facility used for distributed processing.

User-Mode Processes  Windows supports four basic types of user-mode processes:

1.	 Special system processes: User-mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service manager,
and the logon process.

2.	 Service processes: The printer spooler, the event logger, user-mode components
that cooperate with device drivers, various network services, and many others.
Services are used by both Microsoft and external software developers to extend
system functionality, as they are the only way to run background user-mode
activity on a Windows system.

3.	 Environment subsystems: Provide different OS personalities (environments).
The supported subsystems are Win32 and POSIX. Each environment
subsystem includes a subsystem process shared among all applications using
the subsystem and dynamic link libraries (DLLs) that convert the user appli-
cation calls to ALPC calls on the subsystem process, and/or native Windows
calls.

4.	 User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally targeted
at a specific environment subsystem; although some of the programs that are
provided as part of the OS use the native system interfaces (NT API). There is
also support for running 32-bit programs on 64-bit systems.

Windows is structured to support applications written for multiple OS per-
sonalities. Windows provides this support using a common set of kernel-mode
components that underlie the OS environment subsystems. The implementation of
each environment subsystem includes a separate process, which contains the shared
data structures, privileges, and Executive object handles needed to implement a
particular personality. The process is started by the Windows Session Manager
when the first application of that type is started. The subsystem process runs as a
system user, so the Executive will protect its address space from processes run by
ordinary users.

An environment subsystem provides a graphical or command-line user inter-
face that defines the look and feel of the OS for a user. In addition, each subsys-
tem provides the API for that particular environment. This means that applications
created for a particular operating environment need only be recompiled to run on
Windows. Because the OS interface that applications see is the same as that for which
they were written, the source code does not need to be modified.

Client/Server Model

The Windows OS services, the environment subsystems, and the applications are
structured using the client/server computing model, which is a common model for

M02_STAL4290_09_GE_C02.indd 104 5/2/17 6:27 PM

2.7 / MICROSOFT WINDOWS OVERVIEW   105

distributed computing and will be discussed in Part Six. This same architecture can be
adopted for use internally to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core
abstractions used by the system, such as processes, threads, virtual memory, I/O, and
communication. Windows provides a far richer set of services by using the client/
server model to implement functionality in user-mode processes. Both the environ-
ment subsystems and the Windows user-mode services are implemented as processes
that communicate with clients via RPC. Each server process waits for a request from
a client for one of its services (e.g., memory services, process creation services, or
networking services). A client, which can be an application program or another server
program, requests a service by sending a message. The message is routed through the
Executive to the appropriate server. The server performs the requested operation
and returns the results or status information by means of another message, which is
routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

•	 It simplifies the Executive. It is possible to construct a variety of APIs imple-
mented in user-mode servers without any conflicts or duplications in the Execu-
tive. New APIs can be added easily.

•	 It improves reliability. Each new server runs outside of the kernel, with its
own partition of memory, protected from other servers. A single server can fail
without crashing or corrupting the rest of the OS.

•	 It provides a uniform means for applications to communicate with services
via RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or a service, the stub in the client application packages the
parameters for the call and sends them as a message to the server process that
implements the call.

•	 It provides a suitable base for distributed computing. Typically, distributed
computing makes use of a client/server model, with remote procedure calls
implemented using distributed client and server modules and the exchange of
messages between clients and servers. With Windows, a local server can pass
a message on to a remote server for processing on behalf of local client appli-
cations. Clients need not know whether a request is being serviced locally or
remotely. Indeed, whether a request is serviced locally or remotely can change
dynamically, based on current load conditions and on dynamic configuration
changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for symmet-
ric multiprocessing (SMP), both of which were introduced in Section 2.4. [RUSS11]
lists the following features of Windows that support threads and SMP:

•	 OS routines can run on any available processor, and different routines can
execute simultaneously on different processors.

M02_STAL4290_09_GE_C02.indd 105 5/2/17 6:27 PM

106   Chapter 2 / Operating System Overview

•	 Windows supports the use of multiple threads of execution within a single pro-
cess. Multiple threads within the same process may execute on different proces-
sors simultaneously.

•	 Server processes may use multiple threads to process requests from more than
one client simultaneously.

•	 Windows provides mechanisms for sharing data and resources between pro-
cesses and flexible interprocess communication capabilities.

Windows Objects

Though the core of Windows is written in C, the design principles followed draw
heavily on the concepts of object-oriented design. This approach facilitates the shar-
ing of resources and data among processes, and the protection of resources from
unauthorized access. Among the key object-oriented concepts used by Windows are
the following:

•	 Encapsulation: An object consists of one or more items of data, called attri-
butes, and one or more procedures that may be performed on those data, called
services. The only way to access the data in an object is by invoking one of
the object’s services. Thus, the data in the object can easily be protected from
unauthorized use and from incorrect use (e.g., trying to execute a nonexecut-
able piece of data).

•	 Object class and instance: An object class is a template that lists the attributes
and services of an object, and defines certain object characteristics. The OS
can create specific instances of an object class as needed. For example, there is
a single process object class and one process object for every currently active
process. This approach simplifies object creation and management.

•	 Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive
class is based on a base class which specifies virtual methods that support cre-
ating, naming, securing, and deleting objects. Dispatcher objects are Executive
objects that inherit the properties of an event object, so they can use common
synchronization methods. Other specific object types, such as the device class,
allow classes for specific devices to inherit from the base class, and add addi-
tional data and methods.

•	 Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined in
Appendix D. However, Windows is not completely polymorphic because there
are many APIs that are specific to a single object type.

The reader unfamiliar with object-oriented concepts should review Appendix D.
Not all entities in Windows are objects. Objects are used in cases where data are

intended for user-mode access, or when data access is shared or restricted. Among
the entities represented by objects are files, processes, threads, semaphores, timers, and
graphical windows. Windows creates and manages all types of objects in a uniform way,
via the object manager. The object manager is responsible for creating and destroying
objects on behalf of applications, and for granting access to an object’s services and data.

M02_STAL4290_09_GE_C02.indd 106 5/2/17 6:27 PM

2.7 / MICROSOFT WINDOWS OVERVIEW   107

Each object within the Executive, sometimes referred to as a kernel object
(to distinguish from user-level objects not of concern to the Executive), exists as a
memory block allocated by the kernel and is directly accessible only by kernel-mode
components. Some elements of the data structure are common to all object types (e.g.,
object name, security parameters, usage count), while other elements are specific to
a particular object type (e.g., a thread object’s priority). Because these object data
structures are in the part of each process’s address space accessible only by the kernel,
it is impossible for an application to reference these data structures and read or write
them directly. Instead, applications manipulate objects indirectly through the set of
object manipulation functions supported by the Executive. When an object is created,
the application that requested the creation receives back a handle for the object. In
essence, a handle is an index into a per-process Executive table containing a pointer
to the referenced object. This handle can then be used by any thread within the same
process to invoke Win32 functions that work with objects, or can be duplicated into
other processes.

Objects may have security information associated with them, in the form of a
Security Descriptor (SD). This security information can be used to restrict access to
the object based on contents of a token object which describes a particular user. For
example, a process may create a named semaphore object with the intent that only
certain users should be able to open and use that semaphore. The SD for the sema-
phore object can list those users that are allowed (or denied) access to the semaphore
object along with the sort of access permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed. When a process cre-
ates an unnamed object, the object manager returns a handle to that object, and the
handle is the only way to refer to it. Handles can be inherited by child processes or
duplicated between processes. Named objects are also given a name that other unre-
lated processes can use to obtain a handle to the object. For example, if process A
wishes to synchronize with process B, it could create a named event object and pass
the name of the event to B. Process B could then open and use that event object.
However, if process A simply wished to use the event to synchronize two threads
within itself, it would create an unnamed event object, because there is no need for
other processes to be able to use that event.

There are two categories of objects used by Windows for synchronizing the use
of the processor:

•	 Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These will be described in Chapter 6.

•	 Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.5 lists
the Kernel control objects.

Windows is not a full-blown object-oriented OS. It is not implemented in an
object-oriented language. Data structures that reside completely within one Execu-
tive component are not represented as objects. Nevertheless, Windows illustrates the
power of object-oriented technology and represents the increasing trend toward the
use of this technology in OS design.

M02_STAL4290_09_GE_C02.indd 107 5/2/17 6:27 PM

108   Chapter 2 / Operating System Overview

	 2.8	 TRADITIONAL UNIX SYSTEMS

History

UNIX was initially developed at Bell Labs and became operational on a PDP-7
in 1970. Work on UNIX at Bell Labs, and later elsewhere, produced a series of ver-
sions of UNIX. The first notable milestone was porting the UNIX system from the
PDP-7 to the PDP-11. This was the first hint that UNIX would be an OS for all
computers. The next important milestone was the rewriting of UNIX in the program-
ming language C. This was an unheard-of strategy at the time. It was generally felt
that something as complex as an OS, which must deal with time-critical events, had
to be written exclusively in assembly language. Reasons for this attitude include the
following:

•	 Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

•	 Even though compilers had been available since the 1950s, the computer indus-
try was generally skeptical of the quality of automatically generated code. With
resource capacity small, efficient code, both in terms of time and space, was
essential.

•	 Processor and bus speeds were relatively slow, so saving clock cycles could make
a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level
language for most if not all of the system code. Today, virtually all UNIX implemen-
tations are written in C.

Asynchronous procedure call Used to break into the execution of a specified thread and to cause a proce-
dure to be called in a specified processor mode.

Deferred procedure call Used to postpone interrupt processing to avoid delaying hardware interrupts.
Also used to implement timers and interprocessor communication.

Interrupt Used to connect an interrupt source to an interrupt service routine by means
of an entry in an Interrupt Dispatch Table (IDT). Each processor has an IDT
that is used to dispatch interrupts that occur on that processor.

Process Represents the virtual address space and control information necessary for
the execution of a set of thread objects. A process contains a pointer to an
address map, a list of ready threads containing thread objects, a list of threads
belonging to the process, the total accumulated time for all threads executing
within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of code. Both
user and system codes can be profiled.

Table 2.5  Windows Kernel Control Objects

M02_STAL4290_09_GE_C02.indd 108 5/2/17 6:27 PM

2.8 / TRADITIONAL UNIX SYSTEMS   109

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commercial
institutions as well as universities. The first widely available version outside Bell Labs
was Version 6, in 1976. The follow-on Version 7, released in 1978, is the ancestor of
most modern UNIX systems. The most important of the non-AT&T systems to be
developed was done at the University of California at Berkeley, called UNIX BSD
(Berkeley Software Distribution), running first on PDP and then on VAX comput-
ers. AT&T continued to develop and refine the system. By 1982, Bell Labs had com-
bined several AT&T variants of UNIX into a single system, marketed commercially
as UNIX System III. A number of features was later added to the OS to produce
UNIX System V.

Description

The classic UNIX architecture can be pictured as in three levels: hardware, kernel,
and user. The OS is often called the system kernel, or simply the kernel, to emphasize
its isolation from the user and applications. It interacts directly with the hardware. It is
the UNIX kernel that we will be concerned with in our use of UNIX as an example in
this book. UNIX also comes equipped with a number of user services and interfaces
that are considered part of the system. These can be grouped into the shell, which
supports system calls from applications, other interface software, and the components
of the C compiler (compiler, assembler, loader). The level above this consists of user
applications and the user interface to the C compiler.

A look at the kernel is provided in Figure 2.15. User programs can invoke OS
services either directly, or through library programs. The system call interface is the
boundary with the user and allows higher-level software to gain access to specific
kernel functions. At the other end, the OS contains primitive routines that interact
directly with the hardware. Between these two interfaces, the system is divided into
two main parts: one concerned with process control, and the other concerned with file
management and I/O. The process control subsystem is responsible for memory man-
agement, the scheduling and dispatching of processes, and the synchronization and
interprocess communication of processes. The file system exchanges data between
memory and external devices either as a stream of characters or in blocks. To achieve
this, a variety of device drivers are used. For block-oriented transfers, a disk cache
approach is used: A system buffer in main memory is interposed between the user
address space and the external device.

The description in this subsection has dealt with what might be termed tra-
ditional UNIX systems; [VAHA96] uses this term to refer to System V Release 3
(SVR3), 4.3BSD, and earlier versions. The following general statements may be made
about a traditional UNIX system. It is designed to run on a single processor, and lacks
the ability to protect its data structures from concurrent access by multiple processors.
Its kernel is not very versatile, supporting a single type of file system, process schedul-
ing policy, and executable file format. The traditional UNIX kernel is not designed to
be extensible and has few facilities for code reuse. The result is that, as new features
were added to the various UNIX versions, much new code had to be added, yielding
a bloated and unmodular kernel.

M02_STAL4290_09_GE_C02.indd 109 5/2/17 6:27 PM

110   Chapter 2 / Operating System Overview

	 2.9	 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation that
unified many of the important innovations, added other modern OS design features,
and produced a more modular architecture. Typical of the modern UNIX kernel is
the architecture depicted in Figure 2.16. There is a small core of facilities, written in
a modular fashion, that provide functions and services needed by a number of OS
processes. Each of the outer circles represents functions and an interface that may
be implemented in a variety of ways.

We now turn to some examples of modern UNIX systems (see Figure 2.17).

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3, 4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,

Figure 2.15  Traditional UNIX Architecture

Hardware level

User level

Kernel level

User programs

Trap

Hardware control

System call interface

Libraries

Device drivers

File subsystem
Process
control

subsystem

Character Block

Bu�er cache

Inter-process
communication

Scheduler

Memory
management

M02_STAL4290_09_GE_C02.indd 110 5/2/17 6:27 PM

2.9 / MODERN UNIX SYSTEMS   111

dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers, and was
developed to provide a uniform platform for commercial UNIX deployment. It has
succeeded in this objective and is perhaps the most important UNIX variant. It incor-
porates most of the important features ever developed on any UNIX system and does
so in an integrated, commercially viable fashion. SVR4 runs on processors ranging
from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a
key role in the development of OS design theory. 4.xBSD is widely used in academic
installations and has served as the basis of a number of commercial UNIX products.
It is probably safe to say that BSD is responsible for much of the popularity of UNIX,
and that most enhancements to UNIX first appeared in BSD versions.

Figure 2.16  Modern UNIX Kernel

Common
facilities

Virtual
memory

framework

Block
device
switch

exec
switch

a.out

File mappings

Disk driver

Tape driver

Network
driver

tty
driver

System
processes

Time-sharing
processes

RFS

s5fs

FFS

NFS

Anonymous
mappings

co�

elf

Streams

vnode/vfs
interface

Scheduler
framework

Device
mappings

M02_STAL4290_09_GE_C02.indd 111 5/2/17 6:27 PM

112   Chapter 2 / Operating System Overview

4.4BSD was the final version of BSD to be released by Berkeley, with the design
and implementation organization subsequently dissolved. It is a major upgrade to
4.3BSD and includes a new virtual memory system, changes in the kernel structure,
and a long list of other feature enhancements.

There are several widely used, open-source versions of BSD. FreeBSD
is popular for Internet-based servers and firewalls and is used in a number of
embedded systems. NetBSD is available for many platforms, including large-
scale server systems, desktop systems, and handheld devices, and is often used in
embedded systems. OpenBSD is an open-source OS that places special emphasis
on security.

The latest version of the Macintosh OS, originally known as OS X and now
called MacOS, is based on FreeBSD 5.0 and the Mach 3.0 microkernel.

Solaris 11

Solaris is Oracle’s SVR4-based UNIX release, with the latest version being 11. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is one the most widely used and most suc-
cessful commercial UNIX implementations.

Figure 2.17  UNIX Family Tree

FreeBSD

4.4

11.0

7.0

6.0

4.7

11.3

11iv3

7.2

10.12

4.1.4

1970 1980 1990 2000 2010 2016

NetBSD

OpenBSD

SunOS

NextStep 3.3

Xenix OS

GNU

Commercial Unix (AT&T) UnixWare (Univel/SCO)

Solaris (Sun/Oracle)

Linux

OS X (now macOS)

HP-UX

AIX (IBM)

BSD (Berkeley Software Distribution)

BSD
Family

Research Unix (Bell Labs) 10.5

System V
Family

M02_STAL4290_09_GE_C02.indd 112 5/2/17 6:27 PM

2.10 / LINUX   113

	 2.10	LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture. Linus
Torvalds, a Finnish student of computer science, wrote the initial version. Torvalds
posted an early version of Linux on the Internet in 1991. Since then, a number of peo-
ple, collaborating over the Internet, have contributed to the development of Linux, all
under the control of Torvalds. Because Linux is free and the source code is available,
it became an early alternative to other UNIX workstations, such as those offered by
Sun Microsystems and IBM. Today, Linux is a full-featured UNIX system that runs
on virtually all platforms.

Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable, plat-
form-independent software that is free, high quality, and embraced by the user com-
munity. FSF’s GNU project2 provides tools for software developers, and the GNU
Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools in devel-
oping his kernel, which he then released under the GPL. Thus, the Linux distributions
that you see today are the product of FSF’s GNU project, Torvald’s individual effort,
and the efforts of many collaborators all over the world.

In addition to its use by many individual developers, Linux has now made sig-
nificant penetration into the corporate world. This is not only because of the free
software, but also because of the quality of the Linux kernel. Many talented devel-
opers have contributed to the current version, resulting in a technically impressive
product. Moreover, Linux is highly modular and easily configured. This makes it easy
to squeeze optimal performance from a variety of hardware platforms. Plus, with the
source code available, vendors can tweak applications and utilities to meet specific
requirements. There are also commercial companies such as Red Hat and Canonical,
which provide highly professional and reliable support for their Linux-based distribu-
tions for long periods of time. Throughout this book, we will provide details of Linux
kernel internals based on Linux kernel 4.7, released in 2016.

A large part of the success of the Linux Operating System is due to its develop-
ment model. Code contributions are handled by one main mailing list, called LKML
(Linux Kernel Mailing List). Apart from it, there are many other mailing lists, each
dedicated to a Linux kernel subsystem (like the netdev mailing list for networking,
the linux-pci for the PCI subsystem, the linux-acpi for the ACPI subsystem, and a
great many more). The patches which are sent to these mailing lists should adhere to
strict rules (primarily the Linux Kernel coding style conventions), and are reviewed
by developers all over the world who are subscribed to these mailing lists. Anyone
can send patches to these mailing lists; statistics (for example, those published in
the lwn.net site from time to time) show that many patches are sent by develop-
ers from famous commercial companies like Intel, Red Hat, Google, Samsung, and
others. Also, many maintainers are employees of commercial companies (like David

2 GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.

M02_STAL4290_09_GE_C02.indd 113 5/2/17 6:27 PM

114   Chapter 2 / Operating System Overview

Miller, the network maintainer, who works for Red Hat). Many times such patches
are fixed according to feedback and discussions over the mailing list, and are resent
and reviewed again. Eventually, the maintainer decides whether to accept or reject
patches; and each subsystem maintainer from time to time sends a pull request of
his tree to the main kernel tree, which is handled by Linus Torvalds. Linus himself
releases a new kernel version in about every 7–10 weeks, and each such release has
about 5–8 release candidates (RC) versions.

We should mention that it is interesting to try to understand why other open-
source operating systems, such as various flavors of BSD or OpenSolaris, did not have
the success and popularity which Linux has; there can be many reasons for that, and
for sure, the openness of the development model of Linux contributed to its popular-
ity and success. But this topic is out of the scope of this book.

Modular Structure

Most UNIX kernels are monolithic. Recall from earlier in this chapter, a monolithic
kernel is one that includes virtually all of the OS functionality in one large block of
code that runs as a single process with a single address space. All the functional com-
ponents of the kernel have access to all of its internal data structures and routines.
If changes are made to any portion of a typical monolithic OS, all the modules and
routines must be relinked and reinstalled, and the system rebooted, before the changes
can take effect. As a result, any modification, such as adding a new device driver or file
system function, is difficult. This problem is especially acute for Linux, for which devel-
opment is global and done by a loosely associated group of independent developers.

Although Linux does not use a microkernel approach, it achieves many of the
potential advantages of this approach by means of its particular modular architec-
ture. Linux is structured as a collection of modules, a number of which can be auto-
matically loaded and unloaded on demand. These relatively independent blocks are
referred to as loadable modules [GOYE99]. In essence, a module is an object file
whose code can be linked to and unlinked from the kernel at runtime. Typically, a
module implements some specific function, such as a file system, a device driver, or
some other feature of the kernel’s upper layer. A module does not execute as its own
process or thread, although it can create kernel threads for various purposes as neces-
sary. Rather, a module is executed in kernel mode on behalf of the current process.

Thus, although Linux may be considered monolithic, its modular structure over-
comes some of the difficulties in developing and evolving the kernel. The Linux
loadable modules have two important characteristics:

1.	 Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing. A module can also be
unlinked and removed from memory at any time.

2.	 Stackable modules: The modules are arranged in a hierarchy. Individual mod-
ules serve as libraries when they are referenced by client modules higher up in
the hierarchy, and as clients when they reference modules further down.

Dynamic linking facilitates configuration and saves kernel memory [FRAN97].
In Linux, a user program or user can explicitly load and unload kernel modules using
the insmod or modprobe and rmmod commands. The kernel itself monitors the need

M02_STAL4290_09_GE_C02.indd 114 5/2/17 6:27 PM

2.10 / LINUX   115

for particular functions, and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

1.	 Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.

2.	 The kernel can make sure that needed modules are present, refraining from
unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

Figure 2.18 is an example that illustrates the structures used by Linux to man-
age modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables: the module
table and the symbol table (kernel_symbol). The module table includes the following
elements:

•	 *name: The module name

•	 refcnt: Module counter. The counter is incremented when an operation involv-
ing the module’s functions is started and decremented when the operation
terminates.

•	 num_syms: Number of exported symbols.

•	 *syms: Pointer to this module’s symbol table.

The symbol table lists symbols that are defined in this module and used elsewhere.

Figure 2.18  Example List of Linux Kernel Modules

FAT
*syms

state

extable

num_exentries

num_syms

num_gpl_syms

srcversion

version

*name

*next

value

*name

value

kernel_symbol

*name

value

*name

value

*name

value

*name

value

*name

VFAT

Module

symbol_table

*syms

state

extable

num_exentries

num_syms

num_gpl_syms

srcversion

version

*name

*next

Module

M02_STAL4290_09_GE_C02.indd 115 5/2/17 6:27 PM

116   Chapter 2 / Operating System Overview

Kernel Components

Figure 2.19, taken from [MOSB02], shows the main components of a typical Linux
kernel implementation. The figure shows several processes running on top of the ker-
nel. Each box indicates a separate process, while each squiggly line with an arrowhead
represents a thread of execution. The kernel itself consists of an interacting collection
of components, with arrows indicating the main interactions. The underlying hard-
ware is also depicted as a set of components with arrows indicating which kernel com-
ponents use or control which hardware components. All of the kernel components,
of course, execute on the processor. For simplicity, these relationships are not shown.

Briefly, the principal kernel components are the following:

•	 Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.6 gives
a few examples of signals.

•	 System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: file system, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous. Table 2.7 defines a few
examples in each category.

•	 Processes and scheduler: Creates, manages, and schedules processes.

•	 Virtual memory: Allocates and manages virtual memory for processes.

Figure 2.19  Linux Kernel Components

Signals System calls

Processes
and scheduler

Virtual
memory

Physical
memory

System
memory

Processes

H
ar

dw
ar

e
U

se
r

le
ve

l
K

er
ne

l

CPU Terminal Disk

Traps and
faults

Char device
drivers

Block device
drivers

Network
device drivers

File
systems

Network
protocols

Interrupts

Network interface
controller

M02_STAL4290_09_GE_C02.indd 116 5/2/17 6:27 PM

2.10 / LINUX   117

SIGHUP Terminal hangup SIGCONT Continue

SIGQUIT Keyboard quit SIGTSTP Keyboard stop

SIGTRAP Trace trap SIGTTOU Terminal write

SIGBUS Bus error SIGXCPU CPU limit exceeded

SIGKILL Kill signal SIGVTALRM Virtual alarm clock

SIGSEGV Segmentation violation SIGWINCH Window size unchanged

SIGPIPT Broken pipe SIGPWR Power failure

SIGTERM Termination SIGRTMIN First real-time signal

SIGCHLD Child status unchanged SIGRTMAX Last real-time signal

Table 2.6  Some Linux Signals

File System Related

close Close a file descriptor.

link Make a new name for a file.

open Open and possibly create a file or device.

read Read from file descriptor.

write Write to file descriptor.

Process Related

execve Execute program.

exit Terminate the calling process.

getpid Get process identification.

setuid Set user identity of the current process.

ptrace Provide a means by which a parent process may observe and control the execution
of another process, and examine and change its core image and registers.

Scheduling Related

sched_getparam Set the scheduling parameters associated with the scheduling policy for the process
identified by pid.

sched_get_priority_max Return the maximum priority value that can be used with the scheduling algorithm
identified by policy.

sched_setscheduler Set both the scheduling policy (e.g., FIFO) and the associated parameters for the
process pid.

sched_rr_get_interval Write into the timespec structure pointed to by the parameter to the round-robin
time quantum for the process pid.

sched_yield A process can relinquish the processor voluntarily without blocking via this system
call. The process will then be moved to the end of the queue for its static priority
and a new process gets to run.

Table 2.7  Some Linux System Calls

•	 File systems: Provide a global, hierarchical namespace for files, directories, and
other file-related objects and provide file system functions.

•	 Network protocols: Support the Sockets interface to users for the TCP/IP pro-
tocol suite.

M02_STAL4290_09_GE_C02.indd 117 5/2/17 6:27 PM

118   Chapter 2 / Operating System Overview

Interprocess Communication (IPC) Related

msgrcv A message buffer structure is allocated to receive a message. The system call
then reads a message from the message queue specified by msqid into the newly
created message buffer.

semctl Perform the control operation specified by cmd on the semaphore set semid.

semop Perform operations on selected members of the semaphore set semid.

shmat Attach the shared memory segment identified by semid to the data segment of the
calling process.

shmctl Allow the user to receive information on a shared memory segment; set the owner,
group, and permissions of a shared memory segment; or destroy a segment.

Socket (networking) Related

bind Assign the local IP address and port for a socket. Return 0 for success or -1 for error.

connect Establish a connection between the given socket and the remote socket associated
with sockaddr.

gethostname Return local host name.

send Send the bytes contained in buffer pointed to by *msg over the given socket.

setsockopt Set the options on a socket.

Miscellaneous

fsync Copy all in-core parts of a file to disk, and wait until the device reports that all parts
are on stable storage.

time Return the time in seconds since January 1, 1970.

vhangup Simulate a hangup on the current terminal. This call arranges for other users to
have a “clean” tty at login time.

Table 2.7  (Continued)

•	 Character device drivers: Manage devices that require the kernel to send or
receive data one byte at a time, such as terminals, modems, and printers.

•	 Block device drivers: Manage devices that read and write data in blocks, such
as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).

•	 Network device drivers: Manage network interface cards and communications
ports that connect to network devices, such as bridges and routers.

•	 Traps and faults: Handle traps and faults generated by the processor, such as
a memory fault.

•	 Physical memory: Manages the pool of page frames in real memory and allo-
cates pages for virtual memory.

•	 Interrupts Handle interrupts from peripheral devices.

	 2.11	ANDROID

The Android operating system is a Linux-based system originally designed for mobile
phones. It is the most popular mobile OS by a wide margin: Android handsets outsell
Apple’s iPhones globally by about 4 to 1 [MORR16]. But, this is just one element in

M02_STAL4290_09_GE_C02.indd 118 5/2/17 6:27 PM

2.11 / ANDROID   119

the increasing dominance of Android. Increasingly, it is the OS behind virtually any
device with a computer chip other than servers and PCs. Android is a widely used
OS for the Internet of things.

Initial Android OS development was done by Android, Inc., which was bought
by Google in 2005. The first commercial version, Android 1.0, was released in 2008.
As of this writing, the most recent version is Android 7.0 (Nougat). Android has an
active community of developers and enthusiasts who use the Android Open Source
Project (AOSP) source code to develop and distribute their own modified versions
of the operating system. The open-source nature of Android has been the key to its
success.

Android Software Architecture

Android is defined as a software stack that includes a modified version of the Linux
kernel, middleware, and key applications. Figure 2.20 shows the Android software
architecture in some detail. Thus, Android should be viewed as a complete software
stack, not just an OS.

Applications  All the applications with which the user interacts directly are part
of the application layer. This includes a core set of general-purpose applications,
such as an e-mail client, SMS program, calendar, maps, browser, contacts, and other
applications commonly standard with any mobile device. Applications are typically
implemented in Java. A key goal of the open-source Android architecture is to make
it easy for developers to implement new applications for specific devices and specific
end-user requirements. Using Java enables developers to be relieved of hardware-
specific considerations and idiosyncrasies, as well as tap into Java’s higher-level
language features, such as predefined classes. Figure 2.20 shows examples of the types
of base applications found on the Android platform.

Application Framework  The Application Framework layer provides high-level
building blocks, accessible through standardized APIs, that programmers use to
create new apps. The architecture is designed to simplify the reuse of components.
Some of the key Application Framework components are:

•	 Activity Manager: Manages lifecycle of applications. It is responsible for start-
ing, pausing, and resuming the various applications.

•	 Window Manager: Java abstraction of the underlying Surface Manager. The
Surface Manager handles the frame buffer interaction and low-level drawing,
whereas the Window Manager provides a layer on top of it, to allow applica-
tions to declare their client area and use features like the status bar.

•	 Package Manager: Installs and removes applications.

•	 Telephony Manager: Allows interaction with phone, SMS, and MMS services.

•	 Content Providers: These functions encapsulate application data that need to
be shared between applications, such as contacts.

•	 Resource Manager: Manages application resources, such as localized strings
and bitmaps.

M02_STAL4290_09_GE_C02.indd 119 5/2/17 6:27 PM

120   Chapter 2 / Operating System Overview

•	 View System: Provides the user interface (UI) primitives, such as buttons, list-
boxes, date pickers, and other controls, as well as UI Events (such as touch and
gestures).

•	 Location Manager: Allows developers to tap into location-based services,
whether by GPS, cell tower IDs, or local Wi-Fi databases. (recognized Wi-Fi
hotspots and their status)

•	 Notification Manager: Manages events, such as arriving messages and
appointments.

•	 XMPP: Provides standardized messaging (also, Chat) functions between
applications.

System Libraries  The layer below the Application Framework consists of two
parts: System Libraries, and Android Runtime. The System Libraries component is

Figure 2.20  Android Software Architecture

Display Driver

Implementation:

Applications, Application Framework: Java

System Libraries, Android Runtime: C and C++

Linux Kernel: C

Contacts Voice Dial E-mail Calendar Media
Player Albums Clock

Home Dialer SMS/MMS IM Browser Camera Alarm Calculator

Camera Driver Bluetooth Driver

Linux Kernel

Application Framework

Applications

System Libraries Android Runtime

Core Libraries

Android Runtime (ART)

Flash Memory
Driver

Binder (IPC)
Driver

USB Driver Keypad Driver WiFi Driver

SGL SSL Libc

OpenGL/ES FreeType LibWebCore

Surface Manager Media Framework SQLite

Audio Drivers Power
Management

Activity Manager Windows
Manager Content Providers View System Notification

Manager

Package Manager Telephony
Manager Resource Manager Location Manager XMPP Service

M02_STAL4290_09_GE_C02.indd 120 5/2/17 6:27 PM

2.11 / ANDROID   121

a collection of useful system functions, written in C or C+ + and used by various
components of the Android system. They are called from the application framework
and applications through a Java interface. These features are exposed to developers
through the Android application framework. Some of the key system libraries include
the following:

•	 Surface Manager: Android uses a compositing window manager similar to Vista
or Compiz, but it is much simpler. Instead of drawing directly to the screen
buffer, your drawing commands go into off-screen bitmaps that are then com-
bined with other bitmaps to form the screen content the user sees. This lets the
system create all sorts of interesting effects, such as see-through windows and
fancy transitions.

•	 OpenGL: OpenGL (Open Graphics Library) is a cross-language, multi-
platform API for rendering 2D and 3D computer graphics. OpenGL/ES
(OpenGL for embedded systems) is a subset of OpenGL designed for embed-
ded systems.

•	 Media Framework: The Media Framework supports video recording and
playing in many formats, including AAC, AVC (H.264), H.263, MP3, and
MPEG-4.

•	 SQL Database: Android includes a lightweight SQLite database engine for
storing persistent data. SQLite is discussed in a subsequent section.

•	 Browser Engine: For fast display of HTML content, Android uses the WebKit
library, which is essentially the same library used in Safari and iPhone. It was
also the library used for the Google Chrome browser until Google switched
to Blink.

•	 Bionic LibC: This is a stripped-down version of the standard C system library,
tuned for embedded Linux-based devices. The interface is the standard Java
Native Interface (JNI).

Linux Kernel  The OS kernel for Android is similar to, but not identical with, the
standard Linux kernel distribution. One noteworthy change is the Android kernel
lacks drivers not applicable in mobile environments, making the kernel smaller. In
addition, Android enhances the Linux kernel with features that are tailored to the
mobile environment, and generally not as useful or applicable on a desktop or laptop
platform.

Android relies on its Linux kernel for core system services such as security,
memory management, process management, network stack, and driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the
software stack, and enables Android to use the wide range of hardware drivers that
Linux supports.

Android Runtime

Most operating systems used on mobile devices, such as iOS and Windows, use soft-
ware that is compiled directly to the specific hardware platform. In contrast, most
Android software is mapped into a bytecode format, which is then transformed into

M02_STAL4290_09_GE_C02.indd 121 5/2/17 6:27 PM

122   Chapter 2 / Operating System Overview

native instructions on the device itself. Earlier releases of Android used a scheme
known as Dalvik. However, Dalvik has a number of limitations in terms of scaling up
to larger memories and multicore architectures, so more recent releases of Android
rely on a scheme known as Android runtime (ART). ART is fully compatible with
Dalvik’s existing bytecode format, dex (Dalvik Executable), so application develop-
ers do not need to change their coding to be executable under ART. We will first look
at Dalvik, then examine ART.

The Dalvik Virtual Machine  The Dalvik VM (DVM) executes files in the
.dex format, a format that is optimized for efficient storage and memory-mappable
execution. The VM can run classes compiled by a Java language compiler that
have been transformed into its native format using the included “dx” tool. The VM
runs on top of Linux kernel, which it relies on for underlying functionality (such
as threading and low-level memory management). The Dalvik core class library is
intended to provide a familiar development base for those used to programming
with Java Standard Edition, but it is geared specifically to the needs of a small
mobile device.

Each Android application runs in its own process, with its own instance of the
Dalvik VM. Dalvik has been written so a device can efficiently run multiple VMs
efficiently.

The Dex File Format  The DVM runs applications and code written in Java. A
standard Java compiler turns source code (written as text files) into bytecode. The
bytecode is then compiled into a .dex file that the DVM can read and use. In essence,
class files are converted into .dex files (much like a .jar file if one were using the
standard Java VM) and then read and executed by the DVM. Duplicate data used
in class files are included only once in the .dex file, which saves space and uses less
overhead. The executable files can be modified again when an application is installed
to make things even more optimized for mobile.

Android Runtime Concepts  ART is the current application runtime used by
Android, introduced with Android version 4.4 (KitKat). When Android was designed
initially, it was designed for single core (with minimal multithreading support in
hardware) and low-memory devices, for which Dalvik seemed a suitable runtime.
However, in recent times, the devices that run Android have multicore processors
and more memory (at a relatively cheaper cost), which made Google to re-think the
runtime design to provide developers and users a richer experience by making use
of the available high-end hardware.

For both Dalvik and ART, all Android applications written in Java are com-
piled to dex bytecode. While Dalvik uses dex bytecode format for portability, it
has to be converted (compiled) to machine code to be actually run by a processor.
The Dalvik runtime did this conversion from dex bytecode to native machine code
when the application ran, and this process was called JIT (just-in-time) compilation.
Because JIT compiles only a part of the code, it has a smaller memory footprint
and uses less physical space on the device. (Only the dex files are stored in the
permanent storage as opposed to the actual machine code.) Dalvik identifies the

M02_STAL4290_09_GE_C02.indd 122 5/2/17 6:27 PM

2.11 / ANDROID   123

section of code that runs frequently and caches the compiled code for this once, so
the subsequent executions of this section of code are faster. The pages of physical
memory that store the cached code are not swappable/pageable, so this also adds
a bit to the memory pressure if the system is already in such a state. Even with
these optimizations, Dalvik has to do JIT-compilation every time the app is run,
which consumes a considerable amount of processor resources. Note the processor
is not only being used for actually running the app, but also for converting the dex
bytecode to native code, thereby draining more power. This processor usage was
also the reason for poor user interface experience in some heavy usage applications
when they start.

To overcome some of these issues, and to make more effective use of the
available high-end hardware, Android introduced ART. ART also executes dex
bytecode but instead of compiling the bytecode at runtime, ART compiles the
bytecode to native machine code during install time of the app. This is called ahead-
of-time (AOT) compilation. ART uses the “dex2oat” tool to do this compilation
at install time. The output of the tool is a file that is then executed when the appli-
cation runs.

Figure 2.21 shows the life cycle of an APK, an application package that
comes from the developer to the user. The cycle begins with source code being
compiled into .dex format and combined with any appropriate support code to
form an APK. On the user side, the received APK is unpacked. The resources
and native code are generally installed directly into the application directory. The
.dex code, however, requires further processing, both in the case of Dalvik and
of ART. In Dalvik, a function called dexopt is applied to the dex file to produce
an optimized version of dex (odex) referred to as quickened dex; the objective is
to make the dex code execute more quickly on the dex interpreter. In ART, the
dex2oat function does the same sort of optimization as dexopt; it also com-
piles the dex code to produce native code on the target device. The output of the
dex2oat function is an Executable and Linkable Format (ELF) file, which runs
directly without an interpreter.

Advantages and Disadvantages  The benefits of using ART include the following:

•	 Reduces startup time of applications as native code is directly executed.

•	 Improves battery life because processor usage for JIT is avoided.

•	 Lesser RAM footprint is required for the application to run (as there is no
storage required for JIT cache). Moreover, because there is no JIT code cache,
which is non-pageable, this provides flexibility of RAM usage when there is a
low-memory scenario.

•	 There are a number of Garbage Collection optimizations and debug enhance-
ments that went into ART.

Some potential disadvantages of ART:

•	 Because the conversion from bytecode to native code is done at install time,
application installation takes more time. For Android developers who load an
app a number of times during testing, this time may be noticeable.

M02_STAL4290_09_GE_C02.indd 123 5/2/17 6:27 PM

124   Chapter 2 / Operating System Overview

•	 On the first fresh boot or first boot after factory reset, all applications installed
on a device are compiled to native code using dex2opt. Therefore, the first boot
can take significantly longer (in the order of 3–5 seconds) to reach Home Screen
compared to Dalvik.

•	 The native code thus generated is stored on internal storage that requires a
significant amount of additional internal storage space.

Android System Architecture

It is useful to illustrate Android from the perspective of an application developer,
as shown in Figure 2.22. This system architecture is a simplified abstraction of the
software architecture shown in Figure 2.20. Viewed in this fashion, Android consists
of the following layers:

•	 Applications and Framework: Application developers are primarily concerned
with this layer and the APIs that allow access to lower-layer services.

•	 Binder IPC: The Binder Inter-Process Communication mechanism allows the
application framework to cross process boundaries and call into the Android
system services code. This basically allows high-level framework APIs to inter-
act with Android’s system services.

Figure 2.21  The Life Cycle of an APK

Resources &
native code

Resources &
native code

dex file

dex file

ELF file

Libraries

zip

install

Install

Package

dex & native code
Dexopt dex2oat

ARTDalvik

Quickened dex

Dalvik Native ART Native

odex
file

Source APK

M02_STAL4290_09_GE_C02.indd 124 5/2/17 6:27 PM

2.11 / ANDROID   125

•	 Android System Services: Most of the functionality exposed through the appli-
cation framework APIs invokes system services that in turn access the underly-
ing hardware and kernel functions. Services can be seen as being organized in
two groups: Media services deal with playing and recording media and system
services handle system-level functionalities such as power management, loca-
tion management, and notification management.

•	 Hardware Abstraction Layer (HAL): The HAL provides a standard interface
to kernel-layer device drivers, so upper-layer code need not be concerned
with the details of the implementation of specific drivers and hardware. The
HAL is virtually unchanged from that in a standard Linux distribution. This

Figure 2.22  Android System Architecture

Camera driver Display drivers
Audio driver

(ALSA, OSS, etc) Other drivers

Linux Kernel

Binder IPC

Android Runtime (ART)

Applications and Framework

Camera HAL Graphics HALAudio HAL
Other HALs

Activity
manager

Window
manager

Other system
services &
managers

Search service

Camera
service

MediaPlayer
service

Other media
services

AudioFlinger

Hardware Abstraction Layer (HAL)

Android System Services

Media Server System Server

M02_STAL4290_09_GE_C02.indd 125 5/2/17 6:27 PM

126   Chapter 2 / Operating System Overview

layer is used to abstract the device-specific capabilities (which are supported
by hardware and exposed by the Kernel) from the user space. The user space
could either be Android’s Services or Applications. The purpose of HAL is to
keep the user space consistent with respect to various devices. Also, vendors
can make their own enhancements and put it in their HAL layer without
impacting the user space. An example for this is the HwC (Hardware Com-
poser), which is a vendor-specific HAL implementation that understands
the rendering capabilities of the underlying hardware. Surface manager
seamlessly works with various implementations of the HwC from different
vendors.

•	 Linux Kernel: Linux kernel is tailored to meet the demands of a mobile
environment.

Activities

An activity is a single visual user interface component, including objects such as
menu selections, icons, and checkboxes. Every screen in an application is an exten-
sion of the Activity class. Activities use Views to form graphical user interfaces
that display information and respond to user actions. We will discuss Activities
in Chapter 4.

Power Management

Android adds two features to the Linux kernel to enhance the ability to perform
power management: alarms, and wakelocks.

The Alarms capability is implemented in the Linux kernel, and is visible to the
app developer through the AlarmManager in the RunTime core libraries. Through
the AlarmManager, an app can request a timed wake-up service. The Alarms facility
is implemented in the kernel so an alarm can trigger even if the system is in sleep
mode. This allows the system to go into sleep mode, saving power, even though there
is a process that requires a wake up.

The wakelock facility prevents an Android system from entering into sleep
mode. An application can hold one of the following wakelocks:

•	 Full_Wake_Lock: Processor on, full screen brightness, keyboard bright

•	 Partial_Wake_Lock: Processor on, screen off, keyboard off

•	 Screen_Dim_Wake_Lock: Processor on, screen dim, keyboard off

•	 Screen_Bright_Wake_Lock: Processor on, screen bright, keyboard off

These locks are requested through the API whenever an application requires
one of the managed peripherals to remain powered on. If no wakelock exists, which
locks the device, then it is powered off to conserve battery life.

These kernel objects are made visible to apps in user space by means of /sys/
power/wavelock files. The wake_lock and wake_unlock files can be used to define
and toggle a lock by writing to the corresponding file.

M02_STAL4290_09_GE_C02.indd 126 5/2/17 6:27 PM

2.12 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   127

batch processing
batch system
execution context
distributed operating system
downtime
fault
interrupt
job
job control language (JCL)
kernel
kernel mode
loadable modules
mean time to failure (MTTF)
mean time to repair (MTTR)
memory management
microkernel
monitor

monolithic kernel
multiprogrammed batch

system
multiprogramming
multitasking
multithreading
nucleus
object-oriented design
operating system
physical address
privileged instruction
process
process state
real address
reliability
resident monitor
round-robin

scheduling
serial processing
state
symmetric multiprocessing

(SMP)
task
thread
time sharing
time-sharing system
time slicing
uniprogramming
uptime
user mode
virtual address
virtual machine
virtual memory

Review Questions

	 2.1.	 What are three objectives of an OS design?
	 2.2.	 What is the kernel of an OS?
	 2.3.	 What is multiprogramming?
	 2.4.	 What is a process?
	 2.5.	 How is the execution context of a process used by the OS?
	 2.6.	 List and briefly explain five storage management responsibilities of a typical OS.
	 2.7.	 What is time slicing?
	 2.8.	 Describe the round-robin scheduling technique.
	 2.9.	 Explain the difference between a monolithic kernel and a microkernel.
	2.10.	 What is multithreading?
	2.11.	 What do you understand by a distributed operating system?

Problems

	 2.1.	 Suppose we have four jobs in a computer system, in the order JOB1, JOB2, JOB3
and JOB4. JOB1 requires 8 s of CPU time and 8 s of I/O time; JOB2 requires 4 s of
CPU time and 14 s of disk time; JOB3 requires 6 s of CPU time; and, JOB4 requires
4 s of CPU time and 16 s of printer time. Define the following quantities for system
utilization:
•	 Turnaround time = actual time to complete a job
•	 Throughput = average number of jobs completed per time period T
•	 Processor utilization = percentage of time that the processor is active (not waiting)

	 2.12	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

M02_STAL4290_09_GE_C02.indd 127 5/2/17 6:27 PM

128   Chapter 2 / Operating System Overview

		 Compute these quantities (with illustrations if needed) in each of the following systems:
a.	 A uniprogramming system, whereby each job executes to completion before the

next job can start its execution.
b.	 A multiprogramming system that follows a simple round-robin scheduling. Each

process gets 2 s of CPU time turn-wise in a circular manner
	 2.2.	 In a batch operating system, three jobs are submitted for execution. Each job involves

an I/O activity, CPU time and another I/O activity of the same time span as the first.
Job JOB1 requires a total of 23 ms, with 3 ms CPU time; JOB2 requires a total time
of 29 ms with 5 ms CPU time; JOB3 requires a total time of 14 ms with 4 ms CPU
time. Illustrate their execution and find CPU utilization for uniprogramming and
multiprogramming systems.

	 2.3.	 Contrast the scheduling policies you might use when trying to optimize a time-sharing
system with those you would use to optimize a multiprogrammed batch system.

	 2.4.	 A computer system boots and starts a user application when an interrupt occurs.
In which modes does the operating system work in this scenario?

	 2.5.	 In IBM’s mainframe OS, OS/390, one of the major modules in the kernel is the System
Resource Manager. This module is responsible for the allocation of resources among
address spaces (processes). The SRM gives OS/390 a degree of sophistication unique
among operating systems. No other mainframe OS, and certainly no other type of
OS, can match the functions performed by SRM. The concept of resource includes
processor, real memory, and I/O channels. SRM accumulates statistics pertaining to
utilization of processor, channel, and various key data structures. Its purpose is to
provide optimum performance based on performance monitoring and analysis. The
installation sets forth various performance objectives, and these serve as guidance
to the SRM, which dynamically modifies installation and job performance charac-
teristics based on system utilization. In turn, the SRM provides reports that enable
the trained operator to refine the configuration and parameter settings to improve
user service.

		    This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
approximately 20 times per second, and inspects each and every page frame. If the page
has not been referenced or changed, a counter is incremented by 1. Over time, SRM
averages these numbers to determine the average number of seconds that a page frame
in the system goes untouched. What might be the purpose of this, and what action
might SRM take?

	 2.6.	 A multiprocessor with ten processors has 24 attached tape drives. There are a large
number of jobs submitted to the system that each require a maximum of six tape drives
to complete execution. Assume that each job starts running with only four tape drives
for a long period before requiring the other two tape drives for a short period toward
the end of its operation. Also assume an endless supply of such jobs.
a.	 Assume the scheduler in the OS will not start a job unless there are six tape drives

available. When a job is started, six drives are assigned immediately and are not
released until the job finishes. What is the maximum number of jobs that can be
in progress at once? What are the maximum and minimum number of tape drives
that may be left idle as a result of this policy?

b.	 Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

M02_STAL4290_09_GE_C02.indd 128 05/05/2017 17:52

129

3.1	 What Is a Process?
Background
Processes and Process Control Blocks

3.2	 Process States
A Two-State Process Model
The Creation and Termination of Processes
A Five-State Model
Suspended Processes

3.3	 Process Description
Operating System Control Structures
Process Control Structures

3.4	 Process Control
Modes of Execution
Process Creation
Process Switching

3.5	 Execution of the Operating System
Nonprocess Kernel
Execution within User Processes
Process-Based Operating System

3.6	 UNIX SVR4 Process Management
Process States
Process Description
Process Control

3.7	 Summary

3.8	 Key Terms, Review Questions, and Problems

Process Description
and Control

Chapter

ProcessesPart 2

M03_STAL4290_09_GE_C03.indd 129 5/9/17 4:38 PM

130   Chapter 3 / Process Description and Control

All multiprogramming operating systems, from single-user systems such as Windows
for end users to mainframe systems such as IBM’s mainframe operating system
z/OS which can support thousands of users, are built around the concept of the pro-
cess. Most requirements that the OS must meet can be expressed with reference to
processes:

•	 The OS must interleave the execution of multiple processes, to maximize pro-
cessor utilization while providing reasonable response time.

•	 The OS must allocate resources to processes in conformance with a specific
policy (e.g., certain functions or applications are of higher priority) while at the
same time avoiding deadlock.1

•	 The OS may be required to support interprocess communication and user cre-
ation of processes, both of which may aid in the structuring of applications.

We begin with an examination of the way in which the OS represents and
controls processes. Then, the chapter discusses process states, which characterize the
behavior of processes. We will then look at the data structures that the OS uses to
manage processes. These include data structures to represent the state of each process
and data structures that record other characteristics of processes that the OS needs
to achieve its objectives. Next, we will look at the ways in which the OS uses these
data structures to control process execution. Finally, we will discuss process man-
agement in UNIX SVR4. Chapter 4 will provide more modern examples of process
management.

This chapter occasionally refers to virtual memory. Much of the time, we can
ignore this concept in dealing with processes, but at certain points in the discus-
sion, virtual memory considerations are pertinent. Virtual memory was previewed
in Chapter 2 and will be discussed in detail in Chapter 8.

1Deadlock will be examined in Chapter 6. As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.

Learning Objectives

After studying this chapter, you should be able to:
•	 Define the term process and explain the relationship between processes and

process control blocks.
•	 Explain the concept of a process state and discuss the state transitions the

processes undergo.
•	 List and describe the purpose of the data structures and data structure

elements used by an OS to manage processes.
•	 Assess the requirements for process control by the OS.
•	 Understand the issues involved in the execution of OS code.
•	 Describe the process management scheme for UNIX SVR4.

M03_STAL4290_09_GE_C03.indd 130 5/9/17 4:38 PM

3.1 / WHAT IS A PROCESS?   131

	 3.1	 WHAT IS A PROCESS?

Background

Before defining the term process, it is useful to summarize some of the concepts
introduced in Chapters 1 and 2:

1.	 A computer platform consists of a collection of hardware resources, such as the
processor, main memory, I/O modules, timers, disk drives, and so on.

2.	 Computer applications are developed to perform some task. Typically, they
accept input from the outside world, perform some processing, and generate
output.

3.	 It is inefficient for applications to be written directly for a given hardware plat-
form. The principal reasons for this are as follows:

a.	 Numerous applications can be developed for the same platform. Thus, it
makes sense to develop common routines for accessing the computer’s
resources.

b.	 The processor itself provides only limited support for multiprogramming.
Software is needed to manage the sharing of the processor and other
resources by multiple applications at the same time.

c.	 When multiple applications are active at the same time, it is necessary to
protect the data, I/O use, and other resource use of each application from
the others.

4.	 The OS was developed to provide a convenient, feature-rich, secure, and consis-
tent interface for applications to use. The OS is a layer of software between the
applications and the computer hardware (see Figure 2.1) that supports applica-
tions and utilities.

5.	 We can think of the OS as providing a uniform, abstract representation of
resources that can be requested and accessed by applications. Resources include
main memory, network interfaces, file systems, and so on. Once the OS has cre-
ated these resource abstractions for applications to use, it must also manage their
use. For example, an OS may permit resource sharing and resource protection.

Now that we have the concepts of applications, system software, and resources,
we are in a position to discuss how the OS can, in an orderly fashion, manage the
execution of applications such that:

•	 Resources are made available to multiple applications.

•	 The physical processor is switched among multiple applications so all will
appear to be progressing.

•	 The processor and I/O devices can be used efficiently.

The approach taken by all modern operating systems is to rely on a model in
which the execution of an application corresponds to the existence of one or more
processes.

M03_STAL4290_09_GE_C03.indd 131 5/9/17 4:38 PM

132   Chapter 3 / Process Description and Control

Processes and Process Control Blocks

Recall from Chapter 2 that we suggested several definitions of the term process,
including:

•	 A program in execution.

•	 An instance of a program running on a computer.

•	 The entity that can be assigned to and executed on a processor.

•	 A unit of activity characterized by the execution of a sequence of instructions,
a current state, and an associated set of system resources.

We can also think of a process as an entity that consists of a number of elements.
Two essential elements of a process are program code (which may be shared with
other processes that are executing the same program) and a set of data associated
with that code. Let us suppose the processor begins to execute this program code,
and we refer to this executing entity as a process. At any given point in time, while
the program is executing, this process can be uniquely characterized by a number of
elements, including the following:

•	 Identifier: A unique identifier associated with this process, to distinguish it from
all other processes.

•	 State: If the process is currently executing, it is in the running state.

•	 Priority: Priority level relative to other processes.

•	 Program counter: The address of the next instruction in the program to be
executed.

•	 Memory pointers: Include pointers to the program code and data associated
with this process, plus any memory blocks shared with other processes.

•	 Context data: These are data that are present in registers in the processor while
the process is executing.

•	 I/O status information: Includes outstanding I/O requests, I/O devices assigned
to this process, a list of files in use by the process, and so on.

•	 Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

The information in the preceding list is stored in a data structure, typically
called a process control block (see Figure 3.1), that is created and managed by the
OS. The significant point about the process control block is that it contains sufficient
information so it is possible to interrupt a running process and later resume execu-
tion as if the interruption had not occurred. The process control block is the key tool
that enables the OS to support multiple processes and to provide for multiprocess-
ing. When a process is interrupted, the current values of the program counter and
the processor registers (context data) are saved in the appropriate fields of the cor-
responding process control block, and the state of the process is changed to some
other value, such as blocked or ready (described subsequently). The OS is now free to
put some other process in the running state. The program counter and context data
for this process are loaded into the processor registers, and this process now begins
to execute.

M03_STAL4290_09_GE_C03.indd 132 5/9/17 4:38 PM

3.2 / PROCESS STATES   133

Thus, we can say that a process consists of program code and associated data
plus a process control block. For a single-processor computer, at any given time, at
most one process is executing and that process is in the running state.

	 3.2	 PROCESS STATES

As just discussed, for a program to be executed, a process, or task, is created for
that program. From the processor’s point of view, it executes instructions from its
repertoire in some sequence dictated by the changing values in the program counter
register. Over time, the program counter may refer to code in different programs that
are part of different processes. From the point of view of an individual program, its
execution involves a sequence of instructions within that program.

We can characterize the behavior of an individual process by listing the
sequence of instructions that execute for that process. Such a listing is referred to as
a trace of the process. We can characterize behavior of the processor by showing how
the traces of the various processes are interleaved.

Let us consider a very simple example. Figure 3.2 shows a memory layout of three
processes. To simplify the discussion, we assume no use of virtual memory; thus all three
processes are represented by programs that are fully loaded in main memory. In addi-
tion, there is a small dispatcher program that switches the processor from one process

Figure 3.1 � Simplified Process Control Block

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

M03_STAL4290_09_GE_C03.indd 133 5/9/17 4:38 PM

134   Chapter 3 / Process Description and Control

Figure 3.2 � Snapshot of Example Execution (Figure 3.4) at Instruction Cycle 13

Main memoryAddress

Dispatcher

Process A

Process B

Process C

Program counter
0

100

5000

8000

8000

12000

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006

5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

  (a) Trace of process A  (b) Trace of process B   (c) Trace of process C

5000 = Starting address of program of process A
8000 = Starting address of program of process B
12000 = Starting address of program of process C
Figure 3.3  Traces of Processes of Figure 3.2

to another. Figure 3.3 shows the traces of each of the processes during the early part
of their execution. The first 12 instructions executed in processes A and C are shown.
Process B executes four instructions, and we assume the fourth instruction invokes an
I/O operation for which the process must wait.

M03_STAL4290_09_GE_C03.indd 134 5/9/17 4:38 PM

3.2 / PROCESS STATES   135

Now let us view these traces from the processor’s point of view. Figure 3.4 shows
the interleaved traces resulting from the first 52 instruction cycles (for convenience,
the instruction cycles are numbered). In this figure, the shaded areas represent code
executed by the dispatcher. The same sequence of instructions is executed by the
dispatcher in each instance because the same functionality of the dispatcher is being
executed. We assume the OS only allows a process to continue execution for a maxi-
mum of six instruction cycles, after which it is interrupted; this prevents any single
process from monopolizing processor time. As Figure 3.4 shows, the first six instruc-
tions of process A are executed, followed by a time-out and the execution of some

1	 5000
2	 5001
3	 5002
4	 5003
5	 5004
6	 5005
---------------------Time-out

7	 100
8	 101
9	 102
10]103
11]104
12	 105

13	 8000
14	 8001
15	 8002
16	 8003
---------------------I/O request

17	 100
18	 101
19	 102
20	 103
21	 104
22	 105

23	 12000
24	 12001
25	 12002
26	 12003

27	 12004
28	 12005
---------------------Time-out

29	 100
30	 101
31	 102
32	 103
33	 104
34	 105

35	 5006
36	 5007
37	 5008
38	 5009
39	 5010
40	 5011
---------------------Time-out

41	 100
42	 101
43	 102
44	 103
45	 104
46	 105

47	 12006
48	 12007
49	 12008
50	 12009
51	 12010
52	 12011
---------------------Time-out

100 = Starting address of dispatcher program
Shaded areas indicate execution of dispatcher process;
first and third columns count instruction cycles;
second and fourth columns show address of instruction being executed.

Figure 3.4  Combined Trace of Processes of Figure 3.2

M03_STAL4290_09_GE_C03.indd 135 5/9/17 4:38 PM

136   Chapter 3 / Process Description and Control

code in the dispatcher, which executes six instructions before turning control to pro-
cess B.2 After four instructions are executed, process B requests an I/O action for
which it must wait. Therefore, the processor stops executing process B and moves on,
via the dispatcher, to process C. After a time-out, the processor moves back to process
A. When this process times out, process B is still waiting for the I/O operation to
complete, so the dispatcher moves on to process C again.

A Two-State Process Model

The operating system’s principal responsibility is controlling the execution of pro-
cesses; this includes determining the interleaving pattern for execution and allocating
resources to processes. The first step in designing an OS to control processes is to
describe the behavior that we would like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time,
a process is either being executed by a processor, or it isn’t. In this model, a process
may be in one of the two states: Running or Not Running, as shown in Figure 3.5a.
When the OS creates a new process, it creates a process control block for the process
and enters that process into the system in the Not Running state. The process exists,
is known to the OS, and is waiting for an opportunity to execute. From time to time,
the currently running process will be interrupted, and the dispatcher portion of the
OS will select some other process to run. The former process moves from the Run-
ning state to the Not Running state, and one of the other processes moves to the
Running state.

2The small number of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.

Figure 3.5  Two-State Process Model

Not
running Running

Dispatch
Queue

Enter Exit

Enter Exit

Dispatch

Pause

Pause

(a) State transition diagram

(b) Queueing diagram

Processor

M03_STAL4290_09_GE_C03.indd 136 5/9/17 4:38 PM

3.2 / PROCESS STATES   137

From this simple model, we can already begin to appreciate some of the design
elements of the OS. Each process must be represented in some way so the OS can
keep track of it. That is, there must be some information relating to each process,
including current state and location in memory; this is the process control block.
Processes that are not running must be kept in some sort of queue, waiting their turn
to execute. Figure 3.5b suggests a structure. There is a single queue in which each
entry is a pointer to the process control block of a particular process. Alternatively,
the queue may consist of a linked list of data blocks, in which each block represents
one process. We will explore this latter implementation subsequently.

We can describe the behavior of the dispatcher in terms of this queueing
diagram. A process that is interrupted is transferred to the queue of waiting pro-
cesses. Alternatively, if the process has completed or aborted, it is discarded (exits
the system). In either case, the dispatcher takes another process from the queue to
execute.

The Creation and Termination of Processes

Before refining our simple two-state model, it will be useful to discuss the creation
and termination of processes; ultimately, and regardless of the model of process
behavior that is used, the life of a process is bounded by its creation and termination.

Process Creation  When a new process is to be added to those currently being
managed, the OS builds the data structures used to manage the process, and allocates
address space in main memory to the process. We will describe these data structures
in Section 3.3. These actions constitute the creation of a new process.

Four common events lead to the creation of a process, as indicated in Table 3.1.
In a batch environment, a process is created in response to the submission of a job.
In an interactive environment, a process is created when a new user attempts to log
on. In both cases, the OS is responsible for the creation of the new process. An OS
may also create a process on behalf of an application. For example, if a user requests
that a file be printed, the OS can create a process that will manage the printing. The
requesting process can thus proceed independently of the time required to complete
the printing task.

Traditionally, the OS created all processes in a way that was transparent to the
user or application program, and this is still commonly found with many contemporary

New batch job The OS is provided with a batch job control stream, usually on tape or
disk. When the OS is prepared to take on new work, it will read the next
sequence of job control commands.

Interactive log-on A user at a terminal logs on to the system.

Created by OS to provide a service The OS can create a process to perform a function on behalf of a user
program, without the user having to wait (e.g., a process to control
printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user program can
dictate the creation of a number of processes.

Table 3.1  Reasons for Process Creation

M03_STAL4290_09_GE_C03.indd 137 5/9/17 4:38 PM

138   Chapter 3 / Process Description and Control

operating systems. However, it can be useful to allow one process to cause the cre-
ation of another. For example, an application process may generate another process
to receive data that the application is generating, and to organize those data into a
form suitable for later analysis. The new process runs in parallel to the original pro-
cess and is activated from time to time when new data are available. This arrangement
can be very useful in structuring the application. As another example, a server pro-
cess (e.g., print server, file server) may generate a new process for each request that
it handles. When the OS creates a process at the explicit request of another process,
the action is referred to as process spawning.

When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the
“related” processes need to communicate and cooperate with each other. Achieving
this cooperation is a difficult task for the programmer; this topic will be discussed in
Chapter 5.

Process Termination  Table 3.2 summarizes typical reasons for process termination.
Any computer system must provide a means for a process to indicate its completion.
A batch job should include a Halt instruction or an explicit OS service call for
termination. In the former case, the Halt instruction will generate an interrupt to
alert the OS that a process has completed. For an interactive application, the action
of the user will indicate when the process is completed. For example, in a time-sharing
system, the process for a particular user is to be terminated when the user logs off or
turns off his or her terminal. On a personal computer or workstation, a user may quit
an application (e.g., word processing or spreadsheet). All of these actions ultimately
result in a service request to the OS to terminate the requesting process.

Additionally, a number of error and fault conditions can lead to the termination
of a process. Table 3.2 lists some of the more commonly recognized conditions.3

Finally, in some operating systems, a process may be terminated by the process
that created it, or when the parent process is itself terminated.

A Five-State Model

If all processes were always ready to execute, then the queueing discipline suggested
by Figure 3.5b would be effective. The queue is a first-in-first-out list and the pro-
cessor operates in round-robin fashion on the available processes (each process in
the queue is given a certain amount of time, in turn, to execute and then returned
to the queue, unless blocked). However, even with the simple example that we have
described, this implementation is inadequate: Some processes in the Not Running
state are ready to execute, while others are blocked, waiting for an I/O operation
to complete. Thus, using a single queue, the dispatcher could not just select the
process at the oldest end of the queue. Rather, the dispatcher would have to scan
the list looking for the process that is not blocked and that has been in the queue
the longest.

3A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.

M03_STAL4290_09_GE_C03.indd 138 5/9/17 4:38 PM

3.2 / PROCESS STATES   139

A more natural way to handle this situation is to split the Not Running state
into two states: Ready and Blocked. This is shown in Figure 3.6. For good measure,
we have added two additional states that will prove useful. The five states in this new
diagram are as follows:

1.	 Running: The process that is currently being executed. For this chapter, we will
assume a computer with a single processor, so at most, one process at a time
can be in this state.

2.	 Ready: A process that is prepared to execute when given the opportunity.

3.	 Blocked/Waiting:4 A process that cannot execute until some event occurs, such
as the completion of an I/O operation.

4Waiting is a frequently used alternative term for Blocked as a process state. Generally, we will use Blocked,
but the terms are interchangeable.

Normal completion The process executes an OS service call to indicate that it has completed
running.

Time limit exceeded The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include
total elapsed time (“wall clock time”), amount of time spent executing, and, in
the case of an interactive process, the amount of time since the user last pro-
vided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to
use, or it tries to use it in an improper fashion, such as writing to a read-only
file.

Arithmetic error The process tries a prohibited computation (such as division by zero) or tries
to store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event
to occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure
to read or write after a specified maximum number of tries (when, for exam-
ple, a defective area is encountered on a tape), or invalid operation (such as
reading from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the pro-
cess (e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate
all of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

Table 3.2  Reasons for Process Termination

M03_STAL4290_09_GE_C03.indd 139 5/9/17 4:38 PM

140   Chapter 3 / Process Description and Control

4.	 New: A process that has just been created but has not yet been admitted to the
pool of executable processes by the OS. Typically, a new process has not yet
been loaded into main memory, although its process control block has been
created.

5.	 Exit: A process that has been released from the pool of executable processes by
the OS, either because it halted or because it aborted for some reason.

The New and Exit states are useful constructs for process management. The
New state corresponds to a process that has just been defined. For example, if a new
user attempts to log on to a time-sharing system, or a new batch job is submitted for
execution, the OS can define a new process in two stages. First, the OS performs the
necessary housekeeping chores. An identifier is associated with the process. Any
tables that will be needed to manage the process are allocated and built. At this point,
the process is in the New state. This means that the OS has performed the necessary
actions to create the process, but has not committed itself to the execution of the
process. For example, the OS may limit the number of processes that may be in the
system for reasons of performance or main memory limitation. While a process is in
the new state, information concerning the process that is needed by the OS is main-
tained in control tables in main memory. However, the process itself is not in main
memory. That is, the code of the program to be executed is not in main memory, and
no space has been allocated for the data associated with that program. While the
process is in the New state, the program remains in secondary storage, typically disk
storage.5

Similarly, a process exits a system in two stages. First, a process is terminated
when it reaches a natural completion point, when it aborts due to an unrecoverable
error, or when another process with the appropriate authority causes the process to
abort. Termination moves the process to the Exit state. At this point, the process is

5In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support vir-
tual memory, when a process moves from New to Ready, its program code and data are loaded into virtual
memory. Virtual memory was briefly discussed in Chapter 2 and will be examined in detail in Chapter 8.

Figure 3.6  Five-State Process Model

Dispatch

Time-out

New Ready

Blocked

Running Exit
Admit Release

Event
wait

Event
occurs

M03_STAL4290_09_GE_C03.indd 140 5/9/17 4:38 PM

3.2 / PROCESS STATES   141

no longer eligible for execution. The tables and other information associated with the
job are temporarily preserved by the OS, which provides time for auxiliary or support
programs to extract any needed information. For example, an accounting program
may need to record the processor time and other resources utilized by the process
for billing purposes. A utility program may need to extract information about the his-
tory of the process for purposes related to performance or utilization analysis. Once
these programs have extracted the needed information, the OS no longer needs to
maintain any data relating to the process, and the process is deleted from the system.

Figure 3.6 indicates the types of events that lead to each state transition for a
process; the possible transitions are as follows:

•	 Null u New: A new process is created to execute a program. This event occurs
for any of the reasons listed in Table 3.1.

•	 New u Ready: The OS will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set
some limit based on the number of existing processes or the amount of virtual
memory committed to existing processes. This limit assures there are not so
many active processes as to degrade performance.

•	 Ready u Running: When it is time to select a process to run, the OS chooses
one of the processes in the Ready state. This is the job of the scheduler or dis-
patcher. Scheduling is explored in Part Four.

•	 Running u Exit: The currently running process is terminated by the OS if the
process indicates that it has completed or if it aborts. See Table 3.2.

•	 Running u Ready: The most common reason for this transition is that the
running process has reached the maximum allowable time for uninterrupted
execution; virtually all multiprogramming operating systems impose this type
of time discipline. There are several other alternative causes for this transition,
which are not implemented in all operating systems. Of particular importance
is the case in which the OS assigns different levels of priority to different pro-
cesses. Suppose, for example, process A is running at a given priority level, and
process B, at a higher priority level, is blocked. If the OS learns that the event
upon which process B has been waiting has occurred, this moving B to a ready
state, then it can interrupt process A and dispatch process B. We say that the
OS has preempted process A.6 Finally, a process may voluntarily release control
of the processor. An example is a background process that periodically per-
forms some accounting or maintenance function.

•	 Running u Blocked: A process is put in the Blocked state if it requests some-
thing for which it must wait. A request to the OS is usually in the form of a
system service call; that is, a call from the running program to a procedure that is
part of the operating system code. For example, a process may request a service
from the OS that the OS is not prepared to perform immediately. It can request

6 In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process has finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so another process can be executed.

M03_STAL4290_09_GE_C03.indd 141 5/9/17 4:38 PM

142   Chapter 3 / Process Description and Control

a resource, such as a file or a shared section of virtual memory, that is not imme-
diately available. Or the process may initiate an action, such as an I/O opera-
tion, that must be completed before the process can continue. When processes
communicate with each other, a process may be blocked when it is waiting for
another process to provide data, or waiting for a message from another process.

•	 Blocked u Ready: A process in the Blocked state is moved to the Ready state
when the event for which it has been waiting occurs.

•	 Ready u Exit: For clarity, this transition is not shown on the state diagram.
In some systems, a parent may terminate a child process at any time. Also,
if a parent terminates, all child processes associated with that parent may be
terminated.

•	 Blocked u Exit: The comments under the preceding item apply.

Returning to our simple example, Figure 3.7 shows the transition of each pro-
cess among the states. Figure 3.8a suggests the way in which a queueing discipline
might be implemented with two queues: a Ready queue and a Blocked queue. As
each process is admitted to the system, it is placed in the Ready queue. When it is time
for the OS to choose another process to run, it selects one from the Ready queue. In
the absence of any priority scheme, this can be a simple first-in-first-out queue. When
a running process is removed from execution, it is either terminated or placed in the
Ready or Blocked queue, depending on the circumstances. Finally, when an event
occurs, any process in the Blocked queue that has been waiting on that event only is
moved to the Ready queue.

This latter arrangement means that, when an event occurs, the OS must scan the
entire blocked queue, searching for those processes waiting on that event. In a large
OS, there could be hundreds or even thousands of processes in that queue. Therefore,
it would be more efficient to have a number of queues, one for each event. Then, when
the event occurs, the entire list of processes in the appropriate queue can be moved
to the Ready state (see Figure 3.8b).

Figure 3.7  Process States for the Trace of Figure 3.4

Dispatcher

5 Running 5 Ready 5 Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

M03_STAL4290_09_GE_C03.indd 142 5/9/17 4:38 PM

3.2 / PROCESS STATES   143

One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for each
priority level. The OS could then readily determine which is the highest-priority ready
process that has been waiting the longest.

Suspended Processes

The Need for Swapping  The three principal states just described (Ready, Running,
and Blocked) provide a systematic way of modeling the behavior of processes and
guide the implementation of the OS. Some operating systems are constructed using
just these three states.

However, there is good justification for adding other states to the model. To
see the benefit of these new states, consider a system that does not employ virtual
memory. Each process to be executed must be loaded fully into main memory.
Thus, in Figure 3.8b, all of the processes in all of the queues must be resident in
main memory.

Figure 3.8  Queueing Model for Figure 3.6

Dispatch

Time-out

Event wait

Event 1 wait

Event 2 wait

Event n wait

Event
occurs

Ready queue

Blocked queue

Admit
Release

Processor

Dispatch
ReleaseReady queue

Admit
Processor

Time-out

Event 1 queue
Event 1
occurs

Event 2
occurs

Event n
occurs

Event 2 queue

Event n queue

(a) Single blocked queue

(b) Multiple blocked queues

M03_STAL4290_09_GE_C03.indd 143 5/9/17 4:38 PM

144   Chapter 3 / Process Description and Control

Recall that the reason for all of this elaborate machinery is that I/O activities
are much slower than computation, and therefore the processor in a uniprogramming
system is idle most of the time. But the arrangement of Figure 3.8b does not entirely
solve the problem. It is true that, in this case, memory holds multiple processes and
the processor can move to another process when one process is blocked. But the
processor is so much faster than I/O that it will be common for all of the processes in
memory to be waiting for I/O. Thus, even with multiprogramming, a processor could
be idle most of the time.

What to do? Main memory could be expanded to accommodate more pro-
cesses. But there are two flaws in this approach. First, there is a cost associated with
main memory, which, though small on a per-byte basis, begins to add up as we get into
the gigabytes of storage. Second, the appetite of programs for memory has grown as
fast as the cost of memory has dropped. So larger memory results in larger processes,
not more processes.

Another solution is swapping, which involves moving part or all of a process from
main memory to disk. When none of the processes in main memory is in the Ready state,
the OS swaps one of the blocked processes out on to disk into a suspend queue. This is a
queue of existing processes that have been temporarily kicked out of main memory, or
suspended. The OS then brings in another process from the suspend queue or it honors
a new-process request. Execution then continues with the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential for
making the problem worse, not better. But because disk I/O is generally the fastest
I/O on a system (e.g., compared to tape or printer I/O), swapping will usually enhance
performance.

With the use of swapping as just described, one other state must be added to
our process behavior model (see Figure 3.9a): the Suspend state. When all of the pro-
cesses in main memory are in the Blocked state, the OS can suspend one process by
putting it in the Suspend state and transferring it to disk. The space that is freed in
main memory can then be used to bring in another process.

When the OS has performed a swapping-out operation, it has two choices for
selecting a process to bring into main memory: It can admit a newly created process,
or it can bring in a previously suspended process. It would appear that the preference
should be to bring in a previously suspended process, to provide it with service rather
than increasing the total load on the system.

But this line of reasoning presents a difficulty. All of the processes that have
been suspended were in the Blocked state at the time of suspension. It clearly would
not do any good to bring a blocked process back into main memory, because it is still
not ready for execution. Recognize, however, that each process in the Suspend state
was originally blocked on a particular event. When that event occurs, the process is
not blocked and is potentially available for execution.

Therefore, we need to rethink this aspect of the design. There are two indepen-
dent concepts here: whether a process is waiting on an event (blocked or not), and
whether a process has been swapped out of main memory (suspended or not). To
accommodate this 2 * 2 combination, we need four states:

1.	 Ready: The process is in main memory and available for execution.

2.	 Blocked: The process is in main memory and awaiting an event.

M03_STAL4290_09_GE_C03.indd 144 5/9/17 4:38 PM

3.2 / PROCESS STATES   145

3.	 Blocked/Suspend: The process is in secondary memory and awaiting an event.

4.	 Ready/Suspend: The process is in secondary memory but is available for execu-
tion as soon as it is loaded into main memory.

Before looking at a state transition diagram that encompasses the two new sus-
pend states, one other point should be mentioned. The discussion so far has assumed
that virtual memory is not in use, and that a process is either all in main memory
or all out of main memory. With a virtual memory scheme, it is possible to execute
a process that is only partially in main memory. If reference is made to a process
address that is not in main memory, then the appropriate portion of the process can
be brought in. The use of virtual memory would appear to eliminate the need for
explicit swapping, because any desired address in any desired process can be moved

Figure 3.9  Process State Transition Diagram with Suspend States

E
ve

nt
oc

cu
rs

New

Suspend

Ready

Blocked

Running Exit
Admit

(a) With one Suspend state

Suspend

Eve
nt

wait

E
ve

nt
oc

cu
rs

Acti
va

te

Dispatch

Time-out

Release

Ready/
Suspend

New

Ready

Blocked

Running Exit

A
dm

itA
dm

it

(b) With two Suspend states

Eve
nt

wait

E
ve

nt
oc

cu
rs

Dispatch

Time-out

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/
Suspend

M03_STAL4290_09_GE_C03.indd 145 5/9/17 4:38 PM

146   Chapter 3 / Process Description and Control

in or out of main memory by the memory management hardware of the processor.
However, as we shall see in Chapter 8, the performance of a virtual memory system
can collapse if there is a sufficiently large number of active processes, all of which
are partially in main memory. Therefore, even in a virtual memory system, the OS
will need to swap out processes explicitly and completely from time to time in the
interests of performance.

Let us look now, in Figure 3.9b, at the state transition model that we have devel-
oped. (The dashed lines in the figure indicate possible but not necessary transitions.)
Important new transitions are the following:

•	 Blocked u Blocked/Suspend: If there are no ready processes, then at least one
blocked process is swapped out to make room for another process that is not
blocked. This transition can be made even if there are ready processes available.
In particular, if the OS determines that the currently running process, or a ready
process that it would like to dispatch, requires more main memory to maintain
adequate performance, a blocked process will be suspended.

•	 Blocked/Suspend u Ready/Suspend: A process in the Blocked/Suspend state
is moved to the Ready/Suspend state when the event for which it has been wait-
ing occurs. Note this requires that the state information concerning suspended
processes must be accessible to the OS.

•	 Ready/Suspend u Ready: When there are no ready processes in main mem-
ory, the OS will need to bring one in to continue execution. In addition, it
might be the case that a process in the Ready/Suspend state has higher priority
than any of the processes in the Ready state. In that case, the OS designer may
dictate that it is more important to get at the higher-priority process than to
minimize swapping.

•	 Ready u Ready/Suspend: Normally, the OS would prefer to suspend a
blocked process rather than a ready one, because the ready process can now
be executed, whereas the blocked process is taking up main memory space and
cannot be executed. However, it may be necessary to suspend a ready process if
that is the only way to free up a sufficiently large block of main memory. Also,
the OS may choose to suspend a lower–priority ready process rather than a
higher–priority blocked process if it believes that the blocked process will be
ready soon.

Several other transitions that are worth considering are the following:

•	 New u Ready/Suspend and New u Ready: When a new process is created, it
can either be added to the Ready queue or the Ready/Suspend queue. In either
case, the OS must create a process control block and allocate an address space
to the process. It might be preferable for the OS to perform these housekeep-
ing duties at an early time, so it can maintain a large pool of processes that are
not blocked. With this strategy, there would often be insufficient room in main
memory for a new process; hence the use of the (New S Ready/Suspend)
transition. On the other hand, we could argue that a just-in-time philosophy
of creating processes as late as possible reduces OS overhead, and allows that
OS to perform the process creation duties at a time when the system is clogged
with blocked processes anyway.

M03_STAL4290_09_GE_C03.indd 146 5/9/17 4:38 PM

3.2 / PROCESS STATES   147

•	 Blocked/Suspend u Blocked: Inclusion of this transition may seem to be poor
design. After all, if a process is not ready to execute and is not already in main
memory, what is the point of bringing it in? But consider the following scenario:
A process terminates, freeing up some main memory. There is a process in the
(Blocked/Suspend) queue with a higher priority than any of the processes in
the (Ready/Suspend) queue and the OS has reason to believe that the block-
ing event for that process will occur soon. Under these circumstances, it would
seem reasonable to bring a blocked process into main memory in preference
to a ready process.

•	 Running u Ready/Suspend: Normally, a running process is moved to the
Ready state when its time allocation expires. If, however, the OS is preempting
the process because a higher-priority process on the Blocked/Suspend queue
has just become unblocked, the OS could move the running process directly to
the (Ready/Suspend) queue and free some main memory.

•	 Any State u Exit: Typically, a process terminates while it is running, either
because it has completed or because of some fatal fault condition. However, in
some operating systems, a process may be terminated by the process that cre-
ated it or when the parent process is itself terminated. If this is allowed, then a
process in any state can be moved to the Exit state.

Other Uses of Suspension  So far, we have equated the concept of a suspended
process with that of a process that is not in main memory. A process that is not in
main memory is not immediately available for execution, whether or not it is awaiting
an event.

We can generalize the concept of a suspended process. Let us define a sus-
pended process as having the following characteristics:

1.	 The process is not immediately available for execution.

2.	 The process may or may not be waiting on an event. If it is, this blocked condi-
tion is independent of the suspend condition, and occurrence of the blocking
event does not enable the process to be executed immediately.

3.	 The process was placed in a suspended state by an agent: either itself, a parent
process, or the OS, for the purpose of preventing its execution.

4.	 The process may not be removed from this state until the agent explicitly orders
the removal.

Table 3.3 lists some reasons for the suspension of a process. One reason we
have discussed is to provide memory space either to bring in a Ready/Suspended
process or to increase the memory allocated to other Ready processes. The OS may
have other motivations for suspending a process. For example, an auditing or trac-
ing process may be employed to monitor activity on the system; the process may
be used to record the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. The OS,
under operator control, may turn this process on and off from time to time. If the
OS detects or suspects a problem, it may suspend a process. One example of this
is deadlock, which will be discussed in Chapter 6. As another example, a problem

M03_STAL4290_09_GE_C03.indd 147 5/9/17 4:38 PM

148   Chapter 3 / Process Description and Control

is detected on a communications line, and the operator has the OS suspend the
process that is using the line while some tests are run.

Another set of reasons concerns the actions of an interactive user. For example,
if a user suspects a bug in the program, he or she may debug the program by sus-
pending its execution, examining and modifying the program or data, and resuming
execution. Or there may be a background process that is collecting trace or account-
ing statistics, which the user may wish to be able to turn on and off.

Timing considerations may also lead to a swapping decision. For example, if a
process is to be activated periodically but is idle most of the time, then it should be
swapped out between uses. A program that monitors utilization or user activity is an
example.

Finally, a parent process may wish to suspend a descendant process. For exam-
ple, process A may spawn process B to perform a file read. Subsequently, process B
encounters an error in the file read procedure and reports this to process A. Process
A suspends process B to investigate the cause.

In all of these cases, the activation of a suspended process is requested by the
agent that initially requested the suspension.

	 3.3	 PROCESS DESCRIPTION

The OS controls events within the computer system. It schedules and dispatches pro-
cesses for execution by the processor, allocates resources to processes, and responds
to requests by user processes for basic services. Fundamentally, we can think of the
OS as that entity that manages the use of system resources by processes.

This concept is illustrated in Figure 3.10. In a multiprogramming environment,
there are a number of processes (P1, c , Pn) that have been created and exist in
virtual memory. Each process, during the course of its execution, needs access to
certain system resources, including the processor, I/O devices, and main memory. In
the figure, process P1 is running; at least part of the process is in main memory, and
it has control of two I/O devices. Process P2 is also in main memory, but is blocked
waiting for an I/O device allocated to P1. Process Pn has been swapped out and is
therefore suspended.

Swapping The OS needs to release sufficient main memory to bring in a process that is
ready to execute.

Other OS reason The OS may suspend a background or utility process or a process that is sus-
pected of causing a problem.

Interactive user request A user may wish to suspend execution of a program for purposes of debugging or
in connection with the use of a resource.

Timing A process may be executed periodically (e.g., an accounting or system monitoring
process) and may be suspended while waiting for the next time interval.

Parent process request A parent process may wish to suspend execution of a descendent to exam-
ine or modify the suspended process, or to coordinate the activity of various
descendants.

Table 3.3  Reasons for Process Suspension

M03_STAL4290_09_GE_C03.indd 148 5/9/17 4:38 PM

3.3 / PROCESS DESCRIPTION   149

We will explore the details of the management of these resources by the OS
on behalf of the processes in later chapters. Here we are concerned with a more
fundamental question: What information does the OS need to control processes and
manage resources for them?

Operating System Control Structures

If the OS is to manage processes and resources, it must have information about the
current status of each process and resource. The universal approach to providing this
information is straightforward: The OS constructs and maintains tables of informa-
tion about each entity that it is managing. A general idea of the scope of this effort
is indicated in Figure 3.11, which shows four different types of tables maintained by
the OS: memory, I/O, file, and process. Although the details will differ from one OS
to another, fundamentally, all operating systems maintain information in these four
categories.

Memory tables are used to keep track of both main (real) and secondary (vir-
tual) memory. Some of main memory is reserved for use by the OS; the remainder is
available for use by processes. Processes are maintained on secondary memory using
some sort of virtual memory or simple swapping mechanism. The memory tables
must include the following information:

•	 The allocation of main memory to processes

•	 The allocation of secondary memory to processes

•	 Any protection attributes of blocks of main or virtual memory, such as which
processes may access certain shared memory regions

•	 Any information needed to manage virtual memory

We will examine the information structures for memory management in detail
in Part Three.

I/O tables are used by the OS to manage the I/O devices and channels of the
computer system. At any given time, an I/O device may be available or assigned to a
particular process. If an I/O operation is in progress, the OS needs to know the status
of the I/O operation and the location in main memory being used as the source or
destination of the I/O transfer. I/O management will be examined in Chapter 11.

The OS may also maintain file tables. These tables provide information about
the existence of files, their location on secondary memory, their current status, and

Figure 3.10  Processes and Resources (resource allocation at one snapshot in time)

Processor I/O I/O I/O Main
memory

Computer
resources

Virtual
memory

P2 PnP1

M03_STAL4290_09_GE_C03.indd 149 5/9/17 4:38 PM

150   Chapter 3 / Process Description and Control

other attributes. Much, if not all, of this information may be maintained and used by
a file management system, in which case the OS has little or no knowledge of files.
In other operating systems, much of the detail of file management is managed by the
OS itself. This topic will be explored in Chapter 12.

Finally, the OS must maintain process tables to manage processes. The remain-
der of this section is devoted to an examination of the required process tables. Before
proceeding to this discussion, two additional points should be made. First, although
Figure 3.11 shows four distinct sets of tables, it should be clear that these tables must
be linked or cross-referenced in some fashion. Memory, I/O, and files are managed
on behalf of processes, so there must be some reference to these resources, directly
or indirectly, in the process tables. The files referred to in the file tables are acces-
sible via an I/O device and will, at some times, be in main or virtual memory. The
tables themselves must be accessible by the OS, and therefore are subject to memory
management.

Second, how does the OS know to create the tables in the first place? Clearly,
the OS must have some knowledge of the basic environment, such as how much main
memory exists, what are the I/O devices and what are their identifiers, and so on. This is
an issue of configuration. That is, when the OS is initialized, it must have access to some
configuration data that define the basic environment, and these data must be created
outside the OS, with human assistance or by some autoconfiguration software.

Figure 3.11  General Structure of Operating System Control Tables

Memory

Devices

Files

Processes

Process 1

Memory tables

Process
image

Process
1

Process
image

Process
n

I/O tables

File tables

Primary process table

Process 2

Process 3

Process n

M03_STAL4290_09_GE_C03.indd 150 5/9/17 4:38 PM

3.3 / PROCESS DESCRIPTION   151

Process Control Structures

Consider what the OS must know if it is to manage and control a process. First, it
must know where the process is located; second, it must know the attributes of the
process that are necessary for its management (e.g., process ID and process state).

Process Location  Before we can deal with the questions of where a process is
located or what its attributes are, we need to address an even more fundamental
question: What is the physical manifestation of a process? At a minimum, a process
must include a program or set of programs to be executed. Associated with these
programs is a set of data locations for local and global variables and any defined
constants. Thus, a process will consist of at least sufficient memory to hold the
programs and data of that process. In addition, the execution of a program typically
involves a stack (see Appendix P) that is used to keep track of procedure calls and
parameter passing between procedures. Finally, each process has associated with it a
number of attributes that are used by the OS for process control. Typically, the
collection of attributes is referred to as a process control block.7 We can refer to this
collection of program, data, stack, and attributes as the process image (see Table 3.4).

The location of a process image will depend on the memory management
scheme being used. In the simplest case, the process image is maintained as a contigu-
ous, or continuous, block of memory. This block is maintained in secondary memory,
usually disk. So that the OS can manage the process, at least a small portion of its
image must be maintained in main memory. To execute the process, the entire process
image must be loaded into main memory, or at least virtual memory. Thus, the OS
needs to know the location of each process on disk and, for each such process that is
in main memory, the location of that process in main memory. We saw a slightly more
complex variation on this scheme with the CTSS OS in Chapter 2. With CTSS, when
a process is swapped out, part of the process image may remain in main memory.
Thus, the OS must keep track of which portions of the image of each process are still
in main memory.

7Other commonly used names for this data structure are task control block, process descriptor, and task
descriptor.

User Data
The modifiable part of the user space. May include program data, a user stack area, and programs that may be
modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store param-
eters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the OS to control the process (see Table 3.5).

Table 3.4  Typical Elements of a Process Image

M03_STAL4290_09_GE_C03.indd 151 5/9/17 4:38 PM

152   Chapter 3 / Process Description and Control

Modern operating systems presume paging hardware that allows noncontiguous
physical memory to support partially resident processes.8 At any given time, a portion
of a process image may be in main memory, with the remainder in secondary mem-
ory.9 Therefore, process tables maintained by the OS must show the location of each
page of each process image.

Figure 3.11 depicts the structure of the location information in the following
way. There is a primary process table with one entry for each process. Each entry
contains, at least, a pointer to a process image. If the process image contains mul-
tiple blocks, this information is contained directly in the primary process table or is
available by cross-reference to entries in memory tables. Of course, this depiction is
generic; a particular OS will have its own way of organizing the location information.

Process Attributes  A sophisticated multiprogramming system requires a great
deal of information about each process. As was explained, this information can be
considered to reside in a process control block. Different systems will organize this
information in different ways, and several examples of this appear at the end of this
chapter and the next. For now, let us simply explore the type of information that
might be of use to an OS without considering in any detail how that information is
organized.

Table 3.5 lists the typical categories of information required by the OS for each
process. You may be somewhat surprised at the quantity of information required.
As you gain a greater appreciation of the responsibilities of the OS, this list should
appear more reasonable.

We can group the process control block information into three general
categories:

1.	 Process identification

2.	 Processor state information

3.	 Process control information

With respect to process identification, in virtually all operating systems, each
process is assigned a unique numeric identifier, which may simply be an index into
the primary process table (see Figure 3.11); otherwise there must be a mapping
that allows the OS to locate the appropriate tables based on the process identifier.
This identifier is useful in several ways. Many of the other tables controlled by the
OS may use process identifiers to cross-reference process tables. For example, the
memory tables may be organized so as to provide a map of main memory with
an indication of which process is assigned to each region. Similar references will
appear in I/O and file tables. When processes communicate with one another, the

8A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection
on memory management in Section 2.3.
9This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.

M03_STAL4290_09_GE_C03.indd 152 5/9/17 4:38 PM

3.3 / PROCESS DESCRIPTION   153

Process Identification
Identifiers
Numeric identifiers that may be stored with the process control block include

•	 Identifier of this process.
•	 Identifier of the process that created this process (parent process).
•	User identifier.

Processor State Information
User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC imple-
mentations have over 100.
Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor. These
include:

•	Program counter: Contains the address of the next instruction to be fetched.
•	Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal,

overflow).
•	Status information: Includes interrupt enabled/disabled flags, execution mode.

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the
stack.

Process Control Information
Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of
information include:

•	Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, wait-
ing, halted).

•	Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest allowable).

•	Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

•	Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring
A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent–child
(creator–created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.
Interprocess Communication
Various flags, signals, and messages may be associated with communication between two independent pro-
cesses. Some or all of this information may be maintained in the process control block.
Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of instructions
that may be executed. In addition, privileges may apply to the use of system utilities and services.
Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory assigned to
this process.
Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of the pro-
cessor or other resources may also be included; this information may be needed by the scheduler.

Table 3.5  Typical Elements of a Process Control Block

M03_STAL4290_09_GE_C03.indd 153 5/9/17 4:38 PM

154   Chapter 3 / Process Description and Control

process identifier informs the OS of the destination of a particular communication.
When processes are allowed to create other processes, identifiers indicate the par-
ent and descendants of each process.

In addition to these process identifiers, a process may be assigned a user identi-
fier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers.
While a process is running, of course, the information is in the registers. When a pro-
cess is interrupted, all of this register information must be saved so it can be restored
when the process resumes execution. The nature and number of registers involved
depend on the design of the processor. Typically, the register set will include user-
visible registers, control and status registers, and stack pointers. These are described
in Chapter 1.

Of particular note, all processor designs include a register or set of registers,
often known as the program status word (PSW), that contains status information.
The PSW typically contains condition codes plus other status information. A good
example of a processor status word is that on Intel x86 processors, referred to as the
EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by any
OS (including UNIX and Windows) running on an x86 processor.

The third major category of information in the process control block can be
called, for want of a better name, process control information. This is the additional
information needed by the OS to control and coordinate the various active processes.
The last part of Table 3.5 indicates the scope of this information. As we examine the
details of operating system functionality in succeeding chapters, the need for the
various items on this list should become clear.

Figure 3.13 suggests the structure of process images in virtual memory. Each pro-
cess image consists of a process control block, a user stack, the private address space of
the process, and any other address space that the process shares with other processes. In

Figure 3.12  x86 EFLAGS Register

X ID = Identification flag
X VIP = Virtual interrupt pending
X VIF = Virtual interrupt flag
X AC = Alignment check
X VM = Virtual 8086 mode
X RF = Resume flag
X NT = Nested task flag
X IOPL = I/O privilege level
S OF = Overflow flag

C DF = Direction flag
X IF = Interrupt enable flag
X TF = Trap flag
S SF = Sign flag
S ZF = Zero flag
S AF = Auxiliary carry flag
S PF = Parity flag
S CF = Carry flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0
I
D

V
I
P

V
I
F

A
C

V
M

R
F

0
N
T

I
O
P
L

O
F

D
F

I
F

T
F

S
F

Z
F

0
A
F

0
P
F

1
C
F

0

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag
Shaded bits are reserved

M03_STAL4290_09_GE_C03.indd 154 5/9/17 4:38 PM

3.3 / PROCESS DESCRIPTION   155

Status Flags (condition codes)

AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the AL
register.

CF (Carry flag)
Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation; also modi-
fied by some of the shift and rotate operations.

OF (Overflow flag)
Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)
Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)
Indicates that the result of an arithmetic or logic operation is 0.

Control Flag

DF (Direction flag)
Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI
(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

System Flags (should not be modified by application programs)

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)
If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
information about the vendor, family, and model.

RF (Resume flag)
Allows the programmer to disable debug exceptions so the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/O privilege level)
When set, it causes the processor to generate an exception on all accesses to I/O devices during protected
mode operation.

IF (Interrupt enable flag)
When set, the processor will recognize external interrupts.

TF (Trap flag)
When set, it causes an interrupt after the execution of each instruction. This is used for debugging.

NT (Nested task flag)
Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)
Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs
as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of IF.

Table 3.6  x86 EFLAGS Register Bits

M03_STAL4290_09_GE_C03.indd 155 5/9/17 4:38 PM

156   Chapter 3 / Process Description and Control

the figure, each process image appears as a contiguous range of addresses. In an actual
implementation, this may not be the case; it will depend on the memory management
scheme and the way in which control structures are organized by the OS.

As indicated in Table 3.5, the process control block may contain structuring
information, including pointers that allow the linking of process control blocks.
Thus, the queues that were described in the preceding section could be implemented
as linked lists of process control blocks. For example, the queueing structure of
Figure 3.8a could be implemented as suggested in Figure 3.14.

The Role of the Process Control Block  The process control block is the
most important data structure in an OS. Each process control block contains all of
the information about a process that is needed by the OS. The blocks are read and/or
modified by virtually every module in the OS, including those involved with scheduling,
resource allocation, interrupt processing, and performance monitoring and analysis. One
can say that the set of process control blocks defines the state of the OS.

This brings up an important design issue. A number of routines within the OS
will need access to information in process control blocks. The provision of direct
access to these tables is not difficult. Each process is equipped with a unique ID, and
this can be used as an index into a table of pointers to the process control blocks.
The difficulty is not access but rather protection. Two problems present themselves:

•	 A bug in a single routine, such as an interrupt handler, could damage process
control blocks, which could destroy the system’s ability to manage the affected
processes.

Figure 3.13  User Processes in Virtual Memory

Process
identification

Process
control
block

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Process 1 Process 2 Process n

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Shared address
space

M03_STAL4290_09_GE_C03.indd 156 5/9/17 4:38 PM

3.4 / PROCESS CONTROL   157

•	 A design change in the structure or semantics of the process control block could
affect a number of modules in the OS.

These problems can be addressed by requiring all routines in the OS to go
through a handler routine, the only job of which is to protect process control blocks,
and which is the sole arbiter for reading and writing these blocks. The trade-off in
the use of such a routine involves performance issues and the degree to which the
remainder of the system software can be trusted to be correct.

	 3.4	 PROCESS CONTROL

Modes of Execution

Before continuing with our discussion of the way in which the OS manages processes,
we need to distinguish between the mode of processor execution normally associated
with the OS and that normally associated with user programs. Most processors sup-
port at least two modes of execution. Certain instructions can only be executed in
the more-privileged mode. These would include reading or altering a control register,
such as the PSW, primitive I/O instructions, and instructions that relate to memory
management. In addition, certain regions of memory can only be accessed in the
more-privileged mode.

Figure 3.14  Process List Structures

Running

Ready

Blocked

Process
control block

M03_STAL4290_09_GE_C03.indd 157 5/9/17 4:38 PM

158   Chapter 3 / Process Description and Control

The less-privileged mode is often referred to as the user mode, because
user programs typically would execute in this mode. The more-privileged mode
is referred to as the system mode, control mode, or kernel mode. This last term
refers to the kernel of the OS, which is that portion of the OS that encompasses
the important system functions. Table 3.7 lists the functions typically found in the
kernel of an OS.

The reason for using two modes should be clear. It is necessary to protect the
OS and key operating system tables, such as process control blocks, from interfer-
ence by user programs. In the kernel mode, the software has complete control of the
processor and all its instructions, registers, and memory. This level of control is not
necessary, and for safety is not desirable for user programs.

Two questions arise: How does the processor know in which mode it is to be
executing, and how is the mode changed? Regarding the first question, typically
there is a bit in the PSW that indicates the mode of execution. This bit is changed
in response to certain events. Typically, when a user makes a call to an operating
system service or when an interrupt triggers execution of an operating system
routine, the mode is set to the kernel mode and, upon return from the service to
the user process, the mode is set to user mode. As an example, consider the Intel
Itanium processor, which implements the 64-bit IA-64 architecture. The processor
has a processor status register (psr) that includes a 2-bit cpl (current privilege
level) field. Level 0 is the most privileged level, while level 3 is the least privileged
level. Most operating systems, such as Linux, use level 0 for the kernel and one
other level for user mode. When an interrupt occurs, the processor clears most
of the bits in the psr, including the cpl field. This automatically sets the cpl to

Process Management

•	Process creation and termination
•	Process scheduling and dispatching
•	Process switching
•	Process synchronization and support for interprocess communication
•	Management of process control blocks

Memory Management

•	Allocation of address space to processes
•	Swapping
•	Page and segment management

I/O Management

•	Buffer management
•	Allocation of I/O channels and devices to processes

Support Functions

•	 Interrupt handling
•	Accounting
•	Monitoring

Table 3.7  Typical Functions of an Operating System Kernel

M03_STAL4290_09_GE_C03.indd 158 5/9/17 4:38 PM

3.4 / PROCESS CONTROL   159

level 0. At the end of the interrupt-handling routine, the final instruction that is
executed is irt (interrupt return). This instruction causes the processor to restore
the psr of the interrupted program, which restores the privilege level of that pro-
gram. A similar sequence occurs when an application places a system call. For the
Itanium, an application places a system call by placing the system call identifier and
the system call arguments in a predefined area, then executing a special instruc-
tion that has the effect of interrupting execution at the user level and transferring
control to the kernel.

Process Creation

In Section 3.2, we discussed the events that lead to the creation of a new process. Hav-
ing discussed the data structures associated with a process, we are now in a position
to describe briefly the steps involved in actually creating the process.

Once the OS decides, for whatever reason (see Table 3.1), to create a new pro-
cess, it can proceed as follows:

1.	 Assign a unique process identifier to the new process. At this time, a new entry
is added to the primary process table, which contains one entry per process.

2.	 Allocate space for the process. This includes all elements of the process image.
Thus, the OS must know how much space is needed for the private user address
space (programs and data) and the user stack. These values can be assigned by
default based on the type of process, or they can be set based on user request
at job creation time. If a process is spawned by another process, the parent
process can pass the needed values to the OS as part of the process creation
request. If any existing address space is to be shared by this new process, the
appropriate linkages must be set up. Finally, space for a process control block
must be allocated.

3.	 Initialize the process control block. The process identification portion contains
the ID of this process plus other appropriate IDs, such as that of the parent
process. The processor state information portion will typically be initialized
with most entries zero, except for the program counter (set to the program entry
point) and system stack pointers (set to define the process stack boundaries).
The process control information portion is initialized based on standard default
values plus attributes that have been requested for this process. For example,
the process state would typically be initialized to Ready or Ready/Suspend. The
priority may be set by default to the lowest priority unless an explicit request
is made for a higher priority. Initially, the process may own no resources (I/O
devices, files) unless there is an explicit request for these, or unless they are
inherited from the parent.

4.	 Set the appropriate linkages. For example, if the OS maintains each scheduling
queue as a linked list, then the new process must be put in the Ready or Ready/
Suspend list.

5.	 Create or expand other data structures. For example, the OS may maintain
an accounting file on each process to be used subsequently for billing and/or
performance assessment purposes.

M03_STAL4290_09_GE_C03.indd 159 5/9/17 4:38 PM

160   Chapter 3 / Process Description and Control

Process Switching

On the face of it, the function of process switching would seem to be straightforward.
At some time, a running process is interrupted, and the OS assigns another process
to the Running state and turns control over to that process. However, several design
issues are raised. First, what events trigger a process switch? Another issue is that we
must recognize the distinction between mode switching and process switching. Finally,
what must the OS do to the various data structures under its control to achieve a
process switch?

When to Switch Processes  A process switch may occur any time that the OS has
gained control from the currently running process. Table 3.8 suggests the possible
events that may give control to the OS.

First, let us consider system interrupts. Actually, we can distinguish, as many
systems do, two kinds of system interrupts, one of which is simply referred to as an
interrupt, and the other as a trap. The former is due to some sort of event that is
external to and independent of the currently running process, such as the completion
of an I/O operation. The latter relates to an error or exception condition generated
within the currently running process, such as an illegal file access attempt. With an
ordinary interrupt, control is first transferred to an interrupt handler, which does
some basic housekeeping and then branches to an OS routine that is concerned with
the particular type of interrupt that has occurred. Examples include the following:

•	 Clock interrupt: The OS determines whether the currently running process has
been executing for the maximum allowable unit of time, referred to as a time
slice. That is, a time slice is the maximum amount of time that a process can
execute before being interrupted. If so, this process must be switched to a Ready
state and another process dispatched.

•	 I/O interrupt: The OS determines what I/O action has occurred. If the I/O
action constitutes an event for which one or more processes are waiting, then
the OS moves all of the corresponding blocked processes to the Ready state
(and Blocked/Suspend processes to the Ready/Suspend state). The OS must
then decide whether to resume execution of the process currently in the Run-
ning state, or to preempt that process for a higher-priority Ready process.

•	 Memory fault: The processor encounters a virtual memory address reference
for a word that is not in main memory. The OS must bring in the block (page
or segment) of memory containing the reference from secondary memory

Mechanism Cause Use

Interrupt External to the execution of the cur-
rent instruction

Reaction to an asynchronous external
event

Trap Associated with the execution of the
current instruction

Handling of an error or an exception
condition

Supervisor call Explicit request Call to an operating system function

Table 3.8  Mechanisms for Interrupting the Execution of a Process

M03_STAL4290_09_GE_C03.indd 160 5/9/17 4:38 PM

3.4 / PROCESS CONTROL   161

to main memory. After the I/O request is issued to bring in the block of
memory, the process with the memory fault is placed in a blocked state; the
OS then performs a process switch to resume execution of another process.
After the desired block is brought into memory, that process is placed in
the Ready state.

With a trap, the OS determines if the error or exception condition is fatal. If so,
then the currently running process is moved to the Exit state and a process switch
occurs. If not, then the action of the OS will depend on the nature of the error and the
design of the OS. It may attempt some recovery procedure or simply notify the user.
It may perform a process switch or resume the currently running process.

Finally, the OS may be activated by a supervisor call from the program being
executed. For example, a user process is running and an instruction is executed that
requests an I/O operation, such as a file open. This call results in a transfer to a routine
that is part of the operating system code. The use of a system call may place the user
process in the Blocked state.

Mode Switching  In Chapter 1, we discussed the inclusion of an interrupt stage as
part of the instruction cycle. Recall that, in the interrupt stage, the processor checks
to see if any interrupts are pending, indicated by the presence of an interrupt signal.
If no interrupts are pending, the processor proceeds to the fetch stage and fetches
the next instruction of the current program in the current process. If an interrupt is
pending, the processor does the following:

1.	 It sets the program counter to the starting address of an interrupt-handler
program.

2.	 It switches from user mode to kernel mode so the interrupt processing code
may include privileged instructions.

The processor now proceeds to the fetch stage and fetches the first instruction of the
interrupt-handler program, which will service the interrupt. At this point, typically,
the context of the process that has been interrupted is saved into that process control
block of the interrupted program.

One question that may now occur to you is, What constitutes the context that is
saved? The answer is that it must include any information that may be altered by the
execution of the interrupt handler, and that will be needed to resume the program
that was interrupted. Thus, the portion of the process control block that was referred
to as processor state information must be saved. This includes the program counter,
other processor registers, and stack information.

Does anything else need to be done? That depends on what happens next. The
interrupt handler is typically a short program that performs a few basic tasks related
to an interrupt. For example, it resets the flag or indicator that signals the presence of
an interrupt. It may send an acknowledgment to the entity that issued the interrupt,
such as an I/O module. And it may do some basic housekeeping relating to the effects
of the event that caused the interrupt. For example, if the interrupt relates to an I/O
event, the interrupt handler will check for an error condition. If an error has occurred,
the interrupt handler may send a signal to the process that originally requested the
I/O operation. If the interrupt is by the clock, then the handler will hand control over

M03_STAL4290_09_GE_C03.indd 161 5/9/17 4:38 PM

162   Chapter 3 / Process Description and Control

to the dispatcher, which will want to pass control to another process because the time
slice allotted to the currently running process has expired.

What about the other information in the process control block? If this inter-
rupt is to be followed by a switch to another process, then some work will need
to be done. However, in most operating systems, the occurrence of an interrupt
does not necessarily mean a process switch. It is possible that, after the interrupt
handler has executed, the currently running process will resume execution. In that
case, all that is necessary is to save the processor state information when the inter-
rupt occurs and restore that information when control is returned to the program
that was running. Typically, the saving and restoring functions are performed in
hardware.

Change of Process State  It is clear, then, that the mode switch is a concept
distinct from that of the process switch.10 A mode switch may occur without changing
the state of the process that is currently in the Running state. In that case, the context
saving and subsequent restoral involve little overhead. However, if the currently
running process is to be moved to another state (Ready, Blocked, etc.), then the OS
must make substantial changes in its environment. The steps involved in a full process
switch are as follows:

1.	 Save the context of the processor, including program counter and other
registers.

2.	 Update the process control block of the process that is currently in the Running
state. This includes changing the state of the process to one of the other states
(Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields must also be
updated, including the reason for leaving the Running state and accounting
information.

3.	 Move the process control block of this process to the appropriate queue (Ready;
Blocked on Event i; Ready/Suspend).

4.	 Select another process for execution; this topic will be explored in Part Four.

5.	 Update the process control block of the process selected. This includes changing
the state of this process to Running.

6.	 Update memory management data structures. This may be required, depending
on how address translation is managed; this topic will be explored in Part Three.

7.	 Restore the context of the processor to that which existed at the time the
selected process was last switched out of the Running state, by loading in the
previous values of the program counter and other registers.

Thus, the process switch, which involves a state change, requires more effort than a
mode switch.

10The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.

M03_STAL4290_09_GE_C03.indd 162 5/9/17 4:38 PM

3.5 / EXECUTION OF THE OPERATING SYSTEM   163

	 3.5	 EXECUTION OF THE OPERATING SYSTEM

In Chapter 2, we pointed out two intriguing facts about operating systems:

•	 The OS functions in the same way as ordinary computer software, in the sense
that the OS is a set of programs executed by the processor.

•	 The OS frequently relinquishes control and depends on the processor to restore
control to the OS.

If the OS is just a collection of programs, and if it is executed by the proces-
sor just like any other program, is the OS a process? If so, how is it controlled?
These interesting questions have inspired a number of design approaches. Figure 3.15
illustrates a range of approaches that are found in various contemporary operating
systems.

Nonprocess Kernel

One traditional approach, common on many older operating systems, is to execute
the kernel of the OS outside of any process (see Figure 3.15a). With this approach,
when the currently running process is interrupted or issues a supervisor call, the
mode context of this process is saved and control is passed to the kernel. The OS has
its own region of memory to use and its own system stack for controlling procedure
calls and returns. The OS can perform any desired functions and restore the context

Figure 3.15 � Relationship between Operating System
and User Processes

P1 P2 Pn

Kernel

(a) Separate kernel

(c) OS functions execute as separate processes

OS
func-
tions

OS
func-
tions

OS
func-
tions

Process-switching functions

Process-switching functions

(b) OS functions execute within user processes

P1

P1 P2 OS1

P2 Pn

Pn OSk

M03_STAL4290_09_GE_C03.indd 163 5/9/17 4:38 PM

164   Chapter 3 / Process Description and Control

of the interrupted process, which causes execution to resume in the interrupted user
process. Alternatively, the OS can complete the function of saving the environment of
the process and proceed to schedule and dispatch another process. Whether this hap-
pens depends on the reason for the interruption and the circumstances at the time.

In any case, the key point here is that the concept of process is considered to
apply only to user programs. The operating system code is executed as a separate
entity that operates in privileged mode.

Execution within User Processes

An alternative that is common with operating systems on smaller computers (PCs,
workstations) is to execute virtually all OS software in the context of a user process.
The view is that the OS is primarily a collection of routines the user calls to perform
various functions, executed within the environment of the user’s process. This is illus-
trated in Figure 3.15b. At any given point, the OS is managing n process images. Each
image includes not only the regions illustrated in Figure 3.13 but also program, data,
and stack areas for kernel programs.

Figure 3.16 suggests a typical process image structure for this strategy. A sepa-
rate kernel stack is used to manage calls/returns while the process is in kernel mode.

Figure 3.16 � Process Image: Operating
System Executes within
User Space

Process
identification

Processor state
information

Process control
information

User stack

Private user
address space

(programs, data)

Kernel stack

Shared address
space

Process control
block

M03_STAL4290_09_GE_C03.indd 164 5/9/17 4:38 PM

3.5 / EXECUTION OF THE OPERATING SYSTEM   165

Operating system code and data are in the shared address space and are shared by
all user processes.

When an interrupt, trap, or supervisor call occurs, the processor is placed in
kernel mode and control is passed to the OS. To pass control from a user program
to the OS, the mode context is saved and a mode switch takes place to an operating
system routine. However, execution continues within the current user process. Thus,
a process switch is not performed, just a mode switch within the same process.

If the OS, upon completion of its work, determines that the current process
should continue to run, then a mode switch resumes the interrupted program within
the current process. This is one of the key advantages of this approach: A user
program has been interrupted to employ some operating system routine, and then
resumed, and all of this has occurred without incurring the penalty of two process
switches. If, however, it is determined that a process switch is to occur rather than
returning to the previously executing program, then control is passed to a process-
switching routine. This routine may or may not execute in the current process,
depending on system design. At some point, however, the current process has to be
placed in a nonrunning state, and another process designated as the running pro-
cess. During this phase, it is logically most convenient to view execution as taking
place outside of all processes.

In a way, this view of the OS is remarkable. Simply put, at certain points in time,
a process will save its state information, choose another process to run from among
those that are ready, and relinquish control to that process. The reason this is not an
arbitrary and indeed chaotic situation is that during the critical time, the code that
is executed in the user process is shared operating system code and not user code.
Because of the concept of user mode and kernel mode, the user cannot tamper with
or interfere with the operating system routines, even though they are executing in
the user’s process environment. This further reminds us that there is a distinction
between the concepts of process and program, and that the relationship between the
two is not one-to-one. Within a process, both a user program and operating system
programs may execute, and the operating system programs that execute in the various
user processes are identical.

Process-Based Operating System

Another alternative, illustrated in Figure 3.15c, is to implement the OS as a collection
of system processes. As in the other options, the software that is part of the kernel
executes in a kernel mode. In this case, however, major kernel functions are organized
as separate processes. Again, there may be a small amount of process-switching code
that is executed outside of any process.

This approach has several advantages. It imposes a program design discipline
that encourages the use of a modular OS with minimal, clean interfaces between the
modules. In addition, some noncritical operating system functions are conveniently
implemented as separate processes. For example, we mentioned earlier a monitor
program that records the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. Because this
program does not provide a particular service to any active process, it can only be
invoked by the OS. As a process, the function can run at an assigned priority level and

M03_STAL4290_09_GE_C03.indd 165 5/9/17 4:38 PM

166   Chapter 3 / Process Description and Control

be interleaved with other processes under dispatcher control. Finally, implementing
the OS as a set of processes is useful in a multiprocessor or multicomputer environ-
ment, in which some of the operating system services can be shipped out to dedicated
processors, improving performance.

	 3.6	 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b, in which most of the OS
executes within the environment of a user process. UNIX uses two categories of pro-
cesses: system processes, and user processes. System processes run in kernel mode and
execute operating system code to perform administrative and housekeeping func-
tions, such as allocation of memory and process swapping. User processes operate
in user mode to execute user programs and utilities, and in kernel mode to execute
instructions that belong to the kernel. A user process enters kernel mode by issuing
a system call, when an exception (fault) is generated, or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9, and a state transition diagram is shown in Figure 3.17
(based on the figure in [BACH86]). This figure is similar to Figure 3.9b, with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

•	 UNIX employs two Running states to indicate whether the process is executing
in user mode or kernel mode.

•	 A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in
Memory

Ready to run as soon as the kernel schedules it.

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).

Ready to Run,
Swapped

Process is ready to run, but the swapper must swap the process into main memory
before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a
blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a
process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

Table 3.9  UNIX Process States

M03_STAL4290_09_GE_C03.indd 166 5/9/17 4:38 PM

3.6 / UNIX SVR4 PROCESS MANAGEMENT   167

line joining them. The distinction is made to emphasize the way in which the
Preempted state is entered. When a process is running in kernel mode (as a
result of a supervisor call, clock interrupt, or I/O interrupt), there will come a
time when the kernel has completed its work and is ready to return control to
the user program. At this point, the kernel may decide to preempt the current
process in favor of one that is ready and of higher priority. In that case, the cur-
rent process moves to the Preempted state. However, for purposes of dispatch-
ing, those processes in the Preempted state and those in the (Ready to Run, in
Memory) state form one queue.

Preemption can only occur when a process is about to move from kernel mode
to user mode. While a process is running in kernel mode, it may not be preempted.
This makes UNIX unsuitable for real-time processing. Chapter 10 will discuss the
requirements for real-time processing.

Two processes are unique in UNIX. Process 0 is a special process that is created
when the system boots; in effect, it is predefined as a data structure loaded at boot
time. It is the swapper process. In addition, process 0 spawns process 1, referred to as
the init process; all other processes in the system have process 1 as an ancestor. When
a new interactive user logs on to the system, it is process 1 that creates a user process

Fork

Not enough memory
(swapping system only)

Enough
memory

Swap in

Swap out

Swap out

WakeupWakeupSleep

Return

Preempt

Return
to user

System call,
interrupt

Exit

Reschedule
process

Interrupt,
interrupt return

Preempted
Created

Ready to run
swapped

Ready to run
in memory

Kernel
running

Zombie Asleep in
memory

Sleep,
swapped

User
running

Figure 3.17  UNIX Process State Transition Diagram

M03_STAL4290_09_GE_C03.indd 167 5/9/17 4:38 PM

168   Chapter 3 / Process Description and Control

for that user. Subsequently, the user process can create child processes in a branch-
ing tree, so any particular application can consist of a number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and can
be generated directly from a compiled object file. The user’s program is separated into
text and data areas; the text area is read-only and is intended to hold the program’s
instructions. While the process is executing, the processor uses the user stack area for
procedure calls and returns and parameter passing. The shared memory area is a data
area that is shared with other processes. There is only one physical copy of a shared
memory area, but, by the use of virtual memory, it appears to each sharing process
that the shared memory region is in its address space. When a process is not running,
the processor status information is stored in the register context area.

The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and

User-Level Context

Process text Executable machine instructions of the program

Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions executing in user mode

Shared memory Memory shared with other processes, used for interprocess communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or user memory space of
this process

Processor status
register

Contains the hardware status at the time of preemption; contents and format are hard-
ware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode of operation at the
time or preemption

General-purpose
registers

Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to the operating system

U (user) area Process control information that needs to be accessed only in the context of the process

Per process region
table

Defines the mapping from virtual to physical addresses; also contains a permission
field that indicates the type of access allowed the process: read-only, read-write, or
read-execute

Kernel stack Contains the stack frame of kernel procedures as the process executes in kernel mode

Table 3.10  UNIX Process Image

M03_STAL4290_09_GE_C03.indd 168 5/9/17 4:38 PM

3.6 / UNIX SVR4 PROCESS MANAGEMENT   169

stays with a process throughout its lifetime, and a dynamic part, which varies in
size through the life of the process. One element of the static part is the process
table entry. This is actually part of the process table maintained by the OS, with
one entry per process. The process table entry contains process control information
that is accessible to the kernel at all times; hence, in a virtual memory system, all
process table entries are maintained in main memory. Table 3.11 lists the contents
of a process table entry. The user area, or U area, contains additional process con-
trol information that is needed by the kernel when it is executing in the context of
this process; it is also used when paging processes to and from memory. Table 3.12
shows the contents of this table.

The distinction between the process table entry and the U area reflects the fact
that the UNIX kernel always executes in the context of some process. Much of the
time, the kernel will be dealing with the concerns of that process. However, some of
the time, such as when the kernel is performing a scheduling algorithm preparatory
to dispatching another process, it will need access to information about other pro-
cesses. The information in a process table can be accessed when the given process is
not the current one.

The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is
the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode, and contains the information that must be saved and
restored as procedure calls and interrupts occur.

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate the process.

User identifiers The real user ID identifies the user who is responsible for the running process. The effec-
tive user ID may be used by a process to gain temporary privileges associated with a
particular program; while that program is being executed as part of the process, the pro-
cess operates with the effective user ID.

Process identifiers ID of this process; ID of parent process. These are set up when the process enters the
Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs, the process is trans-
ferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to
send alarm signal to a process.

P link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory status Indicates whether process image is in main memory or swapped out. If it is in memory,
this field also indicates whether it may be swapped out or is temporarily locked into
main memory.

Table 3.11  UNIX Process Table Entry

M03_STAL4290_09_GE_C03.indd 169 5/9/17 4:38 PM

170   Chapter 3 / Process Description and Control

Process Control

Process creation in UNIX is made by means of the kernel system call, fork(). When
a process issues a fork request, the OS performs the following functions [BACH86]:

1.	 It allocates a slot in the process table for the new process.

2.	 It assigns a unique process ID to the child process.

3.	 It makes a copy of the process image of the parent, with the exception of any
shared memory.

4.	 It increments counters for any files owned by the parent, to reflect that an
additional process now also owns those files.

5.	 It assigns the child process to the Ready to Run state.

6.	 It returns the ID number of the child to the parent process, and a 0 value to
the child process.

All of this work is accomplished in kernel mode in the parent process. When
the kernel has completed these functions, it can do one of the following, as part of
the dispatcher routine:

•	 Stay in the parent process. Control returns to user mode at the point of the fork
call of the parent.

•	 Transfer control to the child process. The child process begins executing at the
same point in the code as the parent, namely at the return from the fork call.

•	 Transfer control to another process. Both parent and child are left in the Ready
to Run state.

Process table pointer Indicates entry that corresponds to the U area.

User identifiers Real and effective user IDs used to determine user privileges.

Timers Record time that the process (and its descendants) spent executing in user mode and
in kernel mode.

Signal-handler array For each type of signal defined in the system, indicates how the process will react to
receipt of that signal (exit, ignore, execute specified user function).

Control terminal Indicates login terminal for this process, if one exists.

Error field Records errors encountered during a system call.

Return value Contains the result of system calls.

I/O parameters Describe the amount of data to transfer, the address of the source (or target) data
array in user space, and file offsets for I/O.

File parameters Current directory and current root describe the file system environment of the
process.

User file descriptor
table

Records the files the process has opened.

Limit fields Restrict the size of the process and the size of a file it can write.

Permission modes
fields

Mask mode settings on files the process creates.

Table 3.12  UNIX U Area

M03_STAL4290_09_GE_C03.indd 170 5/9/17 4:38 PM

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   171

It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this: When
the return from the fork occurs, the return parameter is tested. If the value is zero,
then this is the child process, and a branch can be executed to the appropriate user
program to continue execution. If the value is nonzero, then this is the parent process,
and the main line of execution can continue.

	 3.7	 SUMMARY

The most fundamental concept in a modern OS is the process. The principal function
of the OS is to create, manage, and terminate processes. While processes are active,
the OS must see that each is allocated time for execution by the processor, coordi-
nate their activities, manage conflicting demands, and allocate system resources to
processes.

To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state,
resources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most impor-
tant of these are Ready, Running, and Blocked. A ready process is one that is not cur-
rently executing, but that is ready to be executed as soon as the OS dispatches it. The
running process is that process that is currently being executed by the processor. In a
multiprocessor system, more than one process can be in this state. A blocked process
is waiting for the completion of some event, such as an I/O operation.

A running process is interrupted either by an interrupt, which is an event that
occurs outside the process and that is recognized by the processor, or by executing
a supervisor call to the OS. In either case, the processor performs a mode switch,
transferring control to an operating system routine. The OS, after it has completed
necessary work, may resume the interrupted process or switch to some other process.

	 3.8	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

blocked state
child process
dispatcher
exit state
interrupt
kernel mode
mode switch
new state
parent process
preempt

privileged mode
process
process control block
process control information
process image
process spawning
process switch
program status word
ready state
round-robin

running state
suspend state
swapping
system mode
task
time slice
trace
trap
user mode

M03_STAL4290_09_GE_C03.indd 171 5/9/17 4:38 PM

172   Chapter 3 / Process Description and Control

Review Questions

	 3.1.	 What is an instruction trace?
	 3.2.	 Explain the concept of a process and mark its differences from a program.
	 3.3.	 For the processing model of Figure 3.6, briefly define each state.
	 3.4.	 What does it mean to preempt a process?
	 3.5.	 What is process spawning?
	 3.6.	 Why does Figure 3.9b have two blocked states?
	 3.7.	 List four characteristics of a suspended process.
	 3.8.	 For what types of entities does the OS maintain tables of information for management

purposes?
	 3.9.	 What are the elements of a process image?
	3.10.	 Why are two modes (user and kernel) needed?
	3.11.	 What are the steps performed by an OS to create a new process?
	3.12.	 What is the difference between an interrupt and a trap?
	3.13.	 Give three examples of an interrupt.
	3.14.	 What is the difference between a mode switch and a process switch?

Problems
	 3.1.	 A system adopts a priority-based preemptive scheduling where the initial priority of

a process increases by 1 after every 5 ms. In a recorded time span, the system has four
processes, P1, P2, P3 and P4, as shown in the following table:

PROCESS
ID

INITIAL
PRIORITY

ARRIVAL TIME
IN MS

TOTAL CPU TIME IN
MS

P1 1   0 15

P2 3   5 7.5

P3 2 10   5

P4 2 15 10

		 Draw a timing diagram similar to Figure 3.7 and find the turnaround time for each
process. Assume that the dispatcher takes 2.5 milliseconds for a process switch.

	 3.2.	 Suppose that four interleaved processes are running in a system having start addresses
4050, 3200, 5000 and 6700. The traces of the individual processes are as follows:

Process P1 Process P2 Process P3 Process P4

4050 3200 5000 6700

4051 3201 5001 6701

4052 3202 5002 6702

4053 3203 5003 <I/O>

4054 3204 5004

4055 3205 5005

4056 3206 5006

4057 <I/O> 5007

4058 5008

4059 5009

4060 5010

M03_STAL4290_09_GE_C03.indd 172 5/9/17 4:38 PM

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   173

		 Find the interleaved traces of the processes. Assume that the dispatcher is invoked after
5 instructions or for interrupts and the dispatcher cycle has 4 instructions.

	 3.3.	 Figure 3.9b contains seven states. In principle, one could draw a transition between any
two states, for a total of 42 different transitions.
a.	 List all of the possible transitions and give an example of what could cause each

transition.
b.	 List all of the impossible transitions and explain why.

	 3.4.	 For the seven-state process model of Figure 3.9b, draw a queueing diagram similar to
that of Figure 3.8b.

	 3.5.	 Consider the state transition diagram of Figure 3.9b. Suppose it is time for the OS to dis-
patch a process and there are processes in both the Ready state and the Ready/Suspend
state, and at least one process in the Ready/Suspend state has higher scheduling prior-
ity than any of the processes in the Ready state. Two extreme policies are as follows:
(1) Always dispatch from a process in the Ready state, to minimize swapping, and
(2) always give preference to the highest-priority process, even though that may mean
swapping when swapping is not necessary. Suggest an intermediate policy that tries to
balance the concerns of priority and performance.

	 3.6.	 Table 3.13 shows the process states for the VAX/VMS operating system.
a.	 Can you provide a justification for the existence of so many distinct wait states?
b.	 Why do the following states not have resident and swapped-out versions: Page

Fault Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Resource
Wait?

Process State Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must wait for the
page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an existing page
fault wait in another process, or a private page that is in the process of
being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess sig-
naling mechanisms).

Free Page Wait Waiting for a free page in main memory to be added to the collection of
pages in main memory devoted to this process (the working set of the
process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O
completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait Process waiting for miscellaneous system resource.

Table 3.13  VAX/VMS Process States

M03_STAL4290_09_GE_C03.indd 173 5/9/17 4:38 PM

174   Chapter 3 / Process Description and Control

c.	 Draw the state transition diagram and indicate the action or occurrence that causes
each transition.

	 3.7.	 The VAX/VMS operating system makes use of four processor access modes to facili-
tate the protection and sharing of system resources among processes. The access mode
determines:
•	 Instruction execution privileges: What instructions the processor may execute
•	 Memory access privileges: Which locations in virtual memory the current instruc-

tion may access
The four modes are as follows:
•	 Kernel: Executes the kernel of the VMS operating system, which includes memory

management, interrupt handling, and I/O operations.
•	 Executive: Executes many of the OS service calls, including file and record (disk

and tape) management routines.
•	 Supervisor: Executes other OS services, such as responses to user commands.
•	 User: Executes user programs, plus utilities such as compilers, editors, linkers, and

debuggers.
A process executing in a less-privileged mode often needs to call a procedure that
executes in a more-privileged mode; for example, a user program requires an operat-
ing system service. This call is achieved by using a change-mode (CHM) instruction,
which causes an interrupt that transfers control to a routine at the new access mode. A
return is made by executing the REI (return from exception or interrupt) instruction.
a.	 A number of operating systems have two modes: kernel and user. What are the

advantages and disadvantages of providing four modes instead of two?
b.	 Can you make a case for even more than four modes?

Kernel

Executive

Supervisor

User

REICHM
x

Figure 3.18  VAX/VMS Access Modes

M03_STAL4290_09_GE_C03.indd 174 5/9/17 4:38 PM

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   175

	 3.8.	 The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 3.18. Indeed, the simple kernel/user scheme, as
described in Section 3.3, is a two-ring structure. A potential disadvantage of this protec-
tion structure is that it cannot readily be used to enforce a “need-to-know” principle.
[SILB04] gives this example: If an object is accessible in domain Dj but not in domain
Di, then j 6 i. But this means that every object accessible in Di is also accessible in Dj.
Explain clearly what the problem is that is referred to in the preceding paragraph.

	 3.9.	 Figure 3.8b suggests that a process can only be in one event queue at a time.
a.	 Is it possible that you would want to allow a process to wait on more than one event

at the same time? Provide an example.
b.	 In that case, how would you modify the queueing structure of the figure to support

this new feature?
	3.10.	 What is the purpose of the system call fork() in the UNIX operating system? Write a

C routine to create a child process using the fork() system call. Incorporate an error
check in your routine in case the creation of the child process fails.

	3.11.	 What are the specialities of Process 0 and Process 1 in UNIX? Which command will
you use to get information about the running processes in the system?

	3.12.	 You have executed the following C program:

main ()

{ int pid;

pid = fork ();

printf (“%d \n”, pid);

}

What are the possible outputs, assuming the fork succeeded?

M03_STAL4290_09_GE_C03.indd 175 5/9/17 4:38 PM

176

4.1	 Processes and Threads
Multithreading
Thread Functionality

4.2	 Types of Threads
User-Level and Kernel-Level Threads
Other Arrangements

4.3	 Multicore and Multithreading
Performance of Software on Multicore
Application Example: Valve Game Software

4.4	 Windows Process and Thread Management
Management of Background Tasks and Application Lifecycles
The Windows Process
Process and Thread Objects
Multithreading
Thread States
Support for OS Subsystems

4.5	 Solaris Thread and SMP Management
Multithreaded Architecture
Motivation
Process Structure
Thread Execution
Interrupts as Threads

4.6	 Linux Process and Thread Management
Linux Tasks
Linux Threads
Linux Namespaces

4.7	 Android Process and Thread Management
Android Applications
Activities
Processes and Threads

4.8	 Mac OS X Grand Central Dispatch

4.9	 Summary

4.10	 Key Terms, Review Questions, and Problems

Threads

Chapter

M04_STAL4290_09_GE_C04.indd 176 5/2/17 4:38 PM

4.1 / PROCESSES AND THREADS   177

This chapter examines some more advanced concepts related to process manage-
ment, which are found in a number of contemporary operating systems. We show
that the concept of process is more complex and subtle than presented so far and
in fact embodies two separate and potentially independent concepts: one relat-
ing to resource ownership, and another relating to execution. This distinction has
led to the development, in many operating systems, of a construct known as the
thread.

	 4.1	 PROCESSES AND THREADS

The discussion so far has presented the concept of a process as embodying two
characteristics:

1.	 Resource ownership: A process includes a virtual address space to hold the
process image; recall from Chapter 3 that the process image is the collection of
program, data, stack, and attributes defined in the process control block. From
time to time, a process may be allocated control or ownership of resources,
such as main memory, I/O channels, I/O devices, and files. The OS performs a
protection function to prevent unwanted interference between processes with
respect to resources.

2.	 Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs (e.g., Figure 1.5). This execution may
be interleaved with that of other processes. Thus, a process has an execution
state (Running, Ready, etc.) and a dispatching priority, and is the entity that is
scheduled and dispatched by the OS.

Some thought should convince the reader that these two characteristics are
independent and could be treated independently by the OS. This is done in a number
of operating systems, particularly recently developed systems. To distinguish the two
characteristics, the unit of dispatching is usually referred to as a thread or

Learning Objectives

After studying this chapter, you should be able to:
•	 Understand the distinction between process and thread.
•	 Describe the basic design issues for threads.
•	 Explain the difference between user-level threads and kernel-level threads.
•	 Describe the thread management facility in Windows.
•	 Describe the thread management facility in Solaris.
•	 Describe the thread management facility in Linux.

M04_STAL4290_09_GE_C04.indd 177 5/2/17 4:38 PM

178   Chapter 4 / Threads

lightweight process, while the unit of resource ownership is usually referred to as a
process or task.1

Multithreading

Multithreading refers to the ability of an OS to support multiple, concurrent paths
of execution within a single process. The traditional approach of a single thread of
execution per process, in which the concept of a thread is not recognized, is referred
to as a single-threaded approach. The two arrangements shown in the left half of
Figure 4.1 are single-threaded approaches. MS-DOS is an example of an OS that
supports a single-user process and a single thread. Other operating systems, such
as some variants of UNIX, support multiple user processes, but only support one
thread per process. The right half of Figure 4.1 depicts multithreaded approaches.
A Java runtime environment is an example of a system of one process with multiple
threads. Of interest in this section is the use of multiple processes, each of which
supports multiple threads. This approach is taken in Windows, Solaris, and many

1Alas, even this degree of consistency is not maintained. In IBM’s mainframe operating systems, the con-
cepts of address space and task, respectively, correspond roughly to the concepts of process and thread that
we describe in this section. Also, in the literature, the term lightweight process is used as either (1) equiva-
lent to the term thread, (2) a particular type of thread known as a kernel-level thread, or (3) in the case of
Solaris, an entity that maps user-level threads to kernel-level threads.

Figure 4.1  Threads and Processes

One process
One thread

One process
Multiple threads

Multiple processes
One thread per process

= Instruction trace

Multiple processes
Multiple threads per process

M04_STAL4290_09_GE_C04.indd 178 5/2/17 4:38 PM

4.1 / PROCESSES AND THREADS   179

modern versions of UNIX, among others. In this section, we give a general descrip-
tion of multithreading; the details of the Windows, Solaris, and Linux approaches will
be discussed later in this chapter.

In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection. The following are associated with processes:

•	 A virtual address space that holds the process image

•	 Protected access to processors, other processes (for interprocess communica-
tion), files, and I/O resources (devices and channels)

Within a process, there may be one or more threads, each with the following:

•	 A thread execution state (Running, Ready, etc.)

•	 A saved thread context when not running; one way to view a thread is as an
independent program counter operating within a process

•	 An execution stack

•	 Some per-thread static storage for local variables

•	 Access to the memory and resources of its process, shared with all other threads
in that process

Figure 4.2 illustrates the distinction between threads and processes from the
point of view of process management. In a single-threaded process model (i.e., there
is no distinct concept of thread), the representation of a process includes its process
control block and user address space, as well as user and kernel stacks to manage the
call/return behavior of the execution of the process. While the process is running, it
controls the processor registers. The contents of these registers are saved when the
process is not running. In a multithreaded environment, there is still a single process

Figure 4.2  Single-Threaded and Multithreaded Process Models

Single-threaded
process model

Process
control
block

User
address
space

User
stack

Kernel
stack

Multithreaded
process model

Process
control
block

User
address
space

User
stack

Kernel
stack

User
stack

Kernel
stack

User
stack

Kernel
stack

Thread
control
block

Thread Thread Thread

Thread
control
block

Thread
control
block

M04_STAL4290_09_GE_C04.indd 179 5/2/17 4:38 PM

180   Chapter 4 / Threads

control block and user address space associated with the process, but now there are
separate stacks for each thread, as well as a separate control block for each thread
containing register values, priority, and other thread-related state information.

Thus, all of the threads of a process share the state and resources of that process.
They reside in the same address space and have access to the same data. When one
thread alters an item of data in memory, other threads see the results if and when
they access that item. If one thread opens a file with read privileges, other threads in
the same process can also read from that file.

The key benefits of threads derive from the performance implications:

1.	 It takes far less time to create a new thread in an existing process, than to create
a brand-new process. Studies done by the Mach developers show that thread
creation is ten times faster than process creation in UNIX [TEVA87].

2.	 It takes less time to terminate a thread than a process.

3.	 It takes less time to switch between two threads within the same process than
to switch between processes.

4.	 Threads enhance efficiency in communication between different executing
programs. In most operating systems, communication between independent
processes requires the intervention of the kernel to provide protection and the
mechanisms needed for communication. However, because threads within the
same process share memory and files, they can communicate with each other
without invoking the kernel.

Thus, if there is an application or function that should be implemented as a set
of related units of execution, it is far more efficient to do so as a collection of threads,
rather than a collection of separate processes.

An example of an application that could make use of threads is a file server. As
each new file request comes in, a new thread can be spawned for the file management
program. Because a server will handle many requests, many threads will be created
and destroyed in a short period. If the server runs on a multiprocessor computer,
then multiple threads within the same process can be executing simultaneously on
different processors. Further, because processes or threads in a file server must share
file data and therefore coordinate their actions, it is faster to use threads and shared
memory than processes and message passing for this coordination.

The thread construct is also useful on a single processor to simplify the structure
of a program that is logically doing several different functions.

[LETW88] gives four examples of the uses of threads in a single-user multipro-
cessing system:

1.	 Foreground and background work: For example, in a spreadsheet program, one
thread could display menus and read user input, while another thread executes
user commands and updates the spreadsheet. This arrangement often increases
the perceived speed of the application by allowing the program to prompt for
the next command before the previous command is complete.

2.	 Asynchronous processing: Asynchronous elements in the program can be
implemented as threads. For example, as a protection against power failure,
one can design a word processor to write its random access memory (RAM)

M04_STAL4290_09_GE_C04.indd 180 5/2/17 4:38 PM

4.1 / PROCESSES AND THREADS   181

buffer to disk once every minute. A thread can be created whose sole job is
periodic backup and that schedules itself directly with the OS; there is no need
for fancy code in the main program to provide for time checks or to coordinate
input and output.

3.	 Speed of execution: A multithreaded process can compute one batch of data
while reading the next batch from a device. On a multiprocessor system, mul-
tiple threads from the same process may be able to execute simultaneously.
Thus, even though one thread may be blocked for an I/O operation to read in
a batch of data, another thread may be executing.

4.	 Modular program structure: Programs that involve a variety of activities or a
variety of sources and destinations of input and output may be easier to design
and implement using threads.

In an OS that supports threads, scheduling and dispatching is done on a thread
basis; hence, most of the state information dealing with execution is maintained
in thread-level data structures. There are, however, several actions that affect all
of the threads in a process, and that the OS must manage at the process level. For
example, suspension involves swapping the address space of one process out of
main memory to make room for the address space of another process. Because
all threads in a process share the same address space, all threads are suspended
at the same time. Similarly, termination of a process terminates all threads within
that process.

Thread Functionality

Like processes, threads have execution states and may synchronize with one another.
We look at these two aspects of thread functionality in turn.

Thread States  As with processes, the key states for a thread are Running, Ready,
and Blocked. Generally, it does not make sense to associate suspend states with
threads because such states are process-level concepts. In particular, if a process is
swapped out, all of its threads are necessarily swapped out because they all share the
address space of the process.

There are four basic thread operations associated with a change in thread state
[ANDE04]:

1.	 Spawn: Typically, when a new process is spawned, a thread for that process
is also spawned. Subsequently, a thread within a process may spawn another
thread within the same process, providing an instruction pointer and arguments
for the new thread. The new thread is provided with its own register context and
stack space and placed on the Ready queue.

2.	 Block: When a thread needs to wait for an event, it will block (saving its user
registers, program counter, and stack pointers). The processor may then turn to
the execution of another ready thread in the same or a different process.

3.	 Unblock: When the event for which a thread is blocked occurs, the thread is
moved to the Ready queue.

4.	 Finish: When a thread completes, its register context and stacks are deallocated.

M04_STAL4290_09_GE_C04.indd 181 5/2/17 4:38 PM

182   Chapter 4 / Threads

A significant issue is whether the blocking of a thread results in the blocking
of the entire process. In other words, if one thread in a process is blocked, does this
prevent the running of any other thread in the same process, even if that other thread
is in a ready state? Clearly, some of the flexibility and power of threads is lost if the
one blocked thread blocks an entire process.

We will return to this issue subsequently in our discussion of user-level versus
kernel-level threads, but for now, let us consider the performance benefits of threads
that do not block an entire process. Figure 4.3 (based on one in [KLEI96]) shows a
program that performs two remote procedure calls (RPCs)2 to two different hosts to
obtain a combined result. In a single-threaded program, the results are obtained in
sequence, so the program has to wait for a response from each server in turn. Rewrit-
ing the program to use a separate thread for each RPC results in a substantial
speedup. Note if this program operates on a uniprocessor, the requests must be gener-
ated sequentially and the results processed in sequence; however, the program waits
concurrently for the two replies.

2An RPC is a technique by which two programs, which may execute on different machines, interact using
procedure call/return syntax and semantics. Both the called and calling programs behave as if the partner
program were running on the same machine. RPCs are often used for client/server applications and will
be discussed in Chapter 16.

Figure 4.3  Remote Procedure Call (RPC) Using Threads

(a) RPC using single thread

(b) RPC using one thread per server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server Server

Server

Server

RPC
request

RPC
request

RPC
request

RPC
request

M04_STAL4290_09_GE_C04.indd 182 5/2/17 4:38 PM

4.2 / TYPES OF THREADS   183

On a uniprocessor, multiprogramming enables the interleaving of multiple
threads within multiple processes. In the example of Figure 4.4, three threads in two
processes are interleaved on the processor. Execution passes from one thread to
another either when the currently running thread is blocked or when its time slice is
exhausted.3

Thread Synchronization  All of the threads of a process share the same address
space and other resources, such as open files. Any alteration of a resource by one
thread affects the environment of the other threads in the same process. It is therefore
necessary to synchronize the activities of the various threads so that they do not
interfere with each other or corrupt data structures. For example, if two threads each
try to add an element to a doubly linked list at the same time, one element may be
lost or the list may end up malformed.

The issues raised and the techniques used in the synchronization of threads
are, in general, the same as for the synchronization of processes. These issues and
techniques will be the subject of Chapters 5 and 6.

	 4.2	 TYPES OF THREADS

User-Level and Kernel-Level Threads

There are two broad categories of thread implementation: user-level threads (ULTs)
and kernel-level threads (KLTs).4 The latter are also referred to in the literature as
kernel-supported threads or lightweight processes.

User-Level Threads  In a pure ULT facility, all of the work of thread management
is done by the application and the kernel is not aware of the existence of threads.

3In this example, thread C begins to run after thread A exhausts its time quantum, even though thread B
is also ready to run. The choice between B and C is a scheduling decision, a topic covered in Part Four.
4The acronyms ULT and KLT are not widely used, but are introduced for conciseness.

Figure 4.4  Multithreading Example on a Uniprocessor

Time

Blocked

I/O
request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Ready Running

Request
complete

Time quantum
expires

Time quantum
expires

Process
created

M04_STAL4290_09_GE_C04.indd 183 5/2/17 4:38 PM

184   Chapter 4 / Threads

Figure 4.5a illustrates the pure ULT approach. Any application can be programmed
to be multithreaded by using a threads library, which is a package of routines for ULT
management. The threads library contains code for creating and destroying threads,
for passing messages and data between threads, for scheduling thread execution, and
for saving and restoring thread contexts.

By default, an application begins with a single thread and begins running in
that thread. This application and its thread are allocated to a single process man-
aged by the kernel. At any time that the application is running (the process is in
the Running state), the application may spawn a new thread to run within the same
process. Spawning is done by invoking the spawn utility in the threads library. Con-
trol is passed to that utility by a procedure call. The threads library creates a data
structure for the new thread and then passes control to one of the threads within this
process that is in the Ready state, using some scheduling algorithm. When control
is passed to the library, the context of the current thread is saved, and when control
is passed from the library to a thread, the context of that thread is restored. The
context essentially consists of the contents of user registers, the program counter,
and stack pointers.

All of the activity described in the preceding paragraph takes place in user
space and within a single process. The kernel is unaware of this activity. The ker-
nel continues to schedule the process as a unit and assigns a single execution state
(Ready, Running, Blocked, etc.) to that process. The following examples should
clarify the relationship between thread scheduling and process scheduling. Suppose
process B is executing in its thread 2; the states of the process and two ULTs that
are part of the process are shown in Figure 4.6a. Each of the following is a possible
occurrence:

1.	 The application executing in thread 2 makes a system call that blocks B. For
example, an I/O call is made. This causes control to transfer to the kernel.
The kernel invokes the I/O action, places process B in the Blocked state, and

Figure 4.5  User-Level and Kernel-Level Threads

P P

User
space

Threads
library

Kernel
space

P

P

User
space

Kernel
space

P

User
space

Threads
library

Kernel
space

(c) Combined(b) Pure kernel–level(a) Pure user–level

User-level thread Kernel-level thread Process

M04_STAL4290_09_GE_C04.indd 184 5/2/17 4:38 PM

F
ig

ur
e

4.
6 

E
xa

m
pl

es
 o

f t
he

 R
el

at
io

ns
hi

ps
 b

et
w

ee
n

U
se

r-
L

ev
el

 T
hr

ea
d

St
at

es
 a

nd
 P

ro
ce

ss
 S

ta
te

s

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

T
hr

ea
d

1

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

T
hr

ea
d

2

R
ea

dy
R

un
ni

ng

Pr
oc

es
s

B

(a
)

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

T
hr

ea
d

1

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

T
hr

ea
d

2

R
ea

dy
R

un
ni

ng

Pr
oc

es
s

B

(b
)

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

B
lo

ck
ed

T
hr

ea
d

1

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

T
hr

ea
d

2

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

Pr
oc

es
s

B

(c
)

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

T
hr

ea
d

1

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

B
lo

ck
ed

T
hr

ea
d

2

R
ea

dy
R

un
ni

ng

B
lo

ck
ed

Pr
oc

es
s

B

(d
)

185

M04_STAL4290_09_GE_C04.indd 185 5/2/17 4:38 PM

186   Chapter 4 / Threads

switches to another process. Meanwhile, according to the data structure main-
tained by the threads library, thread 2 of process B is still in the Running
state. It is important to note that thread 2 is not actually running in the sense
of being executed on a processor; but it is perceived as being in the Running
state by the threads library. The corresponding state diagrams are shown in
Figure 4.6b.

2.	 A clock interrupt passes control to the kernel, and the kernel determines
that the currently running process (B) has exhausted its time slice. The kernel
places process B in the Ready state and switches to another process. Meanwhile,
according to the data structure maintained by the threads library, thread 2 of
process B is still in the Running state. The corresponding state diagrams are
shown in Figure 4.6c.

3.	 Thread 2 has reached a point where it needs some action performed by thread
1 of process B. Thread 2 enters a Blocked state and thread 1 transitions from
Ready to Running. The process itself remains in the Running state. The cor-
responding state diagrams are shown in Figure 4.6d.

Note that each of the three preceding items suggests an alternative event start-
ing from diagram (a) of Figure 4.6. So each of the three other diagrams (b, c, d) shows
a transition from the situation in (a). In cases 1 and 2 (Figures 4.6b and 4.6c), when the
kernel switches control back to process B, execution resumes in thread 2. Also note
that a process can be interrupted, either by exhausting its time slice or by being pre-
empted by a higher-priority process, while it is executing code in the threads library.
Thus, a process may be in the midst of a thread switch from one thread to another
when interrupted. When that process is resumed, execution continues within the
threads library, which completes the thread switch and transfers control to another
thread within that process.

There are a number of advantages to the use of ULTs instead of KLTs, includ-
ing the following:

1.	 Thread switching does not require kernel-mode privileges because all of the
thread management data structures are within the user address space of a single
process. Therefore, the process does not switch to the kernel mode to do thread
management. This saves the overhead of two mode switches (user to kernel;
kernel back to user).

2.	 Scheduling can be application specific. One application may benefit most from
a simple round-robin scheduling algorithm, while another might benefit from a
priority-based scheduling algorithm. The scheduling algorithm can be tailored
to the application without disturbing the underlying OS scheduler.

3.	 ULTs can run on any OS. No changes are required to the underlying kernel to
support ULTs. The threads library is a set of application-level functions shared
by all applications.

There are two distinct disadvantages of ULTs compared to KLTs:

1.	 In a typical OS, many system calls are blocking. As a result, when a ULT exe-
cutes a system call, not only is that thread blocked, but all of the threads within
the process are blocked as well.

M04_STAL4290_09_GE_C04.indd 186 5/2/17 4:38 PM

4.2 / TYPES OF THREADS   187

2.	 In a pure ULT strategy, a multithreaded application cannot take advantage of
multiprocessing. A kernel assigns one process to only one processor at a time.
Therefore, only a single thread within a process can execute at a time. In effect,
we have application-level multiprogramming within a single process. While this
multiprogramming can result in a significant speedup of the application, there
are applications that would benefit from the ability to execute portions of code
simultaneously.

There are ways to work around these two problems. For example, both prob-
lems can be overcome by writing an application as multiple processes rather than
multiple threads. But this approach eliminates the main advantage of threads: Each
switch becomes a process switch rather than a thread switch, resulting in much greater
overhead.

Another way to overcome the problem of blocking threads is to use a technique
referred to as jacketing. The purpose of jacketing is to convert a blocking system
call into a nonblocking system call. For example, instead of directly calling a system
I/O routine, a thread calls an application-level I/O jacket routine. Within this jacket
routine is code that checks to determine if the I/O device is busy. If it is, the thread
enters the Blocked state and passes control (through the threads library) to another
thread. When this thread is later given control again, the jacket routine checks the
I/O device again.

Kernel-Level Threads  In a pure KLT facility, all of the work of thread
management is done by the kernel. There is no thread management code in the
application level, simply an application programming interface (API) to the kernel
thread facility. Windows is an example of this approach.

Figure 4.5b depicts the pure KLT approach. The kernel maintains context infor-
mation for the process as a whole and for individual threads within the process.
Scheduling by the kernel is done on a thread basis. This approach overcomes the
two principal drawbacks of the ULT approach. First, the kernel can simultaneously
schedule multiple threads from the same process on multiple processors. Second, if
one thread in a process is blocked, the kernel can schedule another thread of the same
process. Another advantage of the KLT approach is that kernel routines themselves
can be multithreaded.

The principal disadvantage of the KLT approach compared to the ULT
approach is that the transfer of control from one thread to another within the
same process requires a mode switch to the kernel. To illustrate the differences,
Table 4.1 shows the results of measurements taken on a uniprocessor VAX com-
puter running a UNIX-like OS. The two benchmarks are as follows: Null Fork,
the time to create, schedule, execute, and complete a process/thread that invokes

Operation User-Level Threads Kernel-Level Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441   1,840

Table 4.1  Thread and Process Operation Latencies (ms)

M04_STAL4290_09_GE_C04.indd 187 5/2/17 4:38 PM

188   Chapter 4 / Threads

the null procedure (i.e., the overhead of forking a process/thread); and Signal-Wait,
the time for a process/thread to signal a waiting process/thread and then wait on a
condition (i.e., the overhead of synchronizing two processes/threads together). We
see there is an order of magnitude or more of difference between ULTs and KLTs,
and similarly between KLTs and processes.

Thus, on the face of it, while there is a significant speedup by using KLT mul-
tithreading compared to single-threaded processes, there is an additional significant
speedup by using ULTs. However, whether or not the additional speedup is realized
depends on the nature of the applications involved. If most of the thread switches
in an application require kernel-mode access, then a ULT-based scheme may not
perform much better than a KLT-based scheme.

Combined Approaches  Some operating systems provide a combined ULT/KLT
facility (see Figure 4.5c). In a combined system, thread creation is done completely
in user space, as is the bulk of the scheduling and synchronization of threads within
an application. The multiple ULTs from a single application are mapped onto some
(smaller or equal) number of KLTs. The programmer may adjust the number of KLTs
for a particular application and processor to achieve the best overall results.

In a combined approach, multiple threads within the same application can run
in parallel on multiple processors, and a blocking system call need not block the entire
process. If properly designed, this approach should combine the advantages of the
pure ULT and KLT approaches while minimizing the disadvantages.

Solaris is a good example of an OS using this combined approach. The current
Solaris version limits the ULT/KLT relationship to be one-to-one.

Other Arrangements

As we have said, the concepts of resource allocation and dispatching unit have tra-
ditionally been embodied in the single concept of the process—that is, as a 1 : 1
relationship between threads and processes. Recently, there has been much interest
in providing for multiple threads within a single process, which is a many-to-one
relationship. However, as Table 4.2 shows, the other two combinations have also been
investigated, namely, a many-to-many relationship and a one-to-many relationship.

Threads: Processes Description Example Systems

1:1 Each thread of execution is a unique process
with its own address space and resources.

Traditional UNIX
implementations

M:1 A process defines an address space and dynamic
resource ownership. Multiple threads may be
created and executed within that process.

Windows NT, Solaris, Linux,
OS/2, OS/390, MACH

1:M A thread may migrate from one process envi-
ronment to another. This allows a thread to be
easily moved among distinct systems.

Ra (Clouds), Emerald

M:N It combines attributes of M:1 and 1:M cases. TRIX

Table 4.2  Relationship between Threads and Processes

M04_STAL4290_09_GE_C04.indd 188 5/2/17 4:38 PM

4.2 / TYPES OF THREADS   189

Many-to-Many Relationship  The idea of having a many-to-many relationship
between threads and processes has been explored in the experimental operating
system TRIX [PAZZ92, WARD80]. In TRIX, there are the concepts of domain and
thread. A domain is a static entity, consisting of an address space and “ports” through
which messages may be sent and received. A thread is a single execution path, with
an execution stack, processor state, and scheduling information.

As with the multithreading approaches discussed so far, multiple threads may
execute in a single domain, providing the efficiency gains discussed earlier. However,
it is also possible for a single-user activity, or application, to be performed in multiple
domains. In this case, a thread exists that can move from one domain to another.

The use of a single thread in multiple domains seems primarily motivated by
a desire to provide structuring tools for the programmer. For example, consider a
program that makes use of an I/O subprogram. In a multiprogramming environment
that allows user-spawned processes, the main program could generate a new process
to handle I/O, then continue to execute. However, if the future progress of the main
program depends on the outcome of the I/O operation, then the main program will
have to wait for the other I/O program to finish. There are several ways to implement
this application:

1.	 The entire program can be implemented as a single process. This is a reason-
able and straightforward solution. There are drawbacks related to memory
management. The process as a whole may require considerable main memory
to execute efficiently, whereas the I/O subprogram requires a relatively small
address space to buffer I/O and to handle the relatively small amount of pro-
gram code. Because the I/O program executes in the address space of the larger
program, either the entire process must remain in main memory during the I/O
operation, or the I/O operation is subject to swapping. This memory manage-
ment effect would also exist if the main program and the I/O subprogram were
implemented as two threads in the same address space.

2.	 The main program and I/O subprogram can be implemented as two separate
processes. This incurs the overhead of creating the subordinate process. If the
I/O activity is frequent, one must either leave the subordinate process alive,
which consumes management resources, or frequently create and destroy the
subprogram, which is inefficient.

3.	 Treat the main program and the I/O subprogram as a single activity that is to
be implemented as a single thread. However, one address space (domain) could
be created for the main program and one for the I/O subprogram. Thus, the
thread can be moved between the two address spaces as execution proceeds.
The OS can manage the two address spaces independently, and no process
creation overhead is incurred. Furthermore, the address space used by the I/O
subprogram could also be shared by other simple I/O programs.

The experiences of the TRIX developers indicate that the third option has
merit, and may be the most effective solution for some applications.

One-to-Many Relationship  In the field of distributed operating systems
(designed to control distributed computer systems), there has been interest in the

M04_STAL4290_09_GE_C04.indd 189 5/2/17 4:38 PM

190   Chapter 4 / Threads

concept of a thread as primarily an entity that can move among address spaces.5
A notable example of this research is the Clouds operating system, and especially
its kernel, known as Ra [DASG92]. Another example is the Emerald system
[STEE95].

A thread in Clouds is a unit of activity from the user’s perspective. A process
is a virtual address space with an associated process control block. Upon creation, a
thread starts executing in a process by invoking an entry point to a program in that
process. Threads may move from one address space to another, and actually span
computer boundaries (i.e., move from one computer to another). As a thread moves,
it must carry with it certain information, such as the controlling terminal, global
parameters, and scheduling guidance (e.g., priority).

The Clouds approach provides an effective way of insulating both users and
programmers from the details of the distributed environment. A user’s activity may
be represented as a single thread, and the movement of that thread among computers
may be dictated by the OS for a variety of system-related reasons, such as the need
to access a remote resource, and load balancing.

	 4.3	 MULTICORE AND MULTITHREADING

The use of a multicore system to support a single application with multiple threads
(such as might occur on a workstation, a video game console, or a personal computer
running a processor-intense application) raises issues of performance and applica-
tion design. In this section, we first look at some of the performance implications of
a multithreaded application on a multicore system, then describe a specific example
of an application designed to exploit multicore capabilities.

Performance of Software on Multicore

The potential performance benefits of a multicore organization depend on the abil-
ity to effectively exploit the parallel resources available to the application. Let us
focus first on a single application running on a multicore system. Amdahl’s law (see
Appendix E) states that:

Speedup =
time to execute program on a single processor

time to execute program on N parallel processors
=

1

(1 - f) +
f

N

The law assumes a program in which a fraction (1 - f) of the execution time involves
code that is inherently serial, and a fraction f that involves code that is infinitely paral-
lelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attractive.
But as Figure 4.7a shows, even a small amount of serial code has a noticeable impact.
If only 10% of the code is inherently serial (f = 0.9), running the program on a multi-
core system with eight processors yields a performance gain of a factor of only 4.7. In

5The movement of processes or threads among address spaces, or thread migration, on different machines
has become a hot topic in recent years. Chapter 18 will explore this topic.

M04_STAL4290_09_GE_C04.indd 190 5/2/17 4:38 PM

4.3 / MULTICORE AND MULTITHREADING   191

addition, software typically incurs overhead as a result of communication and distri-
bution of work to multiple processors and cache coherence overhead. This results in a
curve where performance peaks and then begins to degrade because of the increased
burden of the overhead of using multiple processors. Figure 4.7b, from [MCDO07],
is a representative example.

However, software engineers have been addressing this problem, and there
are numerous applications in which it is possible to effectively exploit a multicore

Figure 4.7  Performance Effect of Multiple Cores

R
el

at
iv

e
sp

ee
du

p

0

2

4

6

8

21

Number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

7 8

R
el

at
iv

e
sp

ee
du

p

10%
5%

15%
20%

0

0.5

1.0

1.5

2.0

2.5

21

Number of processors

(b) Speedup with overheads

3 4 5 6 7 8

M04_STAL4290_09_GE_C04.indd 191 5/2/17 4:38 PM

192   Chapter 4 / Threads

system. [MCDO07] reports on a set of database applications, in which great attention
was paid to reducing the serial fraction within hardware architectures, operating sys-
tems, middleware, and the database application software. Figure 4.8 shows the result.
As this example shows, database management systems and database applications are
one area in which multicore systems can be used effectively. Many kinds of servers
can also effectively use the parallel multicore organization, because servers typically
handle numerous relatively independent transactions in parallel.

In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores.
[MCDO06] lists the following examples:

•	 Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples
of threaded applications include Lotus Domino or Siebel CRM (Customer
Relationship Manager).

•	 Multiprocess applications: Multiprocess applications are characterized by the
presence of many single-threaded processes. Examples of multiprocess applica-
tions include the Oracle database, SAP, and PeopleSoft.

•	 Java applications: Java applications embrace threading in a fundamental way.
Not only does the Java language greatly facilitate multithreaded applications,
but the Java Virtual Machine is a multithreaded process that provides sched-
uling and memory management for Java applications. Java applications that
can benefit directly from multicore resources include application servers such
as Oracle’s Java Application Server, BEA’s Weblogic, IBM’s Websphere, and
the open-source Tomcat application server. All applications that use a Java 2

Figure 4.8  Scaling of Database Workloads on Multiprocessor Hardware

0
0

16

32

48

64

16 32

Number of CPUs

Sc
al

in
g

48 64

pe
rfe

ct
sc

ali
ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

M04_STAL4290_09_GE_C04.indd 192 5/2/17 4:38 PM

4.3 / MULTICORE AND MULTITHREADING   193

Platform, Enterprise Edition (J2EE platform) application server can immedi-
ately benefit from multicore technology.

•	 Multi-instance applications: Even if an individual application does not scale to
take advantage of a large number of threads, it is still possible to gain from mul-
ticore architecture by running multiple instances of the application in parallel.
If multiple application instances require some degree of isolation, virtualization
technology (for the hardware of the operating system) can be used to provide
each of them with its own separate and secure environment.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number
of popular games, as well as the Source engine, one of the most widely played game
engines available. Source is an animation engine used by Valve for its games and
licensed for other game developers.

In recent years, Valve has reprogrammed the Source engine software to use
multithreading to exploit the power of multicore processor chips from Intel and
AMD [REIM06]. The revised Source engine code provides more powerful support
for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows
[HARR06]:

•	 Coarse threading: Individual modules, called systems, are assigned to individual
processors. In the Source engine case, this would mean putting rendering on
one processor, AI (artificial intelligence) on another, physics on another, and
so on. This is straightforward. In essence, each major module is single-threaded
and the principal coordination involves synchronizing all the threads with a
timeline thread.

•	 Fine-grained threading: Many similar or identical tasks are spread across mul-
tiple processors. For example, a loop that iterates over an array of data can be
split up into a number of smaller parallel loops in individual threads that can
be scheduled in parallel.

•	 Hybrid threading: This involves the selective use of fine-grained threading for
some systems, and single-threaded for other systems.

Valve found that through coarse threading, it could achieve up to twice the
performance across two processors compared to executing on a single processor. But
this performance gain could only be achieved with contrived cases. For real-world
gameplay, the improvement was on the order of a factor of 1.2. Valve also found that
effective use of fine-grained threading was difficult. The time-per-work unit can be
variable, and managing the timeline of outcomes and consequences involved complex
programming.

Valve found that a hybrid threading approach was the most promising and
would scale the best, as multicore systems with 8 or 16 processors became available.
Valve identified systems that operate very effectively being permanently assigned
to a single processor. An example is sound mixing, which has little user interaction,
is not constrained by the frame configuration of windows, and works on its own set

M04_STAL4290_09_GE_C04.indd 193 5/2/17 4:38 PM

194   Chapter 4 / Threads

of data. Other modules, such as scene rendering, can be organized into a number of
threads so that the module can execute on a single processor but achieve greater
performance as it is spread out over more and more processors.

Figure 4.9 illustrates the thread structure for the rendering module. In this
hierarchical structure, higher-level threads spawn lower-level threads as needed. The
rendering module relies on a critical part of the Source engine, the world list, which
is a database representation of the visual elements in the game’s world. The first task
is to determine what are the areas of the world that need to be rendered. The next
task is to determine what objects are in the scene as viewed from multiple angles.
Then comes the processor-intensive work. The rendering module has to work out the
rendering of each object from multiple points of view, such as the player’s view, the
view of monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module
are listed in [LEON07] and include the following:

•	 Construct scene rendering lists for multiple scenes in parallel (e.g., the world
and its reflection in water).

•	 Overlap graphics simulation.

•	 Compute character bone transformations for all characters in all scenes in
parallel.

•	 Allow multiple threads to draw in parallel.

Figure 4.9  Hybrid Threading for Rendering Module

Render

Skybox Main view

Scene list

For each object

Particles

Sim and draw

Bone setup

Draw

Character

Etc.

Monitor Etc.

M04_STAL4290_09_GE_C04.indd 194 5/2/17 4:38 PM

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT   195

The designers found that simply locking key databases, such as the world list,
for a thread was too inefficient. Over 95% of the time, a thread is trying to read from
a data set, and only 5% of the time at most is spent in writing to a data set. Thus, a
concurrency mechanism known as the single-writer-multiple-readers model works
effectively.

	 4.4	 WINDOWS PROCESS AND THREAD MANAGEMENT

This section begins with an overview of the key objects and mechanisms that support
application execution in Windows. The remainder of the section looks in more detail
at how processes and threads are managed.

An application consists of one or more processes. Each process provides the
resources needed to execute a program. A process has a virtual address space, exe-
cutable code, open handles to system objects, a security context, a unique process
identifier, environment variables, a priority class, minimum and maximum working
set sizes, and at least one thread of execution. Each process is started with a single
thread, often called the primary thread, but can create additional threads from any
of its threads.

A thread is the entity within a process that can be scheduled for execution.
All threads of a process share its virtual address space and system resources. In
addition, each thread maintains exception handlers, a scheduling priority, thread
local storage, a unique thread identifier, and a set of structures the system will use
to save the thread context until it is scheduled. On a multiprocessor computer, the
system can simultaneously execute as many threads as there are processors on the
computer.

A job object allows groups of processes to be managed as a unit. Job objects
are namable, securable, sharable objects that control attributes of the processes
associated with them. Operations performed on the job object affect all processes
associated with the job object. Examples include enforcing limits such as working
set size and process priority or terminating all processes associated with a job.

A thread pool is a collection of worker threads that efficiently execute asyn-
chronous callbacks on behalf of the application. The thread pool is primarily used to
reduce the number of application threads and provide management of the worker
threads.

A fiber is a unit of execution that must be manually scheduled by the applica-
tion. Fibers run in the context of the threads that schedule them. Each thread can
schedule multiple fibers. In general, fibers do not provide advantages over a well-
designed multithreaded application. However, using fibers can make it easier to port
applications that were designed to schedule their own threads. From a system stand-
point, a fiber assumes the identity of the thread that runs it. For example if a fiber
accesses thread local storage, it is accessing the thread local storage of the thread that
is running it. In addition, if a fiber calls the ExitThread function, the thread that is
running it exits. However, a fiber does not have all the same state information associ-
ated with it as that associated with a thread. The only state information maintained
for a fiber is its stack, a subset of its registers, and the fiber data provided during
fiber creation. The saved registers are the set of registers typically preserved across

M04_STAL4290_09_GE_C04.indd 195 5/2/17 4:38 PM

196   Chapter 4 / Threads

a function call. Fibers are not preemptively scheduled. A thread schedules a fiber by
switching to it from another fiber. The system still schedules threads to run. When a
thread that is running fibers is preempted, its currently running fiber is preempted
but remains selected.

User-mode scheduling (UMS) is a lightweight mechanism that applications can
use to schedule their own threads. An application can switch between UMS threads in
user mode without involving the system scheduler, and regain control of the proces-
sor if a UMS thread blocks in the kernel. Each UMS thread has its own thread context
instead of sharing the thread context of a single thread. The ability to switch between
threads in user mode makes UMS more efficient than thread pools for short-duration
work items that require few system calls. UMS is useful for applications with high
performance requirements that need to efficiently run many threads concurrently on
multiprocessor or multicore systems. To take advantage of UMS, an application must
implement a scheduler component that manages the application’s UMS threads and
determines when they should run.

Management of Background Tasks and Application
Lifecycles

Beginning with Windows 8, and carrying through to Windows 10, developers are
responsible for managing the state of their individual applications. Previous versions
of Windows always give the user full control of the lifetime of a process. In the classic
desktop environment, a user is responsible for closing an application. A dialog box
might prompt them to save their work. In the new Metro interface, Windows takes
over the process lifecycle of an application. Although a limited number of applica-
tions can run alongside the main app in the Metro UI using the SnapView function-
ality, only one Store application can run at one time. This is a direct consequence of
the new design. Windows Live Tiles give the appearance of applications constantly
running on the system. In reality, they receive push notifications and do not use sys-
tem resources to display the dynamic content offered.

The foreground application in the Metro interface has access to all of the
processor, network, and disk resources available to the user. All other apps are
suspended and have no access to these resources. When an app enters a suspended
mode, an event should be triggered to store the state of the user’s information. This
is the responsibility of the application developer. For a variety of reasons, whether
it needs resources or because an application timed out, Windows may terminate
a background app. This is a significant departure from the Windows operating
systems that precede it. The app needs to retain any data the user entered, settings
they changed, and so on. That means you need to save your app’s state when it’s
suspended, in case Windows terminates it, so you can restore its state later. When
the app returns to the foreground, another event is triggered to obtain the user
state from memory. No event fires to indicate termination of a background app.
Rather, the application data will remain resident on the system, as though it is
suspended, until the app is launched again. Users expect to find the app as they
left it, whether it was suspended or terminated by Windows, or closed by the user.
Application developers can use code to determine whether it should restore a
saved state.

M04_STAL4290_09_GE_C04.indd 196 5/2/17 4:38 PM

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT   197

Some applications, such as news feeds, may look at the date stamp associated
with the previous execution of the app and elect to discard the data in favor of newly
obtained information. This is a determination made by the developer, not by the oper-
ating system. If the user closes an app, unsaved data is not saved. With foreground
tasks occupying all of the system resources, starvation of background apps is a reality
in Windows. This makes the application development relating to the state changes
critical to the success of a Windows app.

To process the needs of background tasks, a background task API is built to
allow apps to perform small tasks while not in the foreground. In this restricted envi-
ronment, apps may receive push notifications from a server or a user may receive a
phone call. Push notifications are template XML strings. They are managed through
a cloud service known as the Windows Notification Service (WNS). The service will
occasionally push updates to the user’s background apps. The API will queue those
requests and process them when it receives enough processor resources. Background
tasks are severely limited in the usage of processor, receiving only one proces-
sor second per processor hour. This ensures that critical tasks receive guaranteed
application resource quotas. It does not, however, guarantee a background app will
ever run.

The Windows Process

Important characteristics of Windows processes are the following:

•	 Windows processes are implemented as objects.

•	 A process can be created as a new process or as a copy of an existing process.

•	 An executable process may contain one or more threads.

•	 Both process and thread objects have built-in synchronization capabilities.

Figure 4.10, based on one in [RUSS11], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security access
token, called the primary token of the process. When a user first logs on, Windows
creates an access token that includes the security ID for the user. Every process that
is created by or runs on behalf of this user has a copy of this access token. Windows
uses the token to validate the user’s ability to access secured objects, or to perform
restricted functions on the system and on secured objects. The access token controls
whether the process can change its own attributes. In this case, the process does
not have a handle opened to its access token. If the process attempts to open such
a handle, the security system determines whether this is permitted, and therefore
whether the process may change its own attributes.

Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures, but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

Finally, the process includes an object table, with handles to other objects
known to this process. Figure 4.10 shows a single thread. In addition, the process
has access to a file object and to a section object that defines a section of shared
memory.

M04_STAL4290_09_GE_C04.indd 197 5/2/17 4:38 PM

198   Chapter 4 / Threads

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a general-
purpose process facility. Windows makes use of two types of process-related objects:
processes and threads. A process is an entity corresponding to a user job or applica-
tion that owns resources, such as memory and open files. A thread is a dispatchable
unit of work that executes sequentially and is interruptible, so the processor can turn
to another thread.

Each Windows process is represented by an object. Each process object
includes a number of attributes and encapsulates a number of actions, or services,
that it may perform. A process will perform a service when called upon through a
set of published interface methods. When Windows creates a new process, it uses
the object class, or type, defined for the Windows process as a template to gener-
ate a new object instance. At the time of creation, attribute values are assigned.
Table 4.3 gives a brief definition of each of the object attributes for a process
object.

A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from the
same process may execute in parallel. Table 4.4 defines the thread object attributes.
Note some of the attributes of a thread resemble those of a process. In those cases,
the thread attribute value is derived from the process attribute value. For example,
the thread processor affinity is the set of processors in a multiprocessor system that
may execute this thread; this set is equal to or a subset of the process processor
affinity.

Figure 4.10  A Windows Process and Its Resources

Process
object

Access
token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available
objectsHandle table

M04_STAL4290_09_GE_C04.indd 198 5/2/17 4:38 PM

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT   199

Note one of the attributes of a thread object is context, which contains the
values of the processor registers when the thread last ran. This information enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behavior
of a thread by altering its context while it is suspended.

Process ID A unique value that identifies the process to the operating system.

Security descriptor Describes who created an object, who can gain access to or use the object, and
who is denied access to the object.

Base priority A baseline execution priority for the process’s threads.

Default processor affinity The default set of processors on which the process’s threads can run.

Quota limits The maximum amount of paged and nonpaged system memory, paging file space,
and processor time a user’s processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that the process’s
threads have performed.

VM operation counters Variables that record the number and types of virtual memory operations that
the process’s threads have performed.

Exception/debugging ports Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally, these
are connected to environment subsystem and debugger processes, respectively.

Exit status The reason for a process’s termination.

Table 4.3  Windows Process Object Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the execution state
of a thread.

Dynamic priority The thread’s execution priority at any given moment.

Base priority The lower limit of the thread’s dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process.

Thread execution time The cumulative amount of time a thread has executed in user mode and in
kernel mode.

Alert status A flag that indicates whether a waiting thread may execute an asynchronous
procedure call.

Suspension count The number of times the thread’s execution has been suspended without being
resumed.

Impersonation token A temporary access token allowing a thread to perform operations on behalf of
another process (used by subsystems).

Termination port An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems).

Thread exit status The reason for a thread’s termination.

Table 4.4  Windows Thread Object Attributes

M04_STAL4290_09_GE_C04.indd 199 5/2/17 4:38 PM

200   Chapter 4 / Threads

Multithreading

Windows supports concurrency among processes because threads in different
processes may execute concurrently (appear to run at the same time). Moreover,
multiple threads within the same process may be allocated to separate processors
and execute simultaneously (actually run at the same time). A multithreaded pro-
cess achieves concurrency without the overhead of using multiple processes. Threads
within the same process can exchange information through their common address
space and have access to the shared resources of the process. Threads in different
processes can exchange information through shared memory that has been set up
between the two processes.

An object-oriented multithreaded process is an efficient means of implement-
ing a server application. For example, one server process can service a number of
clients concurrently.

Thread States

An existing Windows thread is in one of six states (see Figure 4.11):

1.	 Ready: A ready thread may be scheduled for execution. The Kernel dispatcher
keeps track of all ready threads and schedules them in priority order.

2.	 Standby: A standby thread has been selected to run next on a particular proces-
sor. The thread waits in this state until that processor is made available. If the
standby thread’s priority is high enough, the running thread on that processor
may be preempted in favor of the standby thread. Otherwise, the standby thread
waits until the running thread blocks or exhausts its time slice.

Figure 4.11  Windows Thread States

Runnable

Not runnable

Pick to
run Switch

Preempted

Block/
suspend

Unblock/resume
Resource available

Resource
available

Unblock
Resource not available

Terminate

Standby

Ready Running

Transition Waiting Terminated

M04_STAL4290_09_GE_C04.indd 200 5/2/17 4:38 PM

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT   201

3.	 Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher-priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the Ready state.

4.	 Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g., I/O), (2) it voluntarily waits for synchronization purposes, or (3) an envi-
ronment subsystem directs the thread to suspend itself. When the waiting con-
dition is satisfied, the thread moves to the Ready state if all of its resources are
available.

5.	 Transition: A thread enters this state after waiting if it is ready to run, but the
resources are not available. For example, the thread’s stack may be paged out of
memory. When the resources are available, the thread goes to the Ready state.

6.	 Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the Executive6 for
future reinitialization.

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process
and thread structures of the various OS environments. It is the responsibility of each
OS subsystem to exploit the Windows process and thread features to emulate the
process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected sub-
system, which passes the request to the Executive. The Executive creates a process
object and returns a handle for that object to the subsystem. When Windows creates
a process, it does not automatically create a thread. In the case of Win32, a new pro-
cess must always be created with an initial thread. Therefore, the Win32 subsystem
calls the Windows process manager again to create a thread for the new process,
receiving a thread handle back from Windows. The appropriate thread and process
information are then returned to the application. In the case of POSIX, threads are
not supported. Therefore, the POSIX subsystem obtains a thread for the new process
from Windows so that the process may be activated but returns only process informa-
tion to the application. The fact that the POSIX process is implemented using both
a process and a thread from the Windows Executive is not visible to the application.

When a new process is created by the Executive, the new process inherits many of
its attributes from the creating process. However, in the Win32 environment, this pro-
cess creation is done indirectly. An application client process issues its process creation
request to the Win32 subsystem; then the subsystem in turn issues a process request
to the Windows executive. Because the desired effect is that the new process inherits
characteristics of the client process and not of the server process, Windows enables the

6The Windows Executive is described in Chapter 2. It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.

M04_STAL4290_09_GE_C04.indd 201 5/2/17 4:38 PM

202   Chapter 4 / Threads

subsystem to specify the parent of the new process. The new process then inherits the
parent’s access token, quota limits, base priority, and default processor affinity.

	 4.5	 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable flex-
ibility in exploiting processor resources.

Multithreaded Architecture

Solaris makes use of four separate thread-related concepts:

1.	 Process: This is the normal UNIX process and includes the user’s address space,
stack, and process control block.

2.	 User-level threads: Implemented through a threads library in the address space
of a process, these are invisible to the OS. A user-level thread (ULT)7 is a user-
created unit of execution within a process.

3.	 Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps to
one kernel thread. LWPs are scheduled by the kernel independently, and may
execute in parallel on multiprocessors.

4.	 Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Figure 4.12 illustrates the relationship among these four entities. Note there is
always exactly one kernel thread for each LWP. An LWP is visible within a process to
the application. Thus, LWP data structures exist within their respective process address
space. At the same time, each LWP is bound to a single dispatchable kernel thread, and
the data structure for that kernel thread is maintained within the kernel’s address space.

A process may consist of a single ULT bound to a single LWP. In this case, there
is a single thread of execution, corresponding to a traditional UNIX process. When
concurrency is not required within a single process, an application uses this process
structure. If an application requires concurrency, its process contains multiple threads,
each bound to a single LWP, which in turn are each bound to a single kernel thread.

In addition, there are kernel threads that are not associated with LWPs. The
kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement system
functions reduces the overhead of switching within the kernel (from a process switch
to a thread switch).

Motivation

The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended to
facilitate thread management by the OS and to provide a clean interface to appli-
cations. The ULT interface can be a standard thread library. A defined ULT maps
onto a LWP, which is managed by the OS and which has defined states of execution,

7Again, the acronym ULT is unique to this book and is not found in the Solaris literature.

M04_STAL4290_09_GE_C04.indd 202 5/2/17 4:38 PM

4.5 / SOLARIS THREAD AND SMP MANAGEMENT   203

defined subsequently. An LWP is bound to a kernel thread with a one-to-one cor-
respondence in execution states. Thus, concurrency and execution are managed at
the level of the kernel thread.

In addition, an application has access to hardware through an application pro-
gramming interface consisting of system calls. The API allows the user to invoke ker-
nel services to perform privileged tasks on behalf of the calling process, such as read
or write a file, issue a control command to a device, create a new process or thread,
allocate memory for the process to use, and so on.

Process Structure

Figure 4.13 compares, in general terms, the process structure of a traditional
UNIX system with that of Solaris. On a typical UNIX implementation, the
process structure includes:

•	 Process ID.

•	 User IDs.

•	 Signal dispatch table, which the kernel uses to decide what to do when sending
a signal to a process.

•	 File descriptors, which describe the state of files in use by this process.

•	 Memory map, which defines the address space for this process.

•	 Processor state structure, which includes the kernel stack for this process.

Solaris retains this basic structure but replaces the processor state block with a list of
structures containing one data block for each LWP.

The LWP data structure includes the following elements:

•	 An LWP identifier

•	 The priority of this LWP and hence the kernel thread that supports it

Figure 4.12  Processes and Threads in Solaris [MCDO07]

Hardware

Kernel

System calls

syscall()syscall()

Process

Kernel
thread

Kernel
thread

Lightweight
process (LWP)

Lightweight
process (LWP)

User
thread

User
thread

M04_STAL4290_09_GE_C04.indd 203 5/2/17 4:38 PM

204   Chapter 4 / Threads

•	 A signal mask that tells the kernel which signals will be accepted

•	 Saved values of user-level registers (when the LWP is not running)

•	 The kernel stack for this LWP, which includes system call arguments, results, and
error codes for each call level

•	 Resource usage and profiling data

•	 Pointer to the corresponding kernel thread

•	 Pointer to the process structure

Thread Execution

Figure 4.14 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As
mentioned, some kernel threads are not associated with an LWP; the same execution
diagram applies. The states are as follows:

•	 RUN: The thread is runnable; that is, the thread is ready to execute.

•	 ONPROC: The thread is executing on a processor.

Figure 4.13  Process Structure in Traditional UNIX and Solaris [LEWI96]

Process ID

UNIX process structure

User IDs

Signal dispatch table

File descriptors

Memory map

Priority
Signal mask

Registers

STACK

LWP ID

Processor state

Process ID

Solaris process structure

User IDs

Signal dispatch table

File descriptors

LWP 1

LWP ID

LWP 2

Memory map

Priority
Signal mask

Registers
STACK

Priority
Signal mask

Registers
STACK

M04_STAL4290_09_GE_C04.indd 204 5/2/17 4:38 PM

4.5 / SOLARIS THREAD AND SMP MANAGEMENT   205

•	 SLEEP: The thread is blocked.

•	 STOP: The thread is stopped.

•	 ZOMBIE: The thread has terminated.

•	 FREE: Thread resources have been released and the thread is awaiting removal
from the OS thread data structure.

A thread moves from ONPROC to RUN if it is preempted by a higher-priority
thread or because of time slicing. A thread moves from ONPROC to SLEEP if it
is blocked and must await an event to return the RUN state. Blocking occurs if the
thread invokes a system call and must wait for the system service to be performed. A
thread enters the STOP state if its process is stopped; this might be done for debug-
ging purposes.

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity: pro-
cesses and interrupts. Processes (or threads) cooperate with each other and manage
the use of shared data structures by means of a variety of primitives that enforce
mutual exclusion (only one process at a time can execute certain code or access
certain data) and that synchronize their execution. Interrupts are synchronized by
preventing their handling for a period of time. Solaris unifies these two concepts
into a single model, namely kernel threads, and the mechanisms for scheduling and
executing kernel threads. To do this, interrupts are converted to kernel threads.

Figure 4.14  Solaris Thread States

IDL

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reap()

preempt()

RUN

PINNED

SLEEP

STOP ZOMBIE FREE

ONPROC

M04_STAL4290_09_GE_C04.indd 205 5/2/17 4:38 PM

206   Chapter 4 / Threads

The motivation for converting interrupts to threads is to reduce overhead.
Interrupt handlers often manipulate data shared by the rest of the kernel. There-
fore, while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data. Typically, the way this
is done is for the routine to set the interrupt priority level higher to block interrupts,
then lower the priority level after access is completed. These operations take time.
The problem is magnified on a multiprocessor system. The kernel must protect more
objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

1.	 Solaris employs a set of kernel threads to handle interrupts. As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

2.	 The kernel controls access to data structures and synchronizes among inter-
rupt threads using mutual exclusion primitives, of the type to be discussed in
Chapter 5. That is, the normal synchronization techniques for threads are used
in handling interrupts.

3.	 Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the thread
that was executing on that processor is pinned. A pinned thread cannot move to
another processor and its context is preserved; it is simply suspended until the inter-
rupt is processed. The processor then begins executing an interrupt thread. There is a
pool of deactivated interrupt threads available, so a new thread creation is not required.
The interrupt thread then executes to handle the interrupt. If the handler routine needs
access to a data structure that is currently locked in some fashion for use by another
executing thread, the interrupt thread must wait for access to that data structure. An
interrupt thread can only be preempted by another interrupt thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach provides
superior performance to the traditional interrupt-handling strategy [KLEI95].

	 4.6	 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

•	 State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.

•	 Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes are
scheduled before normal processes, and within each category, relative priorities
can be used. A reference counter keeps track of the amount of time a process
is allowed to execute.

•	 Identifiers: Each process has a unique process identifier (PID) and also has
user and group identifiers. A group identifier is used to assign resource access
privileges to a group of processes.

M04_STAL4290_09_GE_C04.indd 206 5/2/17 4:38 PM

4.6 / LINUX PROCESS AND THREAD MANAGEMENT   207

•	 Interprocess communication: Linux supports the IPC mechanisms found in
UNIX SVR4, described later in Chapter 6.

•	 Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.

•	 Times and timers: Includes process creation time and the amount of processor
time so far consumed by the process. A process may also have associated one or
more interval timers. A process defines an interval timer by means of a system
call; as a result, a signal is sent to the process when the timer expires. A timer
may be single use or periodic.

•	 File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process

•	 Address space: Defines the virtual address space assigned to this process

•	 Processor-specific context: The registers and stack information that constitute
the context of this process

Figure 4.15 shows the execution states of a process. These are as follows:

•	 Running: This state value corresponds to two states. A Running process is either
executing, or it is ready to execute.

•	 Interruptible: This is a blocked state, in which the process is waiting for an event,
such as the end of an I/O operation, the availability of a resource, or a signal
from another process.

Figure 4.15  Linux Process/Thread Model

Running
state

Creation
Scheduling

Termination

SignalSignal

Event
Signal

or
event

Stopped

Ready Executing Zombie

Uninterruptible

Interruptible

M04_STAL4290_09_GE_C04.indd 207 5/2/17 4:38 PM

208   Chapter 4 / Threads

•	 Uninterruptible: This is another blocked state. The difference between this and
the Interruptible state is that in an Uninterruptible state, a process is waiting
directly on hardware conditions and therefore will not handle any signals.

•	 Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be put
into the Stopped state.

•	 Zombie: The process has been terminated but, for some reason, still must have
its task structure in the process table.

Linux Threads

Traditional UNIX systems support a single thread of execution per process, while
modern UNIX systems typically provide support for multiple kernel-level threads
per process. As with traditional UNIX systems, older versions of the Linux kernel
offered no support for multithreading. Instead, applications would need to be written
with a set of user-level library functions, the most popular of which is known as
pthread (POSIX thread) libraries, with all of the threads mapping into a single kernel-
level process.8 We have seen that modern versions of UNIX offer kernel-level threads.
Linux provides a unique solution in that it does not recognize a distinction between
threads and processes. Using a mechanism similar to the lightweight processes of
Solaris, user-level threads are mapped into kernel-level processes. Multiple user-level
threads that constitute a single user-level process are mapped into Linux kernel-level
processes that share the same group ID. This enables these processes to share
resources such as files and memory, and to avoid the need for a context switch when
the scheduler switches among processes in the same group.

A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so it shares resources such as files, signal han-
dlers, and virtual memory. When the two processes share the same virtual memory,
they function as threads within a single process. However, no separate type of data
structure is defined for a thread. In place of the usual fork() command, processes are
created in Linux using the clone() command. This command includes a set of flags as
arguments. The traditional fork() system call is implemented by Linux as a clone()
system call with all of the clone flags cleared.

Examples of clone flags include the following:

•	 CLONE_NEWPID: Creates new process ID namespace.

•	 CLONE_PARENT: Caller and new task share the same parent process.

•	 CLONE_SYSVSEM: Shares System V SEM_UNDO semantics.

•	 CLONE_THREAD: Inserts this process into the same thread group of the par-
ent. If this flag is true, it implicitly enforces CLONE_PARENT.

•	 CLONE_VM: Shares the address space (memory descriptor and all page tables).

8POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a standard
for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads. Pthreads
are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but Microsoft Windows
implementations also exist.

M04_STAL4290_09_GE_C04.indd 208 5/2/17 4:38 PM

4.6 / LINUX PROCESS AND THREAD MANAGEMENT   209

•	 CLONE_FS: Shares the same filesystem information (including current work-
ing directory, the root of the filesystem, and the umask).

•	 CLONE_FILES: Shares the same file descriptor table. Creating a file descrip-
tor or closing a file descriptor is propagated to the another process, as well as
changing the associated flags of a file descriptor using the fcntl() system call.

When the Linux kernel performs a context switch from one process to another,
it checks whether the address of the page directory of the current process is the same
as that of the to-be-scheduled process. If they are, then they are sharing the same
address space, so a context switch is basically just a jump from one location of code
to another location of code.

Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone() call
creates separate stack spaces for each process.

Linux Namespaces

Associated with each process in Linux are a set of namespaces. A namespace enables
a process (or multiple processes that share the same namespace) to have a differ-
ent view of the system than other processes that have other associated namespaces.
Namespaces and cgroups (which will be described in the following section) are the
basis of Linux lightweight virtualization, which is a feature that provides a process or
group of processes with the illusion that they are the only processes on the system.
This feature is used widely by Linux Containers projects. There are currently six
namespaces in Linux: mnt, pid, net, ipc, uts, and user.

Namespaces are created by the clone() system call, which gets as a param-
eter one of the six namespaces clone flags (CLONE_NEWNS, CLONE_NEWPID,
CLONE_NEWNET, CLONE_NEWIPC, CLONE_NEWUTS, and CLONE_
NEWUSER). A process can also create a namespace with the unshare() system call
with one of these flags; as opposed to clone(), a new process is not created in such a
case; only a new namespace is created, which is attached to the calling process.

Mount Namespace  A mount namespace provides the process with a specific view
of the filesystem hierarchy, such that two processes with different mount namespaces
see different filesystem hierarchies. All of the file operations that a process employs
apply only to the filesystem visible to the process.

UTS Namespace  The UTS (UNIX timesharing) namespace is related to the uname
Linux system call. The uname call returns the name and information about the current
kernel, including nodename, which is the system name within some implementation-
defined network; and domainname, which is the NIS domain name. NIS (Network
Information Service) is a standard scheme used on all major UNIX and UNIX-like
systems. It allows a group of machines within an NIS domain to share a common set
of configuration files. This permits a system administrator to set up NIS client systems
with only minimal configuration data and add, remove, or modify configuration data
from a single location. With the UTS namespace, initialization and configuration
parameters can vary for different processes on the same system.

M04_STAL4290_09_GE_C04.indd 209 5/2/17 4:38 PM

210   Chapter 4 / Threads

IPC Namespace  An IPC namespace isolates certain interprocess communication
(IPC) resources, such as semaphores, POSIX message queues, and more. Thus,
concurrency mechanisms can be employed by the programmer that enable IPC
among processes that share the same IPC namespace.

PID Namespace  PID namespaces isolate the process ID space, so processes in
different PID namespaces can have the same PID. This feature is used for Checkpoint/
Restore In Userspace (CRIU), a Linux software tool. Using this tool, you can freeze
a running application (or part of it) and checkpoint it to a hard drive as a collection
of files. You can then use the files to restore and run the application from the freeze
point on that machine or on a different host. A distinctive feature of the CRIU
project is that it is mainly implemented in user space, after attempts to implement it
mainly in kernel failed.

Network Namespace  Network namespaces provide isolation of the system
resources associated with networking. Thus, each network namespace has its own
network devices, IP addresses, IP routing tables, port numbers, and so on. These
namespaces virtualize all access to network resources. This allows each process or
a group of processes that belong to this network namespace to have the network
access it needs (but no more). At any given time, a network device belongs to only
one network namespace. Also, a socket can belong to only one namespace.

User Namespace  User namespaces provide a container with its own set of UIDs,
completely separate from those in the parent. So when a process clones a new process
it can assign it a new user namespace, as well as a new PID namespace, and all the
other namespaces. The cloned process can have access to and privileges for all of the
resources of the parent process, or a subset of the resources and privileges of the parent.
The user namespaces are considered sensitive in terms of security, as they enable
creating non-privileged containers (processes which are created by a non-root user).

The Linux cgroup Subsystem  The Linux cgroup subsystem, together with the
namespace subsystem, are the basis of lightweight process virtualization, and as
such they form the basis of Linux containers; almost every Linux containers project
nowadays (such as Docker, LXC, Kubernetes, and others) is based on both of them.
The Linux cgroups subsystem provides resource management and accounting. It
handles resources such as CPU, network, memory, and more; and it is mostly needed in
both ends of the spectrum (embedded devices and servers), and much less in desktops.
Development of cgroups was started in 2006 by engineers at Google under the name
“process containers,” which was later changed to “cgroups” to avoid confusion with
Linux Containers. In order to implement cgroups, no new system call was added. A
new virtual file system (VFS), “cgroups” (also referred to sometimes as cgroupfs) was
added, as all the cgroup filesystem operations are filesystem based. A new version of
cgroups, called cgroups v2, was released in kernel 4.5 (March 2016). The cgroup v2
subsystem addressed many of the inconsistencies across cgroup v1 controllers, and
made cgroup v2 better organized, by establishing strict and consistent interfaces.

Currently, there are 12 cgroup v1 controllers and 3 cgroup v2 controllers (mem-
ory, I/O, and PIDs) and there are other v2 controllers that are a work in progress.

M04_STAL4290_09_GE_C04.indd 210 5/2/17 4:38 PM

4.7 / ANDROID PROCESS AND THREAD MANAGEMENT   211

In order to use the cgroups filesystem (i.e., browse it, attach tasks to cgroups,
and so on), it first must be mounted, like when working with any other filesystem. The
cgroup filesystem can be mounted on any path on the filesystem, and many userspace
applications and container projects use /sys/fs/cgroup as a mounting point.
After mounting the cgroups filesystem, you can create subgroups, attach processes
and tasks to these groups, set limitations on various system resources, and more. The
cgroup v1 implementation will probably coexist with the cgroup v2 implementation
as long as there are userspace projects that use it; we have a parallel phenomenon in
other kernel subsystems, when a new implementation of existing subsystem replaces
the current one; for example, currently both iptables and the new nftables coexist,
and in the past, iptables coexisted with ipchains.

	 4.7	 ANDROID PROCESS AND THREAD MANAGEMENT

Before discussing the details of the Android approach to process and thread manage-
ment, we need to describe the Android concepts of applications and activities.

Android Applications

An Android application is the software that implements an app. Each Android appli-
cation consists of one or more instance of one or more of four types of application
components. Each component performs a distinct role in the overall application
behavior, and each component can be activated independently within the applica-
tion and even by other applications. The following are the four types of components:

1.	 Activities: An activity corresponds to a single screen visible as a user interface.
For example, an e-mail application might have one activity that shows a list of
new e-mails, another activity to compose an e-mail, and another activity for
reading e-mails. Although the activities work together to form a cohesive user
experience in the e-mail application, each one is independent of the others.
Android makes a distinction between internal and exported activities. Other
apps may start exported activities, which generally include the main screen of
the app. However, other apps cannot start the internal activities. For example, a
camera application can start the activity in the e-mail application that composes
new mail, in order for the user to share a picture.

2.	 Services: Services are typically used to perform background operations that
take a considerable amount of time to finish. This ensures faster responsiveness,
for the main thread (a.k.a. UI thread) of an application, with which the user is
directly interacting. For example, a service might create a thread to play music
in the background while the user is in a different application, or it might create
a thread to fetch data over the network without blocking user interaction with
an activity. A service may be invoked by an application. Additionally, there are
system services that run for the entire lifetime of the Android system, such as
Power Manager, Battery, and Vibrator services. These system services create
threads that are part of the System Server process.

3.	 Content providers: A content provider acts as an interface to application data
that can be used by the application. One category of managed data is private

M04_STAL4290_09_GE_C04.indd 211 5/2/17 4:38 PM

212   Chapter 4 / Threads

data, which is used only by the application containing the content provider. For
example the NotePad application uses a content provider to save notes. The
other category is shared data, accessible by multiple applications. This category
includes data stored in file systems, an SQLite database, on the Web, or any
other persistent storage location your application can access.

4.	 Broadcast receivers: A broadcast receiver responds to system-wide broadcast
announcements. A broadcast can originate from another application, such as to let
other applications know that some data has been downloaded to the device and is
available for them to use, or from the system (for example, a low-battery warning).

Each application runs on its own dedicated virtual machine and its own single
process that encompasses the application and its virtual machine (see Figure 4.16).
This approach, referred to as the sandboxing model, isolates each application. Thus,
one application cannot access the resources of the other without permission being
granted. Each application is treated as a separate Linux user with its own unique user
ID, which is used to set file permissions.

Activities

An Activity is an application component that provides a screen with which users
can interact in order to do something, such as make a phone call, take a photo, send
an e-mail, or view a map. Each activity is given a window in which to draw its user
interface. The window typically fills the screen, but may be smaller than the screen
and float on top of other windows.

As was mentioned, an application may include multiple activities. When an
application is running, one activity is in the foreground, and it is this activity that

Figure 4.16  Android Application

Dedicated Process

Broadcast
receiver

Application

Dedicated
virtual machine

Content
provider

Activity Service

M04_STAL4290_09_GE_C04.indd 212 5/2/17 4:38 PM

4.7 / ANDROID PROCESS AND THREAD MANAGEMENT   213

interacts with the user. The activities are arranged in a last-in-first-out stack (the back
stack), in the order in which each activity is opened. If the user switches to some other
activity within the application, the new activity is created and pushed on to the top
of the back stack, while the preceding foreground activity becomes the second item
on the stack for this application. This process can be repeated multiple times, adding
to the stack. The user can back up to the most recent foreground activity by pressing
a Back button or similar interface feature.

Activity States  Figure 4.17 provides a simplified view of the state transition
diagram of an activity. Keep in mind there may be multiple activities in the application,
each one at its own particular point on the state transition diagram. When a new
activity is launched, the application software performs a series of API calls to the

Figure 4.17  Activity State Transition Diagram

Resumed

Paused

Entire
Lifetime

Visible
Lifetime

Stopped

Activity
launched

App process
killed

Activity
shut down

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()

User returns
to the activity

Apps with higher
priority need memory

User navigates
to the activity

User navigates
to the activity

Foreground
Lifetime

M04_STAL4290_09_GE_C04.indd 213 5/2/17 4:38 PM

214   Chapter 4 / Threads

Activity Manager (Figure 2.20): onCreate() does the static setup of the activity,
including any data structure initialization; onStart() makes the activity visible to
the user on the screen; onResume() passes control to the activity so user input goes
to the activity. At this point the activity is in the Resumed state. This is referred to as
the foreground lifetime of the activity. During this time, the activity is in front of all
other activities on screen and has user input focus.

A user action may invoke another activity within the application. For example,
during the execution of the e-mail application, when the user selects an e-mail, a
new activity opens to view that e-mail. The system responds to such an activity with
the onPause() system call, which places the currently running activity on the stack,
putting it in the Paused state. The application then creates a new activity, which will
enter the Resumed state.

At any time, a user may terminate the currently running activity by means of
the Back button, closing a window, or some other action relevant to this activity. The
application then invokes onStop(0) to stop the activity. The application then pops
the activity that is on the top of the stack and resumes it. The Resumed and Paused
states together constitute the visible lifetime of the activity. During this time, the user
can see the activity on-screen and interact with it.

If the user leaves one application to go to another, for example, by going to the
Home screen, the currently running activity is paused and then stopped. When the
user resumes this application, the stopped activity, which is on top of the back stack,
is restarted and becomes the foreground activity for the application.

Killing an Application  If too many things are going on, the system may need to
recover some of main memory to maintain responsiveness. In that case, the system
will reclaim memory by killing one or more activities within an application and also
terminating the process for that application. This frees up memory used to manage
the process as well as memory to manage the activities that were killed. However, the
application itself still exists. The user is unaware of its altered status. If the user returns
to that application, it is necessary for the system to recreate any killed activities as they
are invoked.

The system kills applications in a stack-oriented style: So it will kill least recently
used apps first. Apps with foregrounded services are extremely unlikely to be killed.

Processes and Threads

The default allocation of processes and threads to an application is a single process
and a single thread. All of the components of the application run on the single thread
of the single process for that application. To avoid slowing down the user interface
when slow and/or blocking operations occur in a component, the developer can cre-
ate multiple threads within a process and/or multiple processes within an application.
In any case, all processes and their threads for a given application execute within the
same virtual machine.

In order to reclaim memory in a system that is becoming heavily loaded, the sys-
tem may kill one or more processes. As was discussed in the preceding section, when a
process is killed, one or more of the activities supported by that process are also killed.
A precedence hierarchy is used to determine which process or processes to kill in order

M04_STAL4290_09_GE_C04.indd 214 5/2/17 4:38 PM

4.8 / MAC OS X GRAND CENTRAL DISPATCH   215

to reclaim needed resources. Every process exists at a particular level of the hierarchy
at any given time, and processes are killed beginning with the lowest precedence first.
The levels of the hierarchy, in descending order of precedence, are as follows:

•	 Foreground process: A process that is required for what the user is currently
doing. More than one process at a time can be a foreground process. For exam-
ple, both the process that hosts the activity with which the user is interacting
(activity in Resumed state), and the process that hosts a service that is bound to
the activity with which the user is interacting, are foreground processes.

•	 Visible process: A process that hosts a component that is not in the foreground,
but still visible to the user.

•	 Service process: A process running a service that does not fall into either of
the higher categories. Examples include playing music in the background or
downloading data on the network.

•	 Background process: A process hosting an activity in the Stopped state.

•	 Empty process: A process that doesn’t hold any active application components.
The only reason to keep this kind of process alive is for caching purposes, to
improve startup time the next time a component needs to run in it.

	 4.8	 MAC OS X GRAND CENTRAL DISPATCH

As was mentioned in Chapter 2, Mac OS X Grand Central Dispatch (GCD) provides
a pool of available threads. Designers can designate portions of applications, called
blocks, that can be dispatched independently and run concurrently. The OS will provide
as much concurrency as possible based on the number of cores available and the thread
capacity of the system. Although other operating systems have implemented thread
pools, GCD provides a qualitative improvement in ease of use and efficiency [LEVI16].

A block is a simple extension to C or other languages, such as C+ + . The pur-
pose of defining a block is to define a self-contained unit of work, including code plus
data. Here is a simple example of a block definition:

x = ^{printf(“hello world\n”);}
A block is denoted by a caret at the start of the function, which is enclosed in curly
brackets. The above block definition defines x as a way of calling the function, so that
invoking the function x() would print the words hello world.

Blocks enable the programmer to encapsulate complex functions, together with
their arguments and data, so that they can easily be referenced and passed around in
a program, much like a variable. Symbolically:

= F + F data

Blocks are scheduled and dispatched by means of queues. The application
makes use of system queues provided by GCD and may also set up private queues.
Blocks are put onto a queue as they are encountered during program execution.
GCD then uses those queues to describe concurrency, serialization, and callbacks.
Queues are lightweight user-space data structures, which generally makes them far

M04_STAL4290_09_GE_C04.indd 215 5/2/17 4:38 PM

216   Chapter 4 / Threads

more efficient than manually managing threads and locks. For example, this queue
has three blocks:

Queue

H G F

Depending on the queue and how it is defined, GCD treats these blocks either
as potentially concurrent activities, or as serial activities. In either case, blocks are dis-
patched on a first-in-first-out basis. If this is a concurrent queue, then the dispatcher
assigns F to a thread as soon as one is available, then G, then H. If this is a serial queue,
the dispatcher assigns F to a thread, then only assigns G to a thread after F has com-
pleted. The use of predefined threads saves the cost of creating a new thread for each
request, reducing the latency associated with processing a block. Thread pools are
automatically sized by the system to maximize the performance of the applications
using GCD while minimizing the number of idle or competing threads.

H G F

Pool Thread

In addition to scheduling blocks directly, the application can associate a single
block and queue with an event source, such as a timer, network socket, or file descrip-
tor. Every time the source issues an event, the block is scheduled if it is not already
running. This allows rapid response without the expense of polling or “parking a
thread” on the event source.

E

ESource

E

An example from [SIRA09] indicates the ease of using GCD. Consider a
document-based application with a button that, when clicked, will analyze the current
document and display some interesting statistics about it. In the common case, this
analysis should execute in under a second, so the following code is used to connect
the button with an action:

- (Inaction)analyzeDocument:(NSButton *)sender
{
 NSDictionary *stats = [myDoc analyze];
 [myModel setDict:stats];

M04_STAL4290_09_GE_C04.indd 216 5/2/17 4:38 PM

4.9 / SUMMARY   217

 [myStatsView setNeedsDisplay:YES];
 [stats release];
}

The first line of the function body analyzes the document, the second line
updates the application’s internal state, and the third line tells the application that the
statistics view needs to be updated to reflect this new state. This code, which follows a
common pattern, is executed in the main thread. The design is acceptable so long as
the analysis does not take too long, because after the user clicks the button, the main
thread of the application needs to handle that user input as fast as possible so it can
get back to the main event loop to process the next user action. But if the user opens
a very large or complex document, the analyze step may take an unacceptably long
amount of time. A developer may be reluctant to alter the code to meet this unlikely
event, which may involve application-global objects, thread management, callbacks,
argument marshalling, context objects, new variables, and so on. But with GCD, a
modest addition to the code produces the desired result:

- (IBAction)analyzeDocument:(NSButton *)sender
 {di�spatch_async(dispatch_get_global_queue(0, 0), ^{

�NSDictionary *stats = [myDoc analyze];
 disp�atch_async(dispatch_get_main_queue(), ^{

[myModel setDict:stats];
 [myStatsView setNeedsDisplay:YES];
 [stats release];
 });
 });
}

All functions in GCD begin with dispatch_. The outer dispatch_async()
call puts a task on a global concurrent queue. This tells the OS that the block can be
assigned to a separate concurrent queue, off the main queue, and executed in parallel.
Therefore, the main thread of execution is not delayed. When the analyze function is
complete, the inner dispatch_async() call is encountered. This directs the OS to
put the following block of code at the end of the main queue, to be executed when it
reaches the head of the queue. So, with very little work on the part of the program-
mer, the desired requirement is met.

	 4.9	 SUMMARY

Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership, and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a multi-
threaded system, multiple concurrent threads may be defined within a single process.
This may be done using either user-level threads or kernel-level threads. User-level

M04_STAL4290_09_GE_C04.indd 217 5/2/17 4:38 PM

218   Chapter 4 / Threads

threads are unknown to the OS and are created and managed by a threads library
that runs in the user space of a process. User-level threads are very efficient because
a mode switch is not required to switch from one thread to another. However, only
a single user-level thread within a process can execute at a time, and if one thread
blocks, the entire process is blocked. Kernel-level threads are threads within a process
that are maintained by the kernel. Because they are recognized by the kernel, mul-
tiple threads within the same process can execute in parallel on a multiprocessor and
the blocking of a thread does not block the entire process. However, a mode switch
is required to switch from one thread to another.

  4.10	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

application
fiber
jacketing
job object
kernel-level thread
lightweight process

message
multithreading
namespaces
port
process
task

thread
thread pool
user-level thread
user-mode scheduling (UMS)

Review Questions

	 4.1.	 Table 3.5 lists typical elements found in a process control block for an unthreaded OS.
Of these, which should belong to a thread control block, and which should belong to
a process control block for a multithreaded system?

	 4.2.	 List reasons why a mode switch between threads may be cheaper than a mode switch
between processes.

	 4.3.	 What are the two separate and potentially independent characteristics embodied in
the concept of process?

	 4.4.	 Give four general examples of the use of threads in a single-user multiprocessing
system.

	 4.5.	 How is a thread different from a process?
	 4.6.	 What are the advantages of using multithreading instead of multiple processes?
	 4.7.	 List some advantages and disadvantages of using kernel-level threads.
	 4.8.	 Explain the concept of threads in the case of the Clouds operating system.

Problems
	 4.1.	 The use of multithreading improves the overall efficiency and performance of the

execution of an application or program. However, not all programs are suitable for
multithreading. Can you give some examples of programs where a multithreaded solu-
tion fails to improve on the performance of a single-threaded solution? Also give some
examples where the performance improves when multiple threads are used in place of
single threads.

M04_STAL4290_09_GE_C04.indd 218 5/2/17 4:38 PM

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   219

	 4.2.	 Suppose a program has a main routine that calls two sub-routines. The sub-routines
can be executed in parallel. Give two possible approaches to implement this program,
one using threads and the other without.

	 4.3.	 OS/2 from IBM is an obsolete OS for PCs. In OS/2, what is commonly embodied in
the concept of process in other operating systems is split into three separate types
of entities: session, processes, and threads. A session is a collection of one or more
processes associated with a user interface (keyboard, display, and mouse). The session
represents an interactive user application, such as a word processing program or a
spreadsheet. This concept allows the personal computer user to open more than one
application, giving each one or more windows on the screen. The OS must keep track
of which window, and therefore which session, is active, so that keyboard and mouse
input are routed to the appropriate session. At any time, one session is in foreground
mode, with other sessions in background mode. All keyboard and mouse input is
directed to one of the processes of the foreground session, as dictated by the appli-
cations. When a session is in foreground mode, a process performing video output
sends it directly to the hardware video buffer and then to the user’s display. When the
session is moved to the background, the hardware video buffer is saved to a logical
video buffer for that session. While a session is in background, if any of the threads of
any of the processes of that session executes and produces screen output, that output
is directed to the logical video buffer. When the session returns to foreground, the
screen is updated to reflect the current contents of the logical video buffer for the
new foreground session.

There is a way to reduce the number of process-related concepts in OS/2 from
three to two. Eliminate sessions, and associate the user interface (keyboard, mouse, and
display) with processes. Thus, one process at a time is in foreground mode. For further
structuring, processes can be broken up into threads.
a.	 What benefits are lost with this approach?
b.	 If you go ahead with this modification, where do you assign resources (memory,

files, etc.): at the process or thread level?
	 4.4.	 Consider an environment in which there is a one-to-one mapping between user-level

threads and kernel-level threads that allows one or more threads within a process to
issue blocking system calls while other threads continue to run. Explain why this model
can make multithreaded programs run faster than their single-threaded counterparts
on a uniprocessor computer.

	 4.5.	 An application has 20% of code that is inherently serial. Theoretically, what will its
maximum speedup be if it is run on a multicore system with four processors?

	 4.6.	 The OS/390 mainframe operating system is structured around the concepts of address
space and task. Roughly speaking, a single address space corresponds to a single appli-
cation and corresponds more or less to a process in other operating systems. Within
an address space, a number of tasks may be generated and executed concurrently; this
corresponds roughly to the concept of multithreading. Two data structures are key to
managing this task structure. An address space control block (ASCB) contains infor-
mation about an address space needed by OS/390 whether or not that address space
is executing. Information in the ASCB includes dispatching priority, real and virtual
memory allocated to this address space, the number of ready tasks in this address
space, and whether each is swapped out. A task control block (TCB) represents a user
program in execution. It contains information needed for managing a task within an
address space, including processor status information, pointers to programs that are
part of this task, and task execution state. ASCBs are global structures maintained
in system memory, while TCBs are local structures maintained within their address
space. What is the advantage of splitting the control information into global and local
portions?

	 4.7.	 Many current language specifications, such as for C and C+ + , are inadequate for
multithreaded programs. This can have an impact on compilers and the correctness

M04_STAL4290_09_GE_C04.indd 219 5/2/17 4:38 PM

220   Chapter 4 / Threads

of code, as this problem illustrates. Consider the following declarations and function
definition:

int global_positives = 0;

typedef struct list {

 struct list *next;

 double val;

} * list;

void count_positives(list l)

{

 list p;

 for (p = l; p; p = p -> next)

 if (p -> val > 0.0)

 ++global_positives;

}

Now consider the case in which thread A performs

count_positives(<list containing only negative values>);

while thread B performs

++global_positives;

a.	 What does the function do?
b.	 The C language only addresses single-threaded execution. Does the use of two

parallel threads create any problems or potential problems?
	 4.8.	 But some existing optimizing compilers (including gcc, which tends to be relatively

conservative) will “optimize” count_positives to something similar to

void count_positives(list l)

{

 list p;

 register int r;

r = global_positives;

 for (p = l; p; p = p -> next)

 if (p -> val > 0.0) ++r;

 global_positives = r;

}

What problem or potential problem occurs with this compiled version of the program
if threads A and B are executed concurrently?

	 4.9.	 Consider the following code using the POSIX Pthreads API:

thread2.c
#include <pthread.h>

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

int myglobal;

 void *thread_function(void *arg) {

 int i,j;

M04_STAL4290_09_GE_C04.indd 220 5/2/17 4:38 PM

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   221

 for (i=0; i<20; i++) {

 j=myglobal;

 j=j+1;

 printf(“.”);

 fflush(stdout);

 sleep(1);

 myglobal=j;

 }

 return NULL;

}

int main(void) {

 pthread_t mythread;

 int i;

 if (pthread_create(&mythread, NULL, thread_function,

 NULL)) {

 printf(ldquo;error creating thread.”);

 abort();

 }

for (i=0; i<20; i++) {

 myglobal=myglobal+1;

 printf(“o”);

 fflush(stdout);

 sleep(1);

}

if (pthread_join (mythread, NULL)) {

 printf(“error joining thread.”);

abort();

}

printf(“\nmyglobal equals %d\n”,myglobal);

exit(0);

}

In main() we first declare a variable called mythread, which has a type of
pthread_t. This is essentially an ID for a thread. Next, the if statement creates a
thread associated with mythread. The call pthread_create() returns zero on
success and a nonzero value on failure. The third argument of pthread_create()
is the name of a function that the new thread will execute when it starts. When this
thread_function() returns, the thread terminates. Meanwhile, the main pro-
gram itself defines a thread, so there are two threads executing. The pthread_join
function enables the main thread to wait until the new thread completes.
a.	 What does this program accomplish?
b.	 Here is the output from the executed program:

$./thread2

..o.o.o.o.oo.o.o.o.o.o.o.o.o.o..o.o.o.o.o

myglobal equals 21

Is this the output you would expect? If not, what has gone wrong?

M04_STAL4290_09_GE_C04.indd 221 5/2/17 4:38 PM

222   Chapter 4 / Threads

	4.10.	 It is sometimes required that when two threads are running, one thread should auto-
matically preempt the other. The preempted thread can execute only when the other
has run to completion. Implement the stated situation by setting priorities for the
threads; use any programming language of your choice.

	4.11.	 In Solaris 9 and Solaris 10, there is a one-to-one mapping between ULTs and LWPs. In
Solaris 8, a single LWP supports one or more ULTs.
a.	 What is the possible benefit of allowing a many-to-one mapping of ULTs to LWPs?
b.	 In Solaris 8, the thread execution state of a ULT is distinct from that of its LWP.

Explain why.
c.	 Figure 4.18 shows the state transition diagrams for a ULT and its associated LWP in

Solaris 8 and 9. Explain the operation of the two diagrams and their relationships.
	4.12.	 Explain the rationale for the Uninterruptible state in Linux.

Figure 4.18  Solaris User-Level Thread and LWP States

User-level threads
Runnable

Continue

Sleep

Stop

Wakeup

Stop

Stop

D
is

pa
tc

h

Pr
ee

m
pt

Runnable

Lightweight processes

Running

Blocked

Dispatch

Stop

Continue

Time slice
or preempt Stop

Wakeup

Wakeup

Blocking
system

call
Stopped

Stopped

Active

Sleeping

M04_STAL4290_09_GE_C04.indd 222 5/2/17 4:38 PM

223

5.1	 Mutual Exclusion: Software Approaches
Dekker’s Algorithm
Peterson’s Algorithm

5.2	 Principles of Concurrency
A Simple Example
Race Condition
Operating System Concerns
Process Interaction
Requirements for Mutual Exclusion

5.3	 Mutual Exclusion: Hardware Support
Interrupt Disabling
Special Machine Instructions

5.4	 Semaphores
Mutual Exclusion
The Producer/Consumer Problem
Implementation of Semaphores

5.5	 Monitors
Monitor with Signal
Alternate Model of Monitors with Notify and Broadcast

5.6	 Message Passing
Synchronization
Addressing
Message Format
Queueing Discipline
Mutual Exclusion

5.7	 Readers/Writers Problem
Readers Have Priority
Writers Have Priority

5.8	 Summary

5.9	 Key Terms, Review Questions, and Problems

Concurrency:
Mutual Exclusion
and Synchronization

Chapter

M05_STAL4290_09_GE_C05.indd 223 5/2/17 5:19 PM

224   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

•	 Multiprogramming: The management of multiple processes within a uniproces-
sor system

•	 Multiprocessing: The management of multiple processes within a multiprocessor

•	 Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is a
prime example of this type of system.

Fundamental to all of these areas, and fundamental to OS design, is concurrency.
Concurrency encompasses a host of design issues, including communication among
processes, sharing of and competing for resources (such as memory, files, and I/O
access), synchronization of the activities of multiple processes, and allocation of
processor time to processes. We shall see that these issues arise not just in multi-
processing and distributed processing environments, but also in single-processor
multiprogramming systems.

Concurrency arises in three different contexts:

1.	 Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.

2.	 Structured applications: As an extension of the principles of modular design
and structured programming, some applications can be effectively programmed
as a set of concurrent processes.

3.	 Operating system structure: The same structuring advantages apply to systems
programs, and we have seen that operating systems are themselves often imple-
mented as a set of processes or threads.

Because of the importance of this topic, four chapters and an appendix focus on
concurrency-related issues. Chapters 5 and 6 will deal with concurrency in multipro-
gramming and multiprocessing systems. Chapters 16 and 18 will examine concurrency
issues related to distributed processing.

Learning Objectives

After studying this chapter, you should be able to:
•	 Discuss basic concepts related to concurrency, such as race conditions, OS

concerns, and mutual exclusion requirements.
•	 Understand hardware approaches to supporting mutual exclusion.
•	 Define and explain semaphores.
•	 Define and explain monitors.
•	 Explain the readers/writers problem.

M05_STAL4290_09_GE_C05.indd 224 5/2/17 5:19 PM

Concurrency: Mutual Exclusion and Synchronization   225

This chapter begins with an introduction to the concept of concurrency and
the implications of the execution of multiple concurrent processes.1 We find that
the basic requirement for support of concurrent processes is the ability to enforce
mutual exclusion; that is, the ability to exclude all other processes from a course
of action while one process is granted that ability. Section 5.2 covers various
approaches to achieving mutual exclusion. All of these are software solutions that
require the use of a technique known as busy waiting. Next, we will examine some
hardware mechanisms that can support mutual exclusion. Then, we will look at
solutions that do not involve busy waiting and that can be either supported by the
OS or enforced by language compilers. We will examine three approaches: sema-
phores, monitors, and message passing.

Two classic problems in concurrency are used to illustrate the concepts and
compare the approaches presented in this chapter. The producer/consumer problem
will be introduced in Section 5.4 and used as a running example. The chapter closes
with the readers/writers problem.

Our discussion of concurrency will continue in Chapter 6, and we defer a dis-
cussion of the concurrency mechanisms of our example systems until the end of that
chapter. Appendix A covers additional topics on concurrency. Table 5.1 lists some
key terms related to concurrency. A set of animations that illustrate concepts in this
chapter is available at the Companion website for this book.

1 For simplicity, we generally refer to the concurrent execution of processes. In fact, as we have seen in the
preceding chapter, in some systems the fundamental unit of concurrency is a thread rather than a process.

Atomic operation A function or action implemented as a sequence of one or more instructions that
appears to be indivisible; that is, no other process can see an intermediate state or
interrupt the operation. The sequence of instruction is guaranteed to execute as
a group, or not execute at all, having no visible effect on system state. Atomicity
guarantees isolation from concurrent processes.

Critical section A section of code within a process that requires access to shared resources, and that
must not be executed while another process is in a corresponding section of code.

Deadlock A situation in which two or more processes are unable to proceed because each is
waiting for one of the others to do something.

Livelock A situation in which two or more processes continuously change their states in
response to changes in the other process(es) without doing any useful work.

Mutual exclusion The requirement that when one process is in a critical section that accesses shared
resources, no other process may be in a critical section that accesses any of those
shared resources.

Race condition A situation in which multiple threads or processes read and write a shared data item,
and the final result depends on the relative timing of their execution.

Starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen.

Table 5.1  Some Key Terms Related to Concurrency

M05_STAL4290_09_GE_C05.indd 225 5/2/17 5:19 PM

226   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

	 5.1	 MUTUAL EXCLUSION: SOFTWARE APPROACHES

Software approaches can be implemented for concurrent processes that execute on
a single-processor or a multiprocessor machine with shared main memory. These
approaches usually assume elementary mutual exclusion at the memory access level
([LAMP91], but see Problem 5.3). That is, simultaneous accesses (reading and/or
writing) to the same location in main memory are serialized by some sort of memory
arbiter, although the order of access granting is not specified ahead of time. Beyond
this, no support in the hardware, operating system, or programming language is
assumed.

Dekker’s Algorithm

Dijkstra [DIJK65] reported an algorithm for mutual exclusion for two processes,
designed by the Dutch mathematician Dekker. Following Dijkstra, we develop the
solution in stages. This approach has the advantage of illustrating many of the com-
mon bugs encountered in developing concurrent programs.

First Attempt  As mentioned earlier, any attempt at mutual exclusion must rely
on some fundamental exclusion mechanism in the hardware. The most common of
these is the constraint that only one access to a memory location can be made at a
time. Using this constraint, we reserve a global memory location labeled turn. A
process (P0 or P1) wishing to execute its critical section first examines the contents
of turn. If the value of turn is equal to the number of the process, then the process
may proceed to its critical section. Otherwise, it is forced to wait. Our waiting process
repeatedly reads the value of turn until it is allowed to enter its critical section. This
procedure is known as busy waiting, or spin waiting, because the thwarted process
can do nothing productive until it gets permission to enter its critical section. Instead,
it must linger and periodically check the variable; thus it consumes processor time
(busy) while waiting for its chance.

After a process has gained access to its critical section, and after it has com-
pleted that section, it must update the value of turn to that of the other process.

In formal terms, there is a shared global variable:

int turn = 0;

Figure 5.1a shows the program for the two processes. This solution guarantees
the mutual exclusion property but has two drawbacks. First, processes must strictly
alternate in their use of their critical section; therefore, the pace of execution is dic-
tated by the slower of the two processes. If P0 uses its critical section only once per
hour, but P1 would like to use its critical section at a rate of 1,000 times per hour, P1
is forced to adopt the pace of P0. A much more serious problem is that if one process
fails, the other process is permanently blocked. This is true whether a process fails in
its critical section or outside of it.

The foregoing construction is that of a coroutine. Coroutines are designed to
be able to pass execution control back and forth between themselves (see Problem

M05_STAL4290_09_GE_C05.indd 226 5/2/17 5:19 PM

5.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES   227

VideoNote

Figure 5.1  Mutual Exclusion Attempts

   /* PROCESS 0 /*	    /* PROCESS 1 *
. 	 .
. 	 .
while (turn != 0)	 while (turn != 1)
   /* do nothing */ ;	   /* do nothing */;
/* critical section*/;	 /* critical section*/;
turn = 1;	 turn = 0;
.	 .

   /* PROCESS 0 *	    /* PROCESS 1 *
.	 .
.	 .
flag[0] = true;	 flag[1] = true;
while (flag[1]) {	 while (flag[0]) {
   flag[0] = false;	   flag[1] = false;
   /*delay */;	   /*delay */;
   flag[0] = true;	   flag[1] = true;
} 	 }
/*critical section*/;	 /* critical section*/;
flag[0] = false;	 flag[1] = false;
.

   /* PROCESS 0 *	    /* PROCESS 1 *
.	 .
.	 .
flag[0] = true;	 flag[1] = true;
while (flag[1])	 while (flag[0])
   /* do nothing */;	   /* do nothing */;
/* critical section*/;	 /* critical section*/;
flag[0] = false;	 flag[1] = false;
.	 .

   /* PROCESS 0 *	    /* PROCESS 1 *
.	 .
.	 .
while (flag[1])	 while (flag[0])
   /* do nothing */;	   /* do nothing */;
flag[0] = true;	 flag[1] = true;
/*critical section*/;	 /* critical section*/;
flag[0] = false;	 flag[1] = false;
.	 .

(a) First attempt

(b) Second attempt

(c) Third attempt

(d) Fourth attempt

M05_STAL4290_09_GE_C05.indd 227 5/2/17 5:19 PM

228   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

5.5). While this is a useful structuring technique for a single process, it is inad-
equate to support concurrent processing.

Second Attempt  The flaw in the first attempt is that it stores the name of the
process that may enter its critical section, when in fact we need state information
about both processes. In effect, each process should have its own key to the critical
section so that if one fails, the other can still access its critical section. To meet this
requirement a Boolean vector flag is defined, with flag[0] corresponding to P0
and flag[1] corresponding to P1. Each process may examine the other’s flag but
may not alter it. When a process wishes to enter its critical section, it periodically
checks the other’s flag until that flag has the value false, indicating that the other
process is not in its critical section. The checking process immediately sets its own
flag to true and proceeds to its critical section. When it leaves its critical section, it
sets its flag to false.

The shared global variable2 now is

enum   boolean (false = 0; true = 1);
boolean flag[2] = 0, 0

Figure 5.1b shows the algorithm. If one process fails outside the critical section,
including the flag-setting code, then the other process is not blocked. In fact, the other
process can enter its critical section as often as it likes, because the flag of the
other process is always false. However, if a process fails inside its critical section
or after setting its flag to true just before entering its critical section, then the other
process is permanently blocked.

This solution is, if anything, worse than the first attempt because it does not
even guarantee mutual exclusion. Consider the following sequence:

P0 executes the while statement and finds flag[1] set to false

Pl executes the while statement and finds flag[0] set to false

P0 sets flag[0] to true and enters its critical section

Pl sets flag[1] to true and enters its critical section

Because both processes are now in their critical sections, the program is incor-
rect. The problem is that the proposed solution is not independent of relative process
execution speeds.

Third Attempt  Because a process can change its state after the other process
has checked it but before the other process can enter its critical section, the second
attempt failed. Perhaps we can fix this problem with a simple interchange of two
statements, as shown in Figure 5.1c.

As before, if one process fails inside its critical section, including the flag-setting
code controlling the critical section, then the other process is blocked, and if a process
fails outside its critical section, then the other process is not blocked.

2The enum declaration is used here to declare a data type (boolean) and to assign its values.

M05_STAL4290_09_GE_C05.indd 228 5/2/17 5:19 PM

5.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES   229

Next, let us check that mutual exclusion is guaranteed, using the point of view
of process P0. Once P0 has set flag[0] to true, Pl cannot enter its critical section
until after P0 has entered and left its critical section. It could be that Pl is already in
its critical section when P0 sets its flag. In that case, P0 will be blocked by the while
statement until Pl has left its critical section. The same reasoning applies from the
point of view of Pl.

This guarantees mutual exclusion, but creates yet another problem. If both
processes set their flags to true before either has executed the while statement,
then each will think that the other has entered its critical section, causing
deadlock.

Fourth Attempt  In the third attempt, a process sets its state without knowing the
state of the other process. Deadlock occurs because each process can insist on its right
to enter its critical section; there is no opportunity to back off from this position. We
can try to fix this in a way that makes each process more deferential: Each process
sets its flag to indicate its desire to enter its critical section, but is prepared to reset
the flag to defer to the other process, as shown in Figure 5.1d.

This is close to a correct solution, but is still flawed. Mutual exclusion is still
guaranteed, using similar reasoning to that followed in the discussion of the third
attempt. However, consider the following sequence of events:

P0 sets flag[0] to true.

Pl sets flag[1] to true.

P0 checks flag[1].

Pl checks flag[0].

P0 sets flag[0] to false.

Pl sets flag[1] to false.

P0 sets flag[0] to true.

Pl sets flag[1] to true.

This sequence could be extended indefinitely, and neither process could enter
its critical section. Strictly speaking, this is not deadlock, because any alteration in the
relative speed of the two processes will break this cycle and allow one to enter the
critical section. This condition is referred to as livelock. Recall that deadlock occurs
when a set of processes wishes to enter their critical sections, but no process can suc-
ceed. With livelock, there are possible sequences of executions that succeed, but it is
also possible to describe one or more execution sequences in which no process ever
enters its critical section.

Although the scenario just described is not likely to be sustained for very long,
it is nevertheless a possible scenario. Thus, we reject the fourth attempt.

A Correct Solution  We need to be able to observe the state of both processes,
which is provided by the array variable flag. But, as the fourth attempt shows, this is
not enough. We must impose an order on the activities of the two processes to avoid
the problem of ”mutual courtesy” that we have just observed. The variable turn

M05_STAL4290_09_GE_C05.indd 229 5/2/17 5:19 PM

230   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

from the first attempt can be used for this purpose; in this case the variable indicates
which process has the right to insist on entering its critical region.

We can describe this solution, referred to as Dekker’s algorithm, as follows.
When P0 wants to enter its critical section, it sets its flag to true. It then checks the
flag of Pl. If that is false, P0 may immediately enter its critical section. Otherwise,
P0 consults turn. If P0 finds that turn = 0, then it knows that it is its turn to insist
and periodically checks Pl’s flag. Pl will at some point note that it is its turn to defer
and set its to flag false, allowing P0 to proceed. After P0 has used its critical section,
it sets its flag to false to free the critical section, and sets turn to l to transfer the
right to insist to Pl.

VideoNote Figure 5.2  Dekker’s Algorithm

boolean flag [2];
int turn;
void P0()
{
 while (true) {
 flag [0] = true;
 while (flag [1]) {
 if (t�urn == 1)

flag [0] = false;
  while (turn == 1) /* do nothing */;
 flag [0] = true;
 }
 }
 /* critical section */;
 turn = 1;
 flag [0] = false;
 /* remainder */;
 }
}
void P1()
{
 while (true) {
 flag [1] = true;
 while (flag [0]) {
 if (turn == 0) {
 flag [1] = false;
 while (turn == 0) /* do nothing */;
 flag [1] = true;
 }
 }
 /* critical section */;
 turn = 0;
 flag [1] = false;
 /* remainder */;
 }
}
void main ()
{
 flag [0] = false;
 flag [1] = false;
 turn = 1;
 parbegin (P0, P1);
}

M05_STAL4290_09_GE_C05.indd 230 5/2/17 5:19 PM

5.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES   231

VideoNote Figure 5.3  Peterson’s Algorithm for Two Processes

boolean flag [2];
int turn;
void P0()
{
 while (true) {
 flag [0] = true;
 turn = 1;
  while (flag [1] && turn == 1) /* do nothing */;
 /* critical section */;
 flag [0] = false;
 /* remainder */;
 }
}
 void P1()
{
 while (true) {
 flag [1] = true;
 turn = 0;
 while (flag [0] && turn == 0) /* do nothing */;
 /* critical section */;
 flag [1] = false;
 /* remainder */
 }
}
void main()
{
 flag [0] = false;
 flag [1] = false;
 parbegin (P0, P1);
}

Figure 5.2 provides a specification of Dekker’s algorithm. The construct
parbegin (Pl, P2, . . . , Pn) means the following: suspend the execution of the main
program; initiate concurrent execution of procedures Pl, P2, . . . , Pn; when all of Pl,
P2, . . . , Pn have terminated, resume the main program. A verification of Dekker’s
algorithm is left as an exercise (see Problem 5.l).

Peterson’s Algorithm

Dekker’s algorithm solves the mutual exclusion problem, but with a rather complex
program that is difficult to follow and whose correctness is tricky to prove. Peterson
[PETE8l] has provided a simple, elegant solution. As before, the global array variable
flag indicates the position of each process with respect to mutual exclusion, and
the global variable turn resolves simultaneity conflicts. The algorithm is presented
in Figure 5.3.

That mutual exclusion is preserved is easily shown. Consider process P0.
Once it has set flag[0] to true, Pl cannot enter its critical section. If Pl already
is in its critical section, then flag[1] = true and P0 is blocked from entering its
critical section. On the other hand, mutual blocking is prevented. Suppose that P0
is blocked in its while loop. This means that flag[1] is true and turn = l. P0 can

M05_STAL4290_09_GE_C05.indd 231 5/2/17 5:19 PM

232   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

enter its critical section when either flag[1] becomes false or turn becomes 0.
Now consider three exhaustive cases:

1.	 Pl has no interest in its critical section. This case is impossible, because it implies
flag[1] = false.

2.	 Pl is waiting for its critical section. This case is also impossible, because if
turn = l, Pl is able to enter its critical section.

3.	 Pl is using its critical section repeatedly and therefore monopolizing access to it.
This cannot happen, because Pl is obliged to give P0 an opportunity by setting
turn to 0 before each attempt to enter its critical section.

Thus, we have a simple solution to the mutual exclusion problem for two processes.
Furthermore, Peterson’s algorithm is easily generalized to the case of processes
[HOFR90].

	 5.2	 PRINCIPLES OF CONCURRENCY

In a single-processor multiprogramming system, processes are interleaved in time
to yield the appearance of simultaneous execution (see Figure 2.12a). Even though
actual parallel processing is not achieved, and even though there is a certain amount
of overhead involved in switching back and forth between processes, interleaved
execution provides major benefits in processing efficiency and in program structur-
ing. In a multiprocessor system, it is possible not only to interleave the execution of
multiple processes, but also to overlap them (see Figure 2.12b).

At first glance, it may seem that interleaving and overlapping represent funda-
mentally different modes of execution and present different problems. In fact, both
techniques can be viewed as examples of concurrent processing, and both present
the same problems. In the case of a uniprocessor, the problems stem from a basic
characteristic of multiprogramming systems: The relative speed of execution of pro-
cesses cannot be predicted. It depends on the activities of other processes, the way in
which the OS handles interrupts, and the scheduling policies of the OS. The following
difficulties arise:

1.	 The sharing of global resources is fraught with peril. For example, if two pro-
cesses both make use of the same global variable and both perform reads and
writes on that variable, then the order in which the various reads and writes
are executed is critical. An example of this problem is shown in the following
subsection.

2.	 It is difficult for the OS to optimally manage the allocation of resources. For
example, process A may request use of, and be granted control of, a particular
I/O channel, then be suspended before using that channel. It may be undesirable
for the OS simply to lock the channel and prevent its use by other processes;
indeed this may lead to a deadlock condition, as will be described in Chapter 6.

3.	 It becomes very difficult to locate a programming error because results are typi-
cally not deterministic and reproducible (e.g., see [LEBL87, CARR89, SHEN02]
for a discussion of this point).

M05_STAL4290_09_GE_C05.indd 232 5/2/17 5:19 PM

5.2 / PRINCIPLES OF CONCURRENCY   233

All of the foregoing difficulties present themselves in a multiprocessor system
as well, because here too the relative speed of execution of processes is unpredictable.
A multiprocessor system must also deal with problems arising from the simultane-
ous execution of multiple processes. Fundamentally, however, the problems are the
same as those for uniprocessor systems. This should become clear as the discussion
proceeds.

A Simple Example

Consider the following procedure:

void echo()
{
  chin = getchar();
  chout = chin;
  putchar(chout);
}

This procedure shows the essential elements of a program that will provide a char-
acter echo procedure; input is obtained from a keyboard one keystroke at a time.
Each input character is stored in variable chin. The character is then transferred to
variable chout and sent to the display. Any program can call this procedure repeat-
edly to accept user input and display it on the user’s screen.

Now consider that we have a single-processor multiprogramming system sup-
porting a single user. The user can jump from one application to another, and each
application uses the same keyboard for input and the same screen for output. Because
each application needs to use the procedure echo, it makes sense for it to be a shared
procedure that is loaded into a portion of memory global to all applications. Thus,
only a single copy of the echo procedure is used, saving space.

The sharing of main memory among processes is useful to permit efficient and
close interaction among processes. However, such sharing can lead to problems. Con-
sider the following sequence:

1.	 Process P1 invokes the echo procedure and is interrupted immediately after
getchar returns its value and stores it in chin. At this point, the most recently
entered character, x, is stored in variable chin.

2.	 Process P2 is activated and invokes the echo procedure, which runs to conclu-
sion, inputting and then displaying a single character, y, on the screen.

3.	 Process P1 is resumed. By this time, the value x has been overwritten in chin
and therefore lost. Instead, chin contains y, which is transferred to chout and
displayed.

Thus, the first character is lost and the second character is displayed twice.
The essence of this problem is the shared global variable, chin. Multiple processes
have access to this variable. If one process updates the global variable and is then
interrupted, another process may alter the variable before the first process can use
its value. Suppose, however, that we permit only one process at a time to be in that
procedure. Then the foregoing sequence would result in the following:

M05_STAL4290_09_GE_C05.indd 233 5/2/17 5:19 PM

234   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

1.	 Process P1 invokes the echo procedure and is interrupted immediately after
the conclusion of the input function. At this point, the most recently entered
character, x, is stored in variable chin.

2.	 Process P2 is activated and invokes the echo procedure. However, because P1
is still inside the echo procedure, although currently suspended, P2 is blocked
from entering the procedure. Therefore, P2 is suspended awaiting the availabil-
ity of the echo procedure.

3.	 At some later time, process P1 is resumed and completes execution of echo.
The proper character, x, is displayed.

4.	 When P1 exits echo, this removes the block on P2. When P2 is later resumed,
the echo procedure is successfully invoked.

This example shows that it is necessary to protect shared global variables (and
other shared global resources) and the only way to do that is to control the code that
accesses the variable. If we impose the discipline that only one process at a time may
enter echo, and that once in echo the procedure must run to completion before it
is available for another process, then the type of error just discussed will not occur.
How that discipline may be imposed is a major topic of this chapter.

This problem was stated with the assumption that there was a single-processor,
multiprogramming OS. The example demonstrates that the problems of concurrency
occur even when there is a single processor. In a multiprocessor system, the same
problems of protected shared resources arise, and the same solution works. First,
suppose there is no mechanism for controlling access to the shared global variable:

1.	 Processes P1 and P2 are both executing, each on a separate processor. Both
processes invoke the echo procedure.

2.	 The following events occur; events on the same line take place in parallel:

Process P1 Process P2

• •

chin = getchar(); •

• chin = getchar();

chout = chin; chout = chin;

putchar(chout); •

• putchar(chout);

• •

The result is that the character input to P1 is lost before being displayed, and the
character input to P2 is displayed by both P1 and P2. Again, let us add the capability
of enforcing the discipline that only one process at a time may be in echo. Then the
following sequence occurs:

1.	 Processes P1 and P2 are both executing, each on a separate processor. P1
invokes the echo procedure.

2.	 While P1 is inside the echo procedure, P2 invokes echo. Because P1 is still
inside the echo procedure (whether P1 is suspended or executing), P2 is

M05_STAL4290_09_GE_C05.indd 234 5/2/17 5:19 PM

5.2 / PRINCIPLES OF CONCURRENCY   235

blocked from entering the procedure. Therefore, P2 is suspended awaiting the
availability of the echo procedure.

3.	 At a later time, process P1 completes execution of echo, exits that procedure,
and continues executing. Immediately upon the exit of P1 from echo, P2 is
resumed and begins executing echo.

In the case of a uniprocessor system, the reason we have a problem is that an
interrupt can stop instruction execution anywhere in a process. In the case of a mul-
tiprocessor system, we have that same condition and, in addition, a problem can be
caused because two processes may be executing simultaneously and both trying to
access the same global variable. However, the solution to both types of problem is
the same: control access to the shared resource.

Race Condition

A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in the
multiple processes. Let us consider two simple examples.

As a first example, suppose two processes, P1 and P2, share the global variable
a. At some point in its execution, P1 updates a to the value 1, and at some point in
its execution, P2 updates a to the value 2. Thus, the two tasks are in a race to write
variable a. In this example, the “loser” of the race (the process that updates last)
determines the final value of a.

For our second example, consider two processes, P3 and P4, that share global
variables b and c, with initial values b = 1 and c = 2. At some point in its execution,
P3 executes the assignment b = b + c, and at some point in its execution, P4 executes
the assignment c = b + c. Note the two processes update different variables. However,
the final values of the two variables depend on the order in which the two processes
execute these two assignments. If P3 executes its assignment statement first, then the
final values are b = 3 and c = 5. If P4 executes its assignment statement first, then
the final values are b = 4 and c = 3.

Appendix A includes a discussion of race conditions using semaphores as an
example.

Operating System Concerns

What design and management issues are raised by the existence of concurrency? We
can list the following concerns:

1.	 The OS must be able to keep track of the various processes. This is done with
the use of process control blocks and was described in Chapter 4.

2.	 The OS must allocate and deallocate various resources for each active process.
At times, multiple processes want access to the same resource. These resources
include

•	 Processor time: This is the scheduling function, to be discussed in Part Four.

•	 Memory: Most operating systems use a virtual memory scheme. The topic
will be addressed in Part Three.

M05_STAL4290_09_GE_C05.indd 235 5/2/17 5:19 PM

236   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

•	 Files: To be discussed in Chapter 12

•	 I/O devices: To be discussed in Chapter 11

3.	 The OS must protect the data and physical resources of each process against
unintended interference by other processes. This involves techniques that relate
to memory, files, and I/O devices. A general treatment of protection found in
Part Seven.

4.	 The functioning of a process, and the output it produces, must be independent
of the speed at which its execution is carried out relative to the speed of other
concurrent processes. This is the subject of this chapter.

To understand how the issue of speed independence can be addressed, we need
to look at the ways in which processes can interact.

Process Interaction

We can classify the ways in which processes interact on the basis of the degree to
which they are aware of each other’s existence. Table 5.2 lists three possible degrees
of awareness and the consequences of each:

•	 Processes unaware of each other: These are independent processes that are not
intended to work together. The best example of this situation is the multipro-
gramming of multiple independent processes. These can either be batch jobs
or interactive sessions or a mixture. Although the processes are not working
together, the OS needs to be concerned about competition for resources. For
example, two independent applications may both want to access the same disk
or file or printer. The OS must regulate these accesses.

Degree of Awareness Relationship

Influence that One
Process Has on the
Other

Potential Control
Problems

Processes unaware of
each other

Competition •	Results of one process
independent of the action
of others

•	Timing of process may be
affected

•	Mutual exclusion
•	Deadlock (renewable

resource)
•	Starvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by
sharing

•	Results of one process
may depend on infor
mation obtained from
others

•	Timing of process may be
affected

•	Mutual exclusion
•	Deadlock (renewable

resource)
•	Starvation
•	Data coherence

Processes directly aware
of each other (have
communication
primitives available
to them)

Cooperation by
communication

•	Results of one process
may depend on infor
mation obtained from
others

•	Timing of process may be
affected

•	Deadlock (consumable
resource)

•	Starvation

Table 5.2  Process Interaction

M05_STAL4290_09_GE_C05.indd 236 5/2/17 5:19 PM

5.2 / PRINCIPLES OF CONCURRENCY   237

•	 Processes indirectly aware of each other: These are processes that are not neces-
sarily aware of each other by their respective process IDs but that share access
to some object, such as an I/O buffer. Such processes exhibit cooperation in
sharing the common object.

•	 Processes directly aware of each other: These are processes that are able to
communicate with each other by process ID and that are designed to work
jointly on some activity. Again, such processes exhibit cooperation.

Conditions will not always be as clear-cut as suggested in Table 5.2. Rather, sev-
eral processes may exhibit aspects of both competition and cooperation. Neverthe-
less, it is productive to examine each of the three items in the preceding list separately
and determine their implications for the OS.

Competition among Processes for Resources  Concurrent processes come into
conflict with each other when they are competing for the use of the same resource. In
its pure form, we can describe the situation as follows. Two or more processes need
to access a resource during the course of their execution. Each process is unaware
of the existence of other processes, and each is to be unaffected by the execution of
the other processes. It follows from this each process should leave the state of any
resource that it uses unaffected. Examples of resources include I/O devices, memory,
processor time, and the clock.

There is no exchange of information between the competing processes. How-
ever, the execution of one process may affect the behavior of competing processes.
In particular, if two processes both wish access to a single resource, then one process
will be allocated that resource by the OS, and the other will have to wait. There-
fore, the process that is denied access will be slowed down. In an extreme case, the
blocked process may never get access to the resource, and hence will never terminate
successfully.

In the case of competing processes three control problems must be faced. First
is the need for mutual exclusion. Suppose two or more processes require access to a
single nonsharable resource, such as a printer. During the course of execution, each
process will be sending commands to the I/O device, receiving status information,
sending data, and/or receiving data. We will refer to such a resource as a critical
resource, and the portion of the program that uses it as a critical section of the pro-
gram. It is important that only one program at a time be allowed in its critical section.
We cannot simply rely on the OS to understand and enforce this restriction because
the detailed requirements may not be obvious. In the case of the printer, for example,
we want any individual process to have control of the printer while it prints an entire
file. Otherwise, lines from competing processes will be interleaved.

The enforcement of mutual exclusion creates two additional control problems.
One is that of deadlock. For example, consider two processes, P1 and P2, and two
resources, R1 and R2. Suppose that each process needs access to both resources to
perform part of its function. Then it is possible to have the following situation: the OS
assigns R1 to P2, and R2 to P1. Each process is waiting for one of the two resources.
Neither will release the resource that it already owns until it has acquired the other
resource and performed the function requiring both resources. The two processes
are deadlocked.

M05_STAL4290_09_GE_C05.indd 237 5/2/17 5:19 PM

238   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

A final control problem is starvation. Suppose three processes (P1, P2, P3) each
require periodic access to resource R. Consider the situation in which P1 is in posses-
sion of the resource, and both P2 and P3 are delayed, waiting for that resource. When
P1 exits its critical section, either P2 or P3 should be allowed access to R. Assume
the OS grants access to P3, and P1 again requires access before P3 completes its
critical section. If the OS grants access to P1 after P3 has finished, and subsequently
alternately grants access to P1 and P3, then P2 may indefinitely be denied access to
the resource, even though there is no deadlock situation.

Control of competition inevitably involves the OS because the OS allocates
resources. In addition, the processes themselves will need to be able to express the
requirement for mutual exclusion in some fashion, such as locking a resource prior to
its use. Any solution will involve some support from the OS, such as the provision of the
locking facility. Figure 5.4 illustrates the mutual exclusion mechanism in abstract terms.
There are n processes to be executed concurrently. Each process includes (1) a criti-
cal section that operates on some resource Ra, and (2) additional code preceding and
following the critical section that does not involve access to Ra. Because all processes
access the same resource Ra, it is desired that only one process at a time be in its criti-
cal section. To enforce mutual exclusion, two functions are provided: entercritical
and exitcritical. Each function takes as an argument the name of the resource
that is the subject of competition. Any process that attempts to enter its critical section
while another process is in its critical section, for the same resource, is made to wait.

It remains to examine specific mechanisms for providing the functions enter-
critical and exitcritical. For the moment, we defer this issue while we con-
sider the other cases of process interaction.

Cooperation among Processes by Sharing  The case of cooperation by sharing
covers processes that interact with other processes without being explicitly aware of
them. For example, multiple processes may have access to shared variables or to shared
files or databases. Processes may use and update the shared data without reference to
other processes, but know that other processes may have access to the same data. Thus
the processes must cooperate to ensure that the data they share are properly managed.
The control mechanisms must ensure the integrity of the shared data.

Because data are held on resources (devices, memory), the control problems
of mutual exclusion, deadlock, and starvation are again present. The only difference
is that data items may be accessed in two different modes, reading and writing, and
only writing operations must be mutually exclusive.

VideoNote Figure 5.4  Illustration of Mutual Exclusion

/* PROCESS 1 * void P1
{
  while (true) {
   /* preceding code */;
   entercritical (Ra);
   /* critical section */;
   exitcritical (Ra);
   /* following code */;
  }
}

/* PROCESS n * void Pn
{
  while (true) {
   /* preceding code */;
   entercritical (Ra);
   /* critical section */;
   exitcritical (Ra);
   /* following code */;
  }
}

/* PROCESS 2 * void P2
{
  while (true) {
   /* preceding code */;
   entercritical (Ra);
   /* critical section */;
   exitcritical (Ra);
   /* following code */;
  }
}

M05_STAL4290_09_GE_C05.indd 238 5/2/17 5:19 PM

5.2 / PRINCIPLES OF CONCURRENCY   239

However, over and above these problems, a new requirement is introduced: that
of data coherence. As a simple example, consider a bookkeeping application in which
various data items may be updated. Suppose two items of data a and b are to be main-
tained in the relationship a = b. That is, any program that updates one value must
also update the other to maintain the relationship. Now consider the following two
processes:

P1:
     a = a + 1;
     b = b + 1;
P2:
     b = 2 * b;
     a = 2 * a;

If the state is initially consistent, each process taken separately will leave the
shared data in a consistent state. Now consider the following concurrent execution
sequence, in which the two processes respect mutual exclusion on each individual
data item (a and b):

a = a + 1;
b = 2 * b;
b = b + 1;
a = 2 * a;

At the end of this execution sequence, the condition a = b no longer holds. For
example, if we start with a = b = 1, at the end of this execution sequence we have
a = 4 and b = 3. The problem can be avoided by declaring the entire sequence in
each process to be a critical section.

Thus, we see that the concept of critical section is important in the case of
cooperation by sharing. The same abstract functions of entercritical and
exitcritical discussed earlier (see Figure 5.4) can be used here. In this case,
the argument for the functions could be a variable, a file, or any other shared object.
Furthermore, if critical sections are used to provide data integrity, then there may be
no specific resource or variable that can be identified as an argument. In that case,
we can think of the argument as being an identifier that is shared among concurrent
processes to identify critical sections that must be mutually exclusive.

Cooperation among Processes by Communication  In the first two cases that
we have discussed, each process has its own isolated environment that does not
include the other processes. The interactions among processes are indirect. In both
cases, there is a sharing. In the case of competition, they are sharing resources without
being aware of the other processes. In the second case, they are sharing values, and
although each process is not explicitly aware of the other processes, it is aware of
the need to maintain data integrity. When processes cooperate by communication,
however, the various processes participate in a common effort that links all of the
processes. The communication provides a way to synchronize, or coordinate, the
various activities.

M05_STAL4290_09_GE_C05.indd 239 5/2/17 5:19 PM

240   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Typically, communication can be characterized as consisting of messages of
some sort. Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel.

Because nothing is shared between processes in the act of passing messages,
mutual exclusion is not a control requirement for this sort of cooperation. However,
the problems of deadlock and starvation are still present. As an example of deadlock,
two processes may be blocked, each waiting for a communication from the other. As
an example of starvation, consider three processes, P1, P2, and P3, that exhibit the
following behavior. P1 is repeatedly attempting to communicate with either P2 or
P3, and P2 and P3 are both attempting to communicate with P1. A sequence could
arise in which P1 and P2 exchange information repeatedly, while P3 is blocked wait-
ing for a communication from P1. There is no deadlock, because P1 remains active,
but P3 is starved.

Requirements for Mutual Exclusion

Any facility or capability that is to provide support for mutual exclusion should meet
the following requirements:

1.	 Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

2.	 A process that halts in its noncritical section must do so without interfering
with other processes.

3.	 It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation.

4.	 When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

5.	 No assumptions are made about relative process speeds or number of processors.

6.	 A process remains inside its critical section for a finite time only.

There are a number of ways in which the requirements for mutual exclusion can
be satisfied. One approach is to leave the responsibility with the processes that wish to
execute concurrently. Processes, whether they are system programs or application pro-
grams, would be required to coordinate with one another to enforce mutual exclusion,
with no support from the programming language or the OS. We can refer to these as
software approaches. Although this approach is prone to high processing overhead and
bugs, it is nevertheless useful to examine such approaches to gain a better understand-
ing of the complexity of concurrent processing. This topic was covered in the preceding
section. A second approach involves the use of special-purpose machine instructions.
These have the advantage of reducing overhead but nevertheless will be shown to
be unattractive as a general-purpose solution; they will be covered in Section 5.3. A
third approach is to provide some level of support within the OS or a programming
language. Three of the most important such approaches will be examined in Sections
5.4 through 5.6.

M05_STAL4290_09_GE_C05.indd 240 5/2/17 5:19 PM

5.3 / MUTUAL EXCLUSION: HARDWARE SUPPORT   241

	 5.3	 MUTUAL EXCLUSION: HARDWARE SUPPORT

In this section, we look at several interesting hardware approaches to mutual exclusion.

Interrupt Disabling

In a uniprocessor system, concurrent processes cannot have overlapped execution;
they can only be interleaved. Furthermore, a process will continue to run until it
invokes an OS service or until it is interrupted. Therefore, to guarantee mutual exclu-
sion, it is sufficient to prevent a process from being interrupted. This capability can
be provided in the form of primitives defined by the OS kernel for disabling and
enabling interrupts. A process can then enforce mutual exclusion in the following
way (compare to Figure 5.4):

while (true) {
   /* disable interrupts */;
   /* critical section */;
   /* enable interrupts */;
   /* remainder */;
}

Because the critical section cannot be interrupted, mutual exclusion is guaran-
teed. The price of this approach, however, is high. The efficiency of execution could
be noticeably degraded because the processor is limited in its ability to interleave
processes. Another problem is that this approach will not work in a multiprocessor
architecture. When the computer includes more than one processor, it is possible (and
typical) for more than one process to be executing at a time. In this case, disabled
interrupts do not guarantee mutual exclusion.

Special Machine Instructions

In a multiprocessor configuration, several processors share access to a common
main memory. In this case, there is not a master/slave relationship; rather the proces-
sors behave independently in a peer relationship. There is no interrupt mechanism
between processors on which mutual exclusion can be based.

At the hardware level, as was mentioned, access to a memory location excludes
any other access to that same location. With this as a foundation, processor designers
have proposed several machine instructions that carry out two actions atomically,3
such as reading and writing or reading and testing, of a single memory location with
one instruction fetch cycle. During execution of the instruction, access to the memory
location is blocked for any other instruction referencing that location.

In this section, we look at two of the most commonly implemented instructions.
Others are described in [RAYN86] and [STON93].

3The term atomic means the instruction is treated as a single step that cannot be interrupted.

M05_STAL4290_09_GE_C05.indd 241 5/2/17 5:19 PM

242   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Compare&Swap Instruction  The compare&swap instruction, also called a
compare and exchange instruction, can be defined as follows [HERL90]:

int compare_and_swap (int *word, int testval, int newval)
{
    int oldval;
    oldval = *word
    if (oldval == testval) *word = newval;
    return oldval;
}

This version of the instruction checks a memory location (*word) against a test
value (testval). If the memory location’s current value is testval, it is replaced
with newval; otherwise, it is left unchanged. The old memory value is always
returned; thus, the memory location has been updated if the returned value is the
same as the test value. This atomic instruction therefore has two parts: A compare is
made between a memory value and a test value; if the values are the same, a swap
occurs. The entire compare&swap function is carried out atomically—that is, it is
not subject to interruption.

Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise. Some version of this instruction is available on nearly all
processor families (x86, IA64, sparc, IBM z series, etc.), and most operating systems
use this instruction for support of concurrency.

Figure 5.5a shows a mutual exclusion protocol based on the use of this instruc-
tion.4 A shared variable bolt is initialized to 0. The only process that may enter its

4 The construct parbegin (P1, P2, . . . , Pn) means the following: suspend the execution of the
main program; initiate concurrent execution of procedures P1, P2, . . . , Pn; when all of P1, P2, . . . , Pn have
terminated, resume the main program.

Figure 5.5  Hardware Support for Mutual ExclusionVideoNote

/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int i)
{
   while (true) {
    while (compare_and_swap(bolt, 0, 1) == 1)
      /* do nothing */;
    /* critical section */;
    bolt = 0;
    /* remainder */;
   }
}
void main() {
   bolt = 0;
   parbegin (P(1), P(2), ... ,P(n));
}

/* program mutualexclusion */
int const n = /* number of processes */;
int bolt;
void P(int i)
{
   while (true)
     int keyi = 1;
     do exchange (&keyi, &bolt)
     while (keyi != 0);
     /* critical section */;
     bolt = 0;
     /* remainder */;
   }
}
void main() {
   bolt = 0;
   parbegin (P(1), P(2), ..., P(n));
}

(a) Compare and swap instruction (b) Exchange instruction

M05_STAL4290_09_GE_C05.indd 242 5/2/17 5:19 PM

5.3 / MUTUAL EXCLUSION: HARDWARE SUPPORT   243

critical section is one that finds bolt equal to 0. All other processes attempting to
enter their critical section go into a busy waiting mode. The term busy waiting, or spin
waiting, refers to a technique in which a process can do nothing until it gets permis-
sion to enter its critical section, but continues to execute an instruction or set of
instructions that tests the appropriate variable to gain entrance. When a process
leaves its critical section, it resets bolt to 0; at this point one and only one of the wait-
ing processes is granted access to its critical section. The choice of process depends
on which process happens to execute the compare&swap instruction next.

Exchange Instruction  The exchange instruction can be defined as follows:

void exchange (int *register, int *memory)
{
   int temp;
   temp = *memory;
   *memory = *register;
   *register = temp;
}

The instruction exchanges the contents of a register with that of a memory location.
Both the Intel IA-32 architecture (Pentium) and the IA-64 architecture (Itanium)
contain an XCHG instruction.

Figure 5.5b shows a mutual exclusion protocol based on the use of an exchange
instruction. A shared variable bolt is initialized to 0. Each process uses a local variable
key that is initialized to 1. The only process that may enter its critical section is one
that finds bolt equal to 0. It excludes all other processes from the critical section by
setting bolt to 1. When a process leaves its critical section, it resets bolt to 0, allowing
another process to gain access to its critical section.

Note the following expression always holds because of the way in which the
variables are initialized and because of the nature of the exchange algorithm:

bolt + a
i

keyi = n

If bolt = 0, then no process is in its critical section. If bolt = 1, then exactly one
process is in its critical section, namely the process whose key value equals 0.

Properties of the Machine-Instruction Approach  The use of a special machine
instruction to enforce mutual exclusion has a number of advantages:

•	 It is applicable to any number of processes on either a single processor or mul-
tiple processors sharing main memory.

•	 It is simple and therefore easy to verify.

•	 It can be used to support multiple critical sections; each critical section can be
defined by its own variable.

However, there are some serious disadvantages:

•	 Busy waiting is employed: Thus, while a process is waiting for access to a critical
section, it continues to consume processor time.

M05_STAL4290_09_GE_C05.indd 243 5/2/17 5:19 PM

244   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

•	 Starvation is possible: When a process leaves a critical section and more than
one process is waiting, the selection of a waiting process is arbitrary. Thus, some
process could indefinitely be denied access.

•	 Deadlock is possible: Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the same
resource as P1, it will be denied access because of the mutual exclusion mecha-
nism. Thus, it will go into a busy waiting loop. However, P1 will never be dis-
patched because it is of lower priority than another ready process, P2.

Because of the drawbacks of both the software and hardware solutions, we need
to look for other mechanisms.

	 5.4	 SEMAPHORES

We now turn to OS and programming language mechanisms that are used to provide
concurrency. Table 5.3 summarizes mechanisms in common use. We begin, in this
section, with semaphores. The next two sections will discuss monitors and message
passing. The other mechanisms in Table 5.3 will be discussed when treating specific
OS examples, in Chapters 6 and 13.

Semaphore An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to 0) must be the one to unlock it (sets the value to 1).

Condition variable A data type that is used to block a process or thread until a particular condition is true.

Monitor A programming language construct that encapsulates variables, access procedures, and
initialization code within an abstract data type. The monitor’s variable may only be
accessed via its access procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections. A monitor may
have a queue of processes that are waiting to access it.

Event flags A memory word used as a synchronization mechanism. Application code may associ-
ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one
of the bits is set (OR).

Mailboxes/messages A means for two processes to exchange information and that may be used for
synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an infinite loop waiting
for the value of a lock variable to indicate availability.

Table 5.3  Common Concurrency Mechanisms

M05_STAL4290_09_GE_C05.indd 244 5/2/17 5:19 PM

5.4 / SEMAPHORES   245

The first major advance in dealing with the problems of concurrent processes
came in 1965 with Dijkstra’s treatise [DIJK65]. Dijkstra was concerned with the
design of an OS as a collection of cooperating sequential processes, and with the
development of efficient and reliable mechanisms for supporting cooperation. These
mechanisms can just as readily be used by user processes if the processor and OS
make the mechanisms available.

The fundamental principle is this: Two or more processes can cooperate by
means of simple signals, such that a process can be forced to stop at a specified place
until it has received a specific signal. Any complex coordination requirement can be
satisfied by the appropriate structure of signals. For signaling, special variables called
semaphores are used. To transmit a signal via semaphore s, a process executes the
primitive semSignal (s). To receive a signal via semaphore s, a process executes
the primitive semWait (s); if the corresponding signal has not yet been transmitted,
the process is suspended until the transmission takes place.5

To achieve the desired effect, we can view the semaphore as a variable that has
an integer value upon which only three operations are defined:

1.	 A semaphore may be initialized to a nonnegative integer value.

2.	 The semWait operation decrements the semaphore value. If the value becomes
negative, then the process executing the semWait is blocked. Otherwise, the
process continues execution.

3.	 The semSignal operation increments the semaphore value. If the resulting
value is less than or equal to zero, then a process blocked by a semWait opera-
tion, if any, is unblocked.

Other than these three operations, there is no way to inspect or manipulate
semaphores.

We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory. The negative value equals the number of processes waiting to be
unblocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

[Subject] points out three interesting consequences of the semaphore definition:

1.	 In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

5 In Dijkstra’s original paper and in much of the literature, the letter P is used for semWait and the
letter V for semSignal; these are the initials of the Dutch words for test (proberen) and increment
(verhogen). In some of the literature, the terms wait and signal are used. This book uses semWait
and semSignal for clarity, and to avoid confusion with similar wait and signal operations in monitors,
discussed subsequently.

M05_STAL4290_09_GE_C05.indd 245 5/2/17 5:19 PM

246   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

2.	 After a process increments a semaphore and another process gets woken up,
both processes continue running concurrently. There is no way to know which
process, if either, will continue immediately on a uniprocessor system.

3.	 When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero or one.

Figure 5.6 suggests a more formal definition of the primitives for sema-
phores. The semWait and semSignal primitives are assumed to be atomic. A
more restricted version, known as the binary semaphore, is defined in Figure 5.7.
A binary semaphore may only take on the values 0 and 1, and can be defined by the
following three operations:

1.	 A binary semaphore may be initialized to 0 or 1.

2.	 The semWaitB operation checks the semaphore value. If the value is zero, then
the process executing the semWaitB is blocked. If the value is one, then the
value is changed to zero and the process continues execution.

3.	 The semSignalB operation checks to see if any processes are blocked on
this semaphore (semaphore value equals 0). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

In principle, it should be easier to implement the binary semaphore, and it can
be shown that it has the same expressive power as the general semaphore (see Prob-
lem 5.19). To contrast the two types of semaphores, the nonbinary semaphore is often
referred to as either a counting semaphore or a general semaphore.

Figure 5.6  A Definition of Semaphore PrimitivesVideoNote

struct semaphore {
 int count;
 queueType queue;
};
void semWait(semaphore s)
{
 s.count--;
 if (s.count < 0) {
 /* place this process in s.queue */;
 /* block this process */;
 }
}
void semSignal(semaphore s)
{
 s.count++;
 if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
}

M05_STAL4290_09_GE_C05.indd 246 5/2/17 5:19 PM

5.4 / SEMAPHORES   247

A concept related to the binary semaphore is the mutual exclusion lock (mutex).
A mutex is a programming flag used to grab and release an object. When data are
acquired that cannot be shared, or processing is started that cannot be performed
simultaneously elsewhere in the system, the mutex is set to lock (typically zero),
which blocks other attempts to use it. The mutex is set to unlock when the data are
no longer needed or the routine is finished. A key difference between the a mutex
and a binary semaphore is that the process that locks the mutex (sets the value to
zero) must be the one to unlock it (sets the value to 1). In contrast, it is possible for
one process to lock a binary semaphore and for another to unlock it.6

For both counting semaphores and binary semaphores, a queue is used to hold
processes waiting on the semaphore. The question arises of the order in which pro-
cesses are removed from such a queue. The fairest removal policy is first-in-first-out
(FIFO): The process that has been blocked the longest is released from the queue
first; a semaphore whose definition includes this policy is called a strong semaphore.
A semaphore that does not specify the order in which processes are removed from
the queue is a weak semaphore. Figure 5.8 is an example of the operation of a strong
semaphore. Here processes A, B, and C depend on a result from process D. Initially
(1), A is running; B, C, and D are ready; and the semaphore count is 1, indicating
that one of D’s results is available. When A issues a semWait instruction on sema-
phore s, the semaphore decrements to 0, and A can continue to execute; subsequently

6In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris, offer
a mutex facility which conforms to the definition in this book.

struct binary_semaphore {
 enum {zero, one} value;
 queueType queue;
};
 void semWaitB(binary_semaphore s)
{
 if (s.value == one)
 s.value = zero;
 else {
 /* place this process in s.queue */;
 /* block this process */;
 }
}
 void semSignalB(semaphore s)
{
 if (s.queue is empty())
 s.value = one;
 else {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
}

Figure 5.7  A Definition of Binary Semaphore PrimitivesVideoNote

M05_STAL4290_09_GE_C05.indd 247 5/2/17 5:19 PM

248   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Figure 5.8  Example of Semaphore Mechanism

A

A issues semWait, later times out

B issues semWait

D issues semSignal

s = 1
Ready queue Processor

D BC

1

2

Blocked queue

D

D issues semSignal, later times out

s = 0
Ready queue Processor

A CB

4

Blocked queue

B

s = 0
Ready queue

Processor

C DA

Blocked queue

C issues semWait

5

C

s = 0
Ready queue

Processor

B AD

Blocked queue

3

D

s = –1
Ready queue

Processor

A C

Blocked queue

B

D issues semSignal
7

D

s = –2
Ready queue

Processor

C

Blocked queue

A B

D issues semSignal
6

D

s = –3
Ready queue

Processor

Blocked queue

C A B

it rejoins the ready queue. Then B runs (2), eventually issues a semWait instruction,
and is blocked, allowing D to run (3). When D completes a new result, it issues a
semSignal instruction, which allows B to move to the ready queue (4). D rejoins
the ready queue and C begins to run (5) but is blocked when it issues a semWait
instruction. Similarly, A and B run and are blocked on the semaphore, allowing D to
resume execution (6). When D has a result, it issues a semSignal, which transfers
C to the ready queue. Later cycles of D will release A and B from the Blocked state.

For the mutual exclusion algorithm discussed in the next subsection and illus-
trated in Figure 5.9, strong semaphores guarantee freedom from starvation, while
weak semaphores do not. We will assume strong semaphores because they are more
convenient, and because this is the form of semaphore typically provided by operat-
ing systems.

M05_STAL4290_09_GE_C05.indd 248 5/2/17 5:19 PM

5.4 / SEMAPHORES   249

Mutual Exclusion

Figure 5.9 shows a straightforward solution to the mutual exclusion problem using
a semaphore s (compare to Figure 5.4). Consider n processes, identified in the array
P(i), all of which need access to the same resource. Each process has a critical sec-
tion used to access the resource. In each process, a semWait (s) is executed just
before its critical section. If the value of s becomes negative, the process is blocked.
If the value is 1, then it is decremented to 0 and the process immediately enters its
critical section; because s is no longer positive, no other process will be able to enter
its critical section.

The semaphore is initialized to 1. Thus, the first process that executes a sem-
Wait will be able to enter the critical section immediately, setting the value of s to
0. Any other process attempting to enter the critical section will find it busy and will
be blocked, setting the value of s to -1. Any number of processes may attempt entry;
each such unsuccessful attempt results in a further decrement of the value of s. When
the process that initially entered its critical section departs, s is incremented and one
of the blocked processes (if any) is removed from the queue of blocked processes
associated with the semaphore and put in a Ready state. When it is next scheduled
by the OS, it may enter the critical section.

Figure 5.10, based on one in [BACO03], shows a possible sequence for three
processes using the mutual exclusion discipline of Figure 5.9. In this example three
processes (A, B, C) access a shared resource protected by the semaphore lock. Process
A executes semWait (lock); because the semaphore has a value of 1 at the time of
the semWait operation, A can immediately enter its critical section and the sema-
phore takes on the value 0. While A is in its critical section, both B and C perform a
semWait operation and are blocked pending the availability of the semaphore. When
A exits its critical section and performs semSignal (lock), B, which was the first
process in the queue, can now enter its critical section.

The program of Figure 5.9 can equally well handle a requirement that more
than one process be allowed in its critical section at a time. This requirement is met

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int i)
{
 while (true) {
 semWait(s);
 /* critical section */;
 semSignal(s);
 /* remainder */;
 }
}
void main()
{
 parbegin (P(1), P(2), . . . , P(n));
}

Figure 5.9  Mutual Exclusion Using SemaphoresVideoNote

M05_STAL4290_09_GE_C05.indd 249 5/2/17 5:19 PM

250   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

simply by initializing the semaphore to the specified value. Thus, at any time, the value
of s.count can be interpreted as follows:

•	 s.count Ú 0: s.count is the number of processes that can execute semWait (s)
without suspension (if no semSignal (s) is executed in the meantime). Such
situations will allow semaphores to support synchronization as well as mutual
exclusion.

•	 s.count 6 0: The magnitude of s.count is the number of processes suspended
in s.queue.

The Producer/Consumer Problem

We now examine one of the most common problems faced in concurrent processing:
the producer/consumer problem. The general statement is this: There are one or more
producers generating some type of data (records, characters) and placing these in a
buffer. There is a single consumer that is taking items out of the buffer one at a time.
The system is to be constrained to prevent the overlap of buffer operations. That is,
only one agent (producer or consumer) may access the buffer at any one time. The
problem is to make sure that the producer won’t try to add data into the buffer if it’s
full, and that the consumer won’t try to remove data from an empty buffer. We will

Figure 5.10  Processes Accessing Shared Data Protected by a Semaphore

B

BC

C

1

1

0

0

21

21

22

semWait(lock)

A
Value of

semaphore lock
Queue for

semaphore lock B C

semSignal(lock)

semSignal(lock)

semSignal(lock)

semWait(lock)

semWait(lock)

Critical
region

Normal
execution

Blocked on
semaphore
lock

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

M05_STAL4290_09_GE_C05.indd 250 5/2/17 5:19 PM

5.4 / SEMAPHORES   251

look at a number of solutions to this problem to illustrate both the power and the
pitfalls of semaphores.

To begin, let us assume that the buffer is infinite and consists of a linear array
of elements. In abstract terms, we can define the producer and consumer functions
as follows:

producer: consumer:
while (true) {   while (true) {
 /* produce item v */;    while (in <= out)
 b[in] = v;   /* do nothing */;
 in++;  w = b[out];
}   out++;
  /* consume item w */;
   }

Figure 5.11 illustrates the structure of buffer b. The producer can generate items
and store them in the buffer at its own pace. Each time, an index (in) into the buffer
is incremented. The consumer proceeds in a similar fashion but must make sure that
it does not attempt to read from an empty buffer. Hence, the consumer makes sure
that the producer has advanced beyond it (in7 out) before proceeding.

Let us try to implement this system using binary semaphores. Figure 5.12 is a
first attempt. Rather than deal with the indices in and out, we can simply keep track
of the number of items in the buffer, using the integer variable n (= in - out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semWait if the buffer is empty.

This solution seems rather straightforward. The producer is free to add to the
buffer at any time. It performs semWaitB (s) before appending and semSignalB
(s) afterward to prevent the consumer (or any other producer) from accessing the
buffer during the append operation. Also, while in the critical section, the producer
increments the value of n. If n = 1, then the buffer was empty just prior to this
append, so the producer performs semSignalB (delay) to alert the consumer
of this fact. The consumer begins by waiting for the first item to be produced, using
semWaitB (delay). It then takes an item and decrements n in its critical section.
If the producer is able to stay ahead of the consumer (a common situation), then the

Figure 5.11 � Infinite Buffer for the Producer/
Consumer Problem

b[1] b[2]

Out

b[3] b[4] b[5]

0 1 2 3 4

In
Note: Shaded area indicates portion of bu�er that is occupied.

M05_STAL4290_09_GE_C05.indd 251 5/2/17 5:19 PM

252   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

consumer will rarely block on the semaphore delay because n will usually be posi-
tive. Hence, both producer and consumer run smoothly.

There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so it will be forced to wait until the
producer has placed more items in the buffer. This is the purpose of the statement:
if n == 0 semWaitB (delay). Consider the scenario outlined in Table 5.4. In line
14, the consumer fails to execute the semWaitB operation. The consumer did indeed
exhaust the buffer and set n to 0 (line 8), but the producer has incremented n before
the consumer can test it in line 14. The result is a semSignalB not matched by a
prior semWaitB. The value of -1 for n in line 20 means the consumer has consumed
an item from the buffer that does not exist. It would not do simply to move the con-
ditional statement inside the critical section of the consumer, because this could lead
to deadlock (e.g., after line 8 of Table 5.4).

A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.13. A careful
trace of the logic should convince you that deadlock can no longer occur.

A somewhat cleaner solution can be obtained if general semaphores (also
called counting semaphores) are used, as shown in Figure 5.14. The variable n is now

/* program producerconsumer */
 int n;
 binary_semaphore s = 1, delay = 0;
 void producer()
 {
 while (true) {
   produce();
   semWaitB(s);
   append();
   n++;
   if (n==1) semSignalB(delay);
   semSignalB(s);
 }
 }
 void consumer()
 {
 semWaitB(delay);
 while (true) {
  semWaitB(s);
  take();
  n--;
  semSignalB(s);
  consume();
  if (n==0) semWaitB(delay);
 }
 }
 void main()
 {
 n = 0;
 parbegin (producer, consumer);
 }

Figure 5.12 � An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores

VideoNote

M05_STAL4290_09_GE_C05.indd 252 5/2/17 5:19 PM

5.4 / SEMAPHORES   253

a semaphore. Its value still is equal to the number of items in the buffer. Suppose now
that in transcribing this program, a mistake is made and the operations semSignal
(s) and semSignal (n) are interchanged. This would require that the semSignal
(n) operation be performed in the producer’s critical section without interruption by
the consumer or another producer. Would this affect the program? No, because the
consumer must wait on both semaphores before proceeding in any case.

Now suppose the semWait (n) and semWait (s) operations are accidentally
reversed. This produces a serious, indeed a fatal, flaw. If the consumer ever enters its
critical section when the buffer is empty (n.count = 0), then no producer can ever
append to the buffer and the system is deadlocked. This is a good example of the
subtlety of semaphores and the difficulty of producing correct designs.

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage

Producer Consumer s n Delay

1 1 0 0

2 semWaitB(s) 0 0 0

3 n++ 0 1 0

4 if (n==1)
(semSignalB(delay))

0 1 1

5 semSignalB(s) 1 1 1

6 semWaitB(delay) 1 1 0

7 semWaitB(s) 0 1 0

8 n-- 0 0 0

9 semSignalB(s) 1 0 0

10 semWaitB(s) 0 0 0

11 n++ 0 1 0

12 if (n==1)
(semSignalB(delay))

0 1 1

13 semSignalB(s) 1 1 1

14 if (n==0)
(semWaitB(delay))

1 1 1

15 semWaitB(s) 0 1 1

16 n-- 0 0 1

17 semSignalB(s) 1 0 1

18 if (n==0)
(semWaitB(delay))

1 0 0

19 semWaitB(s) 0 0 0

20 n-- 0 -1 0

21 semSignalB(s) 1 -1 0

Note: White areas represent the critical section controlled by semaphore s.

Table 5.4  Possible Scenario for the Program of Figure 5.12

M05_STAL4290_09_GE_C05.indd 253 5/2/17 5:19 PM

254   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

(see Figure 5.15), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and n is the size of the buffer):

producer:	 consumer:
while (true) { while (true) {
 /* produce item v */  while (in == out)
 while ((in + 1) % n == out) /* do nothing */;
 /* do nothing */;  w = b[out];
 b[in] = v;  out = (out + 1) % n;
 in = (in + 1) % n; /* consume item w */;
} }

/* program producerconsumer */
  int n;
  binary_semaphore s = 1, delay = 0;
  void producer()
 {
    while (true) {
       produce();
       semWaitB(s);
       append();
       n++;
       if (n==1) semSignalB(delay);
       semSignalB(s);
  }
 }
 void consumer()
 {
  int m; /* a local variable */
 semWaitB(delay);
 while (true) {
  semWaitB(s);
  take();
  n--;
  m = n;
  semSignalB(s);
  consume();
  if (m==0) semWaitB(delay);
  }
 }
 void main()
 {
  n = 0;
  parbegin (producer, consumer);
 }

Figure 5.13 � A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using
Binary Semaphores

VideoNote

M05_STAL4290_09_GE_C05.indd 254 5/2/17 5:19 PM

5.4 / SEMAPHORES   255

Figure 5.16 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

Another instructive example in the use of semaphores is the barbershop prob-
lem described in Appendix A. Appendix A also includes additional examples of the
problem of race conditions when using semaphores.

/* program producerconsumer */
 semaphore n = 0, s = 1;
 void producer()
 {
 while (true) {
   produce();
   semWait(s);
   append();
   semSignal(s);
   semSignal(n);
 }
 }
 void consumer()
 {
 while (true) {
   semWait(n);
   semWait(s);
   take();
   semSignal(s);
   consume();
 }
 }
 void main()
 {
            parbegin (producer, consumer);
 }

Figure 5.14 � A Solution to the Infinite-Buffer Producer/Consumer Problem Using
Semaphores

VideoNote

Figure 5.15 � Finite Circular Buffer for the
Producer/Consumer Problem

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

M05_STAL4290_09_GE_C05.indd 255 5/2/17 5:19 PM

256   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Implementation of Semaphores

As was mentioned earlier, it is imperative that the semWait and semSignal oper-
ations be implemented as atomic primitives. One obvious way is to implement
them in hardware or firmware. Failing this, a variety of schemes have been sug-
gested. The essence of the problem is one of mutual exclusion: Only one process
at a time may manipulate a semaphore with either a semWait or semSignal
operation. Thus, any of the software schemes, such as Dekker’s algorithm or Peter-
son’s algorithm (see Section 5.1), could be used; this would entail a substantial
processing overhead.

Another alternative is to use one of the hardware-supported schemes for mutual
exclusion. For example, Figure 5.17 shows the use of a compare&swap instruction.
In this implementation, the semaphore is again a structure, as in Figure 5.6, but now
includes a new integer component, s.flag. Admittedly, this involves a form of busy
waiting. However, the semWait and semSignal operations are relatively short, so
the amount of busy waiting involved should be minor.

For a single-processor system, it is possible to inhibit interrupts for the dura-
tion of a semWait or semSignal operation, as suggested in Figure 5.17b. Once
again, the relatively short duration of these operations means that this approach is
reasonable.

Figure 5.16 � A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores

VideoNote

/* program boundedbuffer */
 const int sizeofbuffer = /* buffer size */;
 semaphore s = 1, n = 0, e = sizeofbuffer;
 void producer()
 {
  while (true) {
 produce();
 semWait(e);
 semWait(s);
 append();
 semSignal(s);
 semSignal(n);
  }
 }
 void consumer()
 {
 while (true) {
 semWait(n);
 semWait(s);
 take();
 semSignal(s);
 semSignal(e);
 consume();
  }
 }
 void main()
 {
  parbegin (producer, consumer);

 }

M05_STAL4290_09_GE_C05.indd 256 5/2/17 5:19 PM

5.5 / MONITORS   257

	 5.5	 MONITORS

Semaphores provide a primitive yet powerful and flexible tool for enforcing mutual
exclusion and for coordinating processes. However, as Figure 5.12 suggests, it may
be difficult to produce a correct program using semaphores. The difficulty is that
semWait and semSignal operations may be scattered throughout a program,
and it is not easy to see the overall effect of these operations on the semaphores
they affect.

The monitor is a programming language construct that provides equivalent
functionality to that of semaphores and that is easier to control. The concept was
first formally defined in [HOAR74]. The monitor construct has been implemented
in a number of programming languages, including Concurrent Pascal, Pascal-Plus,
Modula-2, Modula-3, and Java. It has also been implemented as a program library.
This allows programmers to put a monitor lock on any object. In particular, for some-
thing like a linked list, you may want to lock all linked lists with one lock, or have one
lock for each list, or have one lock for each element of each list.

We begin with a look at Hoare’s version, and then examine a refinement.

Monitor with Signal

A monitor is a software module consisting of one or more procedures, an initializa-
tion sequence, and local data. The chief characteristics of a monitor are the following:

1.	 The local data variables are accessible only by the monitor’s procedures and
not by any external procedure.

semWait(s)
{
 while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;
 s.count--;
 if (s.count < 0) {
     /* place this process in s.queue*/;
     /* block this process (must also set
s.flag to 0) */;
 }
 s.flag = 0;
}
semSignal(s)
{
 while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;
 s.count++;
 if (s.count<= 0) {
 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }
 s.flag = 0;
}

semWait(s)
{
 inhibit interrupts;
 s.count--;
 if (s.count < 0) {
     /* place this process in s.queue */;
     /* block this process and allow inter-
rupts*/;
 }
 else
 allow interrupts;
}

semSignal(s)
{
 inhibit interrupts;
 s.count++;
 if (s.count<= 0) {
     /* remove a process P from s.queue */;
     /* place process P on ready list */;
 }
 allow interrupts;
}

Figure 5.17  Two Possible Implementations of SemaphoresVideoNote

(a) Compare and Swap Instruction (b) Interrupts

M05_STAL4290_09_GE_C05.indd 257 5/2/17 5:19 PM

258   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

2.	 A process enters the monitor by invoking one of its procedures.

3.	 Only one process may be executing in the monitor at a time; any other processes
that have invoked the monitor are blocked, waiting for the monitor to become
available.

The first two characteristics are reminiscent of those for objects in object-ori-
ented software. Indeed, an object-oriented OS or programming language can readily
implement a monitor as an object with special characteristics.

By enforcing the discipline of one process at a time, the monitor is able to pro-
vide a mutual exclusion facility. The data variables in the monitor can be accessed by
only one process at a time. Thus, a shared data structure can be protected by placing
it in a monitor. If the data in a monitor represent some resource, then the monitor
provides a mutual exclusion facility for accessing the resource.

To be useful for concurrent processing, the monitor must include synchroni-
zation tools. For example, suppose a process invokes the monitor and, while in the
monitor, must be blocked until some condition is satisfied. A facility is needed by
which the process is not only blocked, but releases the monitor so some other process
may enter it. Later, when the condition is satisfied and the monitor is again available,
the process needs to be resumed and allowed to reenter the monitor at the point of
its suspension.

A monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor. Condition vari-
ables are a special data type in monitors, which are operated on by two functions:

•	 cwait (c): Suspend execution of the calling process on condition c. The mon-
itor is now available for use by another process.

•	 csignal (c): Resume execution of some process blocked after a cwait on
the same condition. If there are several such processes, choose one of them; if
there is no such process, do nothing.

Note that monitor wait and signal operations are different from those for the
semaphore. If a process in a monitor signals and no task is waiting on the condition
variable, the signal is lost.

Figure 5.18 illustrates the structure of a monitor. Although a process can enter
the monitor by invoking any of its procedures, we can think of the monitor as having
a single entry point that is guarded so only one process may be in the monitor at a
time. Other processes that attempt to enter the monitor join a queue of processes
blocked waiting for monitor availability. Once a process is in the monitor, it may
temporarily block itself on condition x by issuing cwait (x); it is then placed in a
queue of processes waiting to reenter the monitor when the condition changes, and
resume execution at the point in its program following the cwait (x) call.

If a process that is executing in the monitor detects a change in the condition
variable x, it issues csignal (x), which alerts the corresponding condition queue
that the condition has changed.

As an example of the use of a monitor, let us return to the bounded-buffer
producer/consumer problem. Figure 5.19 shows a solution using a monitor. The
monitor module, boundedbuffer, controls the buffer used to store and retrieve
characters. The monitor includes two condition variables (declared with the

M05_STAL4290_09_GE_C05.indd 258 5/2/17 5:19 PM

5.5 / MONITORS   259

Figure 5.18  Structure of a Monitor

Entrance

Queue of
entering
processes

Exit

Condition c1

cwait(c1)

Urgent queue

csignal

Condition cn

cwait(cn)

Local data

Condition variables

Procedure 1

Procedure k

Initialization code

Monitor waiting area

MONITOR

construct cond): notfull is true when there is room to add at least one character to
the buffer, and notempty is true when there is at least one character in the buffer.

A producer can add characters to the buffer only by means of the procedure
append inside the monitor; the producer does not have direct access to buffer. The
procedure first checks the condition notfull to determine if there is space available
in the buffer. If not, the process executing the monitor is blocked on that condition.
Some other process (producer or consumer) may now enter the monitor. Later, when
the buffer is no longer full, the blocked process may be removed from the queue, reac-
tivated, and resume processing. After placing a character in the buffer, the process
signals the notempty condition. A similar description can be made of the consumer
function.

This example points out the division of responsibility with monitors compared
to semaphores. In the case of monitors, the monitor construct itself enforces mutual

M05_STAL4290_09_GE_C05.indd 259 5/2/17 5:19 PM

260   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Figure 5.19 � A Solution to the Bounded-Buffer Producer/Consumer Problem Using a
Monitor

VideoNote

/* program producerconsumer */
monitor boundedbuffer;
char buffer [N];	 /* space for N items */
int nextin, nextout;	 /* buffer pointers */
int count;	 /* number of items in buffer */
cond notfull, notempty;	 /* condition variables for synchronization */
void append (char x)

{
     if (count == N) cwait(notfull);	 /* buffer is full; avoid overflow */
     buffer[nextin] = x;
     nextin = (nextin + 1) % N;
     count++;
     /* one more item in buffer */
     csignal (notempty);	 /*resume any waiting consumer */
}
void take (char x)
{
     if (count == 0) cwait(notempty);	 /* buffer is empty; avoid underflow */
     x = buffer[nextout];
     nextout = (nextout + 1) % N);
     count--;	 /* one fewer item in buffer */
     csignal (notfull);	 /* resume any waiting producer */
}
{ 	 /* monitor body */
     nextin = 0; nextout = 0; count = 0;	 /* buffer initially empty */
}

void producer()
{
     char x;
     while (true) {
     produce(x);
     append(x);
     }
}
void consumer()
{
     char x;
     while (true) {
     take(x);
     consume(x);
     }
}
void main()
{
     parbegin (producer, consumer);
}

exclusion: It is not possible for both a producer and a consumer to simultaneously
access the buffer. However, the programmer must place the appropriate cwait and
csignal primitives inside the monitor to prevent processes from depositing items
in a full buffer or removing them from an empty one. In the case of semaphores, both
mutual exclusion and synchronization are the responsibility of the programmer.

M05_STAL4290_09_GE_C05.indd 260 5/2/17 5:19 PM

5.5 / MONITORS   261

Note in Figure 5.19, a process exits the monitor immediately after executing
the csignal function. If the csignal does not occur at the end of the procedure,
then, in Hoare’s proposal, the process issuing the signal is blocked to make the moni-
tor available and placed in a queue until the monitor is free. One possibility at this
point would be to place the blocked process in the entrance queue, so it would have
to compete for access with other processes that had not yet entered the monitor.
However, because a process blocked on a csignal function has already partially
performed its task in the monitor, it makes sense to give this process precedence over
newly entering processes by setting up a separate urgent queue (see Figure 5.18). One
language that uses monitors, Concurrent Pascal, requires that csignal only appear
as the last operation executed by a monitor procedure.

If there are no processes waiting on condition x, then the execution of csignal
(x) has no effect.

As with semaphores, it is possible to make mistakes in the synchronization func-
tion of monitors. For example, if either of the csignal functions in the bounded-
buffer monitor are omitted, then processes entering the corresponding condition
queue are permanently hung up. The advantage that monitors have over semaphores
is that all of the synchronization functions are confined to the monitor. Therefore, it is
easier to verify that the synchronization has been done correctly and to detect bugs.
Furthermore, once a monitor is correctly programmed, access to the protected resource
is correct for access from all processes. In contrast, with semaphores, resource access is
correct only if all of the processes that access the resource are programmed correctly.

Alternate Model of Monitors with Notify and Broadcast

Hoare’s definition of monitors [HOAR74] requires that if there is at least one pro-
cess in a condition queue, a process from that queue runs immediately when another
process issues a csignal for that condition. Thus, the process issuing the csignal
must either immediately exit the monitor or be blocked on the monitor.

There are two drawbacks to this approach:

1.	 If the process issuing the csignal has not finished with the monitor, then two
additional process switches are required: one to block this process, and another
to resume it when the monitor becomes available.

2.	 Process scheduling associated with a signal must be perfectly reliable. When
a csignal is issued, a process from the corresponding condition queue must
be activated immediately, and the scheduler must ensure that no other process
enters the monitor before activation. Otherwise, the condition under which
the process was activated could change. For example, in Figure 5.19, when a
csignal(notempty) is issued, a process from the notempty queue must
be activated before a new consumer enters the monitor. Another example: A
producer process may append a character to an empty buffer then fail before
signaling; any processes in the notempty queue would be permanently hung up.

Lampson and Redell developed a different definition of monitors for the lan-
guage Mesa [LAMP80]. Their approach overcomes the problems just listed and
supports several useful extensions. The Mesa monitor structure is also used in the
Modula-3 systems programming language [NELS91]. In Mesa, the csignal primitive

M05_STAL4290_09_GE_C05.indd 261 5/2/17 5:19 PM

262   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

is replaced by cnotify, with the following interpretation: When a process executing
in a monitor executes cnotify(x), it causes the x condition queue to be notified,
but the signaling process continues to execute. The result of the notification is that
the process at the head of the condition queue will be resumed at some convenient
future time when the monitor is available. However, because there is no guaran-
tee that some other process will not enter the monitor before the waiting process,
the waiting process must recheck the condition. For example, the procedures in the
boundedbuffer monitor would now have the code of Figure 5.20.

The if statements are replaced by while loops. Thus, this arrangement results in
at least one extra evaluation of the condition variable. In return, however, there are
no extra process switches, and no constraints on when the waiting process must run
after a cnotify.

One useful refinement that can be associated with the cnotify primitive is
a watchdog timer associated with each condition primitive. A process that has been
waiting for the maximum timeout interval will be placed in a ready state regardless
of whether the condition has been notified. When activated, the process checks the
condition and continues if the condition is satisfied. The timeout prevents the indefi-
nite starvation of a process in the event that some other process fails before signaling
a condition.

With the rule that a process is notified rather than forcibly reactivated, it is
possible to add a cbroadcast primitive to the repertoire. The broadcast causes all
processes waiting on a condition to be placed in a ready state. This is convenient in
situations where a process does not know how many other processes should be reac-
tivated. For example, in the producer/consumer program, suppose both the append
and the take functions can apply to variable-length blocks of characters. In that
case, if a producer adds a block of characters to the buffer, it need not know how
many characters each waiting consumer is prepared to consume. It simply issues a
cbroadcast, and all waiting processes are alerted to try again.

In addition, a broadcast can be used when a process would have difficulty fig-
uring out precisely which other process to reactivate. A good example is a memory

void append (char x)
{
     while (count == N) cwait(notfull);	 /* buffer is full; avoid overflow */
     buffer[nextin] = x;
     nextin = (nextin + 1) % N;
     count++;	 /* one more item in buffer */
     cnotify(notempty);	 /* notify any waiting consumer */
}
void take (char x)
{
     while (count == 0) cwait(notempty);	 /* buffer is empty; avoid underflow */
     x = buffer[nextout];
     nextout = (nextout + 1) % N);
     count--;	 /* one fewer item in buffer */
     cnotify(notfull);	 /* notify any waiting producer */
}

Figure 5.20  Bounded-Buffer Monitor Code for Mesa MonitorVideoNote

M05_STAL4290_09_GE_C05.indd 262 5/2/17 5:19 PM

5.6 / MESSAGE PASSING   263

manager. The manager has j bytes free; a process frees up an additional k bytes,
but it does not know which waiting process can proceed with a total of k + j bytes.
Hence it uses broadcast, and all processes check for themselves if there is enough
memory free.

An advantage of Lampson/Redell monitors over Hoare monitors is that the
Lampson/Redell approach is less prone to error. In the Lampson/Redell approach,
because each procedure checks the monitor variable after being signaled, with the use
of the while construct, a process can signal or broadcast incorrectly without causing
an error in the signaled program. The signaled program will check the relevant vari-
able and, if the desired condition is not met, continue to wait.

Another advantage of the Lampson/Redell monitor is that it lends itself to a
more modular approach to program construction. For example, consider the imple-
mentation of a buffer allocator. There are two levels of conditions to be satisfied for
cooperating sequential processes:

1.	 Consistent data structures. Thus, the monitor enforces mutual exclusion and
completes an input or output operation before allowing another operation on
the buffer.

2.	 Level 1, plus enough memory for this process to complete its allocation request.

In the Hoare monitor, each signal conveys the level 1 condition but also car-
ries the implicit message, “I have freed enough bytes for your particular allocate
call to work now.” Thus, the signal implicitly carries the level 2 condition. If the pro-
grammer later changes the definition of the level 2 condition, it will be necessary to
reprogram all signaling processes. If the programmer changes the assumptions made
by any particular waiting process (i.e., waiting for a slightly different level 2 invari-
ant), it may be necessary to reprogram all signaling processes. This is unmodular and
likely to cause synchronization errors (e.g., wake up by mistake) when the code is
modified. The programmer has to remember to modify all procedures in the monitor
every time a small change is made to the level 2 condition. With a Lampson/Redell
monitor, a broadcast ensures the level 1 condition and carries a hint that level 2 might
hold; each process should check the level 2 condition itself. If a change is made in the
level 2 condition in either a waiter or a signaler, there is no possibility of erroneous
wakeup because each procedure checks its own level 2 condition. Therefore, the level
2 condition can be hidden within each procedure. With the Hoare monitor, the level
2 condition must be carried from the waiter into the code of every signaling process,
which violates data abstraction and interprocedural modularity principles.

	 5.6	 MESSAGE PASSING

When processes interact with one another, two fundamental requirements must be
satisfied: synchronization and communication. Processes need to be synchronized
to enforce mutual exclusion; cooperating processes may need to exchange informa-
tion. One approach to providing both of these functions is message passing. Message
passing has the further advantage that it lends itself to implementation in distributed
systems as well as in shared-memory multiprocessor and uniprocessor systems.

M05_STAL4290_09_GE_C05.indd 263 5/2/17 5:19 PM

264   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Synchronization Format

  Send    Content

    blocking    Length

    nonblocking      fixed

  Receive      variable

    blocking

    nonblocking Queueing Discipline

    test for arrival    FIFO

   Priority

Addressing

  Direct

    send

    receive

     explicit

     implicit

  Indirect

    static

    dynamic

    ownership

Table 5.5 � Design Characteristics of Message Systems for Interprocess Communication and
Synchronization

Message-passing systems come in many forms. In this section, we will provide a
general introduction that discusses features typically found in such systems. The actual
function of message passing is normally provided in the form of a pair of primitives:

send (destination, message)
receive (source, message)

This is the minimum set of operations needed for processes to engage in mes-
sage passing. A process sends information in the form of a message to another
process designated by a destination. A process receives information by executing the
receive primitive, indicating the source and the message.

A number of design issues relating to message-passing systems are listed in
Table 5.5, and examined in the remainder of this section.

Synchronization

The communication of a message between two processes implies some level of syn-
chronization between the two: The receiver cannot receive a message until it has been
sent by another process. In addition, we need to specify what happens to a process
after it issues a send or receive primitive.

Consider the send primitive first. When a send primitive is executed in a pro-
cess, there are two possibilities: Either the sending process is blocked until the

M05_STAL4290_09_GE_C05.indd 264 5/2/17 5:19 PM

5.6 / MESSAGE PASSING   265

message is received, or it is not. Similarly, when a process issues a receive primi-
tive, there are two possibilities:

1.	 If a message has previously been sent, the message is received and execution
continues.

2.	 If there is no waiting message, then either (a) the process is blocked until a mes-
sage arrives, or (b) the process continues to execute, abandoning the attempt
to receive.

Thus, both the sender and receiver can be blocking or nonblocking. Three com-
binations are common, although any particular system will usually have only one or
two combinations implemented:

1.	 Blocking send, blocking receive: Both the sender and receiver are blocked until
the message is delivered; this is sometimes referred to as a rendezvous. This
combination allows for tight synchronization between processes.

2.	 Nonblocking send, blocking receive: Although the sender may continue on,
the receiver is blocked until the requested message arrives. This is probably
the most useful combination. It allows a process to send one or more messages
to a variety of destinations as quickly as possible. A process that must receive
a message before it can do useful work needs to be blocked until such a mes-
sage arrives. An example is a server process that exists to provide a service or
resource to other processes.

3.	 Nonblocking send, nonblocking receive: Neither party is required to wait.

The nonblocking send is more natural for many concurrent programming tasks.
For example, if it is used to request an output operation such as printing, it allows
the requesting process to issue the request in the form of a message, then carry on.
One potential danger of the nonblocking send is that an error could lead to a situa-
tion in which a process repeatedly generates messages. Because there is no blocking
to discipline the process, these messages could consume system resources, including
processor time and buffer space, to the detriment of other processes and the OS. Also,
the nonblocking send places the burden on the programmer to determine that a
message has been received: Processes must employ reply messages to acknowledge
receipt of a message.

For the receive primitive, the blocking version appears to be more natural
for many concurrent programming tasks. Generally, a process that requests a mes-
sage will need the expected information before proceeding. However, if a message is
lost, which can happen in a distributed system, or if a process fails before it sends an
anticipated message, a receiving process could be blocked indefinitely. This problem
can be solved by the use of the nonblocking receive. However, the danger of this
approach is that if a message is sent after a process has already executed a matching
receive, the message will be lost. Other possible approaches are to allow a process
to test whether a message is waiting before issuing a receive and allow a process to
specify more than one source in a receive primitive. The latter approach is useful
if a process is waiting for messages from more than one source, and can proceed if
any of these messages arrive.

M05_STAL4290_09_GE_C05.indd 265 5/2/17 5:19 PM

266   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

Addressing

Clearly, it is necessary to have a way of specifying in the send primitive which process
is to receive the message. Similarly, most implementations allow a receiving process
to indicate the source of a message to be received.

The various schemes for specifying processes in send and receive primitives
fall into two categories: direct addressing and indirect addressing. With direct address-
ing, the send primitive includes a specific identifier of the destination process. The
receive primitive can be handled in one of two ways. One possibility is to require
that the process explicitly designate a sending process. Thus, the process must know
ahead of time from which process a message is expected. This will often be effective
for cooperating concurrent processes. In other cases, however, it is impossible to
specify the anticipated source process. An example is a printer-server process, which
will accept a print request message from any other process. For such applications,
a more effective approach is the use of implicit addressing. In this case, the source
parameter of the receive primitive possesses a value returned when the receive
operation has been performed.

The other general approach is indirect addressing. In this case, messages are not
sent directly from sender to receiver, but rather are sent to a shared data structure
consisting of queues that can temporarily hold messages. Such queues are generally
referred to as mailboxes. Thus, for two processes to communicate, one process sends
a message to the appropriate mailbox, and the other process picks up the message
from the mailbox.

A strength of the use of indirect addressing is that, by decoupling the sender
and receiver, it allows for greater flexibility in the use of messages. The relationship
between senders and receivers can be one-to-one, many-to-one, one-to-many, or many-
to-many (see Figure 5.21). A one-to-one relationship allows a private communications
link to be set up between two processes. This insulates their interaction from errone-
ous interference from other processes. A many-to-one relationship is useful for client/
server interaction; one process provides service to a number of other processes. In
this case, the mailbox is often referred to as a port. A one-to-many relationship allows
for one sender and multiple receivers; it is useful for applications where a message or
some information is to be broadcast to a set of processes. A many-to-many relation-
ship allows multiple server processes to provide concurrent service to multiple clients.

The association of processes to mailboxes can be either static or dynamic. Ports
are often statically associated with a particular process; that is, the port is created and
permanently assigned to the process. Similarly, a one-to-one relationship is typically
defined statically and permanently. When there are many senders, the association
of a sender to a mailbox may occur dynamically. Primitives such as connect and
disconnect may be used for this purpose.

A related issue has to do with the ownership of a mailbox. In the case of a port,
it is typically owned and created by the receiving process. Thus, when the process
is destroyed, the port is also destroyed. For the general mailbox case, the OS may
offer a create mailbox service. Such mailboxes can be viewed either as being owned
by the creating process, in which case they terminate with the process, or as being
owned by the OS, in which case an explicit command will be required to destroy
the mailbox.

M05_STAL4290_09_GE_C05.indd 266 5/2/17 5:19 PM

5.6 / MESSAGE PASSING   267

Message Format

The format of the message depends on the objectives of the messaging facility and
whether the facility runs on a single computer or on a distributed system. For some
operating systems, designers have preferred short, fixed-length messages to minimize
processing and storage overhead. If a large amount of data is to be passed, the data
can be placed in a file and the message then simply references that file. A more flex-
ible approach is to allow variable-length messages.

Figure 5.22 shows a typical message format for operating systems that support
variable-length messages. The message is divided into two parts: a header, which

Figure 5.21  Indirect Process Communication

S1

Sn

R1

Rn

Mailbox

S1

Sn

R1Port

(b) Many-to-one

S1 R1Mailbox

S1

(a) One-to-one

(d) Many-to-many

R1

Rn

Mailbox

(c) One-to-many

Figure 5.22 � General Message
Format

Message type

Destination ID

Source IDHeader

Body

Message length

Control information

Message contents

M05_STAL4290_09_GE_C05.indd 267 5/2/17 5:19 PM

268   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

contains information about the message, and a body, which contains the actual con-
tents of the message. The header may contain an identification of the source and
intended destination of the message, a length field, and a type field to discriminate
among various types of messages. There may also be additional control information,
such as a pointer field so that a linked list of messages can be created; a sequence
number, to keep track of the number and order of messages passed between source
and destination; and a priority field.

Queueing Discipline

The simplest queueing discipline is first-in-first-out, but this may not be sufficient if
some messages are more urgent than others. An alternative is to allow the specifying
of message priority, on the basis of message type or by designation by the sender.
Another alternative is to allow the receiver to inspect the message queue and select
which message to receive next.

Mutual Exclusion

Figure 5.23 shows one way in which message passing can be used to enforce mutual
exclusion (compare to Figures 5.4, 5.5, and 5.9). We assume the use of the blocking
receive primitive and the nonblocking send primitive. A set of concurrent processes
share a mailbox, box, which can be used by all processes to send and receive. The
mailbox is initialized to contain a single message with null content. A process wishing
to enter its critical section first attempts to receive a message. If the mailbox is empty,
then the process is blocked. Once a process has acquired the message, it performs
its critical section then places the message back into the mailbox. Thus, the message
functions as a token that is passed from process to process.

Figure 5.23  Mutual Exclusion Using MessagesVideoNote

/* program mutualexclusion */
const int n = /* number of process */
void P(int i)
{
     message msg;
     while (true) {
       receive (box, msg);
       /* critical section */;
       send (box, msg);
       /* remainder */;
     }
}
void main()
{
     create mailbox (box);
     send (box, null);
     parbegin (P(1), P(2), . . . , P(n));

M05_STAL4290_09_GE_C05.indd 268 5/2/17 5:19 PM

5.6 / MESSAGE PASSING   269

The preceding solution assumes that if more than one process performs the
receive operation concurrently, then:

•	 If there is a message, it is delivered to only one process and the others are
blocked, or

•	 If the message queue is empty, all processes are blocked; when a message is
available, only one blocked process is activated and given the message.

These assumptions are true of virtually all message-passing facilities.
As an example of the use of message passing, Figure 5.24 is a solution to

the bounded-buffer producer/consumer problem. Using the basic mutual exclusion
power of message passing, the problem could have been solved with an algorithmic
structure similar to that of Figure 5.16. Instead, the program of Figure 5.24 takes
advantage of the ability of message passing to be used to pass data in addition to
signals. Two mailboxes are used. As the producer generates data, it is sent as mes-
sages to the mailbox mayconsume. As long as there is at least one message in that
mailbox, the consumer can consume. Hence mayconsume serves as the buffer; the
data in the buffer are organized as a queue of messages. The “size” of the buffer is
determined by the global variable capacity. Initially, the mailbox mayproduce

const int
 capacity = /* buffering capacity */ ;
 null = /* empty message */ ;
int i;
void producer()
{ message pmsg;
 while (true) {
 receive (mayproduce,pmsg);
 pmsg = produce();
 send (mayconsume,pmsg);
 }
}
void consumer()
{ message cmsg;
 while (true) {
 receive (mayconsume,cmsg);
 consume (cmsg);
 send (mayproduce,null);
 }
}
void main()
{
 create_mailbox (mayproduce);
 create_mailbox (mayconsume);
 for (int i = 1;i<= capacity;i++) send (mayproduce,null);
 parbegin (producer,consumer);
}

Figure 5.24 � A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Messages

VideoNote

M05_STAL4290_09_GE_C05.indd 269 5/2/17 5:19 PM

270   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

is filled with a number of null messages equal to the capacity of the buffer. The
number of messages in mayproduce shrinks with each production and grows with
each consumption.

This approach is quite flexible. There may be multiple producers and consumers,
as long as all have access to both mailboxes. The system may even be distributed, with
all producer processes and the mayproduce mailbox at one site and all the consumer
processes and the mayconsume mailbox at another.

	 5.7	 READERS/WRITERS PROBLEM

In dealing with the design of synchronization and concurrency mechanisms, it is use-
ful to be able to relate the problem at hand to known problems, and to be able to test
any solution in terms of its ability to solve these known problems. In the literature,
several problems have assumed importance and appear frequently, both because
they are examples of common design problems and because of their educational
value. One such problem is the producer/consumer problem, which has already been
explored. In this section, we will look at another classic problem: the readers/writers
problem.

The readers/writers problem is defined as follows: There is a data area shared
among a number of processes. The data area could be a file, a block of main memory,
or even a bank of processor registers. There are a number of processes that only read
the data area (readers) and a number that only write to the data area (writers). The
conditions that must be satisfied are as follows:

1.	 Any number of readers may simultaneously read the file.

2.	 Only one writer at a time may write to the file.

3.	 If a writer is writing to the file, no reader may read it.

Thus, readers are processes that are not required to exclude one another, and
writers are processes that are required to exclude all other processes, readers and
writers alike.

Before proceeding, let us distinguish this problem from two others: the gen-
eral mutual exclusion problem, and the producer/consumer problem. In the read-
ers/writers problem, readers do not also write to the data area, nor do writers
read the data area while writing. A more general case, which includes this case, is
to allow any of the processes to read or write the data area. In that case, we can
declare any portion of a process that accesses the data area to be a critical section
and impose the general mutual exclusion solution. The reason for being concerned
with the more restricted case is that more efficient solutions are possible for this
case, and the less efficient solutions to the general problem are unacceptably slow.
For example, suppose that the shared area is a library catalog. Ordinary users
of the library read the catalog to locate a book. One or more librarians are able
to update the catalog. In the general solution, every access to the catalog would
be treated as a critical section, and users would be forced to read the catalog
one at a time. This would clearly impose intolerable delays. At the same time,

M05_STAL4290_09_GE_C05.indd 270 5/2/17 5:19 PM

5.7 / READERS/WRITERS PROBLEM   271

it is important to prevent writers from interfering with each other, and it is also
required to prevent reading while writing is in progress to prevent the access of
inconsistent information.

Can the producer/consumer problem be considered simply a special case of the
readers/writers problem with a single writer (the producer) and a single reader (the
consumer)? The answer is no. The producer is not just a writer. It must read queue
pointers to determine where to write the next item, and it must determine if the buf-
fer is full. Similarly, the consumer is not just a reader, because it must adjust the queue
pointers to show that it has removed a unit from the buffer.

We now examine two solutions to the problem.

Readers Have Priority

Figure 5.25 is a solution using semaphores, showing one instance each of a reader
and a writer; the solution does not change for multiple readers and writers. The
writer process is simple. The semaphore wsem is used to enforce mutual exclusion.

Figure 5.25  �A Solution to the Readers/Writers Problem Using Semaphore: Readers Have
Priority

VideoNote

/* program readersandwriters */
int readcount;
semaphore x = 1,wsem = 1;
void reader()
{
 while (true){
 semWait (x);
 readcount++;
 if(readcount == 1)
 semWait (wsem);
 semSignal (x);
 READUNIT();
 semWait (x);
 readcount--;
 if(readcount == 0)
 semSignal (wsem);
 semSignal (x);
 }
}
void writer()
{
 while (true){
 semWait (wsem);
 WRITEUNIT();
 semSignal (wsem);
 }
}
void main()
{
 readcount = 0;
 parbegin (reader,writer);
}

M05_STAL4290_09_GE_C05.indd 271 5/2/17 5:19 PM

272   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

As long as one writer is accessing the shared data area, no other writers and no
readers may access it. The reader process also makes use of wsem to enforce mutual
exclusion. However, to allow multiple readers, we require that, when there are no
readers reading, the first reader that attempts to read should wait on wsem. When
there is already at least one reader reading, subsequent readers need not wait
before entering. The global variable readcount is used to keep track of the num-
ber of readers, and the semaphore x is used to assure that readcount is updated
properly.

Writers Have Priority

In the previous solution, readers have priority. Once a single reader has begun to
access the data area, it is possible for readers to retain control of the data area as
long as there is at least one reader in the act of reading. Therefore, writers are subject
to starvation.

Figure 5.26 shows a solution that guarantees no new readers are allowed access
to the data area once at least one writer has declared a desire to write. For writers,
the following semaphores and variables are added to the ones already defined:

•	 A semaphore rsem that inhibits all readers while there is at least one writer
desiring access to the data area

•	 A variable writecount that controls the setting of rsem

•	 A semaphore y that controls the updating of writecount

For readers, one additional semaphore is needed. A long queue must not be
allowed to build up on rsem; otherwise writers will not be able to jump the queue.
Therefore, only one reader is allowed to queue on rsem, with any additional readers
queueing on semaphore z, immediately before waiting on rsem. Table 5.6 summa-
rizes the possibilities.

Table 5.6  State of the Process Queues for Program of Figure 5.26

Readers only in the system •	wsem set
•	no queues

Writers only in the system •	wsem and rsem set
•	writers queue on wsem

Both readers and writers with read first •	wsem set by reader
•	 rsem set by writer
•	all writers queue on wsem
•	one reader queues on rsem
•	other readers queue on z

Both readers and writers with write first •	wsem set by writer
•	 rsem set by writer
•	writers queue on wsem
•	one reader queues on rsem
•	other readers queue on z

M05_STAL4290_09_GE_C05.indd 272 5/2/17 5:19 PM

5.7 / READERS/WRITERS PROBLEM   273

An alternative solution, which gives writers priority and which is implemented
using message passing, is shown in Figure 5.27. In this case, there is a controller
process that has access to the shared data area. Other processes wishing to access
the data area send a request message to the controller, are granted access with an
“OK” reply message, and indicate completion of access with a “finished” message.
The controller is equipped with three mailboxes, one for each type of message that
it may receive.

The controller process services write request messages before read request mes-
sages to give writers priority. In addition, mutual exclusion must be enforced. To do

/* program readersandwriters */
int readcount,writecount; semaphore x = 1, y = 1, z = 1, wsem = 1, rsem = 1;
void reader()
{
 while (true){
 semWait (z);
        semWait (rsem);
           semWait (x);
                readcount++;
                if (readcount == 1)
                   semWait (wsem);
                semSignal (x);
           semSignal (rsem);
        semSignal (z);
        READUNIT();
        semWait (x);
           readcount--;
           if (readcount == 0) semSignal (wsem);
        semSignal (x);
 }
}
void writer ()
{
   while (true){
    semWait (y);
        writecount++;
        if (writecount == 1)
          semWait (rsem);
    semSignal (y);
    semWait (wsem);
    WRITEUNIT();
    semSignal (wsem);
    semWait (y);
        writecount--;
        if (writecount == 0) semSignal (rsem);
    semSignal (y);
 }
}
void main()
{
   readcount = writecount = 0;
   parbegin (reader, writer);
}

Figure 5.26 � A Solution to the Readers/Writers Problem Using Semaphore: Writers
Have Priority

VideoNote

M05_STAL4290_09_GE_C05.indd 273 5/2/17 5:19 PM

274   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

this the variable count is used, which is initialized to some number greater than the
maximum possible number of readers. In this example, we use a value of 100. The
action of the controller can be summarized as follows:

•	 If count 7 0, then no writer is waiting and there may or may not be readers
active. Service all “finished” messages first to clear active readers. Then service
write requests, and then read requests.

•	 If count = 0, then the only request outstanding is a write request. Allow the
writer to proceed and wait for a “finished” message.

•	 If count 6 0, then a writer has made a request and is being made to wait to
clear all active readers. Therefore, only “finished” messages should be serviced.

	 5.8	 SUMMARY

The central themes of modern operating systems are multiprogramming, multi
processing, and distributed processing. Fundamental to these themes, and funda-
mental to the technology of OS design, is concurrency. When multiple processes

void reader(int i)	 void controller()
{ 	 {
   message rmsg;	   while (true)
     while (true) {	   {
         rmsg = i;	     if (count > 0) {
       send (readrequest, rmsg);	       if (!empty (finished)) {
       receive (mbox[i], rmsg);	         receive (finished, msg);
       READUNIT ();	         count++;
       rmsg = i;	       }
       send (finished, rmsg);	       else if (!empty (writerequest)) {
     }	         receive (writerequest, msg);
}	         writer_id = msg.id;
void writer(int j)	         count = count – 100;
{      	       }
   message rmsg;	       else if (!empty (readrequest)) {
   while (true){	         receive (readrequest, msg);
     rmsg = j;	         count--;
     send (writerequest, rmsg);	         send (msg.id, “OK”);
     receive (mbox[j], rmsg);	       }
     WRITEUNIT ();	     }
     rmsg = j;	     if (count == 0) {
     send (finished, rmsg);	       send (writer_id, “OK”);
   }	       receive (finished, msg);
}	       count = 100;
	     }
	     while (count < 0) {
	       receive (finished, msg);
	       count++;
	     }
	   }
	 }

Figure 5.27  A Solution to the Readers/Writers Problem Using Message PassingVideoNote

M05_STAL4290_09_GE_C05.indd 274 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   275

are executing concurrently, either actually in the case of a multiprocessor system
or virtually in the case of a single-processor multiprogramming system, issues of
conflict resolution and cooperation arise.

Concurrent processes may interact in a number of ways. Processes that are
unaware of each other may nevertheless compete for resources, such as processor
time or access to I/O devices. Processes may be indirectly aware of one another
because they share access to a common object, such as a block of main memory or
a file. Finally, processes may be directly aware of each other and cooperate by the
exchange of information. The key issues that arise in these interactions are mutual
exclusion and deadlock.

Mutual exclusion is a condition in which there is a set of concurrent processes,
only one of which is able to access a given resource or perform a given function at any
time. Mutual exclusion techniques can be used to resolve conflicts, such as competi-
tion for resources, and to synchronize processes so they can cooperate. An example of
the latter is the producer/consumer model, in which one process is putting data into
a buffer, and one or more processes are extracting data from that buffer.

One approach to supporting mutual exclusion involves the use of special-pur-
pose machine instructions. This approach reduces overhead, but is still inefficient
because it uses busy waiting.

Another approach to supporting mutual exclusion is to provide features within
the OS. Two of the most common techniques are semaphores and message facili-
ties. Semaphores are used for signaling among processes and can be readily used to
enforce a mutual exclusion discipline. Messages are useful for the enforcement of
mutual exclusion and also provide an effective means of interprocess communication.

	 5.9	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

atomic
binary semaphore
blocking
busy waiting
concurrency
concurrent processes
condition variable
coroutine
counting semaphore

critical resource
critical section
deadlock
direct addressing
general semaphore
indirect addressing
livelock
message passing
monitor

mutual exclusion
mutual exclusion lock (mutex)
nonblocking
race condition
semaphore
spin waiting
starvation
strong semaphore
weak semaphore

Review Questions

	 5.1.	 List four design issues for which the concept of concurrency is relevant.
	 5.2.	 What are three contexts in which concurrency arises?
	 5.3.	 What is a race condition?
	 5.4.	 List three degrees of awareness between processes and briefly define each.

M05_STAL4290_09_GE_C05.indd 275 5/2/17 5:19 PM

276   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

	 5.5.	 What is the distinction between competing processes and cooperating processes?
	 5.6.	 List the three control problems associated with competing processes, and briefly define

each.
	 5.7.	 What is starvation with respect to concurrency control by mutual exclusion?
	 5.8.	 What operations can be performed on a semaphore?
	 5.9.	 What is the difference between binary and general semaphores?
	5.10.	 What is the key difference between a mutex and a binary semaphore?
	5.11.	 Which characteristics of monitors mark them as high-level synchronization tools?
	5.12.	 Compare direct and indirect addressing with respect to message passing.
	5.13.	 What conditions are generally associated with the readers/writers problem?

Problems

	 5.1.	 Demonstrate the correctness of Dekker’s algorithm.
a.	 Show that mutual exclusion is enforced. Hint: Show that when Pi enters its critical

section, the following expression is true:

flag[i] and (not flag[1 – i])

b.	 Show that a process requiring access to its critical section will not be delayed
indefinitely. Hint: Consider the following cases: (1) a single process is attempting
to enter the critical section; (2) both processes are attempting to enter the critical
section, and (2a) turn = 0 and flag[0] = false, and (2b) turn = 0 and
flag[0] = true.

	 5.2.	 Consider Dekker’s algorithm written for an arbitrary number of processes by changing
the statement executed when leaving the critical section from

turn = 1 – i	 /* i.e. P0 sets turn to 1 and P1 sets turn
to 0 */

to

turn = (turn + 1) % n 	 /* n = number of processes */

		 Evaluate the algorithm when the number of concurrently executing processes is greater
than two.

	 5.3.	 Demonstrate that the following software approaches to mutual exclusion do not depend
on elementary mutual exclusion at the memory access level:
a.	 The bakery algorithm.
b.	 Peterson’s algorithm.

	 5.4.	 With respect to mutual exclusion using interrupt disabling
a.	 Mention the requirements for this exclusion and state which of them are met when

interrupts are disabled.
b.	 Identify the problems associated with this mechanism.

	 5.5.	 Processes and threads provide a powerful structuring tool for implementing programs
that would be much more complex as simple sequential programs. An earlier construct
that is instructive to examine is the coroutine. The purpose of this problem is to intro-
duce coroutines and compare them to processes. Consider this simple problem from
[CONW63]:
	 Read 80-column cards and print them on 125-character lines, with the following

changes. After every card image an extra blank is inserted, and every adjacent pair
of asterisks (**) on a card is replaced by the character().

a.	 Develop a solution to this problem as an ordinary sequential program. You will find
that the program is tricky to write. The interactions among the various elements

→

M05_STAL4290_09_GE_C05.indd 276 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   277

of the program are uneven because of the conversion from a length of 80 to 125;
furthermore, the length of the card image, after conversion, will vary depending
on the number of double asterisk occurrences. One way to improve clarity, and to
minimize the potential for bugs, is to write the application as three separate proce-
dures. The first procedure reads in card images, pads each image with a blank, and
writes a stream of characters to a temporary file. After all of the cards have been
read, the second procedure reads the temporary file, does the character substitu-
tion, and writes out a second temporary file. The third procedure reads the stream
of characters from the second temporary file and prints lines of 125 characters each.

b.	 The sequential solution is unattractive because of the overhead of I/O and tempo-
rary files. Conway proposed a new form of program structure, the coroutine, that
allows the application to be written as three programs connected by one-character
buffers (see Figure 5.28). In a traditional procedure, there is a master/slave relation-
ship between the called and calling procedures. The calling procedure may execute
a call from any point in the procedure; the called procedure is begun at its entry
point and returns to the calling procedure at the point of call. The coroutine exhib-
its a more symmetric relationship. As each call is made, execution takes up from the
last active point in the called procedure. Because there is no sense in which a call-
ing procedure is “higher” than the called, there is no return. Rather, any coroutine
can pass control to any other coroutine with a resume command. The first time a
coroutine is invoked, it is “resumed” at its entry point. Subsequently, the coroutine
is reactivated at the point of its own last resume command. Note only one coroutine
in a program can be in execution at one time, and the transition points are explicitly
defined in the code, so this is not an example of concurrent processing. Explain the
operation of the program in Figure 5.28.

c.	 The program does not address the termination condition. Assume that the I/O
routine READCARD returns the value true if it has placed an 80-character image
in inbuf; otherwise it returns false. Modify the program to include this contingency.
Note the last printed line may therefore contain less than 125 characters.

d.	 Rewrite the solution as a set of three processes using semaphores.

Figure 5.28  An Application of Coroutines

char rs, sp;	 void squash()
char inbuf[80], outbuf[125] ;	 {
void read() 	   while (true) {
{	    if (rs != “*”) {
  while (true) {	       sp = rs;
    READCARD (inbuf);	       RESUME print;
    for (int i=0; i < 80; i++){	    }
       rs = inbuf [i];	    else {
       RESUME squash	    RESUME read;
    }	    if (rs == “*”) {
    rs = “ “;	       sp = “ ”;
    RESUME squash;	       RESUME print;
  }	    }
}	    else {
void print()	       sp = “*”;
{	       RESUME print;
  while (true) {	       sp = rs;
    for (int j = 0; j < 125; j++)	       RESUME print;
       outbuf [j] = sp;	    }
       RESUME squash	   }
    }	    RESUME read;
    OUTPUT (outbuf);	  }
  }	 }
}

VideoNote

M05_STAL4290_09_GE_C05.indd 277 5/2/17 5:19 PM

278   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

	 5.6.	 Consider the following processes P1 and P2 that update the value of the shared vari-
ables, x and y, as follows:

Process P1 :

(performs the operations:

 x := x * y

 y ++

)

LOAD R1, X

LOAD R2, Y

MUL R1, R2

STORE X, R1

INC R2

STORE Y, R2

Process P2 :

(performs the operations:

 x ++

 y := x * y

)

LOAD R3, X

INC R3

LOAD R4, Y

MUL R4, R3

STORE X, R3

STORE Y, R4

		 Assume that the initial values of x and y are 2 and 3 respectively. P1 enters the system
first and so it is required that the output is equivalent to a serial execution of P1 fol-
lowed by P2. The scheduler in the uniprocessor system implements a pseudo-parallel
execution of these two concurrent processes by interleaving their instructions without
restricting the order of the interleaving.
a.	 If the processes P1 and P2 had executed serially, what would the values of x and y

have been after the execution of both processes?
b.	 Write an interleaved concurrent schedule that gives the same output as a serial

schedule.
c.	 Write an interleaved concurrent schedule that gives an output that is different from

that of a serial schedule.
	 5.7.	 Consider the following program:

const int n = 50;
int tally;
void total()
{

   int count;
   for (count = 1; count<= n; count++) {
     tally++;

   }

}

 void main()
{

   tally = 0;

   parbegin (total (), total ());
   write (tally);

}

a.	 Determine the proper lower bound and upper bound on the final value of the
shared variable tally output by this concurrent program. Assume processes can
execute at any relative speed, and a value can only be incremented after it has been
loaded into a register by a separate machine instruction.

b.	 Suppose that an arbitrary number of these processes are permitted to execute in
parallel under the assumptions of part (a). What effect will this modification have
on the range of final values of tally?

M05_STAL4290_09_GE_C05.indd 278 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   279

	 5.8.	 In Table 5.3, the use of spinlocks for concurrency control has been identified. Give an
implementation for mutual exclusion using spinlocks.

	 5.9.	 Consider the following program:
boolean blocked [2];

int turn;

void P (int id)

{

  while (true) {

    blocked[id] = true;

    while (turn != id) {

      while (blocked[1-id])

        /* do nothing */;

      turn = id;

    }

    /* critical section */

    blocked[id] = false;

    /* remainder */

  }

}

void main()

{

  blocked[0] = false;

  blocked[1] = false;

  turn = 0;

  parbegin (P(0), P(1));

}

		 This software solution to the mutual exclusion problem for two processes is proposed
in [HYMA66]. Find a counterexample that demonstrates that this solution is incor-
rect. It is interesting to note that even the Communications of the ACM was fooled
on this one.

	5.10.	 A software approach to mutual exclusion is Lamport’s bakery algorithm [LAMP74], so
called because it is based on the practice in bakeries and other shops in which every
customer receives a numbered ticket on arrival, allowing each to be served in turn.
The algorithm is as follows:

boolean choosing[n];

int number[n];

while (true) {

   choosing[i] = true;

   number[i] = 1 + getmax(number[], n);

   choosing[i] = false;

   for (int j = 0; j < n; j++){

    while (choosing[j]) { };

    while ((number[j] != 0) && (number[j],j) < (number[i],i))

        { } ;

    }

   /* critical section */;

   number [i] = 0;

   /* remainder */;

}

M05_STAL4290_09_GE_C05.indd 279 5/2/17 5:19 PM

280   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

		 The arrays choosing and number are initialized to false and 0, respectively. The ith
element of each array may be read and written by process i but only read by other
processes. The notation (a, b) 6 (c, d) is defined as:

(a 6 c) or (a = c and b 6 d)

a.	 Describe the algorithm in words.
b.	 Show that this algorithm avoids deadlock.
c.	 Show that it enforces mutual exclusion.

	5.11.	 Now consider a version of the bakery algorithm without the variable choosing. Then
we have

1 int number[n];
2 while (true) {
3    number[i] = 1 + getmax(number[], n);

4    for (int j = 0; j < n; j++){
5     while ((number[j] != 0) && (number[j],j) <
          (number[i],i)) { };

6     }

7    /* critical section */;

8    number [i] = 0;

9    /* remainder */;

10 }

		 Does this version violate mutual exclusion? Explain why or why not.
	5.12.	 Consider the following program which provides a software approach to mutual

exclusion:
integer array control [1 :N]; integer k
where 1 … k … N, and each element of “control” is either 0, 1, or 2. All elements of “control”
are initially zero; the initial value of k is immaterial.

		 The program of the ith process (1 … i … N) is
begin integer j;
L0: control [i] := l;

LI: for j:=k step l until N, l step l until k do
     begin
      if j = i then goto L2;
      if control [j] ≠ 0 then goto L1
     end;
L2: control [i] := 2;

   for j := 1 step 1 until N do
     if j ≠ i and control [j] = 2 then goto L0;
L3: if  control [k] ≠ 0 and k ≠ i then goto L0;
L4: k := i;

   critical section;
L5: for j := k step 1 until N, 1 step 1 until k do
   if j ≠ k and control [j] ≠ 0 then
     begin
       k := j;

        goto L6
     end;

M05_STAL4290_09_GE_C05.indd 280 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   281

L6: control [i] := 0;

L7: remainder of cycle;
   goto L0;
end

		 This is referred to as the Eisenberg-McGuire algorithm. Explain its operation and its
key features.

	5.13.	 Consider the mutual exclusion protocol in Figure 5.5b. How can you modify it so that
it satisfies the bounded waiting requirement as well?

	5.14.	 When a special machine instruction is used to provide mutual exclusion in the fash-
ion of Figure 5.5, there is no control over how long a process must wait before being
granted access to its critical section. Devise an algorithm that uses the compare&swap
instruction, but that guarantees that any process waiting to enter its critical section will
do so within n -1 turns, where n is the number of processes that may require access to the
critical section, and a “turn” is an event consisting of one process leaving the critical
section and another process being granted access.

	5.15.	 Consider the following definition of semaphores:

void semWait(s)

{

    if (s.count > 0){
     s.count--;

}

    else {
     place this process in s.queue;

     block;

    }

}

 void semSignal (s)
{

    if (there is at least one process blocked on
      semaphore s) {

      remove a process P from s.queue;

      place process P on ready list;

    }

    else       s.count++;

}

		 Compare this set of definitions with that of Figure 5.6. Note one difference: With the
preceding definition, a semaphore can never take on a negative value. Is there any
difference in the effect of the two sets of definitions when used in programs? That
is, could you substitute one set for the other without altering the meaning of the
program?

	5.16.	 Consider a sharable resource with the following characteristics: (1) As long as there
are fewer than three processes using the resource, new processes can start using it right
away. (2) Once there are three process using the resource, all three must leave before
any new processes can begin using it. We realize that counters are needed to keep track
of how many processes are waiting and active, and that these counters are themselves

M05_STAL4290_09_GE_C05.indd 281 5/2/17 5:19 PM

282   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

shared resources that must be protected with mutual exclusion. So we might create the
following solution:
1   semaphore mutex = 1, block = 0;	 /* share variables: semaphores, */

2   int active = 0, waiting = 0;	 /* counters, and */

3   boolean must_wait = false;	 /* state information */

4

5   semWait(mutex);	 /* Enter the mutual exclusion */

6   if(must_wait) {	 /* If there are (or were) 3, then */

7      ++waiting;	 /* we must wait, but we must leave */

8      semSignal(mutex);	 /* the mutual exclusion first */

9      semWait(block);	 /* Wait for all current users to depart */

10     SemWait(mutex);	 /* Reenter the mutual exclusion */

11     --waiting;	 /* and update the waiting count */

12  }

13  ++active;	 /* Update active count, and remember */

14  must_wait = active == 3;	 /* if the count reached 3 */

15  semSignal(mutex);	 /* Leave the mutual exclusion */

16

17  /* critical section */

18

19  semWait(mutex);	 /* Enter mutual exclusion */

20  --active;	 /* and update the active count */

21  if(active == 0) { 	 /* Last one to leave? */

22     int n;

23     if (waiting < 3) n = waiting;

24     else n = 3;	 /* If so, unblock up to 3 */

25     while(n > 0) { 	 /* waiting processes */

26       semSignal(block);

27       --n;

28     }

29  must_wait = false;	 /* All active processes have left */

30  }

31  semSignal(mutex);	 /* Leave the mutual exclusion */

		 The solution appears to do everything right: All accesses to the shared variables are
protected by mutual exclusion, processes do not block themselves while in the mutual
exclusion, new processes are prevented from using the resource if there are (or were)
three active users, and the last process to depart unblocks up to three waiting processes.
a.	 The program is nevertheless incorrect. Explain why.
b.	 Suppose we change the if in line 6 to a while. Does this solve any problem in the

program? Do any difficulties remain?
	 5.17.	 Now consider this correct solution to the preceding problem:

1  semaphore mutex = 1, block = 0;	 /* share variables: semaphores, */

2  int active = 0, waiting = 0;	 /* counters, and */

3  boolean must_wait = false;	 /* state information */

4

5  semWait(mutex);	 /* Enter the mutual exclusion */

6  if(must_wait) { 	 /* If there are (or were) 3, then */

7     ++waiting;	 /* we must wait, but we must leave */

8     semSignal(mutex);	 /* the mutual exclusion first */

9     semWait(block);	 /* Wait for all current users to depart */

10 }  else {

11     ++active;	 /* Update active count, and */

11  }

12     must_wait = active == 3;	 /* remember if the count reached 3 */

13     semSignal(mutex);	 /* Leave mutual exclusion */

M05_STAL4290_09_GE_C05.indd 282 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   283

14  }

15

16  /* critical section */

17

18  semWait(mutex);	 /* Enter mutual exclusion */

19  --active;	 /* and update the active count */

20  if(active == 0) { 	 /* Last one to leave? */

21     int n;

22     if (waiting < 3) n = waiting;

23     else n = 3;	 /* If so, see how many processes to unblock */

24     waiting -= n;	 /* Deduct this number from waiting count */

25     active = n;	 /* and set active to this number */

26     while(n > 0) { 	 /* Now unblock the processes */

27       semSignal(block);	 /* one by one */

28       --n;

29     }

30     must_wait = active == 3;	 /* Remember if the count is 3 */

31  }

32  semSignal(mutex);	 /* Leave the mutual exclusion */

a.	 Explain how this program works and why it is correct.
b.	 This solution does not completely prevent newly arriving processes from cutting in

line but it does make it less likely. Give an example of cutting in line.
c.	 This program is an example of a general design pattern that is a uniform way to

implement solutions to many concurrency problems using semaphores. It has
been referred to as the I’ll Do It For You pattern. Describe the pattern.

	5.18.	 Now consider another correct solution to the preceding problem:
1   semaphore mutex = 1, block = 0;	 /* share variables: semaphores, */

2   int active = 0, waiting = 0;	 /* counters, and */

3   boolean must_wait = false;	 /* state information */

4

5   semWait(mutex);	 /* Enter the mutual exclusion */

6   if(must_wait) { 	 /* If there are (or were) 3, then */

7      ++waiting;	 /* we must wait, but we must leave */

8      semSignal(mutex);	 /* the mutual exclusion first */

9      semWait(block);	 /* Wait for all current users to depart */

10     --waiting;	 /* We’ve got the mutual exclusion; update count */

11  }

12  ++active;	 /* Update active count, and remember */

13  must_wait = active == 3;	 /* if the count reached 3 */

14  if(waiting > 0 && !must_wait)	 /* If there are others waiting */

15     semSignal(block);;	 /* and we don’t yet have 3 active, */

16	 /* unblock a waiting process */

17  else semSignal(mutex);	 /* otherwise open the mutual exclusion */

18

19  /* critical section */

20

21  semWait(mutex);	 /* Enter mutual exclusion */

22  --active;	 /* and update the active count */

23  if(active == 0)	 /* If last one to leave? */

24     must_wait = false;	 /* set up to let new processes enter */

25  if(waiting == 0 && !must_wait)	 /* If there are others waiting */

26     semSignal(block);;	 /* and we don’t have 3 active, */

27	 /* unblock a waiting process */

28  else semSignal(mutex);	 /* otherwise open the mutual exclusion */

M05_STAL4290_09_GE_C05.indd 283 5/2/17 5:19 PM

284   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

a.	 Explain how this program works and why it is correct.
b.	 Does this solution differ from the preceding one in terms of the number of pro-

cesses that can be unblocked at a time? Explain.
c.	 This program is an example of a general design pattern that is a uniform way to

implement solutions to many concurrency problems using semaphores. It has been
referred to as the Pass The Baton pattern. Describe the pattern.

	5.19.	 It should be possible to implement general semaphores using binary semaphores. We
can use the operations semWaitB and semSignalB and two binary semaphores,
delay and mutex. Consider the following:

void semWait(semaphore s)
{

    semWaitB(mutex);

    s--;

    if (s < 0) {
       semSignalB(mutex);

       semWaitB(delay);

   

    }

    else SemsignalB(mutex);
}

 void semSignal(semaphore s);
{

    semWaitB(mutex);

    s++;

    if (s <= 0)
       semSignalB(delay);

    semSignalB(mutex);

}

		 Initially, s is set to the desired semaphore value. Each semWait operation decre-
ments s, and each semSignal operation increments s. The binary semaphore mutex,
which is initialized to 1, assures that there is mutual exclusion for the updating of s.
The binary semaphore delay, which is initialized to 0, is used to block processes.

		   There is a flaw in the preceding program. Demonstrate the flaw and propose a
change that will fix it. Hint: Suppose two processes each call semWait(s) when s is
initially 0, and after the first has just performed semSignalB(mutex) but not per-
formed semWaitB(delay), the second call to semWait(s) proceeds to the same
point. All that you need to do is move a single line of the program.

	5.20.	 In 1978, Dijkstra put forward the conjecture that there was no solution to the mutual
exclusion problem avoiding starvation, applicable to an unknown but finite number
of processes, using a finite number of weak semaphores. In 1979, J. M. Morris refuted
this conjecture by publishing an algorithm using three weak semaphores. The behavior
of the algorithm can be described as follows: If one or several process are waiting in a
semWait(S) operation and another process is executing semSignal(S), the value
of the semaphore S is not modified and one of the waiting processes is unblocked inde-
pendently of semWait(S). Apart from the three semaphores, the algorithm uses two
nonnegative integer variables as counters of the number of processes in certain sec-
tions of the algorithm. Thus, semaphores A and B are initialized to 1, while semaphore
M and counters NA and NM are initialized to 0. The mutual exclusion semaphore B
protects access to the shared variable NA. A process attempting to enter its critical
section must cross two barriers represented by semaphores A and M. Counters NA
and NM, respectively, contain the number of processes ready to cross barrier A, and

M05_STAL4290_09_GE_C05.indd 284 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   285

those having already crossed barrier A but not yet barrier M. In the second part of the
protocol, the NM processes blocked at M will enter their critical sections one by one,
using a cascade technique similar to that used in the first part. Define an algorithm
that conforms to this description.

	5.21.	 The following problem was once used on an exam:

Jurassic Park consists of a dinosaur museum and a park for safari riding. There
are m passengers and n single-passenger cars. Passengers wander around the
museum for a while, then line up to take a ride in a safari car. When a car is
available, it loads the one passenger it can hold and rides around the park for a
random amount of time. If the n cars are all out riding passengers around, then
a passenger who wants to ride waits; if a car is ready to load but there are no
waiting passengers, then the car waits. Use semaphores to synchronize the m
passenger processes and the n car processes.

		 The following skeleton code was found on a scrap of paper on the floor of the exam
room. Grade it for correctness. Ignore syntax and missing variable declarations.
Remember that P and V correspond to semWait and semSignal.

resource Jurassic_Park()

  sem car_avail := 0, car_taken := 0, car_filled := 0,
     passenger_released := 0

  process passenger(i := 1 to num_passengers)

  do true -> nap(int(random(1000*wander_time)))

  P(car_avail); V(car_taken); P(car_filled)

  P(passenger_released)

  od

end passenger

process car(j := 1 to num_cars)

 do true -> V(car_avail); P(car_taken); V(car_filled)

  nap(int(random(1000*ride_time)))

  V(passenger_released)

  od

 end car

end Jurassic_Park

	5.22.	 In the commentary on Figure 5.12 and Table 5.4, it was stated that “it would not do
simply to move the conditional statement inside the critical section (controlled by s)
of the consumer because this could lead to deadlock.” Demonstrate this with a table
similar to Table 5.4.

	5.23.	 Consider the solution to the infinite-buffer producer/consumer problem defined in
Figure 5.13. Suppose we have the (common) case in which the producer and consumer
are running at roughly the same speed. The scenario could be:

Producer: append; semSignal; produce; . . . ; append; semSignal; produce; . . .
Consumer: consume; . . . ; take; semWait; consume; . . . ; take; semWait; . . .

The producer always manages to append a new element to the buffer and signal
during the consumption of the previous element by the consumer. The producer
is always appending to an empty buffer and the consumer is always taking the
sole item in the buffer. Although the consumer never blocks on the semaphore, a
large number of calls to the semaphore mechanism is made, creating considerable
overhead.

		 Construct a new program that will be more efficient under these circumstances. Hints:
Allow n to have the value -1, which is to mean that not only is the buffer empty but

M05_STAL4290_09_GE_C05.indd 285 5/2/17 5:19 PM

286   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

that the consumer has detected this fact and is going to block until the producer sup-
plies fresh data. The solution does not require the use of the local variable m found in
Figure 5.13.

	5.24.	 Consider Figure 5.16. Would the meaning of the program change if the following were
interchanged?
a.	 semWait(e);semWait(s)
b.	 semSignal(s);semSignal(n)
c.	 semWait(n);semWait(s)
d.	 semSignal(s);semSignal(e)

	5.25.	 The following pseudocode is a correct implementation of the producer/consumer prob-
lem with a bounded buffer:

item[3] buffer; // initially empty
semaphore empty; // initialized to +3
semaphore full; // initialized to 0
binary_semaphore mutex; // initialized to 1

void producer() void consumer()
{ {
    ...     ...
    while (true) {     while (true) {
        item = produce(); c1:     wait(full);
p1:   wait(empty);   /     wait(mutex);
  /          wait(mutex); c2:     item = take();
p2:   append(item);   \     signal(mutex);
  \       signal(mutex); c3:     signal(empty);
p3:   signal(full);          consume(item);
    }     }
} }

		 Labels p1, p2, p3 and c1, c2, c3 refer to the lines of code shown above (p2 and c2 each
cover three lines of code). Semaphores empty and full are linear semaphores that can
take unbounded negative and positive values. There are multiple producer processes,
referred to as Pa, Pb, Pc, etc., and multiple consumer processes, referred to as Ca, Cb,
Cc, etc. Each semaphore maintains a FIFO (first-in-first-out) queue of blocked pro-
cesses. In the scheduling chart below, each line represents the state of the buffer and
semaphores after the scheduled execution has occurred. To simplify, we assume that
scheduling is such that processes are never interrupted while executing a given portion
of code p1, or p2, . . . , or c3. Your task is to complete the following chart.

Scheduled Step of
Execution

full’s State and
Queue Buffer

empty’s State
and Queue

Initialization full = 0 OOO empty = +3

Ca executes c1 full = -1 (Ca) OOO empty = +3

Cb executes c1 full = -2 (Ca, Cb) OOO empty = +3

Pa executes p1 full = -2 (Ca, Cb) OOO empty = +2

Pa executes p2 full = -2 (Ca, Cb) X   OO empty = +2

Pa executes p3 full = -1 (Cb) Ca X   OO empty = +2

Ca executes c2 full = -1 (Cb) OOO empty = +2

Ca executes c3 full = -1 (Cb) OOO empty = +3

M05_STAL4290_09_GE_C05.indd 286 5/2/17 5:19 PM

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   287

Scheduled Step of
Execution

full’s State and
Queue Buffer

empty’s State
and Queue

Pb executes p1 full = empty =

Pa executes p1 full = empty =

Pa executes __ full = empty =

Pb executes __ full = empty =

Pb executes __ full = empty =

Pc executes p1 full = empty =

Cb executes __ full = empty =

Pc executes __ full = empty =

Cb executes __ full = empty =

Pa executes __ full = empty =

Pb executes p1-p3 full = empty =

Pc executes __ full = empty =

Pa executes p1 full = empty =

Pd executes p1 full = empty =

Ca executes c1-c3 full = empty =

Pa executes __ full = empty =

Cc executes c1-c2 full = empty =

Pa executes __ full = empty =

Cc executes c3 full = empty =

Pd executes p2-p3 full = empty =

	5.26.	 This problem demonstrates the use of semaphores to coordinate three types of pro-
cesses.7 Santa Claus sleeps in his shop at the North Pole and can only be awakened by
either (1) all nine reindeer being back from their vacation in the South Pacific, or
(2) some of the elves having difficulties making toys; to allow Santa to get some sleep,
the elves can only wake him when three of them have problems. When three elves are
having their problems solved, any other elves wishing to visit Santa must wait for those
elves to return. If Santa wakes up to find three elves waiting at his shop’s door, along
with the last reindeer having come back from the tropics, Santa has decided that the
elves can wait until after Christmas, because it is more important to get his sleigh ready.
(It is assumed the reindeer do not want to leave the tropics, and therefore they stay
there until the last possible moment.) The last reindeer to arrive must get Santa while
the others wait in a warming hut before being harnessed to the sleigh. Solve this prob-
lem using semaphores.

	5.27.	 Show that message passing and semaphores have equivalent functionality by
a.	 Implementing message passing using semaphores. Hint: Make use of a shared buf-

fer area to hold mailboxes, each one consisting of an array of message slots.
b.	 Implementing a semaphore using message passing. Hint: Introduce a separate syn-

chronization process.

7 I am grateful to John Trono of St. Michael’s College in Vermont for supplying this problem.

M05_STAL4290_09_GE_C05.indd 287 5/2/17 5:19 PM

288   Chapter 5 / Concurrency: Mutual Exclusion and Synchronization

	5.28.	 Explain what is the problem with this implementation of the one-writer many-readers
problem?

int readcount;	 // shared and initialized to 0

Semaphore mutex, wrt;	 // shared and initialized to 1;

// Writer :	 // Readers :

	 semWait(mutex);

	 readcount := readcount + 1;

semWait(wrt);	 if readcount == 1 then semWait(wrt);

/* Writing performed*/	 semSignal(mutex);

semSignal(wrt);	 /*reading performed*/

	 semWait(mutex);

	 readcount := readcount - 1;

	 if readcount == 0 then Up(wrt);

	 semSignal(mutex);

M05_STAL4290_09_GE_C05.indd 288 5/2/17 5:19 PM

289

6.1	 Principles of Deadlock
Reusable Resources
Consumable Resources
Resource Allocation Graphs
The Conditions for Deadlock

6.2	 Deadlock Prevention
Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait

6.3	 Deadlock Avoidance
Process Initiation Denial
Resource Allocation Denial

6.4	 Deadlock Detection
Deadlock Detection Algorithm
Recovery

6.5	 An Integrated Deadlock Strategy
6.6	 Dining Philosophers Problem

Solution Using Semaphores
Solution Using a Monitor

6.7	 UNIX Concurrency Mechanisms
Pipes
Messages
Shared Memory
Semaphores
Signals

6.8	 Linux Kernel Concurrency Mechanisms
Atomic Operations
Spinlocks
Semaphores
Barriers

6.9	 Solaris Thread Synchronization Primitives
Mutual Exclusion Lock
Semaphores
Readers/Writer Lock
Condition Variables

6.10	 Windows Concurrency Mechanisms
Wait Functions
Dispatcher Objects
Critical Sections
Slim Reader–Writer Locks and Condition Variables
Lock-free Synchronization

6.11	 Android Interprocess Communication
6.12	 Summary
6.13	 Key Terms, Review Questions, and Problems

Concurrency: Deadlock
and Starvation

Chapter

M06_STAL4290_09_GE_C06.indd 289 5/9/17 4:39 PM

290   Chapter 6 / Concurrency: Deadlock and Starvation

This chapter examines two problems that plague all efforts to support concurrent
processing: deadlock and starvation. We begin with a discussion of the underly-
ing principles of deadlock and the related problem of starvation. Then we will
examine the three common approaches to dealing with deadlock: prevention,
detection, and avoidance. We will then look at one of the classic problems used
to illustrate both synchronization and deadlock issues: the dining philosophers
problem.

As with Chapter 5, the discussion in this chapter is limited to a consideration
of concurrency and deadlock on a single system. Measures to deal with distributed
deadlock problems will be assessed in Chapter 18. An animation illustrating deadlock
is available at the Companion website for this book.

	 6.1	 PRINCIPLES OF DEADLOCK

Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes is
deadlocked when each process in the set is blocked awaiting an event (typically the
freeing up of some requested resource) that can only be triggered by another blocked
process in the set. Deadlock is permanent because none of the events is ever trig-
gered. Unlike other problems in concurrent process management, there is no efficient
solution in the general case.

All deadlocks involve conflicting needs for resources by two or more processes.
A common example is the traffic deadlock. Figure 6.1a shows a situation in which
four cars have arrived at a four-way stop intersection at approximately the same time.

Learning Objectives

After studying this chapter, you should be able to:
•	 List and explain the conditions for deadlock.
•	 Define deadlock prevention and describe deadlock prevention strategies

related to each of the conditions for deadlock.
•	 Explain the difference between deadlock prevention and deadlock

avoidance.
•	 Understand two approaches to deadlock avoidance.
•	 Explain the fundamental difference in approach between deadlock detection

and deadlock prevention or avoidance.
•	 Understand how an integrated deadlock strategy can be designed.
•	 Analyze the dining philosophers problem.
•	 Explain the concurrency and synchronization methods used in UNIX, Linux,

Solaris, Windows, and Android.

M06_STAL4290_09_GE_C06.indd 290 5/9/17 4:39 PM

6.1 / PRINCIPLES OF DEADLOCK   291

The four quadrants of the intersection are the resources over which control is needed.
In particular, if all four cars wish to go straight through the intersection, the resource
requirements are as follows:

•	 Car 1, traveling north, needs quadrants a and b.

•	 Car 2, traveling west, needs quadrants b and c.

•	 Car 3, traveling south, needs quadrants c and d.

•	 Car 4, traveling east, needs quadrants d and a.

The rule of the road in the United States is that a car at a four-way stop should
defer to a car immediately to its right. This rule works if there are only two or three
cars at the intersection. For example, if only the northbound and westbound cars
arrive at the intersection, the northbound car will wait and the westbound car pro-
ceeds. However, if all four cars arrive at about the same time and all four follow
the rule, each will refrain from entering the intersection. This causes a potential
deadlock. It is only a potential deadlock, because the necessary resources are
available for any of the cars to proceed. If one car eventually chooses to proceed,
it can do so.

However, if all four cars ignore the rules and proceed (cautiously) into the
intersection at the same time, then each car seizes one resource (one quadrant) but
cannot proceed because the required second resource has already been seized by
another car. This is an actual deadlock.

Let us now look at a depiction of deadlock involving processes and computer
resources. Figure 6.2, which we refer to as a joint progress diagram, illustrates the
progress of two processes competing for two resources. Each process needs exclusive

Figure 6.1  Illustration of Deadlock

c b

d a

(a) Deadlock possible (b) Deadlock

4 4

1

1

3

32 2

M06_STAL4290_09_GE_C06.indd 291 5/9/17 4:39 PM

292   Chapter 6 / Concurrency: Deadlock and Starvation

use of both resources for a certain period of time. Two processes, P and Q, have the
following general form:

Process P Process Q

• • • • • •
Get A Get B
• • • • • •
Get B Get A
• • • • • •
Release A Release B
• • • • • •
Release B Release A
• • • • • •

In Figure 6.2, the x-axis represents progress in the execution of P and the y-axis
represents progress in the execution of Q. The joint progress of the two processes is
therefore represented by a path that progresses from the origin in a northeasterly
direction. For a uniprocessor system, only one process at a time may execute, and
the path consists of alternating horizontal and vertical segments, with a horizontal

Figure 6.2  Example of Deadlock

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B Required

A
Required

A
Required

Release A

Release
A

Release B

Release
B

Deadlock
inevitable

P and Q
want A

P and Q
want B

1 2

3

4

5

6

5 Possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

5 Both P and Q want resource A

5 Both P and Q want resource B

5 Deadlock-inevitable region

B
Required

M06_STAL4290_09_GE_C06.indd 292 5/9/17 4:39 PM

6.1 / PRINCIPLES OF DEADLOCK   293

segment representing a period when P executes, and Q waits, and a vertical segment
representing a period when Q executes and P waits. The figure indicates areas in
which both P and Q require resource A (upward slanted lines); both P and Q require
resource B (downward slanted lines); and both P and Q require both resources.
Because we assume that each process requires exclusive control of any resource,
these are all forbidden regions; that is, it is impossible for any path representing the
joint execution progress of P and Q to enter these regions.

The figure shows six different execution paths. These can be summarized as
follows:

1.	 Q acquires B then A, then releases B and A. When P resumes execution, it will
be able to acquire both resources.

2.	 Q acquires B then A. P executes and blocks on a request for A. Q releases B
and A. When P resumes execution, it will be able to acquire both resources.

3.	 Q acquires B then P acquires A. Deadlock is inevitable, because as execution
proceeds, Q will block on A and P will block on B.

4.	 P acquires A then Q acquires B. Deadlock is inevitable, because as execution
proceeds, Q will block on A and P will block on B.

5.	 P acquires A then B. Q executes and blocks on a request for B. P releases A and
B. When Q resumes execution, it will be able to acquire both resources.

6.	 P acquires A then B, then releases A and B. When Q resumes execution, it will
be able to acquire both resources.

The gray-shaded area of Figure 6.2, which can be referred to as a fatal region,
applies to the commentary on paths 3 and 4. If an execution path enters this fatal
region, then deadlock is inevitable. Note the existence of a fatal region depends on
the logic of the two processes. However, deadlock is only inevitable if the joint prog-
ress of the two processes creates a path that enters the fatal region.

Whether or not deadlock occurs depends on both the dynamics of the execu-
tion and on the details of the application. For example, suppose P does not need both
resources at the same time so the two processes have the following form:

Process P Process Q

• • • • • •
Get A Get B
• • • • • •
Release A Get A
• • • • • •
Get B Release B
• • • • • •
Release B Release A
• • • • • •

This situation is reflected in Figure 6.3. Some thought should convince you that
regardless of the relative timing of the two processes, deadlock cannot occur.

As shown, the joint progress diagram can be used to record the execution
history of two processes that share resources. In cases where more than two

M06_STAL4290_09_GE_C06.indd 293 5/9/17 4:39 PM

294   Chapter 6 / Concurrency: Deadlock and Starvation

processes may compete for the same resource, a higher-dimensional diagram
would be required. The principles concerning fatal regions and deadlock would
remain the same.

Reusable Resources

Two general categories of resources can be distinguished: reusable and consumable.
A reusable resource is one that can be safely used by only one process at a time and
is not depleted by that use. Processes obtain resource units that they later release
for reuse by other processes. Examples of reusable resources include processors, I/O
channels, main and secondary memory, devices, and data structures (such as files,
databases, and semaphores).

As an example of deadlock involving reusable resources, consider two pro-
cesses that compete for exclusive access to a disk file D and a tape drive T. The
programs engage in the operations depicted in Figure 6.4. Deadlock occurs if each
process holds one resource and requests the other. For example, deadlock occurs
if the multiprogramming system interleaves the execution of the two processes as
follows:

p0 p1 q0 q1 p2 q2

Figure 6.3  Example of No Deadlock [BACO03]

Progress
of PGet A Get B

A Required B Required

5 Both P and Q want resource A

5 Both P and Q want resource B

Release A Release B

1 2 3

4

5

6

P and Q
want A

P and Q
want B

5 Possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

Progress
of Q

Get A

Get B

A
Required

Release
A

Release
B

B
Required

M06_STAL4290_09_GE_C06.indd 294 5/9/17 4:39 PM

6.1 / PRINCIPLES OF DEADLOCK   295

It may appear that this is a programming error rather than a problem for the
OS designer. However, we have seen that concurrent program design is challeng-
ing. Such deadlocks do occur, and the cause is often embedded in complex program
logic, making detection difficult. One strategy for dealing with such a deadlock is
to impose system design constraints concerning the order in which resources can
be requested.

Another example of deadlock with a reusable resource has to do with requests
for main memory. Suppose the space available for allocation is 200 Kbytes, and the
following sequence of requests occurs:

P1 P2

Request 80 Kbytes; Request 70 Kbytes;

Request 60 Kbytes; Request 80 Kbytes;

Deadlock occurs if both processes progress to their second request. If the
amount of memory to be requested is not known ahead of time, it is difficult to deal
with this type of deadlock by means of system design constraints. The best way to deal
with this particular problem is, in effect, to eliminate the possibility by using virtual
memory, which will be discussed in Chapter 8.

Consumable Resources

A consumable resource is one that can be created (produced) and destroyed (con-
sumed). Typically, there is no limit on the number of consumable resources of a
particular type. An unblocked producing process may create any number of such
resources. When a resource is acquired by a consuming process, the resource ceases
to exist. Examples of consumable resources are interrupts, signals, messages, and
information in I/O buffers.

Figure 6.4  Example of Two Processes Competing for Reusable Resources

Step Process P Action

p0 Request (D)

p1 Lock (D)

p2 Request (T)

p3 Lock (T)

p4 Perform function

p5 Unlock (D)

p6 Unlock (T)

Step Process Q Action

q0 Request (T)

q1 Lock (T)

q2 Request (D)

q3 Lock (D)

q4 Perform function

q5 Unlock (T)

q6 Unlock (D)

M06_STAL4290_09_GE_C06.indd 295 5/9/17 4:39 PM

296   Chapter 6 / Concurrency: Deadlock and Starvation

As an example of deadlock involving consumable resources, consider the fol-
lowing pair of processes, in which each process attempts to receive a message from
the other process then send a message to the other process:

P1 P2

Receive (P2); Receive (P1);

Send (P2, M1); Send (P1, M2);

Deadlock occurs if the Receive is blocking (i.e., the receiving process is blocked
until the message is received). Once again, a design error is the cause of the deadlock.
Such errors may be quite subtle and difficult to detect. Furthermore, it may take a
rare combination of events to cause the deadlock; thus a program could be in use for
a considerable period of time, even years, before the deadlock actually occurs.

There is no single effective strategy that can deal with all types of deadlock.
Three approaches are common:

•	 Deadlock prevention: Disallow one of the three necessary conditions for dead-
lock occurrence, or prevent circular wait condition from happening.

•	 Deadlock avoidance: Do not grant a resource request if this allocation might
lead to deadlock.

•	 Deadlock detection: Grant resource requests when possible, but periodically
check for the presence of deadlock and take action to recover.

We examine each of these in turn, after first introducing resource allocation
graphs and then discussing the conditions for deadlock.

Resource Allocation Graphs

A useful tool in characterizing the allocation of resources to processes is the resource
allocation graph, introduced by Holt [HOLT72]. The resource allocation graph is a
directed graph that depicts a state of the system of resources and processes, with each
process and each resource represented by a node. A graph edge directed from a pro-
cess to a resource indicates a resource that has been requested by the process but not
yet granted (see Figure 6.5a). Within a resource node, a dot is shown for each instance
of that resource. Examples of resource types that may have multiple instances are I/O
devices that are allocated by a resource management module in the OS. A graph edge
directed from a reusable resource node dot to a process indicates a request that has
been granted (see Figure 6.5b); that is, the process has been assigned one unit of that
resource. A graph edge directed from a consumable resource node dot to a process
indicates the process is the producer of that resource.

Figure 6.5c shows an example deadlock. There is only one unit each of resources
Ra and Rb. Process P1 holds Rb and requests Ra, while P2 holds Ra but requests Rb.
Figure 6.5d has the same topology as Figure 6.5c, but there is no deadlock because
multiple units of each resource are available.

M06_STAL4290_09_GE_C06.indd 296 5/9/17 4:39 PM

6.1 / PRINCIPLES OF DEADLOCK   297

The resource allocation graph of Figure 6.6 corresponds to the deadlock situ-
ation in Figure 6.1b. Note in this case, we do not have a simple situation in which
two processes each have one resource the other needs. Rather, in this case, there is a
circular chain of processes and resources that results in deadlock.

The Conditions for Deadlock

Three conditions of policy must be present for a deadlock to be possible:

1.	 Mutual exclusion. Only one process may use a resource at a time. No process
may access a resource unit that has been allocated to another process.

2.	 Hold and wait. A process may hold allocated resources while awaiting assign-
ment of other resources.

3.	 No preemption. No resource can be forcibly removed from a process holding it.

In many ways these conditions are quite desirable. For example, mutual exclu-
sion is needed to ensure consistency of results and the integrity of a database. Similarly,

Figure 6.5  Examples of Resource Allocation Graphs

Rb

Ra

Ra

(c) Circular wait

(a) Resource is requested

Rb

Ra

(d) No deadlock

Ra

(b) Resource is held

Requests Held by

Req
uest

s
Held by

Req
uest

sHeld by

Req
uest

s
Held by

Req
uest

sHeld by

P1

P1

P1

P2 P1 P2

M06_STAL4290_09_GE_C06.indd 297 5/9/17 4:39 PM

298   Chapter 6 / Concurrency: Deadlock and Starvation

preemption should not be done arbitrarily. For example, when data resources are
involved, preemption must be supported by a rollback recovery mechanism, which
restores a process and its resources to a suitable previous state from which the process
can eventually repeat its actions.

The first three conditions are necessary, but not sufficient, for a deadlock to
exist. For deadlock to actually take place, a fourth condition is required:

4.	 Circular wait. A closed chain of processes exists, such that each process holds
at least one resource needed by the next process in the chain (e.g., Figure 6.5c
and Figure 6.6).

The fourth condition is, actually, a potential consequence of the first three. That
is, given that the first three conditions exist, a sequence of events may occur that lead
to an unresolvable circular wait. The unresolvable circular wait is in fact the definition
of deadlock. The circular wait listed as condition 4 is unresolvable because the first
three conditions hold. Thus, the four conditions, taken together, constitute necessary
and sufficient conditions for deadlock.1

To clarify this discussion, it is useful to return to the concept of the joint prog-
ress diagram, such as the one shown in Figure 6.2. Recall that we defined a fatal
region as one such that once the processes have progressed into that region, those
processes will deadlock. A fatal region exists only if all of the first three conditions
listed above are met. If one or more of these conditions are not met, there is no fatal
region and deadlock cannot occur. Thus, these are necessary conditions for deadlock.
For deadlock to occur, there must be not only a, fatal region but also a sequence of
resource requests that has led into the fatal region. If a circular wait condition occurs,

1Virtually all textbooks simply list these four conditions as the conditions needed for deadlock, but such a
presentation obscures some of the subtler issues. Item 4, the circular wait condition, is fundamentally dif-
ferent from the other three conditions. Items 1 through 3 are policy decisions, while item 4 is a circumstance
that might occur depending on the sequencing of requests and releases by the involved processes. Linking
circular wait with the three necessary conditions leads to inadequate distinction between prevention and
avoidance. See [SHUB90] and [SHUB03] for a discussion.

Figure 6.6  Resource Allocation Graph for Figure 6.1b

Ra Rb Rc Rd

P1 P2 P3 P4

M06_STAL4290_09_GE_C06.indd 298 5/9/17 4:39 PM

6.2 / DEADLOCK PREVENTION   299

then in fact the fatal region has been entered. Thus, all four conditions listed above
are sufficient for deadlock. To summarize,

Possibility of Deadlock Existence of Deadlock
1.	 Mutual exclusion
2.	 No preemption
3.	 Hold and wait

1.	 Mutual exclusion
2.	 No preemption
3.	 Hold and wait
4.	 Circular wait

Three general approaches exist for dealing with deadlock. First, one can
prevent deadlock by adopting a policy that eliminates one of the conditions (con-
ditions 1 through 4). Second, one can avoid deadlock by making the appropriate
dynamic choices based on the current state of resource allocation. Third, one can
attempt to detect the presence of deadlock (conditions 1 through 4 hold) and take
action to recover. We will discuss each of these approaches in turn.

	 6.2	 DEADLOCK PREVENTION

The strategy of deadlock prevention is, simply put, to design a system in such a
way that the possibility of deadlock is excluded. We can view deadlock prevention
methods as falling into two classes. An indirect method of deadlock prevention is
to prevent the occurrence of one of the three necessary conditions previously listed
(items 1 through 3). A direct method of deadlock prevention is to prevent the occur-
rence of a circular wait (item 4). We now examine techniques related to each of the
four conditions.

Mutual Exclusion

In general, the first of the four listed conditions cannot be disallowed. If access to
a resource requires mutual exclusion, then mutual exclusion must be supported by
the OS. Some resources, such as files, may allow multiple accesses for reads but only
exclusive access for writes. Even in this case, deadlock can occur if more than one
process requires write permission.

Hold and Wait

The hold-and-wait condition can be prevented by requiring that a process request all
of its required resources at one time and blocking the process until all requests can be
granted simultaneously. This approach is inefficient in two ways. First, a process may
be held up for a long time waiting for all of its resource requests to be filled, when
in fact it could have proceeded with only some of the resources. Second, resources
allocated to a process may remain unused for a considerable period, during which
time they are denied to other processes. Another problem is that a process may not
know in advance all of the resources that it will require.

M06_STAL4290_09_GE_C06.indd 299 5/9/17 4:39 PM

300   Chapter 6 / Concurrency: Deadlock and Starvation

There is also the practical problem created by the use of modular programming
or a multithreaded structure for an application. An application would need to be
aware of all resources that will be requested at all levels or in all modules to make
the simultaneous request.

No Preemption

This condition can be prevented in several ways. First, if a process holding certain
resources is denied a further request, that process must release its original resources
and, if necessary, request them again together with the additional resource. Alter-
natively, if a process requests a resource that is currently held by another process,
the OS may preempt the second process and require it to release its resources. This
latter scheme would prevent deadlock only if no two processes possessed the same
priority.

This approach is practical only when applied to resources whose state can be
easily saved and restored later, as is the case with a processor.

Circular Wait

The circular wait condition can be prevented by defining a linear ordering of resource
types. If a process has been allocated resources of type R, then it may subsequently
request only those resources of types following R in the ordering.

To see that this strategy works, let us associate an index with each resource type.
Then resource Ri precedes Rj in the ordering if i 6 j. Now suppose two processes,
A and B, are deadlocked because A has acquired Ri and requested Rj, and B has
acquired Rj and requested Ri. This condition is impossible because it implies i 6 j
and j 6 i.

As with hold-and-wait prevention, circular wait prevention may be inefficient,
unnecessarily slowing down processes and denying resource access.

	 6.3	 DEADLOCK AVOIDANCE

An approach to solving the deadlock problem that differs subtly from deadlock pre-
vention is deadlock avoidance.2 In deadlock prevention, we constrain resource
requests to prevent at least one of the four conditions of deadlock. This is either done
indirectly by preventing one of the three necessary policy conditions (mutual exclu-
sion, hold and wait, no preemption), or directly by preventing circular wait. This leads
to inefficient use of resources and inefficient execution of processes. Deadlock avoid-
ance, on the other hand, allows the three necessary conditions but makes judicious
choices to assure that the deadlock point is never reached. As such, avoidance allows
more concurrency than prevention. With deadlock avoidance, a decision is made
dynamically whether the current resource allocation request will, if granted,

2The term avoidance is a bit confusing. In fact, one could consider the strategies discussed in this section
to be examples of deadlock prevention because they indeed prevent the occurrence of a deadlock.

M06_STAL4290_09_GE_C06.indd 300 5/9/17 4:39 PM

6.3 / DEADLOCK AVOIDANCE   301

potentially lead to a deadlock. Deadlock avoidance thus requires knowledge of future
process resource requests.

In this section, we describe two approaches to deadlock avoidance:

1.	 Do not start a process if its demands might lead to deadlock.

2.	 Do not grant an incremental resource request to a process if this allocation
might lead to deadlock.

Process Initiation Denial

Consider a system of n processes and m different types of resources. Let us define
the following vectors and matrices:

Resource = R = (R1, R2, c , Rm) Total amount of each resource in the system

Available = V = (V1, V2, c , Vm) Total amount of each resource not allocated to any process

Claim = C = §C11 C12 c C1m

C21 C22 c C2m

f f f f
Cn1 Cn2 c Cnm

¥ C ij = requirement of process i for resource j

Allocation = A = §A11 A12 c A1m

A21 A22 c A2m

f f f f
An1 An2 c Anm

¥ Aij = current allocation to process i of resource j

The matrix Claim gives the maximum requirement of each process for each
resource, with one row dedicated to each process. This information must be declared
in advance by a process for deadlock avoidance to work. Similarly, the matrix Allo-
cation gives the current allocation to each process. The following relationships hold:

1.  Rj = Vj + a
n

i=1
Aij,  for all j All resources are either available or allocated.

2.  Cij … Rj,  for all i, j No process can claim more than the total
amount of resources in the system.

3.  Aij … Cij,  for all i, j No process is allocated more resources of any
type than the process originally claimed to need.

With these quantities defined, we can define a deadlock avoidance policy that
refuses to start a new process if its resource requirements might lead to deadlock.
Start a new process Pn + 1 only if

Rj Ú C(n + 1)j + a
n

i=1
Cij, for all j

M06_STAL4290_09_GE_C06.indd 301 5/9/17 4:39 PM

302   Chapter 6 / Concurrency: Deadlock and Starvation

That is, a process is only started if the maximum claim of all current processes
plus those of the new process can be met. This strategy is hardly optimal, because it
assumes the worst: that all processes will make their maximum claims together.

Resource Allocation Denial

The strategy of resource allocation denial, referred to as the banker’s algorithm,3 was
first proposed in [DIJK65]. Let us begin by defining the concepts of state and safe state.
Consider a system with a fixed number of processes and a fixed number of resources.
At any time a process may have zero or more resources allocated to it. The state of the
system reflects the current allocation of resources to processes. Thus, the state consists
of the two vectors, Resource and Available, and the two matrices, Claim and Allocation,
defined earlier. A safe state is one in which there is at least one sequence of resource
allocations to processes that does not result in a deadlock (i.e., all of the processes can
be run to completion). An unsafe state is, of course, a state that is not safe.

The following example illustrates these concepts. Figure 6.7a shows the state
of a system consisting of four processes and three resources. The total amount of
resources R1, R2, and R3 are 9, 3, and 6 units, respectively. In the current state
allocations have been made to the four processes, leaving 1 unit of R2 and 1 unit of
R3 available. Is this a safe state? To answer this question, we ask an intermediate
question: Can any of the four processes be run to completion with the resources
available? That is, can the difference between the maximum requirement and cur-
rent allocation for any process be met with the available resources? In terms of the
matrices and vectors introduced earlier, the condition to be met for process i is:

Cij - Aij … Vj, for all j

Clearly, this is not possible for P1, which has only 1 unit of R1 and requires
2 more units of R1, 2 units of R2, and 2 units of R3. However, by assigning one unit
of R3 to process P2, P2 has its maximum required resources allocated and can run
to completion. Let us assume this is accomplished. When P2 completes, its resources
can be returned to the pool of available resources. The resulting state is shown in
Figure 6.7b. Now we can ask again if any of the remaining processes can be com-
pleted. In this case, each of the remaining processes could be completed. Suppose
we choose P1, allocate the required resources, complete P1, and return all of P1’s
resources to the available pool. We are left in the state shown in Figure 6.7c. Next, we
can complete P3, resulting in the state of Figure 6.7d. Finally, we can complete P4. At
this point, all of the processes have been run to completion. Thus, the state defined
by Figure 6.7a is a safe state.

3Dijkstra used this name because of the analogy of this problem to one in banking, with customers
who wish to borrow money corresponding to processes, and the money to be borrowed corresponding
to resources. Stated as a banking problem, the bank has a limited reserve of money to lend and a list
of customers, each with a line of credit. A customer may choose to borrow against the line of credit
a portion at a time, and there is no guarantee that the customer will make any repayment until after
having taken out the maximum amount of loan. The banker can refuse a loan to a customer if there is
a risk that the bank will have insufficient funds to make further loans that will permit the customers
to repay eventually.

M06_STAL4290_09_GE_C06.indd 302 5/9/17 4:39 PM

6.3 / DEADLOCK AVOIDANCE   303

Figure 6.7  Determination of a Safe State

R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 2 2 2
P2 0 0 1
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

0 1 1

(a) Initial state

R1 R2 R3

P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 2 2 2
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

6 2 3

(b) P2 runs to completion

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

7 2 3

(c) P1 runs to completion

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

9 3 4

(d) P3 runs to completion

M06_STAL4290_09_GE_C06.indd 303 5/9/17 4:39 PM

304   Chapter 6 / Concurrency: Deadlock and Starvation

These concepts suggest the following deadlock avoidance strategy, which
ensures that the system of processes and resources is always in a safe state. When a
process makes a request for a set of resources, assume the request is granted, update
the system state accordingly, then determine if the result is a safe state. If so, grant
the request and, if not, block the process until it is safe to grant the request.

Consider the state defined in Figure 6.8a. Suppose P2 makes a request for
one additional unit of R1 and one additional unit of R3. If we assume the request
is granted, then the resulting state is that of Figure 6.7a. We have already seen that
this is a safe state; therefore, it is safe to grant the request. Now let us return to
the state of Figure 6.8a, and suppose P1 makes the request for one additional unit
each of R1 and R3; if we assume the request is granted, we are left in the state of
Figure 6.8b. Is this a safe state? The answer is no, because each process will need at
least one additional unit of R1, and there are none available. Thus, on the basis of
deadlock avoidance, the request by P1 should be denied and P1 should be blocked.

It is important to point out that Figure 6.8b is not a deadlocked state. It merely
has the potential for deadlock. It is possible, for example, that if P1 were run from
this state, it would subsequently release one unit of R1 and one unit of R3 prior to
needing these resources again. If that happened, the system would return to a safe
state. Thus, the deadlock avoidance strategy does not predict deadlock with certainty;
it merely anticipates the possibility of deadlock and assures that there is never such
a possibility.

Figure 6.9 gives an abstract version of the deadlock avoidance logic. The main
algorithm is shown in part (b). With the state of the system defined by the data

Figure 6.8  Determination of an Unsafe State

R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 1 0 0
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 2 2 2
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

1 1 2

(a) Initial state

R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3

P1 2 0 1
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3

P1 1 2 1
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3

9 3 6

Available vector V

R1 R2 R3

0 1 1

(b) P1 requests one unit each of R1 and R3

M06_STAL4290_09_GE_C06.indd 304 5/9/17 4:39 PM

6.3 / DEADLOCK AVOIDANCE   305

struct state {
        int resource[m];
        int available[m];
        int claim[n][m];
        int alloc[n][m];
}

if (alloc [i,*] + request [*] > claim [i,*])
     <error>;	 /* total request > claim*/
else if (request [*] > available [*])
    <suspend process>;
else { 	 /* simulate alloc */
    <define newstate by:
    alloc [i,*] = alloc [i,*] + request [*];
    available [*] = available [*] - request [*]>;
}
if (safe (newstate))
     <carry out allocation>;
else {
     <restore original state>;
     <suspend process>;
}

(a) Global data structures

(b) Resource allocation algorithm

 Figure 6.9  Deadlock Avoidance LogicVideoNote

boolean safe (state S) {
    int currentavail[m];
    process rest[<number of processes>];
    currentavail = available;
    rest = {all processes};
    possible = true;
    while (possible) {
      <find a process Pk in rest such that
      claim [k,*] – alloc [k,*]<= currentavail;
      if (found) { 	 /* simulate execution of Pk */
        currentavail = currentavail + alloc [k,*];
        rest = rest - {Pk};
      }
      else possible = false;
    }
    return (rest == null);
}

(c) Test for safety algorithm (banker’s algorithm)

M06_STAL4290_09_GE_C06.indd 305 5/9/17 4:39 PM

306   Chapter 6 / Concurrency: Deadlock and Starvation

structure state, request [*] is a vector defining the resources requested
by process i. First, a check is made to assure that the request does not exceed the
original claim of the process. If the request is valid, the next step is to determine if
it is possible to fulfill the request (i.e., there are sufficient resources available). If
it is not possible, then the process is suspended. If it is possible, the final step is to
determine if it is safe to fulfill the request. To do this, the resources are tentatively
assigned to process i to form newstate. Then a test for safety is made using the
algorithm in Figure 6.9c.

Deadlock avoidance has the advantage that it is not necessary to preempt and
rollback processes, as in deadlock detection, and is less restrictive than deadlock
prevention. However, it does have a number of restrictions on its use:

•	 The maximum resource requirement for each process must be stated in advance.

•	 The processes under consideration must be independent; that is, the order in
which they execute must be unconstrained by any synchronization requirements.

•	 There must be a fixed number of resources to allocate.

•	 No process may exit while holding resources.

	 6.4	 DEADLOCK DETECTION

Deadlock prevention strategies are very conservative; they solve the problem of dead-
lock by limiting access to resources and by imposing restrictions on processes. At
the opposite extreme, deadlock detection strategies do not limit resource access or
restrict process actions. With deadlock detection, requested resources are granted to
processes whenever possible. Periodically, the OS performs an algorithm that allows it
to detect the circular wait condition described earlier in condition (4) and illustrated
in Figure 6.6.

Deadlock Detection Algorithm

A check for deadlock can be made as frequently as each resource request, or less
frequently, depending on how likely it is for a deadlock to occur. Checking at each
resource request has two advantages: It leads to early detection, and the algorithm is
relatively simple because it is based on incremental changes to the state of the sys-
tem. On the other hand, such frequent checks consume considerable processor time.

A common algorithm for deadlock detection is one described in [COFF71],
which is designed to detect a deadlock by accounting for all possibilities of sequenc-
ing of the tasks that remain to be completed. The Allocation matrix and Available
vector described in the previous section are used. In addition, a request matrix Q is
defined such that Qij represents the amount of resources of type j requested by pro-
cess i. The algorithm proceeds by marking processes that are not part of a deadlocked
set. Initially, all processes are unmarked. Then the following steps are performed:

1.	 Mark each process that has a row in the Allocation matrix of all zeros. A process
that has no allocated resources cannot participate in a deadlock.

2.	 Initialize a temporary vector W to equal the Available vector.

M06_STAL4290_09_GE_C06.indd 306 5/9/17 4:39 PM

6.4 / DEADLOCK DETECTION   307

Figure 6.10  Example for Deadlock Detection

R1 R2 R3 R4 R5

P1 0 1 0 0 1

P2 0 0 1 0 1

P3 0 0 0 0 1

P4 1 0 1 0 1

Request matrix Q

R1 R2 R3 R4 R5

P1 1 0 1 1 0

P2 1 1 0 0 0

P3 0 0 0 1 0

P4 0 0 0 0 0

Allocation matrix A

R1 R2 R3 R4 R5

2 1 1 2 1

Resource vector

R1 R2 R3 R4 R5

0 0 0 0 1

Available vector

3.	 Find an index i such that process i is currently unmarked and the ith row of Q
is less than or equal to W. That is, Qik … Wk, for 1 … k … m. If no such row is
found, terminate the algorithm.

4.	 If such a row is found, mark process i and add the corresponding row of the allo-
cation matrix to W. That is, set Wk = Wk + Aik, for 1 … k … m. Return to step 3.

A deadlock exists if and only if there are unmarked processes at the end of the
algorithm. The set of unmarked rows corresponds precisely to the set of deadlocked
processes. The strategy in this algorithm is to find a process whose resource requests
can be satisfied with the available resources, then assume those resources are granted
and the process runs to completion and releases all of its resources. The algorithm
then looks for another process to satisfy. Note this algorithm does not guarantee to
prevent deadlock; that will depend on the order in which future requests are granted.
All that it does is determine if deadlock currently exists.

We can use Figure 6.10 to illustrate the deadlock detection algorithm. The algo-
rithm proceeds as follows:

1.	 Mark P4, because P4 has no allocated resources.

2.	 Set W = (0 0 0 0 1).

3.	 The request of process P3 is less than or equal to W, so mark P3 and set

W = W + (0 0 0 1 0) = (0 0 0 1 1).

4.	 No other unmarked process has a row in Q that is less than or equal to W.
Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating these processes
are deadlocked.

Recovery

Once deadlock has been detected, some strategy is needed for recovery. The follow-
ing are possible approaches, listed in the order of increasing sophistication:

1.	 Abort all deadlocked processes. This is, believe it or not, one of the most com-
mon, if not the most common, solutions adopted in operating systems.

M06_STAL4290_09_GE_C06.indd 307 5/9/17 4:39 PM

308   Chapter 6 / Concurrency: Deadlock and Starvation

2.	 Back up each deadlocked process to some previously defined checkpoint, and
restart all processes. This requires that rollback and restart mechanisms be built
into the system. The risk in this approach is that the original deadlock may
recur. However, the nondeterminancy of concurrent processing may ensure
that this does not happen.

3.	 Successively abort deadlocked processes until deadlock no longer exists. The
order in which processes are selected for abortion should be on the basis of
some criterion of minimum cost. After each abortion, the detection algorithm
must be reinvoked to see whether deadlock still exists.

4.	 Successively preempt resources until deadlock no longer exists. As in (3), a cost-
based selection should be used, and reinvocation of the detection algorithm is
required after each preemption. A process that has a resource preempted from
it must be rolled back to a point prior to its acquisition of that resource.

For (3) and (4), the selection criteria could be one of the following. Choose the
process with the:

•	 least amount of processor time consumed so far.

•	 least amount of output produced so far.

•	 most estimated time remaining.

•	 least total resources allocated so far.

•	 lowest priority.

Some of these quantities are easier to measure than others. Estimated time
remaining is particularly suspect. Also, other than by means of the priority measure,
there is no indication of the “cost” to the user, as opposed to the cost to the system
as a whole.

	 6.5	 AN INTEGRATED DEADLOCK STRATEGY

There are strengths and weaknesses to all of the strategies for dealing with dead-
lock. Rather than attempting to design an OS facility that employs only one of these
strategies, it might be more efficient to use different strategies in different situations.
[HOWA73] suggests one approach:

•	 Group resources into a number of different resource classes.

•	 Use the linear ordering strategy defined previously for the prevention of circu-
lar wait to prevent deadlocks between resource classes.

•	 Within a resource class, use the algorithm that is most appropriate for that class.

As an example of this technique, consider the following classes of resources:

•	 Swappable space: Blocks of memory on secondary storage for use in swapping
processes

•	 Process resources: Assignable devices, such as tape drives, and files

M06_STAL4290_09_GE_C06.indd 308 5/9/17 4:39 PM

6.6 / DINING PHILOSOPHERS PROBLEM   309

•	 Main memory: Assignable to processes in pages or segments

•	 Internal resources: Such as I/O channels

The order of the preceding list represents the order in which resources are
assigned. The order is a reasonable one, considering the sequence of steps that a
process may follow during its lifetime. Within each class, the following strategies
could be used:

•	 Swappable space: Prevention of deadlocks by requiring that all of the required
resources that may be used be allocated at one time, as in the hold-and-
wait prevention strategy. This strategy is reasonable if the maximum storage
requirements are known, which is often the case. Deadlock avoidance is also
a possibility.

•	 Process resources: Avoidance will often be effective in this category, because
it is reasonable to expect processes to declare ahead of time the resources that
they will require in this class. Prevention by means of resource ordering within
this class is also possible.

•	 Main memory: Prevention by preemption appears to be the most appropriate
strategy for main memory. When a process is preempted, it is simply swapped
to secondary memory, freeing space to resolve the deadlock.

•	 Internal resources: Prevention by means of resource ordering can be used.

	 6.6	 DINING PHILOSOPHERS PROBLEM

We now turn to the dining philosophers problem, introduced by Dijkstra [DIJK71].
Five philosophers live in a house, where a table is set for them. The life of each phi-
losopher consists principally of thinking and eating, and through years of thought, all
of the philosophers had agreed that the only food that contributed to their thinking
efforts was spaghetti. Due to a lack of manual skill, each philosopher requires two
forks to eat spaghetti.

The eating arrangements are simple (see Figure 6.11): a round table on which
is set a large serving bowl of spaghetti, five plates, one for each philosopher, and
five forks. A philosopher wishing to eat goes to his or her assigned place at the table
and, using the two forks on either side of the plate, takes and eats some spaghetti.
The problem: Devise a ritual (algorithm) that will allow the philosophers to eat. The
algorithm must satisfy mutual exclusion (no two philosophers can use the same fork
at the same time) while avoiding deadlock and starvation (in this case, the term has
literal as well as algorithmic meaning!).

This problem may not seem important or relevant in itself. However, it does
illustrate basic problems in deadlock and starvation. Furthermore, attempts to
develop solutions reveal many of the difficulties in concurrent programming (e.g.,
see [GING90]). In addition, the dining philosophers problem can be seen as repre-
sentative of problems dealing with the coordination of shared resources, which may
occur when an application includes concurrent threads of execution. Accordingly, this
problem is a standard test case for evaluating approaches to synchronization.

M06_STAL4290_09_GE_C06.indd 309 5/9/17 4:39 PM

310   Chapter 6 / Concurrency: Deadlock and Starvation

Solution Using Semaphores

Figure 6.12 suggests a solution using semaphores. Each philosopher first picks up the
fork on the left then the fork on the right. After the philosopher is finished eating,
the two forks are replaced on the table. This solution, alas, leads to deadlock: If all of
the philosophers are hungry at the same time, they all sit down, they all pick up the
fork on their left, and they all reach out for the other fork, which is not there. In this
undignified position, all philosophers starve.

To overcome the risk of deadlock, we could buy five additional forks (a more
sanitary solution!) or teach the philosophers to eat spaghetti with just one fork.
As another approach, we could consider adding an attendant who only allows four
philosophers at a time into the dining room. With at most four seated philoso-
phers, at least one philosopher will have access to two forks. Figure 6.13 shows
such a solution, again using semaphores. This solution is free of deadlock and
starvation.

Solution Using a Monitor

Figure 6.14 shows a solution to the dining philosophers problem using a monitor.
A vector of five condition variables is defined, one condition variable per fork.
These condition variables are used to enable a philosopher to wait for the avail-
ability of a fork. In addition, there is a Boolean vector that records the availability

Figure 6.11  Dining Arrangement for Philosophers

P3

P0

P2

P4

P1

M06_STAL4290_09_GE_C06.indd 310 5/9/17 4:39 PM

6.6 / DINING PHILOSOPHERS PROBLEM   311

 Figure 6.12  A First Solution to the Dining Philosophers ProblemVideoNote

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{
    while (true) {
       think();
       wait (fork[i]);
       wait (fork [(i+1) mod 5]);
       eat();
       signal(fork [(i+1) mod 5]);
       signal(fork[i]);
    }
}
void main()
{
    parbegin (philosopher (0), philosopher (1),
       philosopher (2), philosopher (3),
       philosopher (4));
    }

 Figure 6.13  A Second Solution to the Dining Philosophers ProblemVideoNote

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{
    while (true) {
       think();
       wait (room);
       wait (fork[i]);
       wait (fork [(i+1) mod 5]);
       eat();
       signal (fork [(i+1) mod 5]);
       signal (fork[i]);
       signal (room);
    }
}
void main()
{
    parbegin (philosopher (0), philosopher (1),
       philosopher (2), philosopher (3),
       philosopher (4));
 }

M06_STAL4290_09_GE_C06.indd 311 5/9/17 4:39 PM

312   Chapter 6 / Concurrency: Deadlock and Starvation

 Figure 6.14  A Solution to the Dining Philosophers Problem Using a MonitorVideoNote

monitor dining_controller;
cond ForkReady[5];	 /* condition variable for synchronization */
boolean fork[5] = {true};	/* availability status of each fork */

void get_forks(int pid)	 /* pid is the philosopher id number */
{
   int left = pid;
   int right = (++pid) % 5;
   /*grant the left fork*/
   if (!fork[left])
     cwait(ForkReady[left]);	/* queue on condition variable */
   fork(left) = false;
   /*grant the right fork*/
   if (!fork[right])
     cwait(ForkReady[right]);	/* queue on condition variable */
   fork[right] = false:
   }
void release_forks(int pid)
{
   int left = pid;
   int right = (++pid) % 5;
   /*release the left fork*/
   if (empty(ForkReady[left]) /*no one is waiting for this fork */
     fork[left] = true;
   else 	 /* awaken a process waiting on this fork */
     csignal(ForkReady[left]);
   /*release the right fork*/
   if (empty(ForkReady[right])/*no one is waiting for this fork */
     fork[right] = true;
   else 	 /* awaken a process waiting on this fork */
     csignal(ForkReady[right]);
}

void philosopher[k=0 to 4]    /* the five philosopher clients */
{
   while (true) {
    <think>;
    get_forks(k);	 /* client requests two forks via monitor */
    <eat spaghetti>;
    release_forks(k); /* client releases forks via the monitor */
   }
}

M06_STAL4290_09_GE_C06.indd 312 5/9/17 4:39 PM

6.7 / UNIX CONCURRENCY MECHANISMS   313

status of each fork (true means the fork is available). The monitor consists of two
procedures. The get_forks procedure is used by a philosopher to seize his or her
left and right forks. If either fork is unavailable, the philosopher process is queued
on the appropriate condition variable. This enables another philosopher process
to enter the monitor. The release-forks procedure is used to make two forks
available. Note the structure of this solution is similar to that of the semaphore
solution proposed in Figure 6.12. In both cases, a philosopher seizes first the left
fork then the right fork. Unlike the semaphore solution, this monitor solution does
not suffer from deadlock, because only one process at a time may be in the monitor.
For example, the first philosopher process to enter the monitor is guaranteed that it
can pick up the right fork after it picks up the left fork before the next philosopher
to the right has a chance to seize his or her left fork, which is this philosopher’s
right fork.

	 6.7	 UNIX CONCURRENCY MECHANISMS

UNIX provides a variety of mechanisms for interprocessor communication and syn-
chronization. Here, we look at the most important of these:

•	 Pipes

•	 Messages

•	 Shared memory

•	 Semaphores

•	 Signals

Pipes, messages, and shared memory can be used to communicate data between
processes, whereas semaphores and signals are used to trigger actions by other
processes.

Pipes

One of the most significant contributions of UNIX to the development of operat-
ing systems is the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a
circular buffer allowing two processes to communicate on the producer–consumer
model. Thus, it is a first-in-first-out queue, written by one process and read by
another.

When a pipe is created, it is given a fixed size in bytes. When a process attempts
to write into the pipe, the write request is immediately executed if there is sufficient
room; otherwise the process is blocked. Similarly, a reading process is blocked if it
attempts to read more bytes than are currently in the pipe; otherwise the read request
is immediately executed. The OS enforces mutual exclusion: that is, only one process
can access a pipe at a time.

There are two types of pipes: named and unnamed. Only related processes can
share unnamed pipes, while either related or unrelated processes can share named
pipes.

M06_STAL4290_09_GE_C06.indd 313 5/9/17 4:39 PM

314   Chapter 6 / Concurrency: Deadlock and Starvation

Messages

A message is a block of bytes with an accompanying type. UNIX provides msgsnd
and msgrcv system calls for processes to engage in message passing. Associated with
each process is a message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent,
and this can be used as a selection criterion by the receiver. The receiver can either
retrieve messages in first-in-first-out order or by type. A process will block when try-
ing to send a message to a full queue. A process will also block when trying to read
from an empty queue. If a process attempts to read a message of a certain type and
fails because no message of that type is present, the process is not blocked.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared memory.
This is a common block of virtual memory shared by multiple processes. Processes
read and write shared memory using the same machine instructions they use to read
and write other portions of their virtual memory space. Permission is read-only or
read-write for a process, determined on a per-process basis. Mutual exclusion con-
straints are not part of the shared-memory facility, but must be provided by the
processes using the shared memory.

Semaphores

The semaphore system calls in UNIX System V are a generalization of the semWait
and semSignal primitives defined in Chapter 5; several operations can be per-
formed simultaneously, and the increment and decrement operations can be values
greater than 1. The kernel does all of the requested operations atomically; no other
process may access the semaphore until all operations have completed.

A semaphore consists of the following elements:

•	 Current value of the semaphore

•	 Process ID of the last process to operate on the semaphore

•	 Number of processes waiting for the semaphore value to be greater than its
current value

•	 Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes blocked on that semaphore.
Semaphores are actually created in sets, with a semaphore set consisting of one

or more semaphores. There is a semctl system call that allows all of the semaphore
values in the set to be set at the same time. In addition, there is a sem_op system
call that takes as an argument a list of semaphore operations, each defined on one
of the semaphores in a set. When this call is made, the kernel performs the indicated
operations one at a time. For each operation, the actual function is specified by the
value sem_op. The following are the possibilities:

•	 If sem_op is positive, the kernel increments the value of the semaphore and
awakens all processes waiting for the value of the semaphore to increase.

M06_STAL4290_09_GE_C06.indd 314 5/9/17 4:39 PM

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS   315

•	 If sem_op is 0, the kernel checks the semaphore value. If the semaphore value
equals 0, the kernel continues with the other operations on the list. Otherwise,
the kernel increments the number of processes waiting for this semaphore to be
0 and suspends the process to wait for the event that the value of the semaphore
equals 0.

•	 If sem_op is negative and its absolute value is less than or equal to the sema-
phore value, the kernel adds sem_op (a negative number) to the semaphore
value. If the result is 0, the kernel awakens all processes waiting for the value
of the semaphore to equal 0.

•	 If sem_op is negative and its absolute value is greater than the semaphore
value, the kernel suspends the process on the event that the value of the sema-
phore increases.

This generalization of the semaphore provides considerable flexibility in per-
forming process synchronization and coordination.

Signals

A signal is a software mechanism that informs a process of the occurrence of asyn-
chronous events. A signal is similar to a hardware interrupt but does not employ
priorities. That is, all signals are treated equally; signals that occur at the same time
are presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals internally.
A signal is delivered by updating a field in the process table for the process to which
the signal is being sent. Because each signal is maintained as a single bit, signals of a
given type cannot be queued. A signal is processed just after a process wakes up to
run or whenever the process is preparing to return from a system call. A process may
respond to a signal by performing some default action (e.g., termination), executing
a signal-handler function, or ignoring the signal.

Table 6.1 lists signals defined for UNIX SVR4.

	 6.8	 LINUX KERNEL CONCURRENCY MECHANISMS

Linux includes all of the concurrency mechanisms found in other UNIX systems, such
as SVR4, including pipes, messages, shared memory, and signals. Linux also supports
a special type of signaling known as real-time (RT) signals. These are part of the
POSIX.1b Real-time Extensions feature. RT signals differ from standard UNIX (or
POSIX.1) signals in three primary ways:

•	 Signal delivery in priority order is supported.

•	 Multiple signals can be queued.

•	 With standard signals, no value or message can be sent to the target process; it
is only a notification. With RT signals, it is possible to send a value (an integer
or a pointer) along with the signal.

Linux also includes a rich set of concurrency mechanisms specifically intended for
use when a thread is executing in kernel mode. That is, these are mechanisms used

M06_STAL4290_09_GE_C06.indd 315 5/9/17 4:39 PM

316   Chapter 6 / Concurrency: Deadlock and Starvation

within the kernel to provide concurrency in the execution of kernel code. This section
examines the Linux kernel concurrency mechanisms.

Atomic Operations

Linux provides a set of operations that guarantee atomic operations on a variable.
These operations can be used to avoid simple race conditions. An atomic operation
executes without interruption and without interference. On a uniprocessor system,
a thread performing an atomic operation cannot be interrupted once the operation
has started until the operation is finished. In addition, on a multiprocessor system, the
variable being operated on is locked from access by other threads until this operation
is completed.

Two types of atomic operations are defined in Linux: integer operations, which
operate on an integer variable, and bitmap operations, which operate on one bit in a
bitmap (see Table 6.2). These operations must be implemented on any architecture
that implements Linux. For some architectures, there are corresponding assembly
language instructions for the atomic operations. On other architectures, an operation
that locks the memory bus is used to guarantee that the operation is atomic.

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the user of that process is doing
no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access location outside its virtual
address space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure

Table 6.1  UNIX Signals

M06_STAL4290_09_GE_C06.indd 316 5/9/17 4:39 PM

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS   317

For atomic integer operations, a special data type is used, atomic_t. The
atomic integer operations can be used only on this data type, and no other opera-
tions are allowed on this data type. [LOVE04] lists the following advantages for these
restrictions:

1.	 The atomic operations are never used on variables that might in some circum-
stances be unprotected from race conditions.

2.	 Variables of this data type are protected from improper use by nonatomic
operations.

3.	 The compiler cannot erroneously optimize access to the value (e.g., by using an
alias rather than the correct memory address).

4.	 This data type serves to hide architecture-specific differences in its implementation.

Atomic Integer Operations

ATOMIC_INIT (int i) At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v) Read integer value of v

void atomic_set(atomic_t *v, int i) Set the value of v to integer i

void atomic_add(int i, atomic_t *v) Add i to v

void atomic_sub(int i, atomic_t *v) Subtract i from v

void atomic_inc(atomic_t *v) Add 1 to v

void atomic_dec(atomic_t *v) Subtract 1 from v

int atomic_sub_and_test(int i,
atomic_t *v)

Subtract i from v; return 1 if the result is 0; return 0
otherwise

int atomic_add_negative(int i,
atomic_t *v)

Add i to v; return 1 if the result is negative; return 0
otherwise (used for implementing semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is 0; return 0
otherwise

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is 0; return 0
otherwise

Atomic Bitmap Operations

void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr, void
*addr)

Set bit nr in the bitmap pointed to by addr; return the
old bit value

int test_and_clear_bit(int nr, void
*addr)

Clear bit nr in the bitmap pointed to by addr; return
the old bit value

int test_and_change_bit(int nr, void
*addr)

Invert bit nr in the bitmap pointed to by addr; return
the old bit value

int test_bit(int nr, void *addr) Return the value of bit nr in the bitmap pointed to
by addr

Table 6.2  Linux Atomic Operations

M06_STAL4290_09_GE_C06.indd 317 5/9/17 4:39 PM

318   Chapter 6 / Concurrency: Deadlock and Starvation

A typical use of the atomic integer data type is to implement counters.
The atomic bitmap operations operate on one of a sequence of bits at an arbi-

trary memory location indicated by a pointer variable. Thus, there is no equivalent to
the atomic_t data type needed for atomic integer operations.

Atomic operations are the simplest of the approaches to kernel synchroniza-
tion. More complex locking mechanisms can be built on top of them.

Spinlocks

The most common technique used for protecting a critical section in Linux is
the spinlock. Only one thread at a time can acquire a spinlock. Any other thread
attempting to acquire the same lock will keep trying (spinning) until it can acquire
the lock. In essence, a spinlock is built on an integer location in memory that is
checked by each thread before it enters its critical section. If the value is 0, the
thread sets the value to 1 and enters its critical section. If the value is nonzero, the
thread continually checks the value until it is 0. The spinlock is easy to implement,
but has the disadvantage that locked-out threads continue to execute in a busy
waiting mode. Thus, spinlocks are most effective in situations where the wait time
for acquiring a lock is expected to be very short, say on the order of less than two
context switches.

The basic form of use of a spinlock is the following:
spin_lock(&lock)
/* critical section */
spin_unlock(&lock)

Basic Spinlocks  The basic spinlock (as opposed to the reader–writer spinlock
explained subsequently) comes in four flavors (see Table 6.3):

•	 Plain: If the critical section of code is not executed by interrupt handlers, or if
the interrupts are disabled during the execution of the critical section, then the
plain spinlock can be used. It does not affect the interrupt state on the proces-
sor on which it is run.

•	 _irq: If interrupts are always enabled, then this spinlock should be used.

•	 _irqsave: If it is not known which, if any, interrupts will be enabled or disabled at
the time of execution, then this version should be used. When a lock is acquired,
the current state of interrupts on the local processor is saved, to be restored
when the lock is released.

•	 _bh: When an interrupt occurs, the minimum amount of work necessary is per-
formed by the corresponding interrupt handler. A piece of code, called the
bottom half, performs the remainder of the interrupt-related work, allowing the
current interrupt to be enabled as soon as possible. The _bh spinlock is used
to disable and then enable bottom halves to avoid conflict with the protected
critical section.

The plain spinlock is used if the programmer knows that the protected data
is not accessed by an interrupt handler or bottom half. Otherwise, the appropriate
nonplain spinlock is used.

M06_STAL4290_09_GE_C06.indd 318 5/9/17 4:39 PM

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS   319

Spinlocks are implemented differently on a uniprocessor system versus a mul-
tiprocessor system. For a uniprocessor system, the following considerations apply.
If kernel preemption is turned off, so a thread executing in kernel mode cannot be
interrupted, then the locks are deleted at compile time; they are not needed. If ker-
nel preemption is enabled, which does permit interrupts, then the spinlocks again
compile away (i.e., no test of a spinlock memory location occurs) but are simply
implemented as code that enables/disables interrupts. On a multiprocessor system,
the spinlock is compiled into code that does in fact test the spinlock location. The use
of the spinlock mechanism in a program allows it to be independent of whether it is
executed on a uniprocessor or multiprocessor system.

Reader–Writer Spinlock  The reader–writer spinlock is a mechanism that allows
a greater degree of concurrency within the kernel than the basic spinlock. The reader–
writer spinlock allows multiple threads to have simultaneous access to the same data
structure for reading only, but gives exclusive access to the spinlock for a thread that
intends to update the data structure. Each reader–writer spinlock consists of a 24-bit
reader counter and an unlock flag, with the following interpretation:

Counter Flag Interpretation

0 1 The spinlock is released and available for use.

0 0 Spinlock has been acquired for writing by one thread.

n (n 7 0) 0 Spinlock has been acquired for reading by n threads.

n (n 7 0) 1 Not valid.

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed until
it is available

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables interrupts on the
local processor

void spin_lock_irqsave(spinlock_t
*lock, unsigned long flags)

Like spin_lock_irq, but also saves the current inter-
rupt state in flags

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables the execution of all
bottom halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables local interrupts

void spin_unlock_irqrestore(spinlock_t
*lock, unsigned long flags)

Releases given lock and restores local interrupts to
given previous state

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables bottom halves

void spin_lock_init(spinlock_t *lock) Initializes given spinlock

int spin_trylock(spinlock_t *lock) Tries to acquire specified lock; returns nonzero if lock
is currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero
otherwise

Table 6.3  Linux Spinlocks

M06_STAL4290_09_GE_C06.indd 319 5/9/17 4:39 PM

320   Chapter 6 / Concurrency: Deadlock and Starvation

As with the basic spinlock, there are plain, _irq, and _irqsave versions of
the reader–writer spinlock.

Note that the reader–writer spinlock favors readers over writers. If the spinlock
is held for readers, then so long as there is at least one reader, the spinlock cannot
be preempted by a writer. Furthermore, new readers may be added to the spinlock
even while a writer is waiting.

Semaphores

At the user level, Linux provides a semaphore interface corresponding to that in
UNIX SVR4. Internally, Linux provides an implementation of semaphores for its
own use. That is, code that is part of the kernel can invoke kernel semaphores. These
kernel semaphores cannot be accessed directly by the user program via system calls.
They are implemented as functions within the kernel, and are thus more efficient
than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel: binary sema-
phores, counting semaphores, and reader–writer semaphores.

Binary and Counting Semaphores  The binary and counting semaphores
defined in Linux 2.6 (see Table 6.4) have the same functionality as described for such
semaphores in Chapter 5. The function names down and up are used for the functions
referred to in Chapter 5 as semWait and semSignal, respectively.

A counting semaphore is initialized using the sema_init function, which
gives the semaphore a name and assigns an initial value to the semaphore. Binary
semaphores, called MUTEXes in Linux, are initialized using the init_MUTEX
and init_MUTEX_LOCKED functions, which initialize the semaphore to 1 or 0,
respectively.

Linux provides three versions of the down (semWait) operation.

1.	 The down function corresponds to the traditional semWait operation. That is,
the thread tests the semaphore and blocks if the semaphore is not available.
The thread will awaken when a corresponding up operation on this semaphore
occurs. Note this function name is used for an operation on either a counting
semaphore or a binary semaphore.

2.	 The down_interruptible function allows the thread to receive and
respond to a kernel signal while being blocked on the down operation. If the
thread is woken up by a signal, the down_interruptible function incre-
ments the count value of the semaphore and returns an error code known in
Linux as -EINTR. This alerts the thread that the invoked semaphore function
has aborted. In effect, the thread has been forced to “give up” the semaphore.
This feature is useful for device drivers and other services in which it is con-
venient to override a semaphore operation.

3.	 The down_trylock function makes it possible to try to acquire a semaphore
without being blocked. If the semaphore is available, it is acquired. Otherwise,
this function returns a nonzero value without blocking the thread.

M06_STAL4290_09_GE_C06.indd 320 5/9/17 4:39 PM

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS   321

Reader–Writer Semaphores  The reader–writer semaphore divides users into
readers and writers; it allows multiple concurrent readers (with no writers) but only
a single writer (with no concurrent readers). In effect, the semaphore functions as
a counting semaphore for readers but a binary semaphore (MUTEX) for writers.
Table 6.4 shows the basic reader–writer semaphore operations. The reader–writer
semaphore uses uninterruptible sleep, so there is only one version of each of the
down operations.

Barriers

In some architectures, compilers and/or the processor hardware may reorder mem-
ory accesses in source code to optimize performance. These reorderings are done to
optimize the use of the instruction pipeline in the processor. The reordering algorithms

Traditional Semaphores

void sema_init(struct semaphore *sem,
int count)

Initializes the dynamically created semaphore to the
given count

void init_MUTEX(struct semaphore *sem) Initializes the dynamically created semaphore with a
count of 1 (initially unlocked)

void init_MUTEX_LOCKED(struct sema-
phore *sem)

Initializes the dynamically created semaphore with a
count of 0 (initially locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore, entering
uninterruptible sleep if semaphore is unavailable

int down_interruptible(struct sema-
phore *sem)

Attempts to acquire the given semaphore, entering
interruptible sleep if semaphore is unavailable;
returns EINTR value if a signal other than the result
of an up operation is received

int down_trylock(struct semaphore
*sem)

Attempts to acquire the given semaphore, and
returns a nonzero value if semaphore is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader–Writer Semaphores

void init_rwsem(struct rw_semaphore,
*rwsem)

Initializes the dynamically created semaphore with a
count of 1

void down_read(struct rw_semaphore,
*rwsem)

Down operation for readers

void up_read(struct rw_semaphore,
*rwsem)

Up operation for readers

void down_write(struct rw_semaphore,
*rwsem)

Down operation for writers

void up_write(struct rw_semaphore,
*rwsem)

Up operation for writers

Table 6.4  Linux Semaphores

M06_STAL4290_09_GE_C06.indd 321 5/9/17 4:39 PM

322   Chapter 6 / Concurrency: Deadlock and Starvation

contain checks to ensure that data dependencies are not violated. For example, the
code:

a = 1;
b = 1;

may be reordered so that memory location b is updated before memory location a
is updated. However, the code:

a = 1;
b = a;

will not be reordered. Even so, there are occasions when it is important that reads or
writes are executed in the order specified because of use of the information that is
made by another thread or a hardware device.

To enforce the order in which instructions are executed, Linux provides the
memory barrier facility. Table 6.5 lists the most important functions that are defined
for this facility. The rmb() operation insures that no reads occur across the barrier
defined by the place of the rmb() in the code. Similarly, the wmb() operation insures
that no writes occur across the barrier defined by the place of the wmb() in the code.
The mb() operation provides both a load and store barrier.

Two important points to note about the barrier operations:

1.	 The barriers relate to machine instructions, namely loads and stores. Thus, the
higher-level language instruction a = b involves both a load (read) from loca-
tion b and a store (write) to location a.

2.	 The rmb, wmb, and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates that
the compiler not reorder instructions during the compile process. In the case
of the processor, the barrier operation dictates that any instructions pending
in the pipeline before the barrier must be committed for execution before any
instructions encountered after the barrier.

The barrier() operation is a lighter-weight version of the mb() operation,
in that it only controls the compiler’s behavior. This would be useful if it is known
that the processor will not perform undesirable reorderings. For example, the Intel
x86 processors do not reorder writes.

rmb() Prevents loads from being reordered across the barrier

wmb() Prevents stores from being reordered across the barrier

mb() Prevents loads and stores from being reordered across the barrier

barrier() Prevents the compiler from reordering loads or stores across the barrier

smp_rmb() On SMP, provides a rmb() and on UP provides a barrier()

smp_wmb() On SMP, provides a wmb() and on UP provides a barrier()

smp_mb() On SMP, provides a mb() and on UP provides a barrier()

Note: SMP = symmetric multiprocessor;
UP = uniprocessor

Table 6.5  Linux Memory Barrier Operations

M06_STAL4290_09_GE_C06.indd 322 5/9/17 4:39 PM

6.8 / LINUX KERNEL CONCURRENCY MECHANISMS   323

The smp_rmb, smp_wmb, and smp_mb operations provide an optimization
for code that may be compiled on either a uniprocessor (UP) or a symmetric multi-
processor (SMP). These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ operations
are useful in situations in which the data dependencies of concern will only arise in
an SMP context.

RCU (Read-Copy-Update)  The RCU (read-copy update) mechanism is an
advanced lightweight synchronization mechanism which was integrated into the
Linux kernel in 2002. The RCU is used widely in the Linux kernel, for example, in
the Networking subsystem, the Memory subsystem, the virtual file system, and more.
RCU is also used by other operating systems; and DragonFly BSD uses a mechanism
that resembles Linux Sleepable RCU (SRCU). There is also a userspace RCU library
called liburcu.

As opposed to common Linux synchronization mechanisms, RCU readers are
not locked. The shared resources that the RCU mechanism protects must be accessed
via a pointer. The RCU core API is quite small, and consists only of the six following
methods:

•	 rcu_read_lock()

•	 rcu_read_unlock()

•	 call_rcu()

•	 synchronize_rcu()

•	 rcu_assign_pointer()

•	 rcu_dereference()

Apart from these methods, there are about 20 RCU application programming inter-
face (API) minor methods.

The RCU mechanism provides access for multiple readers and writers to a
shared resource; when a writer wants to update that resource, it creates a copy of
it, updates it, and assigns the pointer to point to the new copy. Afterwards, the old
version of the resource is freed, when it is no longer needed. Updating a pointer is
an atomic operation. Hence, the reader can access that resource before or after the
update is completed, but not during the update operation itself. In terms of perfor-
mance, the RCU synchronization mechanism best suites scenarios when reads are
frequent and writes are rare.

Access to a shared resource by readers must be encapsulated within rcu_
read_lock()/rcu_read_unlock() block; moreover, access to the pointer (ptr)
of the shared resource within that block must be done by rcu_dereference(ptr)
and not by a direct access to it, and one should not invoke the rcu_dereference()
method outside of such a block.

After a writer has created a copy and changed its value, the writer cannot free
the old version until it is sure that all readers do not need it anymore. This can be
done by calling synchronize_rcu(), or by calling the nonblocking method call_
rcu(). The second parameter of the call_rcu() method references a callback,
which will be invoked when the RCU mechanism is assured that the resource can
be freed.

M06_STAL4290_09_GE_C06.indd 323 5/9/17 4:39 PM

324   Chapter 6 / Concurrency: Deadlock and Starvation

	 6.9	 SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

1.	 Mutual exclusion (mutex) locks

2.	 Semaphores

3.	 Multiple readers, single writer (readers/writer) locks

4.	 Condition variables

Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows the
data structures for these primitives. The initialization functions for the primitives
fill in some of the data members. Once a synchronization object is created, there
are essentially only two operations that can be performed: enter (acquire lock) and
release (unlock). There are no mechanisms in the kernel or the threads library to
enforce mutual exclusion or to prevent deadlock. If a thread attempts to access a
piece of data or code that is supposed to be protected but does not use the appropri-
ate synchronization primitive, then such access occurs. If a thread locks an object and
then fails to unlock it, no kernel action is taken.

Figure 6.15  Solaris Synchronization Data Structures

(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

Owner (3 octets)

Lock (1 octet)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Waiters (2 octets)

Thread owner (4 octets)

Union (4 octets)
(statistic pointer or

number of write requests)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Count (4 octets)

Waiters (2 octets)

Type-specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)

M06_STAL4290_09_GE_C06.indd 324 5/9/17 4:39 PM

6.9 / SOLARIS THREAD SYNCHRONIZATION PRIMITIVES   325

All of the synchronization primitives require the existence of a hardware
instruction that allows an object to be tested and set in one atomic operation.

Mutual Exclusion Lock

A mutex is used to ensure that only one thread at a time can access the resource pro-
tected by the mutex. The thread that locks the mutex must be the one that unlocks
it. A thread attempts to acquire a mutex lock by executing the mutex_enter primi-
tive. If mutex_enter cannot set the lock (because it is already set by another
thread), the blocking action depends on type-specific information stored in the
mutex object. The default blocking policy is a spinlock: A blocked thread polls the
status of the lock while executing in a busy waiting loop. An interrupt-based block-
ing mechanism is optional. In this latter case, the mutex includes a turnstile id
that identifies a queue of threads sleeping on this lock.

The operations on a mutex lock are:

mutex_enter() Acquires the lock, potentially blocking if it is
already held

mutex_exit() Releases the lock, potentially unblocking a waiter

mutex_tryenter() Acquires the lock if it is not already held

The mutex_tryenter() primitive provides a nonblocking way of performing the
mutual exclusion function. This enables the programmer to use a busy-wait approach
for user-level threads, which avoids blocking the entire process because one thread
is blocked.

Semaphores

Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the thread

sema_v() Increments the semaphore, potentially unblocking a
waiting thread

sema_tryp() Decrements the semaphore if blocking is not required

Again, the sema_tryp() primitive permits busy waiting.

Readers/Writer Lock

The readers/writer lock allows multiple threads to have simultaneous read-only
access to an object protected by the lock. It also allows a single thread to access the
object for writing at one time, while excluding all readers. When the lock is acquired
for writing, it takes on the status of write lock: All threads attempting access for
reading or writing must wait. If one or more readers have acquired the lock, its status
is read lock. The primitives are as follows:

rw_enter() Attempts to acquire a lock as reader or writer

rw_exit() Releases a lock as reader or writer

rw_tryenter() Acquires the lock if blocking is not required

M06_STAL4290_09_GE_C06.indd 325 5/9/17 4:39 PM

326   Chapter 6 / Concurrency: Deadlock and Starvation

rw_downgrade() A thread that has acquired a write lock converts it to
a read lock. Any waiting writer remains waiting until
this thread releases the lock. If there are no waiting
writers, the primitive wakes up any pending readers.

rw_tryupgrade() Attempts to convert a reader lock into a writer lock

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition
variables must be used in conjunction with a mutex lock. This implements a monitor
of the type illustrated in Figure 6.14. The primitives are as follows:

cv_wait() Blocks until the condition is signaled

cv_signal() Wakes up one of the threads blocked in cv_wait()

cv_broadcast() Wakes up all of the threads blocked in cv_wait()

cv_wait() releases the associated mutex before blocking and reacquires
it before returning. Because reacquisition of the mutex may be blocked by other
threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex_enter(&m)
* *
while (some_condition) {
  cv_wait(&cv, &m);
}
* *
mutex_exit(&m);

This allows the condition to be a complex expression, because it is protected by
the mutex.

	 6.10	WINDOWS CONCURRENCY MECHANISMS

Windows provides synchronization among threads as part of the object architecture.
The most important methods of synchronization are Executive dispatcher objects,
user-mode critical sections, slim reader–writer locks, condition variables, and lock-
free operations. Dispatcher objects make use of wait functions. We will first describe
wait functions, then look at the synchronization methods.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions
do not return until the specified criteria have been met. The type of wait func-
tion determines the set of criteria used. When a wait function is called, it checks

M06_STAL4290_09_GE_C06.indd 326 5/9/17 4:39 PM

6.10 / WINDOWS CONCURRENCY MECHANISMS   327

whether the wait criteria have been met. If the criteria have not been met, the
calling thread enters the wait state. It uses no processor time while waiting for the
criteria to be met.

The most straightforward type of wait function is one that waits on a single
object. The WaitForSingleObject function requires a handle to one synchroniza-
tion object. The function returns when one of the following occurs:

•	 The specified object is in the signaled state.

•	 The time-out interval elapses. The time-out interval can be set to INFINITE to
specify that the wait will not time out.

Dispatcher Objects

The mechanism used by the Windows Executive to implement synchronization facili-
ties is the family of dispatcher objects, which are listed with brief descriptions in
Table 6.6.

The first five object types in the table are specifically designed to support syn-
chronization. The remaining object types have other uses, but also may be used for
synchronization.

Each dispatcher object instance can be in either a signaled or an unsignaled state.
A thread can be blocked on an object in an unsignaled state; the thread is released

Object Type Definition Set to Signaled State
When

Effect on Waiting
Threads

Notification
event

An announcement that a system
event has occurred

Thread sets the event All released

Synchronization
event

An announcement that a system
event has occurred

Thread sets the event One thread released

Mutex A mechanism that provides mutual
exclusion capabilities; equivalent to
a binary semaphore

Owning thread or other
thread releases the
mutex

One thread released

Semaphore A counter that regulates the number
of threads that can use a resource

Semaphore count drops
to zero

All released

Waitable timer A counter that records the passage
of time

Set time arrives or time
interval expires

All released

File An instance of an opened file or I/O
device

I/O operation completes All released

Process A program invocation, including the
address space and resources required
to run the program

Last thread terminates All released

Thread An executable entity within a
process

Thread terminates All released

Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

Table 6.6  Windows Synchronization Objects

M06_STAL4290_09_GE_C06.indd 327 5/9/17 4:39 PM

328   Chapter 6 / Concurrency: Deadlock and Starvation

when the object enters the signaled state. The mechanism is straightforward: A thread
issues a wait request to the Windows Executive, using the handle of the synchroniza-
tion object. When an object enters the signaled state, the Windows Executive releases
one or all of the thread objects that are waiting on that dispatcher object.

The event object is useful in sending a signal to a thread indicating that a par-
ticular event has occurred. For example, in overlapped input and output, the system
sets a specified event object to the signaled state when the overlapped operation
has been completed. The mutex object is used to enforce mutually exclusive access
to a resource, allowing only one thread object at a time to gain access. It therefore
functions as a binary semaphore. When the mutex object enters the signaled state,
only one of the threads waiting on the mutex is released. Mutexes can be used to
synchronize threads running in different processes. Like mutexes, semaphore objects
may be shared by threads in multiple processes. The Windows semaphore is a count-
ing semaphore. In essence, the waitable timer object signals at a certain time and/or
at regular intervals.

Critical Sections

Critical sections provide a synchronization mechanism similar to that provided by
mutex objects, except that critical sections can be used only by the threads of a single
process. Event, mutex, and semaphore objects can also be used in a single-process
application, but critical sections provide a much faster, more efficient mechanism for
mutual–exclusion synchronization.

The process is responsible for allocating the memory used by a critical section.
Typically, this is done by simply declaring a variable of type CRITICAL_SECTION.
Before the threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection function.

A thread uses the EnterCriticalSection or TryEnterCritical
Section function to request ownership of a critical section. It uses the Leave-
CriticalSection function to release ownership of a critical section. If the critical
section is currently owned by another thread, EnterCriticalSection waits
indefinitely for ownership. In contrast, when a mutex object is used for mutual
exclusion, the wait functions accept a specified time-out interval. The TryEnter-
CriticalSection function attempts to enter a critical section without blocking
the calling thread.

Critical sections use a sophisticated algorithm when trying to acquire the
mutex. If the system is a multiprocessor, the code will attempt to acquire a spin-
lock. This works well in situations where the critical section is acquired for only a
short time. Effectively the spinlock optimizes for the case where the thread that
currently owns the critical section is executing on another processor. If the spinlock
cannot be acquired within a reasonable number of iterations, a dispatcher object
is used to block the thread so that the Kernel can dispatch another thread onto
the processor.

The dispatcher object is only allocated as a last resort. Most critical sec-
tions are needed for correctness, but in practice are rarely contended. By lazily

M06_STAL4290_09_GE_C06.indd 328 5/9/17 4:39 PM

6.10 / WINDOWS CONCURRENCY MECHANISMS   329

allocating the dispatcher object, the system saves significant amounts of kernel
virtual memory.

Slim Reader–Writer Locks and Condition Variables

Windows Vista added a user-mode reader–writer. Like critical sections, the reader–
writer lock enters the kernel to block only after attempting to use a spinlock. It is
slim in the sense that it normally only requires allocation of a single pointer-sized
piece of memory.

To use an SRW lock, a process declares a variable of type SRWLOCK and a
calls InitializeSRWLock to initialize it. Threads call AcquireSRWLockExclu-
sive or AcquireSRWLockShared to acquire the lock and ReleaseSRWLockEx-
clusive or ReleaseSRWLockShared to release it.

Windows also has condition variables. The process must declare a CONDITION_
VARIABLE and initialize it in some thread by calling InitializeCondition
Variable. Condition variables can be used with either critical sections or SRW
locks, so there are two methods, SleepConditionVariableCS and SleepCon-
ditionVariableSRW, which sleep on the specified condition and release the speci-
fied lock as an atomic operation.

There are two wake methods, WakeConditionVariable and Wake All-
ConditionVariable, which wake one or all of the sleeping threads, respectively.
Condition variables are used as follows:

1.	 Acquire exclusive lock

2.	 While (predicate() == FALSE) SleepConditionVariable()

3.	 Perform the protected operation

4.	 Release the lock

Lock-free Synchronization

Windows also relies heavily on interlocked operations for synchronization. Inter-
locked operations use hardware facilities to guarantee that memory locations can
be read, modified, and written in a single atomic operation. Examples include
InterlockedIncrement and InterlockedCompareExchange; the latter
allows a memory location to be updated only if it hasn’t changed values since
being read.

Many of the synchronization primitives use interlocked operations within their
implementation, but these operations are also available to programmers for situa-
tions where they want to synchronize without taking a software lock. These so-called
lock-free synchronization primitives have the advantage that a thread can never be
switched away from a processor (say at the end of its timeslice) while still holding a
lock. Thus, they cannot block another thread from running.

More complex lock-free primitives can be built out of the interlocked opera-
tions, most notably Windows SLists, which provide a lock-free LIFO queue. SLists
are managed using functions like InterlockedPushEntrySList and
InterlockedPopEntrySList.

M06_STAL4290_09_GE_C06.indd 329 5/9/17 4:39 PM

330   Chapter 6 / Concurrency: Deadlock and Starvation

	 6.11	ANDROID INTERPROCESS COMMUNICATION

The Linux kernel includes a number of features that can be used for interprocess
communication (IPC), including pipes, shared memory, messages, sockets, sema-
phores, and signals. Android does not use these features for IPC, but rather adds
to the kernel a new capability known as Binder. Binder provides a lightweight
remote procedure call (RPC) capability that is efficient in terms of both memory
and processing requirements, and is well suited to the requirements of an embed-
ded system.

The Binder is used to mediate all interaction between two processes. A com-
ponent in one process (the client) issues a call. This call is directed to the Binder in
the kernel, which passes the call on to the destination component in the destination
process (the service). The return from the destination goes through the Binder and
is delivered to the calling component in the calling process.

Traditionally, the term RPC referred to a call/return interaction between a client
process on one machine and a server process on another machine. In the Android
case, the RPC mechanism works between two processes on the same system, but
running on different virtual machines.

The method used for communicating with the Binder is the ioctl system call.
The ioctl call is a general-purpose system call for device-specific I/O operations. It
can be used to access device drivers and also what are called pseudo-device driv-
ers, of which Binder is an example. A pseudo-device driver uses the same general
interface as a device driver, but is used to control some kernel function. The ioctl
call includes as parameters the command to be performed and the appropriate
arguments.

Figure 6.16 illustrates a typical use of the Binder. The dashed vertical lines rep-
resent threads in a process. Before a process can make use of a service, that service
must be known. A process that hosts a service will spawn multiple threads so it can
handle multiple requests concurrently. Each thread makes itself known to the Binder
by a blocking ioctl.

Figure 6.16  Binder Operation

2

Proxy Service

1
3

4

5

7
8

Client

Process A Kernel Process B

StubBinder
driver

6

M06_STAL4290_09_GE_C06.indd 330 5/9/17 4:39 PM

6.12 / SUMMARY   331

The interaction proceeds as follows:

1.	 A client component, such as an activity, invokes a service in the form of a call
with argument data.

2.	 The call invokes a proxy, which is able to translate the call into a transaction
with the Binder driver. The proxy performs a procedure called marshalling,
which converts higher-level applications data structures (i.e., request/response
parameters) into a parcel. The parcel is a container for a message (data and
object references) that can be sent through the Binder driver. The proxy then
submits the transaction to the binder by a blocking ioctl call.

3.	 The Binder sends a signal to the target thread that wakes the thread up from
its blocking ioctl call. The parcel is delivered to a stub component in the target
process.

4.	 The stub performs a procedure called unmarshalling, which reconstructs higher-
level application data structures from parcels received through binder transac-
tions. The proxy then calls the service component with a call that is identical to
the call issued by the client component.

5.	 The called service component returns the appropriate result to the stub.

6.	 The stub marshals the return data into a reply parcel then submits the reply
parcel to the Binder via an ioctl.

7.	 The Binder wakes up the calling ioctl in the client proxy, which gets the transac-
tion reply data.

8.	 The proxy unmarshals the result from the reply parcel and returns the result to
the client component that issued the service call.

	 6.12	SUMMARY

Deadlock is the blocking of a set of processes that either compete for system
resources or communicate with each other. The blockage is permanent unless the
OS takes some extraordinary action, such as killing one or more processes, or forc-
ing one or more processes to backtrack. Deadlock may involve reusable resources or
consumable resources. A reusable resource is one that is not depleted or destroyed
by use, such as an I/O channel or a region of memory. A consumable resource is one
that is destroyed when it is acquired by a process, such as messages and information
in I/O buffers.

There are three general approaches to dealing with deadlock: prevention, detec-
tion, and avoidance. Deadlock prevention guarantees that deadlock will not occur,
by assuring that one of the necessary conditions for deadlock is not met. Deadlock
detection is needed if the OS is always willing to grant resource requests; periodically,
the OS must check for deadlock and take action to break the deadlock. Deadlock
avoidance involves the analysis of each new resource request to determine if it could
lead to deadlock, and granting it only if deadlock is not possible.

M06_STAL4290_09_GE_C06.indd 331 5/9/17 4:39 PM

332   Chapter 6 / Concurrency: Deadlock and Starvation

	 6.13	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

banker’s algorithm
circular wait
consumable resource
deadlock
deadlock avoidance
deadlock detection
deadlock prevention

fatal region
hold and wait
joint progress diagram
memory barrier
message
mutual exclusion
pipe

preemption
resource allocation graph
reusable resource
safe state
spinlock
starvation
unsafe state

Review Questions

	 6.1.	 Give examples of reusable and consumable resources.
	 6.2.	 What are the three conditions that must be present for deadlock to be possible?
	 6.3.	 What are the four conditions that create deadlock?
	 6.4.	 How can the hold-and-wait condition be prevented?
	 6.5.	 Why can’t you disallow mutual exclusion in order to prevent deadlocks?
	 6.6.	 How can the circular wait condition be prevented?
	 6.7.	 List some of the methods that may be adopted to recover from deadlocks.

Problems

	 6.1.	 Show that the four conditions of deadlock apply to Figure 6.1a.
	 6.2.	 Show how each of the techniques of prevention, avoidance, and detection can be applied

to Figure 6.1.
	 6.3.	 For Figure 6.3, provide a narrative description of each of the six depicted paths, similar

to the description of the paths of Figure 6.2 provided in Section 6.1.
	 6.4.	 Give two alternative execution sequences for the situation depicted in Figure 6.3, show-

ing that deadlock does not occur.
	 6.5.	 Given the following state of a system:
		 The system comprises of five processes and four resources.
		 P1–P5 denotes the set of processes.
		 R1–R4 denotes the set of resources.
		 Total Existing Resources:

R1 R2 R3 R4
6 3 4 3

M06_STAL4290_09_GE_C06.indd 332 5/9/17 4:39 PM

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   333

		 Snapshot at the initial time stage:

Allocation Claim
R1 R2 R3 R4 R1 R2 R3 R4

P1 3 0 1 1 6 2 1 1

P2 0 1 0 0 0 2 1 2

P3 1 1 1 0 3 2 1 0

P4 1 1 0 1 1 1 1 1

P5 0 0 0 0 2 1 1 1

a.	 Compute the Available vector.
b.	 Compute the Need Matrix.
c.	 Is the current allocation state safe? If so, give a safe sequence of the process.

In addition, show how the Available (working array) changes as each process
terminates.

d.	 If the request (1, 1, 0, 0) from P1 arrives, will it be correct to grant the request?
Justify your decision.

	 6.6.	 In the code below, three processes are competing for six resources labeled A to F.
a.	 Using a resource allocation graph (see Figures 6.5 and 6.6), show the possibility of

a deadlock in this implementation.
b.	 Modify the order of some of the get requests to prevent the possibility of any dead-

lock. You cannot move requests across procedures, only change the order inside
each procedure. Use a resource allocation graph to justify your answer.

void P0()

{

 while (true) {

 get(A);

 get(B);

 get(C);

 // critical region:

 // use A, B, C

 release(A);

 release(B);

 release(C);

 }

}

void P1()

{

 while (true) {

 get(D);

 get(E);

 get(B);

 // critical region:

 // use D, E, B

 release(D);

 release(E);

 release(B);

 }

}

void P2()

{

 while (true) {

 get(C);

 get(F);

 get(D);

 // critical region:

 // use C, F, D

 release(C);

 release(F);

 release(D);

 }

}

	 6.7.	 A spooling system (see Figure 6.17) consists of an input process I, a user process P,
and an output process O connected by two buffers. The processes exchange data in
blocks of equal size. These blocks are buffered on a disk using a floating boundary
between the input and the output buffers, depending on the speed of the processes.

M06_STAL4290_09_GE_C06.indd 333 5/9/17 4:39 PM

334   Chapter 6 / Concurrency: Deadlock and Starvation

The communication primitives used ensure that the following resource constraint is
satisfied:

i + o … max

where
 max = maximum number of blocks on disk
 i = number of input blocks on disk
 o = number of output blocks on disk

The following is known about the processes:
1.	 As long as the environment supplies data, process I will eventually input it to the

disk (provided disk space becomes available).
2.	 As long as input is available on the disk, process P will eventually consume it and

output a finite amount of data on the disk for each block input (provided disk space
becomes available).

3.	 As long as output is available on the disk, process O will eventually consume it.
		 Show that this system can become deadlocked.
	 6.8.	 Suggest an additional resource constraint that will prevent the deadlock in Problem 6.7,

but still permit the boundary between input and output buffers to vary in accordance
with the present needs of the processes.

	 6.9.	 In the THE multiprogramming system [DIJK68], a drum (precursor to the disk for
secondary storage) is divided into input buffers, processing areas, and output buffers,
with floating boundaries, depending on the speed of the processes involved. The cur-
rent state of the drum can be characterized by the following parameters:

 max = maximum number of pages on drum
 i = number of input pages on drum

 p = number of processing pages on drum
 o = number of output pages on drum

 reso = minimum number of pages reserved for output
 resp = minimum number of pages reserved for processing

		 Formulate the necessary resource constraints that guarantee that the drum capacity is
not exceeded, and that a minimum number of pages is reserved permanently for output
and processing.

	6.10.	 In the THE multiprogramming system, a page can make the following state transitions:

1. empty S input buffer (input production)
2. input buffer S processing area (input consumption)
3. processing area S output buffer (output production)
4. output buffer S empty (output consumption)
5. empty S processing area (procedure call)
6. processing area S empty (procedure return)

a.	 Define the effect of these transitions in terms of the quantities i, o, and p.
b.	 Can any of them lead to a deadlock if the assumptions made in Problem 6.6 about

input processes, user processes, and output processes hold?

Figure 6.17  A Spooling System

I PInput
bu�er OOutput

bu�er

M06_STAL4290_09_GE_C06.indd 334 5/9/17 4:39 PM

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   335

	6.11.	 At an instant, the resource allocation state in a system is as follows:
		 4 processes P1–P4
		 4 resource types: R1–R4
		      R1 (5 instances), R2 (3 instances), R3 (3 instances), R4 (3 instance)
		 Snapshot at time T0:

Allocation Request Available
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 1 0 2 0 0 2 2 1 1 2

P2 2 0 0 1 1 3 0 1

P3 0 1 1 0 2 1 1 0

P4 1 1 0 0 4 0 3 1

		 Run the deadlock detection algorithm and test whether the system is deadlocked or
not. If it is, identify the processes that are deadlocked.

	6.12.	 Suggest a deadlock recovery strategy for the situation depicted in Figure 6.10.
	6.13.	 A pipeline algorithm is implemented so a stream of data elements of type T produced

by a process P0 passes through a sequence of processes P1, P2, c, Pn - 1, which operates
on the elements in that order.
a.	 Define a generalized message buffer that contains all the partially consumed data

elements, and write an algorithm for process Pi (0 … i … n - 1), of the form
repeat
  receive from predecessor;
  consume element;
  send to successor:
forever

Assume P0 receives input elements sent by Pn - 1. The algorithm should enable
the processes to operate directly on messages stored in the buffer so copying is
unnecessary.

b.	 Show that the processes cannot be deadlocked with respect to the common buffer.
	6.14.	 Suppose the following two processes, foo and bar, are executed concurrently and

share the semaphore variables S and R (each initialized to 1) and the integer variable
x (initialized to 0).

void foo() {

 do {

  semWait(S);

  semWait(R);

  x++;

  semSignal(S);

  SemSignal(R);

 } while (1);

}

void bar() {

do {

  semWait(R);

  semWait(S);

  x--;

  semSignal(S;

  SemSignal(R);

} while (1);

}

a.	 Can the concurrent execution of these two processes result in one or both being
blocked forever? If yes, give an execution sequence in which one or both are
blocked forever.

b.	 Can the concurrent execution of these two processes result in the indefinite post-
ponement of one of them? If yes, give an execution sequence in which one is indefi-
nitely postponed.

M06_STAL4290_09_GE_C06.indd 335 5/9/17 4:39 PM

336   Chapter 6 / Concurrency: Deadlock and Starvation

	6.15.	 Consider a system consisting of four processes and 9 instances of a single resource. The
current state of the claim (C) and allocation (A) matrices is:

C = §2
6
9
5

¥ a = §1
2
2
3

¥
		 Is the system in a safe state? If so, will it remain in a safe state if the available resources

are allocated to the last process in sequence?
	6.16.	 Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect

deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,
(4) restart thread and release all resources if thread needs to wait, (5) resource order-
ing, and (6) detect deadlock and roll back thread’s actions.
a.	 One criterion to use in evaluating different approaches to deadlock is which

approach permits the greatest concurrency. In other words, which approach
allows the most threads to make progress without waiting when there is no dead-
lock? Give a rank order from 1 to 6 for each of the ways of handling deadlock
just listed, where 1 allows the greatest degree of concurrency. Comment on your
ordering.

b.	 Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming deadlock is a very rare event. Comment on your ordering. Does your
ordering change if deadlocks occur frequently?

	6.17.	 Consider a variation of the dining philosophers problem where the number of philoso-
phers is even. Can you devise a deadlock-free solution to the problem? Assume that
all other requirements are like those in the original problem.

	6.18.	 Suppose there are two types of philosophers. One type always picks up his left fork
first (a “lefty”), and the other type always picks up his right fork first (a “righty”).
The behavior of a lefty is defined in Figure 6.12. The behavior of a righty is as
follows:

begin

  repeat

     think;

     wait (fork[(i+1) mod 5]);
     wait (fork[i]);

     eat;

     signal (fork[i]);

     signal (fork[(i+1) mod 5]);
  forever
end;

		 Prove the following:
a.	 Any seating arrangement of lefties and righties with at least one of each avoids

deadlock.
b.	 Any seating arrangement of lefties and righties with at least one of each prevents

starvation.
	6.19.	 Figure 6.18 shows another solution to the dining philosophers problem using monitors.

Compare to Figure 6.14 and report your conclusions.

M06_STAL4290_09_GE_C06.indd 336 5/9/17 4:39 PM

6.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   337

	6.20.	 Some of the Linux atomic operations are listed in Table 6.2. Can you identify some ben-
efits of implementing these operations in uniprocessor and multiprocessor systems?
Write a simple program depicting the use of an atomic integer data type in implement-
ing counters.

	6.21.	 Consider the following fragment of code on a Linux system.
read_lock(&mr_rwlock);

write_lock(&mr_rwlock);

		 Where mr_rwlock is a reader–writer lock. What is the effect of this code?

 Figure 6.18  Another Solution to the Dining Philosophers Problem Using a MonitorVideoNote

monitor dining_controller;
enum states {thinking, hungry, eating} state[5];
cond needFork[5]	 /* condition variable */

void get_forks(int pid) 	 /* pid is the philosopher id number */

{

    state[pid] = hungry; 	 /* announce that I’m hungry */

    if (state[(pid+1) % 5] == eating || (state[(pid-1) % 5] == eating)
    cwait(needFork[pid]); 	 /* wait if either neighbor is eating */

    state[pid] = eating; 	 /* proceed if neither neighbor is eating */

}

void release_forks(int pid)
{

    state[pid] = thinking;

    /* give right (higher) neighbor a chance to eat */

    if (state[(pid+1) % 5] == hungry) && (state[(pid+2)
    % 5]) != eating)

    csignal(needFork[pid+1]);

    /* give left (lower) neighbor a chance to eat */

    else if (state[(pid–1) % 5] == hungry) && (state[(pid–2)
    % 5]) != eating)

    csignal(needFork[pid–1]);

}

void philosopher[k=0 to 4] 	 /* the five philosopher clients */

{

    while (true) {
     <think>;

     get_forks(k); 	 /* client requests two forks via monitor */

     <eat spaghetti>;

     release_forks(k); 	 /* client releases forks via the monitor */

    }

}

M06_STAL4290_09_GE_C06.indd 337 5/9/17 4:39 PM

338   Chapter 6 / Concurrency: Deadlock and Starvation

	6.22.	 The two variables a and b have initial values of 1 and 2, respectively. The following
code is for a Linux system:

Thread 1 Thread 2

a = 3; —
mb(); —
b = 4; c = b;
— rmb();
— d = a;

		 What possible errors are avoided by the use of the memory barriers?

M06_STAL4290_09_GE_C06.indd 338 5/9/17 4:39 PM

339

7.1	 Memory Management Requirements
Relocation
Protection
Sharing
Logical Organization
Physical Organization

7.2	 Memory Partitioning
Fixed Partitioning
Dynamic Partitioning
Buddy System
Relocation

7.3	 Paging

7.4	 Segmentation

7.5	 Summary

7.6	 Key Terms, Review Questions, and Problems

APPENDIX 7A	 Loading and Linking

Memory Management

Chapter

MemoryPart 3

M07_STAL4290_09_GE_C07.indd 339 4/13/17 10:35 AM

340   Chapter 7 / Memory Management

In a uniprogramming system, main memory is divided into two parts: one part
for the operating system (resident monitor, kernel) and other part for the pro-
gram currently being executed. In a multiprogramming system, the “user” part of
memory must be further subdivided to accommodate multiple processes. The task
of subdivision is carried out dynamically by the operating system and is known as
memory management.

Effective memory management is vital in a multiprogramming system. If only
a few processes are in memory, then for much of the time all of the processes will be
waiting for I/O (input/output), and the processor will be idle. Thus, memory needs to
be allocated to ensure a reasonable supply of ready processes to consume available
processor time.

We begin with the requirements that memory management is intended to sat-
isfy. Next, we will discuss a variety of simple schemes that have been used for memory
management.

Table 7.1 introduces some key terms for our discussion.

	 7.1	 MEMORY MANAGEMENT REQUIREMENTS

While surveying the various mechanisms and policies associated with memory man-
agement, it is helpful to keep in mind the requirements that memory management is
intended to satisfy. These requirements include the following:

•	 Relocation

•	 Protection

Frame A fixed-length block of main memory.

Page A fixed-length block of data that resides in secondary memory (such as a disk). A page of
data may temporarily be copied into a frame of main memory.

Segment A variable-length block of data that resides in secondary memory. An entire segment may
temporarily be copied into an available region of main memory (segmentation) or the seg-
ment may be divided into pages, which can be individually copied into main memory (com-
bined segmentation and paging).

Table 7.1  Memory Management Terms

Learning Objectives

After studying this chapter, you should be able to:
•	 Discuss the principal requirements for memory management.
•	 Understand the reason for memory partitioning and explain the various

techniques that are used.
•	 Understand and explain the concept of paging.
•	 Understand and explain the concept of segmentation.
•	 Assess the relative advantages of paging and segmentation.
•	 Describe the concepts of loading and linking.

M07_STAL4290_09_GE_C07.indd 340 4/13/17 10:35 AM

7.1 / MEMORY MANAGEMENT REQUIREMENTS   341

•	 Sharing

•	 Logical organization

•	 Physical organization

Relocation

In a multiprogramming system, the available main memory is generally shared
among a number of processes. Typically, it is not possible for the programmer to
know in advance which other programs will be resident in main memory at the time
of execution of his or her program. In addition, we would like to be able to swap
active processes in and out of main memory to maximize processor utilization by
providing a large pool of ready processes to execute. Once a program is swapped out
to disk, it would be quite limiting to specify that when it is next swapped back in, it
must be placed in the same main memory region as before. Instead, we may need to
relocate the process to a different area of memory.

Thus, we cannot know ahead of time where a program will be placed, and we
must allow for the possibility that the program may be moved about in main memory
due to swapping. These facts raise some technical concerns related to addressing,
as illustrated in Figure 7.1. The figure depicts a process image. For simplicity, let us
assume that the process image occupies a contiguous region of main memory. Clearly,
the operating system will need to know the location of process control informa-
tion and of the execution stack, as well as the entry point to begin execution of the
program for this process. Because the operating system is managing memory and
is responsible for bringing this process into main memory, these addresses are easy
to come by. In addition, however, the processor must deal with memory references

Figure 7.1  Addressing Requirements for a Process

Process control block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

M07_STAL4290_09_GE_C07.indd 341 4/13/17 10:35 AM

342   Chapter 7 / Memory Management

within the program. Branch instructions contain an address to reference the instruc-
tion to be executed next. Data reference instructions contain the address of the byte
or word of data referenced. Somehow, the processor hardware and operating system
software must be able to translate the memory references found in the code of the
program into actual physical memory addresses, reflecting the current location of the
program in main memory.

Protection

Each process should be protected against unwanted interference by other processes,
whether accidental or intentional. Thus, programs in other processes should not be
able to reference memory locations in a process for reading or writing purposes with-
out permission. In one sense, satisfaction of the relocation requirement increases the
difficulty of satisfying the protection requirement. Because the location of a program
in main memory is unpredictable, it is impossible to check absolute addresses at com-
pile time to assure protection. Furthermore, most programming languages allow the
dynamic calculation of addresses at run time (e.g., by computing an array subscript or
a pointer into a data structure). Hence, all memory references generated by a process
must be checked at run time to ensure they refer only to the memory space allocated
to that process. Fortunately, we shall see that mechanisms that support relocation also
support the protection requirement.

Normally, a user process cannot access any portion of the operating system,
neither program nor data. Again, usually a program in one process cannot branch
to an instruction in another process. Without special arrangement, a program in one
process cannot access the data area of another process. The processor must be able
to abort such instructions at the point of execution.

Note the memory protection requirement must be satisfied by the processor
(hardware) rather than the operating system (software). This is because the OS can-
not anticipate all of the memory references that a program will make. Even if such
anticipation were possible, it would be prohibitively time consuming to screen each
program in advance for possible memory-reference violations. Thus, it is only possible
to assess the permissibility of a memory reference (data access or branch) at the time
of execution of the instruction making the reference. To accomplish this, the processor
hardware must have that capability.

Sharing

Any protection mechanism must have the flexibility to allow several processes
to access the same portion of main memory. For example, if a number of pro-
cesses are executing the same program, it is advantageous to allow each process
to access the same copy of the program, rather than have its own separate copy.
Processes that are cooperating on some task may need to share access to the same
data structure. The memory management system must therefore allow controlled
access to shared areas of memory without compromising essential protection.
Again, we will see that the mechanisms used to support relocation also support
sharing capabilities.

M07_STAL4290_09_GE_C07.indd 342 4/13/17 10:35 AM

7.1 / MEMORY MANAGEMENT REQUIREMENTS   343

Logical Organization

Almost invariably, main memory in a computer system is organized as a linear or
one-dimensional address space, consisting of a sequence of bytes or words. Secondary
memory, at its physical level, is similarly organized. While this organization closely
mirrors the actual machine hardware, it does not correspond to the way in which
programs are typically constructed. Most programs are organized into modules, some
of which are unmodifiable (read only, execute only) and some of which contain data
that may be modified. If the operating system and computer hardware can effectively
deal with user programs and data in the form of modules of some sort, then a number
of advantages can be realized:

1.	 Modules can be written and compiled independently, with all references from
one module to another resolved by the system at run time.

2.	 With modest additional overhead, different degrees of protection (read only,
execute only) can be given to different modules.

3.	 It is possible to introduce mechanisms by which modules can be shared among
processes. The advantage of providing sharing on a module level is that this
corresponds to the user’s way of viewing the problem, hence it is easy for the
user to specify the sharing that is desired.

The tool that most readily satisfies these requirements is segmentation, which is one
of the memory management techniques explored in this chapter.

Physical Organization

As we discussed in Section 1.5, computer memory is organized into at least two
levels, referred to as main memory and secondary memory. Main memory provides
fast access at relatively high cost. In addition, main memory is volatile; that is, it does
not provide permanent storage. Secondary memory is slower and cheaper than main
memory, but is usually not volatile. Thus, secondary memory of large capacity can be
provided for long-term storage of programs and data, while a smaller main memory
holds programs and data currently in use.

In this two-level scheme, the organization of the flow of information between
main and secondary memory is a major system concern. The responsibility for this
flow could be assigned to the individual programmer, but this is impractical and
undesirable for two reasons:

1.	 The main memory available for a program and its data may be insufficient. In
that case, the programmer must engage in a practice known as overlaying, in
which the program and data are organized in such a way that various modules
can be assigned the same region of memory, with a main program responsible
for switching the modules in and out as needed. Even with the aid of compiler
tools, overlay programming wastes programmer time.

2.	 In a multiprogramming environment, the programmer does not know at the
time of coding how much space will be available or where that space will be.

M07_STAL4290_09_GE_C07.indd 343 4/13/17 10:35 AM

344   Chapter 7 / Memory Management

It is clear, then, that the task of moving information between the two levels
of memory should be a system responsibility. This task is the essence of memory
management.

	 7.2	 MEMORY PARTITIONING

The principal operation of memory management is to bring processes into main
memory for execution by the processor. In almost all modern multiprogramming sys-
tems, this involves a sophisticated scheme known as virtual memory. Virtual memory
is, in turn, based on the use of one or both of two basic techniques: segmentation and
paging. Before we can look at these virtual memory techniques, we must prepare the
ground by looking at simpler techniques that do not involve virtual memory (Table 7.2
summarizes all the techniques examined in this chapter and the next). One of these
techniques, partitioning, has been used in several variations in some now-obsolete
operating systems. The other two techniques, simple paging and simple segmentation,
are not used by themselves. However, it will clarify the discussion of virtual memory if
we look first at these two techniques in the absence of virtual memory considerations.

Fixed Partitioning

In most schemes for memory management, we can assume the OS occupies some
fixed portion of main memory, and the rest of main memory is available for use by
multiple processes. The simplest scheme for managing this available memory is to
partition it into regions with fixed boundaries.

Partition Sizes  Figure 7.2 shows examples of two alternatives for fixed
partitioning. One possibility is to make use of equal-size partitions. In this case, any
process whose size is less than or equal to the partition size can be loaded into any
available partition. If all partitions are full, and no process is in the Ready or Running
state, the operating system can swap a process out of any of the partitions and load
in another process, so there is some work for the processor.

There are two difficulties with the use of equal-size fixed partitions:

•	 A program may be too big to fit into a partition. In this case, the programmer
must design the program with the use of overlays so only a portion of the pro-
gram need be in main memory at any one time. When a module is needed that
is not present, the user’s program must load that module into the program’s
partition, overlaying whatever programs or data are there.

•	 Main memory utilization is extremely inefficient. Any program, no matter how
small, occupies an entire partition. In our example, there may be a program
whose length is less than 2 Mbytes; yet it occupies an 8-Mbyte partition when-
ever it is swapped in. This phenomenon, in which there is wasted space internal
to a partition due to the fact that the block of data loaded is smaller than the
partition, is referred to as internal fragmentation.

Both of these problems can be lessened, though not solved, by using unequal-
size partitions (see Figure 7.2b). In this example, programs as large as 16 Mbytes can

M07_STAL4290_09_GE_C07.indd 344 4/13/17 10:35 AM

7.2 / MEMORY PARTITIONING   345

be accommodated without overlays. Partitions smaller than 8 Mbytes allow smaller
programs to be accommodated with less internal fragmentation.

Placement Algorithm  With equal-size partitions, the placement of processes in
memory is trivial. As long as there is any available partition, a process can be loaded
into that partition. Because all partitions are of equal size, it does not matter which
partition is used. If all partitions are occupied with processes that are not ready

Technique Description Strengths Weaknesses

Fixed
Partitioning

Main memory is divided into
a number of static partitions
at system generation time.
A process may be loaded into
a partition of equal or greater
size.

Simple to implement;
little operating system
overhead.

Inefficient use of memory
due to internal fragmenta-
tion; maximum number of
active processes is fixed.

Dynamic
Partitioning

Partitions are created
dynamically, so each process
is loaded into a partition of
exactly the same size as that
process.

No internal fragmentation;
more efficient use of main
memory.

Inefficient use of proces-
sor due to the need for
compaction to counter
external fragmentation.

Simple Paging Main memory is divided
into a number of equal-
size frames. Each process
is divided into a number of
equal-size pages of the same
length as frames. A process
is loaded by loading all of its
pages into available, not nec-
essarily contiguous, frames.

No external fragmentation. A small amount of inter-
nal fragmentation.

Simple
Segmentation

Each process is divided into
a number of segments. A pro-
cess is loaded by loading all
of its segments into dynamic
partitions that need not be
contiguous.

No internal fragmentation;
improved memory utiliza-
tion and reduced overhead
compared to dynamic
partitioning.

External fragmentation.

Virtual Memory
Paging

As with simple paging, except
that it is not necessary to load
all of the pages of a process.
Nonresident pages that are
needed are automatically
brought in later.

No external fragmenta-
tion; higher degree of
multiprogramming; large
virtual address space.

Overhead of complex
memory management.

Virtual Memory
Segmentation

As with simple segmentation,
except that it is not necessary
to load all of the segments
of a process. Nonresident
segments that are needed
are automatically brought in
later.

No internal fragmentation,
higher degree of multipro-
gramming; large virtual
address space; protection
and sharing support.

Overhead of complex
memory management.

Table 7.2  Memory Management Techniques

M07_STAL4290_09_GE_C07.indd 345 4/13/17 10:35 AM

346   Chapter 7 / Memory Management

to run, then one of these processes must be swapped out to make room for a new
process. Which one to swap out is a scheduling decision; this topic will be explored
in Part Four.

With unequal-size partitions, there are two possible ways to assign processes to
partitions. The simplest way is to assign each process to the smallest partition within
which it will fit.1 In this case, a scheduling queue is needed for each partition to hold
swapped-out processes destined for that partition (see Figure 7.3a). The advantage of
this approach is that processes are always assigned in such a way as to minimize
wasted memory within a partition (internal fragmentation).

Although this technique seems optimum from the point of view of an indi-
vidual partition, it is not optimum from the point of view of the system as a whole.

1This assumes one knows the maximum amount of memory that a process will require. This is not always
the case. If it is not known how large a process may become, the only alternatives are an overlay scheme
or the use of virtual memory.

Figure 7.2  Example of Fixed Partitioning of a 64-Mbyte Memory

Operating system
8M

Operating system
8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

M07_STAL4290_09_GE_C07.indd 346 4/13/17 10:35 AM

7.2 / MEMORY PARTITIONING   347

In Figure 7.2b, for example, consider a case in which there are no processes with a
size between 12 and 16M at a certain point in time. In that case, the 16M partition
will remain unused, even though some smaller process could have been assigned to
it. Thus, a preferable approach would be to employ a single queue for all processes
(see Figure 7.3b). When it is time to load a process into main memory, the smallest
available partition that will hold the process is selected. If all partitions are occupied,
then a swapping decision must be made. Preference might be given to swapping out
of the smallest partition that will hold the incoming process. It is also possible to
consider other factors, such as priority, and a preference for swapping out blocked
processes versus ready processes.

The use of unequal-size partitions provides a degree of flexibility to fixed par-
titioning. In addition, it can be said that fixed partitioning schemes are relatively
simple and require minimal OS software and processing overhead. However, there
are disadvantages:

•	 The number of partitions specified at system generation time limits the number
of active (not suspended) processes in the system.

•	 Because partition sizes are preset at system generation time, small jobs will not
utilize partition space efficiently. In an environment where the main storage
requirement of all jobs is known beforehand, this may be reasonable, but in
most cases, it is an inefficient technique.

The use of fixed partitioning is almost unknown today. One example of a suc-
cessful operating system that did use this technique was an early IBM mainframe
operating system, OS/MFT (Multiprogramming with a Fixed Number of Tasks).

Figure 7.3  Memory Assignment for Fixed Partitioning

Operating
system

New
processes

New
processes

Operating
system

(a) One process queue per partition (b) Single queue

M07_STAL4290_09_GE_C07.indd 347 4/13/17 10:35 AM

348   Chapter 7 / Memory Management

Dynamic Partitioning

To overcome some of the difficulties with fixed partitioning, an approach known as
dynamic partitioning was developed. Again, this approach has been supplanted by
more sophisticated memory management techniques. An important operating system
that used this technique was IBM’s mainframe operating system, OS/MVT (Multi-
programming with a Variable Number of Tasks).

With dynamic partitioning, the partitions are of variable length and number.
When a process is brought into main memory, it is allocated exactly as much memory
as it requires and no more. An example, using 64 Mbytes of main memory, is shown
in Figure 7.4. Initially, main memory is empty, except for the OS (see Figure 7.4a).
The first three processes are loaded in, starting where the operating system ends
and occupying just enough space for each process (see Figure 7.4b, c, d). This leaves
a “hole” at the end of memory that is too small for a fourth process. At some point,
none of the processes in memory is ready. The operating system swaps out process 2
(see Figure 7.4e), which leaves sufficient room to load a new process, process 4 (see
Figure 7.4f). Because process 4 is smaller than process 2, another small hole is created.

Figure 7.4  The Effect of Dynamic Partitioning

(a)

Operating
system 8M

20M

36M

56M

(b)

Operating
system

Process 1 20M

14M

22M

(c)

Operating
system

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
system

Process 1

Process 2

14MProcess 2

Process 3

(e)

Operating
system

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
system

Process 1

Process 4

Process 3

(g)

Operating
system

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
system

Process 4

Process 3

20M

14M

18M

4M

18M

20M

8M

6M

18M

4M

18M

M07_STAL4290_09_GE_C07.indd 348 4/13/17 10:35 AM

7.2 / MEMORY PARTITIONING   349

Later, a point is reached at which none of the processes in main memory is ready, but
process 2, in the Ready-Suspend state, is available. Because there is insufficient room
in memory for process 2, the operating system swaps process 1 out (see Figure 7.4g)
and swaps process 2 back in (see Figure 7.4h).

As this example shows, this method starts out well, but eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, memory
becomes more and more fragmented, and memory utilization declines. This phenom-
enon is referred to as external fragmentation, indicating the memory that is external
to all partitions becomes increasingly fragmented. This is in contrast to internal frag-
mentation, referred to earlier.

One technique for overcoming external fragmentation is compaction: From
time to time, the OS shifts the processes so they are contiguous and all of the free
memory is together in one block. For example, in Figure 7.4h, compaction will result
in a block of free memory of length 16M. This may well be sufficient to load in an
additional process. The difficulty with compaction is that it is a time-consuming pro-
cedure and wasteful of processor time. Note that compaction implies the need for a
dynamic relocation capability. That is, it must be possible to move a program from
one region to another in main memory, without invalidating the memory references
in the program (see Appendix 7A).

Placement Algorithm  Because memory compaction is time consuming, the OS
designer must be clever in deciding how to assign processes to memory (how to plug
the holes). When it is time to load or swap a process into main memory, and if there
is more than one free block of memory of sufficient size, then the operating system
must decide which free block to allocate.

Three placement algorithms that might be considered are best-fit, first-fit, and
next-fit. All, of course, are limited to choosing among free blocks of main memory
that are equal to or larger than the process to be brought in. Best-fit chooses the
block that is closest in size to the request. First-fit begins to scan memory from the
beginning and chooses the first available block that is large enough. Next-fit begins to
scan memory from the location of the last placement and chooses the next available
block that is large enough.

Figure 7.5a shows an example memory configuration after a number of place-
ment and swapping-out operations. The last block that was used was a 22-Mbyte
block from which a 14-Mbyte partition was created. Figure 7.5b shows the difference
between the best-, first-, and next-fit placement algorithms in satisfying a 16-Mbyte
allocation request. Best-fit will search the entire list of available blocks and make
use of the 18-Mbyte block, leaving a 2-Mbyte fragment. First-fit results in a 6-Mbyte
fragment, and next-fit results in a 20-Mbyte fragment.

Which of these approaches is best will depend on the exact sequence of pro-
cess swappings that occurs and the size of those processes. However, some general
comments can be made (see also [BREN89], [SHOR75], and [BAYS77]). The first-fit
algorithm is not only the simplest but usually the best and fastest as well. The next-
fit algorithm tends to produce slightly worse results than the first-fit. The next-fit
algorithm will more frequently lead to an allocation from a free block at the end of
memory. The result is that the largest block of free memory, which usually appears
at the end of the memory space, is quickly broken up into small fragments. Thus,

M07_STAL4290_09_GE_C07.indd 349 4/13/17 10:35 AM

350   Chapter 7 / Memory Management

compaction may be required more frequently with next-fit. On the other hand, the
first-fit algorithm may litter the front end with small free partitions that need to be
searched over on each subsequent first-fit pass. The best-fit algorithm, despite its
name, is usually the worst performer. Because this algorithm looks for the smallest
block that will satisfy the requirement, it guarantees that the fragment left behind
is as small as possible. Although each memory request always wastes the smallest
amount of memory, the result is that main memory is quickly littered by blocks too
small to satisfy memory allocation requests. Thus, memory compaction must be done
more frequently than with the other algorithms.

Replacement Algorithm  In a multiprogramming system using dynamic parti
tioning, there will come a time when all of the processes in main memory are in
a blocked state and there is insufficient memory, even after compaction, for an
additional process. To avoid wasting processor time waiting for an active process to
become unblocked, the OS will swap one of the processes out of main memory to
make room for a new process or for a process in a Ready-Suspend state. Therefore,

Figure 7.5 � Example of Memory Configuration before and after Allocation
of 16-Mbyte Block

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last
allocated
block (14M)

8M

12M

6M

2M

8M

6M

14M

20M

(b) After

Next-fit

Allocated block

Best-fit

First-fit

Free block

Possible new allocation

M07_STAL4290_09_GE_C07.indd 350 4/13/17 10:35 AM

7.2 / MEMORY PARTITIONING   351

the operating system must choose which process to replace. Because the topic of
replacement algorithms will be covered in some detail with respect to various virtual
memory schemes, we defer a discussion of replacement algorithms until then.

Buddy System

Both fixed and dynamic partitioning schemes have drawbacks. A fixed partitioning
scheme limits the number of active processes and may use space inefficiently if there
is a poor match between available partition sizes and process sizes. A dynamic parti-
tioning scheme is more complex to maintain and includes the overhead of compac-
tion. An interesting compromise is the buddy system ([KNUT97], [PETE77]).

In a buddy system, memory blocks are available of size 2K words, L … K … U,
where

2L = smallest size block that is allocated

2U = largest size block that is allocated; generally 2U is the size of the entire
memory available for allocation

To begin, the entire space available for allocation is treated as a single block
of size 2U. If a request of size s such that 2U - 1 6 s … 2U is made, then the entire
block is allocated. Otherwise, the block is split into two equal buddies of size 2U - 1. If
2U - 2 6 s … 2U - 1, then the request is allocated to one of the two buddies. Otherwise,
one of the buddies is split in half again. This process continues until the smallest block
greater than or equal to s is generated and allocated to the request. At any time, the
buddy system maintains a list of holes (unallocated blocks) of each size 2i. A hole
may be removed from the (i + 1) list by splitting it in half to create two buddies of
size 2i in the i list. Whenever a pair of buddies on the i list both become unallocated,
they are removed from that list and coalesced into a single block on the (i + 1) list.
Presented with a request for an allocation of size k such that 2i- 1 6 k … 2i, the fol-
lowing recursive algorithm is used to find a hole of size 2i:

void get_hole(int i)
{
 if (i == (U + 1)) <failure>;
 if (<i_list empty>) {
 get_hole(i + 1);
 <split hole into buddies>;
 <put buddies on i_list>;
 }
 <take first hole on i_list>;
}

Figure 7.6 gives an example using a 1-Mbyte initial block. The first request, A,
is for 100 Kbytes, for which a 128K block is needed. The initial block is divided into
two 512K buddies. The first of these is divided into two 256K buddies, and the first
of these is divided into two 128K buddies, one of which is allocated to A. The next
request, B, requires a 256K block. Such a block is already available and is allocated.
The process continues with splitting and coalescing occurring as needed. Note that

M07_STAL4290_09_GE_C07.indd 351 4/13/17 10:35 AM

352   Chapter 7 / Memory Management

when E is released, two 128K buddies are coalesced into a 256K block, which is
immediately coalesced with its buddy.

Figure 7.7 shows a binary tree representation of the buddy allocation immedi-
ately after the Release B request. The leaf nodes represent the current partitioning
of the memory. If two buddies are leaf nodes, then at least one must be allocated;
otherwise, they would be coalesced into a larger block.

The buddy system is a reasonable compromise to overcome the disadvantages
of both the fixed and variable partitioning schemes, but in contemporary operating
systems, virtual memory based on paging and segmentation is superior. However,
the buddy system has found application in parallel systems as an efficient means
of allocation and release for parallel programs (e.g., see [JOHN92]). A modified
form of the buddy system is used for UNIX kernel memory allocation (described
in Chapter 8).

Relocation

Before we consider ways of dealing with the shortcomings of partitioning, we must
clear up one loose end, which relates to the placement of processes in memory. When
the fixed partition scheme of Figure 7.3a is used, we can expect a process will always
be assigned to the same partition. That is, whichever partition is selected when a new
process is loaded will always be used to swap that process back into memory after it
has been swapped out. In that case, a simple relocating loader, such as is described
in Appendix 7A, can be used: When the process is first loaded, all relative memory
references in the code are replaced by absolute main memory addresses, determined
by the base address of the loaded process.

Figure 7.6  Example of the Buddy System

1-Mbyte block 1M

1M

Request 100K

Request 240K

Request 64K

Request 256K

Release B

Release A

Request 75K

Release C

Release E

Release D

512K256KA 5 128K 128K

512KB 5 256KA 5 128K 128K

512KB 5 256KA 5 128K C 5 64K 64K

256KB 5 256K D 5 256KA 5 128K C 5 64K 64K

256K 256KD 5 256KA 5 128K C 5 64K 64K

256K 256KD 5 256KE 5 128K C 5 64K 64K

256K 256KD 5 256KE 5 128K 128K

512K 256KD 5 256K

256K 256KD 5 256K128K C 5 64K 64K

M07_STAL4290_09_GE_C07.indd 352 4/13/17 10:35 AM

7.2 / MEMORY PARTITIONING   353

In the case of equal-size partitions (see Figure 7.2a) and in the case of a single
process queue for unequal-size partitions (see Figure 7.3b), a process may occupy dif-
ferent partitions during the course of its life. When a process image is first created, it
is loaded into some partition in main memory. Later, the process may be swapped out;
when it is subsequently swapped back in, it may be assigned to a different partition
than the last time. The same is true for dynamic partitioning. Observe in Figure 7.4c
and Figure 7.4h that process 2 occupies two different regions of memory on the two
occasions when it is brought in. Furthermore, when compaction is used, processes
are shifted while they are in main memory. Thus, the locations (of instructions and
data) referenced by a process are not fixed. They will change each time a process is
swapped in or shifted. To solve this problem, a distinction is made among several
types of addresses. A logical address is a reference to a memory location independent
of the current assignment of data to memory; a translation must be made to a physical
address before the memory access can be achieved. A relative address is a particular
example of logical address, in which the address is expressed as a location relative
to some known point, usually a value in a processor register. A physical address, or
absolute address, is an actual location in main memory.

Programs that employ relative addresses in memory are loaded using dynamic
run-time loading (see Appendix 7A for a discussion). Typically, all of the memory
references in the loaded process are relative to the origin of the program. Thus, a

Figure 7.7  Tree Representation of the Buddy System

256K 256KA 5 128K D 5 256KC 5 64K 64K

1M

512K

256K

128K

64K

Leaf node for
allocated block

Leaf node for
unallocated block

Non-leaf node

M07_STAL4290_09_GE_C07.indd 353 4/13/17 10:35 AM

354   Chapter 7 / Memory Management

hardware mechanism is needed for translating relative addresses to physical main
memory addresses at the time of execution of the instruction that contains the
reference.

Figure 7.8 shows the way in which this address translation is typically accom-
plished. When a process is assigned to the Running state, a special processor regis-
ter, sometimes called the base register, is loaded with the starting address in main
memory of the program. There is also a “bounds” register that indicates the ending
location of the program; these values must be set when the program is loaded into
memory or when the process image is swapped in. During the course of execution
of the process, relative addresses are encountered. These include the contents of
the instruction register, instruction addresses that occur in branch and call instruc-
tions, and data addresses that occur in load and store instructions. Each such relative
address goes through two steps of manipulation by the processor. First, the value
in the base register is added to the relative address to produce an absolute address.
Second, the resulting address is compared to the value in the bounds register. If the
address is within bounds, then the instruction execution may proceed. Otherwise, an
interrupt is generated to the operating system, which must respond to the error in
some fashion.

The scheme of Figure 7.8 allows programs to be swapped in and out of memory
during the course of execution. It also provides a measure of protection: Each process
image is isolated by the contents of the base and bounds registers, and is safe from
unwanted accesses by other processes.

Figure 7.8  Hardware Support for Relocation

Process control block

Program

Data

Stack

Comparator

Interrupt to
operating system

Absolute
address

Process image in
main memory

Relative address

Base register

Bounds register

Adder

M07_STAL4290_09_GE_C07.indd 354 4/13/17 10:35 AM

7.3 / PAGING   355

	 7.3	 PAGING

Both unequal fixed-size and variable-size partitions are inefficient in the use of mem-
ory; the former results in internal fragmentation, the latter in external fragmentation.
Suppose, however, main memory is partitioned into equal fixed-size chunks that are
relatively small, and each process is also divided into small fixed-size chunks of the
same size. Then the chunks of a process, known as pages, could be assigned to avail-
able chunks of memory, known as frames, or page frames. We show in this section that
the wasted space in memory for each process is due to internal fragmentation consist-
ing of only a fraction of the last page of a process. There is no external fragmentation.

Figure 7.9 illustrates the use of pages and frames. At a given point in time,
some of the frames in memory are in use, and some are free. A list of free frames is
maintained by the OS. Process A, stored on disk, consists of four pages. When it is
time to load this process, the OS finds four free frames and loads the four pages of
process A into the four frames (see Figure 7.9b). Process B, consisting of three pages,
and process C, consisting of four pages, are subsequently loaded. Then process B is
suspended and is swapped out of main memory. Later, all of the processes in main
memory are blocked, and the OS needs to bring in a new process, process D, which
consists of five pages.

Now suppose, as in this example, there are not sufficient unused contiguous
frames to hold the process. Does this prevent the operating system from loading
D? The answer is no, because we can once again use the concept of logical address.
A simple base address register will no longer suffice. Rather, the operating system
maintains a page table for each process. The page table shows the frame location for
each page of the process. Within the program, each logical address consists of a page
number and an offset within the page. Recall that in the case of simple partition, a
logical address is the location of a word relative to the beginning of the program; the
processor translates that into a physical address. With paging, the logical-to-physical
address translation is still done by processor hardware. Now the processor must know
how to access the page table of the current process. Presented with a logical address
(page number, offset), the processor uses the page table to produce a physical address
(frame number, offset).

Continuing our example, the five pages of process D are loaded into frames 4,
5, 6, 11, and 12. Figure 7.10 shows the various page tables at this time. A page table
contains one entry for each page of the process, so the table is easily indexed by the
page number (starting at page 0). Each page table entry contains the number of the
frame in main memory, if any, that holds the corresponding page. In addition, the OS
maintains a single free-frame list of all the frames in main memory that are currently
unoccupied and available for pages.

Thus, we see that simple paging, as described here, is similar to fixed partition-
ing. The differences are that, with paging, the partitions are rather small; a program
may occupy more than one partition; and these partitions need not be contiguous.

To make this paging scheme convenient, let us dictate that the page size, hence
the frame size, must be a power of 2. With the use of a page size that is a power of 2,
it is easy to demonstrate that the relative address (which is defined with reference
to the origin of the program) and the logical address (expressed as a page number

M07_STAL4290_09_GE_C07.indd 355 4/13/17 10:35 AM

356   Chapter 7 / Memory Management

Figure 7.9  Assignment of Process to Free Frames

Frame
number

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a) Fifteen available frames

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) Load process C

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(e) Swap out B

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(f) Load process D

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Load process A

0

Main memory

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) Load process B

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

C.1
C.2
C.3

C.1
C.2
C.3

C.0 C.0

D.0
D.1
D.2

B.0
B.1
B.2

D.3
D.4

B.0
B.1
B.2

Figure 7.10  Data Structures for the Example of Figure 7.9 at Time Epoch (f)

00
11
22
33

Process A
page table

13
14

Free-frame
list

70
81
92
103

Process C
page table Process D

page table

40
51
62
113
124

0
1
2

Process B
page table

—
—
—

M07_STAL4290_09_GE_C07.indd 356 4/13/17 10:35 AM

7.3 / PAGING   357

and offset) are the same. An example is shown in Figure 7.11. In this example, 16-bit
addresses are used, and the page size is 1K = 1024 bytes. The relative address 1502 in
binary form is 0000010111011110. With a page size of 1K, an offset field of 10 bits is
needed, leaving 6 bits for the page number. Thus, a program can consist of a maximum
of 26 = 64 pages of size 1 Kbytes each. As Figure 7.11b shows, relative address 1502
corresponds to an offset of 478 (0111011110) on page 1 (000001), which yields the
same 16-bit number, 0000010111011110.

The consequences of using a page size that is a power of 2 are twofold. First,
the logical addressing scheme is transparent to the programmer, the assembler, and
the linker. Each logical address (page number, offset) of a program is identical to
its relative address. Second, it is a relatively easy matter to implement a function in
hardware to perform dynamic address translation at run time. Consider an address of
n + m bits, where the leftmost n bits are the page number, and the rightmost m bits
are the offset. In our example (see Figure 7.11b), n = 6 and m = 10. The following
steps are needed for address translation:

1.	 Extract the page number as the leftmost n bits of the logical address.

2.	 Use the page number as an index into the process page table to find the frame
number, k.

3.	 The starting physical address of the frame is k * 2m, and the physical address
of the referenced byte is that number plus the offset. This physical address need
not be calculated; it is easily constructed by appending the frame number to
the offset.

Figure 7.11  Logical Addresses

Logical address 5
Segment# 5 1, O�set 5 752

In
te

rn
al

fr
ag

m
en

ta
tio

n

(c) Segmentation(a) Partitioning

(b) Paging
(page size 5 1K)

75
2

Se
gm

en
t 1

1,
95

0
by

te
s

0000010111011110 0001 001011110000

Logical address 5
Page# 5 1, O�set 5 478Relative address 5 1502

0000010111011110

47
8

U
se

r
pr

oc
es

s
(2

,7
00

 b
yt

es
)

Se
gm

en
t 0

75
0

by
te

s

Pa
ge

 2
Pa

ge
 1

Pa
ge

 0

M07_STAL4290_09_GE_C07.indd 357 4/13/17 10:35 AM

358   Chapter 7 / Memory Management

In our example, we have the logical address 0000010111011110, which is page
number 1, offset 478. Suppose this page is residing in main memory frame 6 = binary
000110. Then the physical address is frame number 6, offset 478 = 0001100111011110
(see Figure 7.12a).

To summarize, with simple paging, main memory is divided into many small
equal-size frames. Each process is divided into frame-size pages. Smaller processes
require fewer pages; larger processes require more. When a process is brought in, all
of its pages are loaded into available frames, and a page table is set up. This approach
solves many of the problems inherent in partitioning.

	 7.4	 SEGMENTATION

A user program can be subdivided using segmentation, in which the program and its
associated data are divided into a number of segments. It is not required that all seg-
ments of all programs be of the same length, although there is a maximum segment

Figure 7.12  Examples of Logical-to-Physical Address Translation

0

0
1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process
page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100
1

0000010000000000
0111100111100010000000100000 +

000110
011001

4-bit segment #

M07_STAL4290_09_GE_C07.indd 358 4/13/17 10:35 AM

7.4 / SEGMENTATION   359

length. As with paging, a logical address using segmentation consists of two parts, in
this case, a segment number and an offset.

Because of the use of unequal-size segments, segmentation is similar to
dynamic partitioning. In the absence of an overlay scheme or the use of virtual
memory, it would be required that all of a program’s segments be loaded into mem-
ory for execution. The difference, compared to dynamic partitioning, is that with
segmentation a program may occupy more than one partition, and these partitions
need not be contiguous. Segmentation eliminates internal fragmentation but, like
dynamic partitioning, it suffers from external fragmentation. However, because a
process is broken up into a number of smaller pieces, the external fragmentation
should be less.

Whereas paging is invisible to the programmer, segmentation is usually vis-
ible and is provided as a convenience for organizing programs and data. Typically,
the programmer or compiler will assign programs and data to different segments.
For purposes of modular programming, the program or data may be further broken
down into multiple segments. The principal inconvenience of this service is that the
programmer must be aware of the maximum segment size limitation.

Another consequence of unequal-size segments is that there is no simple rela-
tionship between logical addresses and physical addresses. Analogous to paging, a
simple segmentation scheme would make use of a segment table for each process,
and a list of free blocks of main memory. Each segment table entry would have to
give the starting address in main memory of the corresponding segment. The entry
should also provide the length of the segment to assure that invalid addresses are
not used. When a process enters the Running state, the address of its segment table is
loaded into a special register used by the memory management hardware. Consider
an address of n + m bits, where the leftmost n bits are the segment number and the
rightmost m bits are the offset. In our example (see Figure 7.11c), n = 4 and m = 12.
Thus, the maximum segment size is 212 = 4096. The following steps are needed for
address translation:

1.	 Extract the segment number as the leftmost n bits of the logical address.

2.	 Use the segment number as an index into the process segment table to find the
starting physical address of the segment.

3.	 Compare the offset, expressed in the rightmost m bits, to the length of the seg-
ment. If the offset is greater than or equal to the length, the address is invalid.

4.	 The desired physical address is the sum of the starting physical address of the
segment plus the offset.

In our example, we have the logical address 0001001011110000, which
is segment number 1, offset 752. Suppose this segment is residing in main mem-
ory starting at physical address 0010000000100000. Then the physical address is
0010000000100000 + 001011110000 = 0010001100010000 (see Figure 7.12b).

To summarize, with simple segmentation, a process is divided into a number
of segments that need not be of equal size. When a process is brought in, all of
its segments are loaded into available regions of memory, and a segment table is
set up.

M07_STAL4290_09_GE_C07.indd 359 4/13/17 10:35 AM

360   Chapter 7 / Memory Management

	 7.5	 SUMMARY

One of the most important and complex tasks of an operating system is memory
management. Memory management involves treating main memory as a resource to
be allocated to and shared among a number of active processes. To use the proces-
sor and the I/O facilities efficiently, it is desirable to maintain as many processes in
main memory as possible. In addition, it is desirable to free programmers from size
restrictions in program development.

The basic tools of memory management are paging and segmentation. With
paging, each process is divided into relatively small, fixed-size pages. Segmentation
provides for the use of pieces of varying size. It is also possible to combine segmenta-
tion and paging in a single memory management scheme.

	 7.6	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

absolute loading
buddy system
compaction
dynamic linking
dynamic partitioning
dynamic run-time loading
external fragmentation
fixed partitioning
frame
internal fragmentation

linkage editor
linking
loading
logical address
logical organization
memory management
page
page table
paging
partitioning

physical address
physical organization
protection
relative address
relocatable loading
relocation
segment
segmentation
sharing

Review Questions

	 7.1.	 What requirements is memory management intended to satisfy?
	 7.2.	 What is relocation of a program?
	 7.3.	 What are the advantages of organizing programs and data into modules?
	 7.4.	 What are some reasons to allow two or more processes to all have access to a particular

region of memory?
	 7.5.	 In a fixed partitioning scheme, what are the advantages of using unequal-size partitions?
	 7.6.	 What is the difference between internal and external fragmentation?
	 7.7.	 What is address binding? State the different timings when address binding may occur.
	 7.8.	 What is the difference between a page and a frame?
	 7.9.	 What is the difference between a page and a segment?

M07_STAL4290_09_GE_C07.indd 360 4/13/17 10:35 AM

7.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   361

Problems

	 7.1.	 In Section 2.3, we listed five objectives of memory management, and in Section 7.1, we
listed five requirements. Argue that each list encompasses all of the concerns addressed
in the other.

	 7.2.	 Consider a fixed partitioning scheme with equal-size partitions of 216 bytes and a total
main memory size of 224 bytes. A process table is maintained that includes a pointer to
a partition for each resident process. How many bits are required for the pointer?

	 7.3.	 Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

	 7.4.	 To implement the various placement algorithms discussed for dynamic partitioning
(see Section 7.2), a list of the free blocks of memory must be kept. For each of the three
methods discussed (best-fit, first-fit, next-fit), what is the average length of the search?

	 7.5.	 Another placement algorithm for dynamic partitioning is referred to as worst-fit. In
this case, the largest free block of memory is used for bringing in a process.
a.	 Discuss the pros and cons of this method compared to first-, next-, and best-fit.
b.	 What is the average length of the search for worst-fit?

	 7.6.	 This diagram shows an example of memory configuration under dynamic partitioning,
after a number of placement and swapping-out operations have been carried out.
Addresses go from left to right; gray areas indicate blocks occupied by processes;
white areas indicate free memory blocks. The last process placed is 2 Mbytes and is
marked with an X. Only one process was swapped out after that.

4M X 5M 8M 2M 4M 3M
1
M

a.	 What was the maximum size of the swapped-out process?
b.	 What was the size of the free block just before it was partitioned by X?
c.	 A new 3-Mbyte allocation request must be satisfied next. Indicate the intervals of

memory where a partition will be created for the new process under the follow-
ing four placement algorithms: best-fit, first-fit, next-fit, and worst-fit. For each
algorithm, draw a horizontal segment under the memory strip and label it clearly.

	 7.7.	 A 512 KB block of memory is allocated using the buddy system. Show the results of
the following sequence of requests and returns in a figure that is similar to Figure 7.6:
Request A: 100; Request B: 40; Request C: 190; Return A; Request D: 60; Return B;
Return D; Return C. Also, find the internal fragmentation at each stage of allocation/
de-allocation.

	 7.8.	 Consider a memory-management system that uses simple paging strategy and employs
registers to speed up page lookups. The associative registers have a lookup perfor-
mance of 120 ns and a hit ratio of 80%. The main-memory page-table lookup takes
600 ns. Compute the average page-lookup time.

	 7.9.	 Let buddyk(x) = address of the buddy of the block of size 2k whose address is x. Write
a general expression for buddyk(x).

	7.10.	 The Fibonacci sequence is defined as follows:

F0 = 0, F1 = 1, Fn + 2 = Fn + 1 + Fn, n Ú 0

a.	 Could this sequence be used to establish a buddy system?
b.	 What would be the advantage of this system over the binary buddy system described

in this chapter?

M07_STAL4290_09_GE_C07.indd 361 4/13/17 10:35 AM

362   Chapter 7 / Memory Management

	7.11.	 During the course of execution of a program, the processor will increment the contents
of the instruction register (program counter) by one word after each instruction fetch,
but will alter the contents of that register if it encounters a branch or call instruction
that causes execution to continue elsewhere in the program. Now consider Figure 7.8.
There are two alternatives with respect to instruction addresses:
1.	 Maintain a relative address in the instruction register and do the dynamic address

translation using the instruction register as input. When a successful branch or call
is encountered, the relative address generated by that branch or call is loaded into
the instruction register.

2.	 Maintain an absolute address in the instruction register. When a successful branch
or call is encountered, dynamic address translation is employed, with the results
stored in the instruction register.

Which approach is preferable?
	7.12.	 Consider a memory-management system based on paging. The total size of the physical

memory is 2 GB, laid out over pages of size 8 KB. The logical address space of each
process has been limited to 256 MB.
a.	 Determine the total number of bits in the physical address.
b.	 Determine the number of bits specifying page replacement and the number of bits

for page frame number.
c.	 Determine the number of page frames.
d.	 Determine the logical address layout.

	7.13.	 Write the binary translation of the logical address 0011000000110011 under the fol-
lowing hypothetical memory management schemes, and explain your answer:
a.	 A paging system with a 512-address page size, using a page table in which the frame

number happens to be half of the page number.
b.	 A segmentation system with a 2K-address maximum segment size, using a segment

table in which bases happen to be regularly placed at real addresses: segment #
+ 20 + offset + 4,096.

	 7.14.	 Consider a simple segmentation system that has the following segment table:

Starting Address Length (bytes)

830 346

648 110

1,508 408

770 812

For each of the following logical addresses, determine the physical address or indicate
if a segment fault occurs:
a.	 0, 228
b.	 2, 648
c.	 3, 776
d.	 1, 98
e.	 1, 240

	7.15.	 Consider a memory in which contiguous segments S1, S2, c, Sn are placed in their
order of creation from one end of the store to the other, as suggested by the following
figure:

HoleS2 SnS1

M07_STAL4290_09_GE_C07.indd 362 4/13/17 10:35 AM

APPENDIX 7A / LOADING AND LINKING   363

When segment Sn + 1 is being created, it is placed immediately after segment Sn even
though some of the segments S1, S2, c, Sn may already have been deleted. When the
boundary between segments (in use or deleted) and the hole reaches the other end of
the memory, the segments in use are compacted.
a.	 Show that the fraction of time F spent on compacting obeys the following

inequality:

F Ú
1 - f

1 + kf
 where k =

t
2s

- 1

where
s = average length of a segment, in words
t = average lifetime of a segment, in memory references
f = fraction of the memory that is unused under equilibrium conditions

Hint: Find the average speed at which the boundary crosses the memory and
assume that the copying of a single word requires at least two memory references.

b.	 Find F for f = 0.25, t = 1,200, and s = 75.

APPENDIX 7A  LOADING AND LINKING

The first step in the creation of an active process is to load a program into main mem-
ory and create a process image (see Figure 7.13). Figure 7.14 depicts a scenario typical
for most systems. The application consists of a number of compiled or assembled
modules in object-code form. These are linked to resolve any references between
modules. At the same time, references to library routines are resolved. The library
routines themselves may be incorporated into the program or referenced as shared

Figure 7.13  The Loading Function

Process control block

Program

Data

Stack

Process image in
main memory

Program

Data

Object code

M07_STAL4290_09_GE_C07.indd 363 4/13/17 10:35 AM

364   Chapter 7 / Memory Management

Figure 7.14  A Linking and Loading Scenario

Loader
Load

moduleLinker

Module 2

Module 1

Module n
Main memory

Run-time
linker/
loader

x

Dynamic
library

Dynamic
library

Static
library

code that must be supplied by the operating system at run time. In this appendix, we
summarize the key features of linkers and loaders. For clarity in the presentation,
we begin with a description of the loading task when a single program module is
involved; no linking is required.

Loading

In Figure 7.14, the loader places the load module in main memory starting at loca-
tion x. In loading the program, the addressing requirement illustrated in Figure 7.1
must be satisfied. In general, three approaches can be taken:

1.	Absolute loading

2.	Relocatable loading

3.	Dynamic run-time loading

Absolute Loading  An absolute loader requires that a given load module always
be loaded into the same location in main memory. Thus, in the load module presented
to the loader, all address references must be to specific, or absolute, main memory
addresses. For example, if x in Figure 7.14 is location 1024, then the first word in a load
module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a pro-
gram can be done either by the programmer or at compile or assembly time (see
Table 7.3a). There are several disadvantages to the former approach. First, every pro-
grammer would have to know the intended assignment strategy for placing modules
into main memory. Second, if any modifications are made to the program that involve
insertions or deletions in the body of the module, then all of the addresses will have

M07_STAL4290_09_GE_C07.indd 364 4/13/17 10:35 AM

APPENDIX 7A / LOADING AND LINKING   365

to be altered. Accordingly, it is preferable to allow memory references within pro-
grams to be expressed symbolically, then resolve those symbolic references at the
time of compilation or assembly. This is illustrated in Figure 7.15. Every reference to
an instruction or item of data is initially represented by a symbol. In preparing the
module for input to an absolute loader, the assembler or compiler will convert all
of these references to specific addresses (in this example, for a module to be loaded
starting at location 1024), as shown in Figure 7.15b.

Relocatable Loading  The disadvantage of binding memory references to specific
addresses prior to loading is that the resulting load module can only be placed in one
region of main memory. However, when many programs share main memory, it may
not be desirable to decide ahead of time into which region of memory a particular
module should be loaded. It is better to make that decision at load time. Thus, we
need a load module that can be located anywhere in main memory.

To satisfy this new requirement, the assembler or compiler produces not actual
main memory addresses (absolute addresses) but addresses that are relative to
some known point, such as the start of the program. This technique is illustrated in

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynamically
to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer must
place into the program the source code for all subprograms that are referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is referenced
and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These mod-
ules are linked together and all references are restated relative to the origin of
the final load module.

Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended to
the load module, and the entire package is loaded into main or virtual memory.

Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

Table 7.3  Address Binding

M07_STAL4290_09_GE_C07.indd 365 4/13/17 10:35 AM

366   Chapter 7 / Memory Management

Figure 7.15  Absolute and Relocatable Load Modules

JUMP X

X

Y

PROGRAM

DATA

(a) Object module

LOAD Y

JUMP 1424

1424

1024 0

2224

PROGRAM

DATA

(b) Absolute load module

LOAD 2224

JUMP 400

400

1200

PROGRAM

DATA

(c) Relative load module

LOAD 1200

JUMP 400

PROGRAM

DATA

LOAD 1200

1200 + x

400 + x

x

Main memory
addresses

(d) Relative load module
loaded into main memory

starting at location x

Symbolic
addresses

Absolute
addresses

Relative
addresses

Figure 7.15c. The start of the load module is assigned the relative address 0, and all
other memory references within the module are expressed relative to the beginning
of the module.

With all memory references expressed in relative format, it becomes a simple
task for the loader to place the module in the desired location. If the module is to be
loaded beginning at location x, then the loader must simply add x to each memory
reference as it loads the module into memory. To assist in this task, the load module
must include information that tells the loader where the address references are and
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This
set of information is prepared by the compiler or assembler, and is usually referred
to as the relocation dictionary.

Dynamic Run-Time Loading  Relocatable loaders are common and provide
obvious benefits relative to absolute loaders. However, in a multiprogramming
environment, even one that does not depend on virtual memory, the relocatable
loading scheme is inadequate. We have referred to the need to swap process images
in and out of main memory to maximize the utilization of the processor. To maximize
main memory utilization, we would like to be able to swap the process image back
into different locations at different times. Thus, a program, once loaded, may be
swapped out to disk then swapped back in at a different location. This would be
impossible if memory references had been bound to absolute addresses at the initial
load time.

The alternative is to defer the calculation of an absolute address until it is
actually needed at run time. For this purpose, the load module is loaded into main
memory with all memory references in relative form (see Figure 7.15d). It is not until
an instruction is actually executed that the absolute address is calculated. To assure

M07_STAL4290_09_GE_C07.indd 366 4/13/17 10:35 AM

APPENDIX 7A / LOADING AND LINKING   367

that this function does not degrade performance, it must be done by special processor
hardware rather than software. This hardware is described in Section 7.2.

Dynamic address calculation provides complete flexibility. A program can be
loaded into any region of main memory. Subsequently, the execution of the program
can be interrupted and the program can be swapped out of main memory, to be later
swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and produce
a load module, consisting of an integrated set of program and data modules, to be
passed to the loader. In each object module, there may be address references to loca-
tions in other modules. Each such reference can only be expressed symbolically in an
unlinked object module. The linker creates a single load module that is the contiguous
joining of all of the object modules. Each intramodule reference must be changed
from a symbolic address to a reference to a location within the overall load module.
For example, module A in Figure 7.16a contains a procedure invocation of module
B. When these modules are combined in the load module, this symbolic reference to
module B is changed to a specific reference to the location of the entry point of B
within the load module.

Figure 7.16  The Linking Function

0

Relative
addresses

JSR "L"

Return

Return

Return

L 2 1
L

L 1 M 2 1
L 1 M

L 1 M 1 N 2 1

Module A

JSR "L 1 M"

Module B

Module C

CALL B;External
reference to
module B

Return

Module A

(a) Object modules

CALL C;

Module B

Return

(b) Load moduleReturn

Module C

Length L

Length N

Length M

M07_STAL4290_09_GE_C07.indd 367 4/13/17 10:35 AM

368   Chapter 7 / Memory Management

Linkage Editor  The nature of this address linkage will depend on the type of
load module to be created and when the linkage occurs (see Table 7.3b). If, as is
usually the case, a relocatable load module is desired, then linkage is usually done
in the following fashion. Each compiled or assembled object module is created with
references relative to the beginning of the object module. All of these modules are
put together into a single relocatable load module with all references relative to the
origin of the load module. This module can be used as input for relocatable loading
or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure 7.16 illustrates the linkage editor function.

Dynamic Linker  As with loading, it is possible to defer some linkage functions.
The term dynamic linking is used to refer to the practice of deferring the linkage of
some external modules until after the load module has been created. Thus, the load
module contains unresolved references to other programs. These references can be
resolved either at load time or run time.

For load-time dynamic linking (involving the upper dynamic library in Figure
7.14), the following steps occur. The load module (application module) to be loaded
is read into memory. Any reference to an external module (target module) causes the
loader to find the target module, load it, and alter the reference to a relative address
in memory from the beginning of the application module. There are several advan-
tages to this approach over what might be called static linking:

•	 It becomes easier to incorporate changed or upgraded versions of the target
module, which may be an operating system utility or some other general-pur-
pose routine. With static linking, a change to such a supporting module would
require the relinking of the entire application module. Not only is this inef-
ficient, but it may be impossible in some circumstances. For example, in the
personal computer field, most commercial software is released in load module
form; source and object versions are not released.

•	 Having target code in a dynamic link file paves the way for automatic code
sharing. The operating system can recognize that more than one application is
using the same target code, because it loaded and linked that code. It can use
that information to load a single copy of the target code and link it to both
applications, rather than having to load one copy for each application.

•	 It becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come up
with a new function that may be useful to a variety of applications, and package
it as a dynamic link module.

With run-time dynamic linking (involving the lower dynamic library in Fig-
ure 7.14), some of the linking is postponed until execution time. External references
to target modules remain in the loaded program. When a call is made to the absent
module, the operating system locates the module, loads it, and links it to the calling
module. Such modules are typically shareable. In the Windows environment, these
are called dynamic link libraries (DLLs). Thus, if one process is already making use

M07_STAL4290_09_GE_C07.indd 368 4/13/17 10:35 AM

APPENDIX 7A / LOADING AND LINKING   369

of a dynamically linked shared module, then that module is in main memory and a
new process can simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell.
DLL hell occurs if two or more processes are sharing a DLL module but expect dif-
ferent versions of the module. For example, an application or system function might
be reinstalled and bring in with it an older version of a DLL file.

We have seen that dynamic loading allows an entire load module to be moved
around; however, the structure of the module is static, being unchanged throughout
the execution of the process and from one execution to the next. However, in some
cases, it is not possible to determine prior to execution which object modules will be
required. This situation is typified by transaction-processing applications, such as an
airline reservation system or a banking application. The nature of the transaction
dictates which program modules are required, and they are loaded as appropriate and
linked with the main program. The advantage of the use of such a dynamic linker is
that it is not necessary to allocate memory for program units unless those units are
referenced. This capability is used in support of segmentation systems.

One additional refinement is possible: An application need not know the names
of all the modules or entry points that may be called. For example, a charting program
may be written to work with a variety of plotters, each of which is driven by a differ-
ent driver package. The application can learn the name of the plotter that is currently
installed on the system from another process or by looking it up in a configuration
file. This allows the user of the application to install a new plotter that did not exist
at the time the application was written.

M07_STAL4290_09_GE_C07.indd 369 4/13/17 10:35 AM

370

8.1	 Hardware and Control Structures
Locality and Virtual Memory
Paging
Segmentation
Combined Paging and Segmentation
Protection and Sharing

8.2	 Operating System Software
Fetch Policy
Placement Policy
Replacement Policy
Resident Set Management
Cleaning Policy
Load Control

8.3	 UNIX and Solaris Memory Management
Paging System
Kernel Memory Allocator

8.4	 Linux Memory Management
Linux Virtual Memory
Kernel Memory Allocation

8.5	 Windows Memory Management
Windows Virtual Address Map
Windows Paging
Windows Swapping

8.6	 Android Memory Management

8.7	 Summary

8.8	 Key Terms, Review Questions, and Problems

Virtual Memory

Chapter

M08_STAL4290_09_GE_C08.indd 370 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   371

Chapter 7 introduced the concepts of paging and segmentation and analyzed their
shortcomings. We now move to a discussion of virtual memory. An analysis of this
topic is complicated by the fact that memory management is a complex interrelation-
ship between processor hardware and operating system software. We will focus first
on the hardware aspect of virtual memory, looking at the use of paging, segmentation,
and combined paging and segmentation. Then we will look at the issues involved in
the design of a virtual memory facility in operating systems.

Table 8.1 defines some key terms related to virtual memory.

	 8.1	 HARDWARE AND CONTROL STRUCTURES

Comparing simple paging and simple segmentation, on the one hand, with fixed and
dynamic partitioning, on the other, we see the foundation for a fundamental break-
through in memory management. Two characteristics of paging and segmentation are
the keys to this breakthrough:

1.	 All memory references within a process are logical addresses that are dynami-
cally translated into physical addresses at run time. This means that a process
may be swapped in and out of main memory such that it occupies different
regions of main memory at different times during the course of execution.

Virtual memory A storage allocation scheme in which secondary memory can be addressed as
though it were part of main memory. The addresses a program may use to reference
memory are distinguished from the addresses the memory system uses to identify
physical storage sites, and program-generated addresses are translated automati-
cally to the corresponding machine addresses. The size of virtual storage is limited
by the addressing scheme of the computer system, and by the amount of secondary
memory available and not by the actual number of main storage locations.

Virtual address The address assigned to a location in virtual memory to allow that location to be
accessed as though it were part of main memory.

Virtual address space The virtual storage assigned to a process.

Address space The range of memory addresses available to a process.

Real address The address of a storage location in main memory.

Table 8.1  Virtual Memory Terminology

Learning Objectives

After studying this chapter, you should be able to:
•	 Define virtual memory.
•	 Describe the hardware and control structures that support virtual memory.
•	 Describe the various OS mechanisms used to implement virtual memory.
•	 Describe the virtual memory management mechanisms in UNIX, Linux, and

Windows.

M08_STAL4290_09_GE_C08.indd 371 5/9/17 4:41 PM

372   Chapter 8 / Virtual Memory

2.	 A process may be broken up into a number of pieces (pages or segments) and
these pieces need not be contiguously located in main memory during execu-
tion. The combination of dynamic run-time address translation and the use of
a page or segment table permits this.

Now we come to the breakthrough. If the preceding two characteristics are pres-
ent, then it is not necessary that all of the pages or all of the segments of a process be
in main memory during execution. If the piece (segment or page) that holds the
next instruction to be fetched and the piece that holds the next data location to be
accessed are in main memory, then at least for a time execution may proceed.

Let us consider how this may be accomplished. For now, we can talk in general
terms, and we will use the term piece to refer to either page or segment, depend-
ing on whether paging or segmentation is employed. Suppose it is time to bring a
new process into memory. The OS begins by bringing in only one or a few pieces, to
include the initial program piece and the initial data piece to which those instructions
refer. The portion of a process that is actually in main memory at any time is called
the resident set of the process. As the process executes, things proceed smoothly as
long as all memory references are to locations that are in the resident set. Using the
segment or page table, the processor always is able to determine whether this is so.
If the processor encounters a logical address that is not in main memory, it generates
an interrupt indicating a memory access fault. The OS puts the interrupted process
in a blocking state. For the execution of this process to proceed later, the OS must
bring into main memory the piece of the process that contains the logical address that
caused the access fault. For this purpose, the OS issues a disk I/O (input/output) read
request. After the I/O request has been issued, the OS can dispatch another process
to run while the disk I/O is performed. Once the desired piece has been brought into
main memory, an I/O interrupt is issued, giving control back to the OS, which places
the affected process back into a Ready state.

It may immediately occur to you to question the efficiency of this maneuver,
in which a process may be executing and have to be interrupted for no other reason
than that you have failed to load in all of the needed pieces of the process. For now, let
us defer consideration of this question with the assurance that efficiency is possible.
Instead, let us ponder the implications of our new strategy. There are two implications,
the second more startling than the first, and both lead to improved system utilization:

1.	 More processes may be maintained in main memory. Because we are only going
to load some of the pieces of any particular process, there is room for more
processes. This leads to more efficient utilization of the processor, because it is
more likely that at least one of the more numerous processes will be in a Ready
state at any particular time.

2.	 A process may be larger than all of main memory. One of the most fundamental
restrictions in programming is lifted. Without the scheme we have been discuss-
ing, a programmer must be acutely aware of how much memory is available.
If the program being written is too large, the programmer must devise ways to
structure the program into pieces that can be loaded separately in some sort of
overlay strategy. With virtual memory based on paging or segmentation, that
job is left to the OS and the hardware. As far as the programmer is concerned,

M08_STAL4290_09_GE_C08.indd 372 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   373

he or she is dealing with a huge memory, the size associated with disk storage.
The OS automatically loads pieces of a process into main memory as required.

Because a process executes only in main memory, that memory is referred to as
real memory. But a programmer or user perceives a potentially much larger memory–
that which is allocated on disk. This latter is referred to as virtual memory. Virtual
memory allows for very effective multiprogramming and relieves the user of the
unnecessarily tight constraints of main memory. Table 8.2 summarizes characteristics
of paging and segmentation with and without the use of virtual memory.

Locality and Virtual Memory

The benefits of virtual memory are attractive, but is the scheme practical? At one
time, there was considerable debate on this point, but experience with numerous
operating systems has demonstrated beyond doubt that virtual memory does work.
Accordingly, virtual memory, based on either paging or paging plus segmentation, has
become an essential component of contemporary operating systems.

Simple Paging
Virtual Memory
Paging Simple Segmentation

Virtual Memory
Segmentation

Main memory partitioned into small fixed-size
chunks called frames.

Main memory not partitioned.

Program broken into pages by the compiler or
memory management system.

Program segments specified by the programmer
to the compiler (i.e., the decision is made by the
programmer).

Internal fragmentation within frames. No internal fragmentation.

No external fragmentation. External fragmentation.

Operating system must maintain a page table
for each process showing which frame each page
occupies.

Operating system must maintain a segment table for
each process showing the load address and length of
each segment.

Operating system must maintain a free-frame list. Operating system must maintain a list of free holes in
main memory.

Processor uses page number, offset to calculate
absolute address.

Processor uses segment number, offset to calculate
absolute address.

All the pages of a
process must be in main
memory for process to
run, unless overlays are
used.

Not all pages of a
process need be in
main memory frames
for the process to run.
Pages may be read in
as needed.

All the segments of a
process must be in main
memory for process to
run, unless overlays are
used.

Not all segments of a
process need be in main
memory for the process
to run. Segments may be
read in as needed.

Reading a page into
main memory may
require writing a page
out to disk.

Reading a segment
into main memory may
require writing one or
more segments out to
disk.

Table 8.2  Characteristics of Paging and Segmentation

M08_STAL4290_09_GE_C08.indd 373 5/9/17 4:41 PM

374   Chapter 8 / Virtual Memory

To understand the key issue and why virtual memory was a matter of much
debate, let us examine again the task of the OS with respect to virtual memory. Con-
sider a large process, consisting of a long program plus a number of arrays of data.
Over any short period of time, execution may be confined to a small section of the
program (e.g., a subroutine) and access to perhaps only one or two arrays of data. If
this is so, then it would clearly be wasteful to load in dozens of pieces for that process
when only a few pieces will be used before the program is suspended and swapped
out. We can make better use of memory by loading in just a few pieces. Then, if the
program branches to an instruction or references a data item on a piece not in main
memory, a fault is triggered. This tells the OS to bring in the desired piece.

Thus, at any one time, only a few pieces of any given process are in memory, and
therefore more processes can be maintained in memory. Furthermore, time is saved
because unused pieces are not swapped in and out of memory. However, the OS must
be clever about how it manages this scheme. In the steady state, practically all of main
memory will be occupied with process pieces, so the processor and OS have direct
access to as many processes as possible. Thus, when the OS brings one piece in, it must
throw another out. If it throws out a piece just before it is used, then it will just have to
go get that piece again almost immediately. Too much of this leads to a condition known
as thrashing: The system spends most of its time swapping pieces rather than executing
instructions. The avoidance of thrashing was a major research area in the 1970s and led
to a variety of complex but effective algorithms. In essence, the OS tries to guess, based
on recent history, which pieces are least likely to be used in the near future.

This reasoning is based on belief in the principle of locality, which was intro-
duced in Chapter 1 (see especially Appendix 1A). To summarize, the principle of
locality states that program and data references within a process tend to cluster.
Hence, the assumption that only a few pieces of a process will be needed over a short
period of time is valid. Also, it should be possible to make intelligent guesses about
which pieces of a process will be needed in the near future, which avoids thrashing.

The principle of locality suggests that a virtual memory scheme may be effec-
tive. For virtual memory to be practical and effective, two ingredients are needed.
First, there must be hardware support for the paging and/or segmentation scheme to
be employed. Second, the OS must include software for managing the movement of
pages and/or segments between secondary memory and main memory. In this section,
we will examine the hardware aspect and look at the necessary control structures,
which are created and maintained by the OS but are used by the memory manage-
ment hardware. An examination of the OS issues will be provided in the next section.

Paging

The term virtual memory is usually associated with systems that employ paging,
although virtual memory based on segmentation is also used and will be discussed
next. The use of paging to achieve virtual memory was first reported for the Atlas
computer [KILB62] and soon came into widespread commercial use. Recall from
Chapter 7 that with simple paging, main memory is divided into a number of equal-
size frames. Each process is divided into a number of equal-size pages of the same
length as frames. A process is loaded by loading all of its pages into available, not
necessarily contiguous, frames. With virtual memory paging, we again have equal-size

M08_STAL4290_09_GE_C08.indd 374 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   375

pages of the same length as frames; however, not all pages need to be loaded into
main memory frames for execution.

In the discussion of simple paging, we indicated that each process has its own
page table, and when all of its pages are loaded into main memory, the page table for
a process is created and loaded into main memory. Each page table entry (PTE) con-
tains the frame number of the corresponding page in main memory. A page table is
also needed for a virtual memory scheme based on paging. Again, it is typical to associ-
ate a unique page table with each process. In this case, however, the page table entries
become more complex (see Figure 8.1a). Because only some of the pages of a process
may be in main memory, a bit is needed in each page table entry to indicate whether
the corresponding page is present (P) in main memory or not. If the bit indicates that
the page is in memory, then the entry also includes the frame number of that page.

The page table entry includes a modify (M) bit, indicating whether the contents
of the corresponding page have been altered since the page was last loaded into main

Figure 8.1  Typical Memory Management Formats

Virtual address

Page number O�set

(a) Paging only

Page table entry

Frame numberP M Other control bits

Virtual address

Segment number O�set

(b) Segmentation only

Segment table entry

Length Segment baseP M Other control bits

Segment number Page number O�set

Virtual address

Segment table entry

(c) Combined segmentation and paging

Page table entry

Frame numberP M Other control bits

Length Segment baseControl bits

P 5 present bit
M 5 modified bit

M08_STAL4290_09_GE_C08.indd 375 5/9/17 4:41 PM

376   Chapter 8 / Virtual Memory

memory. If there has been no change, then it is not necessary to write the page out
when it comes time to replace the page in the frame that it currently occupies. Other
control bits may also be present. For example, if protection or sharing is managed at
the page level, then bits for that purpose will be required.

Page Table Structure  The basic mechanism for reading a word from memory
involves the translation of a virtual, or logical, address, consisting of page number
and offset, into a physical address, consisting of frame number and offset, using a
page table. Because the page table is of variable length, depending on the size of the
process, we cannot expect to hold it in registers. Instead, it must be in main memory
to be accessed. Figure 8.2 suggests a hardware implementation. When a particular
process is running, a register holds the starting address of the page table for that
process. The page number of a virtual address is used to index that table and look
up the corresponding frame number. This is combined with the offset portion of the
virtual address to produce the desired real address. Typically, the page number field is
longer than the frame number field (n 7 m). This inequality results from the fact that
the number of pages in a process may exceed the number of frames in main memory.

In most systems, there is one page table per process. But each process can
occupy huge amounts of virtual memory. For example, in the VAX (Virtual Address
Extension) architecture, each process can have up to 231 = 2 GB of virtual memory.
Using 29 = 512@byte pages means that as many as 222 page table entries are required
per process. Clearly, the amount of memory devoted to page tables alone could be
unacceptably high. To overcome this problem, most virtual memory schemes store

Figure 8.2  Address Translation in a Paging System

Page # O�set Frame #

Virtual address Physical address

O�set

O�set

Program Paging mechanism Main memory

Pa
ge

#

Page table ptrn bits

m bits

Register

Page table

Frame #

1

Page
frame

M08_STAL4290_09_GE_C08.indd 376 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   377

page tables in virtual memory rather than real memory. This means page tables are
subject to paging just as other pages are. When a process is running, at least a part
of its page table must be in main memory, including the page table entry of the cur-
rently executing page. Some processors make use of a two-level scheme to organize
large page tables. In this scheme, there is a page directory, in which each entry points
to a page table. Thus, if the number of entries in the page directory is X, and if the
maximum number of entries in a page table is Y, then a process can consist of up to
X * Y pages. Typically, the maximum length of a page table is restricted to be equal
to one page. For example, the Pentium processor uses this approach.

Figure 8.3 shows an example of a two-level scheme typical for use with a 32-bit
address. If we assume byte-level addressing and 4-kB (212) pages, then the 4-GB
(232) virtual address space is composed of 220 pages. If each of these pages is mapped
by a 4-byte page table entry, we can create a user page table composed of 220 PTEs
requiring 4 MB (222). This huge user page table, occupying 210 pages, can be kept in
virtual memory and mapped by a root page table with 210 PTEs occupying 4 kB (212)
of main memory. Figure 8.4 shows the steps involved in address translation for this
scheme. The root page always remains in main memory. The first 10 bits of a virtual
address are used to index into the root page to find a PTE for a page of the user page
table. If that page is not in main memory, a page fault occurs. If that page is in main
memory, then the next 10 bits of the virtual address index into the user PTE page to
find the PTE for the page that is referenced by the virtual address.

Inverted Page Table  A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the virtual address space.

An alternative approach to the use of one or multiple-level page tables is the
use of an inverted page table structure. Variations on this approach are used on the
PowerPC, UltraSPARC, and the IA-64 architecture. An implementation of the Mach
operating system on the RT-PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into
a hash value using a simple hashing function.1 The hash value is a pointer to the

1See Appendix F for a discussion of hashing.

Figure 8.3  A Two-Level Hierarchical Page Table

4-kB root
page table

4-MB user
page table

4-GB user
address space

M08_STAL4290_09_GE_C08.indd 377 5/9/17 4:41 PM

378   Chapter 8 / Virtual Memory

inverted page table, which contains the page table entries. There is one entry in the
inverted page table for each real memory page frame, rather than one per virtual
page. Thus, a fixed proportion of real memory is required for the tables regardless of
the number of processes or virtual pages supported. Because more than one virtual
address may map into the same hash table entry, a chaining technique is used for
managing the overflow. The hashing technique results in chains that are typically
short—between one and two entries. The page table’s structure is called inverted
because it indexes page table entries by frame number rather than by virtual page
number.

Figure 8.5 shows a typical implementation of the inverted page table approach.
For a physical memory size of 2m frames, the inverted page table contains 2m entries,
so that the ith entry refers to frame i. Each entry in the page table includes the
following:

•	 Page number: This is the page number portion of the virtual address.

•	 Process identifier: The process that owns this page. The combination of page
number and process identifier identifies a page within the virtual address space
of a particular process.

•	 Control bits: This field includes flags, such as valid, referenced, and modified;
and protection and locking information.

•	 Chain pointer: This field is null (perhaps indicated by a separate bit) if there are
no chained entries for this entry. Otherwise, the field contains the index value
(number between 0 and 2m - 1) of the next entry in the chain.

Figure 8.4  Address Translation in a Two-Level Paging System

10 bits10 bits 12 bits

Root page
table ptr

Frame # O�set

Virtual address

4-kB page
table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

1
1

Program Paging mechanism Main memory

Page
frame

M08_STAL4290_09_GE_C08.indd 378 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   379

Figure 8.5  Inverted Page Table Structure

Page # O�set

O�setFrame #

m bits

m bits

n bits

n bits

Virtual address

Hash
function

Page #
Process

ID

Control
bits

Chain

Inverted page table
(one entry for each

physical memory frame)
Real address

i

0

j

2m 2 1

In this example, the virtual address includes an n-bit page number, with n 7 m.
The hash function maps the n-bit page number into an m-bit quantity, which is used
to index into the inverted page table.

Translation Lookaside Buffer  In principle, every virtual memory reference can
cause two physical memory accesses: one to fetch the appropriate page table entry,
and another to fetch the desired data. Thus, a straightforward virtual memory scheme
would have the effect of doubling the memory access time. To overcome this problem,
most virtual memory schemes make use of a special high-speed cache for page table
entries, usually called a translation lookaside buffer (TLB). This cache functions in
the same way as a memory cache (see Chapter 1) and contains those page table
entries that have been most recently used. The organization of the resulting paging
hardware is illustrated in Figure 8.6. Given a virtual address, the processor will first
examine the TLB. If the desired page table entry is present (TLB hit), then the frame
number is retrieved and the real address is formed. If the desired page table entry is
not found (TLB miss), then the processor uses the page number to index the process
page table and examine the corresponding page table entry. If the “present bit” is set,
then the page is in main memory, and the processor can retrieve the frame number
from the page table entry to form the real address. The processor also updates the
TLB to include this new page table entry. Finally, if the present bit is not set, then the
desired page is not in main memory and a memory access fault, called a page fault, is

M08_STAL4290_09_GE_C08.indd 379 5/9/17 4:41 PM

380   Chapter 8 / Virtual Memory

issued. At this point, we leave the realm of hardware and invoke the OS, which loads
the needed page and updates the page table.

Figure 8.7 is a flowchart that shows the use of the TLB. The flowchart shows
that if the desired page is not in main memory, a page fault interrupt causes the page
fault handling routine to be invoked. To keep the flowchart simple, the fact that the
OS may dispatch another process while disk I/O is underway is not shown. By the
principle of locality, most virtual memory references will be to locations in recently
used pages. Therefore, most references will involve page table entries in the cache.
Studies of the VAX TLB have shown this scheme can significantly improve perfor-
mance [CLAR85, SATY81].

There are a number of additional details concerning the actual organization
of the TLB. Because the TLB contains only some of the entries in a full page table,
we cannot simply index into the TLB based on page number. Instead, each entry in
the TLB must include the page number as well as the complete page table entry. The
processor is equipped with hardware that allows it to interrogate simultaneously a
number of TLB entries to determine if there is a match on page number. This tech-
nique is referred to as associative mapping and is contrasted with the direct mapping,
or indexing, used for lookup in the page table in Figure 8.8. The design of the TLB
also must consider the way in which entries are organized in the TLB and which
entry to replace when a new entry is brought in. These issues must be considered in
any hardware cache design. This topic is not pursued here; the reader may consult a
treatment of cache design for further details (e.g., [STAL16a]).

Figure 8.6  Use of a Translation Lookaside Buffer

Page # O�set

Frame #

Virtual address

O�set

O�set

Load
pagePage table

Main memory Secondary
memory

Real address

Translation
lookaside bu�er

TLB hit

TLB miss

Page fault

M08_STAL4290_09_GE_C08.indd 380 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   381

Finally, the virtual memory mechanism must interact with the cache system (not
the TLB cache, but the main memory cache). This is illustrated in Figure 8.9. A virtual
address will generally be in the form of a page number, offset. First, the memory
system consults the TLB to see if the matching page table entry is present. If it is, the
real (physical) address is generated by combining the frame number with the offset.
If not, the entry is accessed from a page table. Once the real address is generated,
which is in the form of a tag2 and a remainder, the cache is consulted to see if the

2See Figure 1.17. Typically, a tag is just the leftmost bits of the real address. Again, for a more detailed
discussion of caches, see [STAL16a].

Figure 8.7  Operation of Paging and Translation Lookaside Buffer (TLB)

Start

CPU checks the TLB

Page table
entry in
TLB?

Access page table

Update TLB

Yes

Yes

No

No

No

Yes

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

M08_STAL4290_09_GE_C08.indd 381 5/9/17 4:41 PM

382   Chapter 8 / Virtual Memory

Figure 8.8  Direct versus Associative Lookup for Page Table Entries

(b) Associative mapping(a) Direct mapping

Page table

Page #

5 502

O�set

Virtual address

37

37

19
511
37
27
14

5
211
1

90

PT entries

Translation lookaside bu�er

Page #

5 502

O�set

Virtual address

Frame #
37 502

O�set

Real address

Frame #
37 502

O�set

Real address

Page #

Page # O�set

Virtual address

TLB operation

Page table

Main
memory

TLB miss

Miss

Hit Value

TLB
hit

TLB

Tag Remainder

Real address

Cache operation

Cache
1

Value

Figure 8.9  Translation Lookaside Buffer and Cache Operation

M08_STAL4290_09_GE_C08.indd 382 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   383

block containing that word is present. If so, it is returned to the CPU. If not, the word
is retrieved from main memory.

The reader should be able to appreciate the complexity of the CPU hardware
involved in a single memory reference. The virtual address is translated into a real
address. This involves reference to a page table entry, which may be in the TLB, in
main memory, or on disk. The referenced word may be in cache, main memory, or on
disk. If the referenced word is only on disk, the page containing the word must be
loaded into main memory and its block loaded into the cache. In addition, the page
table entry for that page must be updated.

Page Size  An important hardware design decision is the size of page to be used.
There are several factors to consider. One is internal fragmentation. Clearly, the
smaller the page size, the lesser is the amount of internal fragmentation. To optimize
the use of main memory, we would like to reduce internal fragmentation. On the
other hand, the smaller the page, the greater is the number of pages required per
process. More pages per process means larger page tables. For large programs in
a heavily multiprogrammed environment, this may mean that some portion of the
page tables of active processes must be in virtual memory, not in main memory.
Thus, there may be a double page fault for a single reference to memory: first to
bring in the needed portion of the page table, and second to bring in the process
page. Another factor is that the physical characteristics of most secondary-memory
devices, which are rotational, favor a larger page size for more efficient block
transfer of data.

Complicating these matters is the effect of page size on the rate at which page
faults occur. This behavior, in general terms, is depicted in Figure 8.10a and is based
on the principle of locality. If the page size is very small, then ordinarily a relatively
large number of pages will be available in main memory for a process. After a time,

Figure 8.10  Typical Paging Behavior of a Program

P NW

(a) Page size

Pa
ge

 f
au

lt
ra

te

Pa
ge

 f
au

lt
ra

te

(b) Number of page frames allocated

P 5 size of entire process
W 5 working set size
N 5 total number of pages in process

M08_STAL4290_09_GE_C08.indd 383 5/9/17 4:41 PM

384   Chapter 8 / Virtual Memory

the pages in memory will all contain portions of the process near recent references.
Thus, the page fault rate should be low. As the size of the page is increased, each
individual page will contain locations further and further from any particular recent
reference. Thus, the effect of the principle of locality is weakened and the page fault
rate begins to rise. Eventually, however, the page fault rate will begin to fall as the size
of a page approaches the size of the entire process (point P in the diagram). When a
single page encompasses the entire process, there will be no page faults.

A further complication is that the page fault rate is also determined by the
number of frames allocated to a process. Figure 8.10b shows that for a fixed page size,
the fault rate drops as the number of pages maintained in main memory grows.3 Thus,
a software policy (the amount of memory to allocate to each process) interacts with
a hardware design decision (page size).

Table 8.3 lists the page sizes used on some machines.
Finally, the design issue of page size is related to the size of physical main

memory and program size. At the same time that main memory is getting larger,
the address space used by applications is also growing. The trend is most obvious
on personal computers and workstations, where applications are becoming increas-
ingly complex. Furthermore, contemporary programming techniques used in large
programs tend to decrease the locality of references within a process [HUCK93].
For example,

•	 Object-oriented techniques encourage the use of many small program and data
modules with references scattered over a relatively large number of objects over
a relatively short period of time.

•	 Multithreaded applications may result in abrupt changes in the instruction
stream and in scattered memory references.

3The parameter W represents working set size, a concept discussed in Section 8.2.

Computer Page Size

Atlas 512 48-bit words

Honeywell-Multics 1,024 36-bit words

IBM 370/XA and 370/ESA 4 kB

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 kB

MIPS 4 kB to 16 MB

UltraSPARC 8 kB to 4 MB

Pentium 4 kB or 4 MB

Intel Itanium 4 kB to 256 MB

Intel core i7 4 kB to 1 GB

Table 8.3  Example of Page Sizes

M08_STAL4290_09_GE_C08.indd 384 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   385

For a given size of TLB, as the memory size of processes grows and as locality
decreases, the hit ratio on TLB accesses declines. Under these circumstances, the TLB
can become a performance bottleneck (e.g., see [CHEN92]).

One way to improve TLB performance is to use a larger TLB with more entries.
However, TLB size interacts with other aspects of the hardware design, such as
the main memory cache and the number of memory accesses per instruction cycle
[TALL92]. The upshot is that TLB size is unlikely to grow as rapidly as main memory
size. An alternative is to use larger page sizes so each page table entry in the TLB
refers to a larger block of memory. But we have just seen that the use of large page
sizes can lead to performance degradation.

Accordingly, a number of designers have investigated the use of multiple page
sizes [TALL92, KHAL93], and several microprocessor architectures support multiple
pages sizes, including MIPS R4000, Alpha, UltraSPARC, x86, and IA-64. Multiple
page sizes provide the flexibility needed to use a TLB effectively. For example, large
contiguous regions in the address space of a process, such as program instructions,
may be mapped using a small number of large pages rather than a large number of
small pages, while thread stacks may be mapped using the small page size. However,
most commercial operating systems still support only one page size, regardless of
the capability of the underlying hardware. The reason for this is that page size affects
many aspects of the OS; thus, a change to multiple page sizes is a complex undertak-
ing (see [GANA98] for a discussion).

Segmentation

Virtual Memory Implications  Segmentation allows the programmer to view
memory as consisting of multiple address spaces or segments. Segments may be of
unequal, indeed dynamic, size. Memory references consist of a (segment number,
offset) form of address.

This organization has a number of advantages to the programmer over a non-
segmented address space:

1.	 It simplifies the handling of growing data structures. If the programmer does not
know ahead of time how large a particular data structure will become, it is neces-
sary to guess unless dynamic segment sizes are allowed. With segmented virtual
memory, the data structure can be assigned its own segment, and the OS will
expand or shrink the segment as needed. If a segment that needs to be expanded
is in main memory and there is insufficient room, the OS may move the segment
to a larger area of main memory, if available, or swap it out. In the latter case, the
enlarged segment would be swapped back in at the next opportunity.

2.	 It allows programs to be altered and recompiled independently, without requir-
ing the entire set of programs to be relinked and reloaded. Again, this is accom-
plished using multiple segments.

3.	 It lends itself to sharing among processes. A programmer can place a utility
program or a useful table of data in a segment that can be referenced by other
processes.

4.	 It lends itself to protection. Because a segment can be constructed to contain a
well-defined set of programs or data, the programmer or system administrator
can assign access privileges in a convenient fashion.

M08_STAL4290_09_GE_C08.indd 385 5/9/17 4:41 PM

386   Chapter 8 / Virtual Memory

Organization  In the discussion of simple segmentation, we indicated that each
process has its own segment table, and when all of its segments are loaded into main
memory, the segment table for a process is created and loaded into main memory.
Each segment table entry contains the starting address of the corresponding segment
in main memory, as well as the length of the segment. The same device, a segment
table, is needed when we consider a virtual memory scheme based on segmentation.
Again, it is typical to associate a unique segment table with each process. In this case,
however, the segment table entries become more complex (see Figure 8.1b). Because
only some of the segments of a process may be in main memory, a bit is needed in
each segment table entry to indicate whether the corresponding segment is present
in main memory or not. If the bit indicates that the segment is in memory, then the
entry also includes the starting address and length of that segment.

Another control bit in the segmentation table entry is a modify bit, indicating
whether the contents of the corresponding segment have been altered since the seg-
ment was last loaded into main memory. If there has been no change, then it is not
necessary to write the segment out when it comes time to replace the segment in the
frame that it currently occupies. Other control bits may also be present. For example,
if protection or sharing is managed at the segment level, then bits for that purpose
will be required.

The basic mechanism for reading a word from memory involves the translation
of a virtual, or logical, address, consisting of segment number and offset, into a physi-
cal address, using a segment table. Because the segment table is of variable length,
depending on the size of the process, we cannot expect to hold it in registers. Instead,
it must be in main memory to be accessed. Figure 8.11 suggests a hardware imple-
mentation of this scheme (note similarity to Figure 8.2). When a particular process
is running, a register holds the starting address of the segment table for that process.

Figure 8.11  Address Translation in a Segmentation System

Seg #

Se
g

#

O�set = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

Se
gm

en
t

Base + d

d

+

+

Program Segmentation mechanism Main memory

M08_STAL4290_09_GE_C08.indd 386 5/9/17 4:41 PM

8.1 / HARDWARE AND CONTROL STRUCTURES   387

The segment number of a virtual address is used to index that table and look up the
corresponding main memory address for the start of the segment. This is added to the
offset portion of the virtual address to produce the desired real address.

Combined Paging and Segmentation

Both paging and segmentation have their strengths. Paging, which is transparent to
the programmer, eliminates external fragmentation and thus provides efficient use
of main memory. In addition, because the pieces that are moved in and out of main
memory are of fixed, equal size, it is possible to develop sophisticated memory man-
agement algorithms that exploit the behavior of programs, as we shall see. Segmen-
tation, which is visible to the programmer, has the strengths listed earlier, including
the ability to handle growing data structures, modularity, and support for sharing
and protection. To combine the advantages of both, some systems are equipped with
processor hardware and OS software to provide both.

In a combined paging/segmentation system, a user’s address space is broken
up into a number of segments, at the discretion of the programmer. Each segment
is, in turn, broken up into a number of fixed-size pages, which are equal in length to
a main memory frame. If a segment has length less than that of a page, the segment
occupies just one page. From the programmer’s point of view, a logical address still
consists of a segment number and a segment offset. From the system’s point of view,
the segment offset is viewed as a page number and page offset for a page within the
specified segment.

Figure 8.12 suggests a structure to support combined paging/segmentation
(note the similarity to Figure 8.4). Associated with each process is a segment table
and a number of page tables, one per process segment. When a particular process is

Figure 8.12  Address Translation in a Segmentation/Paging System

Page #Seg #

Se
g

#

O�set

Seg table ptr

Frame #

Virtual address

Segment
table

Page
table

O�set

O�set

1
1

Pa
ge

 #

Program Segmentation
mechanism

Paging
mechanism

Main memory

Page
frame

M08_STAL4290_09_GE_C08.indd 387 5/9/17 4:41 PM

388   Chapter 8 / Virtual Memory

running, a register holds the starting address of the segment table for that process.
Presented with a virtual address, the processor uses the segment number portion to
index into the process segment table to find the page table for that segment. Then the
page number portion of the virtual address is used to index the page table and look
up the corresponding frame number. This is combined with the offset portion of the
virtual address to produce the desired real address.

Figure 8.1c suggests the segment table entry and page table entry formats. As
before, the segment table entry contains the length of the segment. It also contains
a base field, which now refers to a page table. The present and modified bits are not
needed because these matters are handled at the page level. Other control bits may
be used, for purposes of sharing and protection. The page table entry is essentially
the same as is used in a pure paging system. Each page number is mapped into a cor-
responding frame number if the page is present in main memory. The modified bit
indicates whether this page needs to be written back out when the frame is allocated
to another page. There may be other control bits dealing with protection or other
aspects of memory management.

Protection and Sharing

Segmentation lends itself to the implementation of protection and sharing policies.
Because each segment table entry includes a length as well as a base address, a pro-
gram cannot inadvertently access a main memory location beyond the limits of a
segment. To achieve sharing, it is possible for a segment to be referenced in the seg-
ment tables of more than one process. The same mechanisms are, of course, available
in a paging system. However, in this case, the page structure of programs and data
is not visible to the programmer, making the specification of protection and sharing
requirements more awkward. Figure 8.13 illustrates the types of protection relation-
ships that can be enforced in such a system.

More sophisticated mechanisms can also be provided. A common scheme is to
use a ring-protection structure, of the type we referred to in Chapter 3 (see Figure
3.18). In this scheme, lower-numbered, or inner, rings enjoy greater privilege than
higher-numbered, or outer, rings. Typically, ring 0 is reserved for kernel functions of
the OS, with applications at a higher level. Some utilities or OS services may occupy
an intermediate ring. Basic principles of the ring system are as follows:

•	 A program may access only data that reside on the same ring or a less-privileged
ring.

•	 A program may call services residing on the same or a more-privileged ring.

	 8.2	 OPERATING SYSTEM SOFTWARE

The design of the memory management portion of an OS depends on three funda-
mental areas of choice:

1.	 Whether or not to use virtual memory techniques

2.	 The use of paging or segmentation or both

3.	 The algorithms employed for various aspects of memory management

M08_STAL4290_09_GE_C08.indd 388 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   389

Figure 8.13  Protection Relationships between Segments

Main memoryAddress

Dispatcher

Process A

Process B

Process C

0

20K

No access
allowed

Branch instruction
(not allowed)

Reference to
data (allowed)

Reference to
data (not allowed)

35K

50K

80K

90K

140K

190K

The choices made in the first two areas depend on the hardware platform available.
Thus, earlier UNIX implementations did not provide virtual memory because the
processors on which the system ran did not support paging or segmentation. Neither
of these techniques is practical without hardware support for address translation and
other basic functions.

Two additional comments about the first two items in the preceding list: First,
with the exception of operating systems for some of the older personal computers,
such as MS-DOS, and specialized systems, all important operating systems provide
virtual memory. Second, pure segmentation systems are becoming increasingly rare.
When segmentation is combined with paging, most of the memory management
issues confronting the OS designer are in the area of paging.4 Thus, we can concen-
trate in this section on the issues associated with paging.

The choices related to the third item are the domain of operating system soft-
ware and are the subject of this section. Table 8.4 lists the key design elements that

4Protection and sharing are usually dealt with at the segment level in a combined segmentation/paging
system. We will deal with these issues in later chapters.

M08_STAL4290_09_GE_C08.indd 389 5/9/17 4:41 PM

390   Chapter 8 / Virtual Memory

we examine. In each case, the key issue is one of performance: We would like to
minimize the rate at which page faults occur, because page faults cause considerable
software overhead. At a minimum, the overhead includes deciding which resident
page or pages to replace, and the I/O of exchanging pages. Also, the OS must schedule
another process to run during the page I/O, causing a process switch. Accordingly,
we would like to arrange matters so during the time that a process is executing, the
probability of referencing a word on a missing page is minimized. In all of the areas
referred to in Table 8.4, there is no definitive policy that works best.

As we shall see, the task of memory management in a paging environment is
fiendishly complex. Furthermore, the performance of any particular set of policies
depends on main memory size, the relative speed of main and secondary memory, the
size and number of processes competing for resources, and the execution behavior of
individual programs. This latter characteristic depends on the nature of the applica-
tion, the programming language and compiler employed, the style of the programmer
who wrote it, and, for an interactive program, the dynamic behavior of the user. Thus,
the reader must expect no final answers here or anywhere. For smaller systems, the
OS designer should attempt to choose a set of policies that seems “good” over a wide
range of conditions, based on the current state of knowledge. For larger systems, par-
ticularly mainframes, the operating system should be equipped with monitoring and
control tools that allow the site manager to tune the operating system to get “good”
results based on site conditions.

Fetch Policy

The fetch policy determines when a page should be brought into main memory. The
two common alternatives are demand paging and prepaging. With demand paging,
a page is brought into main memory only when a reference is made to a location on
that page. If the other elements of memory management policy are good, the fol-
lowing should happen. When a process is first started, there will be a flurry of page
faults. As more and more pages are brought in, the principle of locality suggests that
most future references will be to pages that have recently been brought in. Thus, after

Fetch Policy
Demand paging
Prepaging

Placement Policy

Replacement Policy
Basic Algorithms

Optimal
Least recently used (LRU)
First-in-first-out (FIFO)
Clock

Page Buffering

Resident Set Management
Resident set size

Fixed
Variable

Replacement Scope
Global
Local

Cleaning Policy
Demand
Precleaning

Load Control
Degree of multiprogramming

Table 8.4  Operating System Policies for Virtual Memory

M08_STAL4290_09_GE_C08.indd 390 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   391

a time, matters should settle down and the number of page faults should drop to a
very low level.

With prepaging, pages other than the one demanded by a page fault are brought
in. Prepaging exploits the characteristics of most secondary memory devices, such
as disks, which have seek times and rotational latency. If the pages of a process are
stored contiguously in secondary memory, then it is more efficient to bring in a num-
ber of contiguous pages at one time rather than bringing them in one at a time over
an extended period. Of course, this policy is ineffective if most of the extra pages that
are brought in are not referenced.

The prepaging policy could be employed either when a process first starts up,
in which case the programmer would somehow have to designate desired pages, or
every time a page fault occurs. This latter course would seem preferable because it is
invisible to the programmer.

Prepaging should not be confused with swapping. When a process is swapped
out of memory and put in a suspended state, all of its resident pages are moved out.
When the process is resumed, all of the pages that were previously in main memory
are returned to main memory.

Placement Policy

The placement policy determines where in real memory a process piece is to reside. In
a pure segmentation system, the placement policy is an important design issue; poli-
cies such as best-fit, first-fit, and so on, which were discussed in Chapter 7, are possible
alternatives. However, for a system that uses either pure paging or paging combined
with segmentation, placement is usually irrelevant because the address translation
hardware and the main memory access hardware can perform their functions for any
page-frame combination with equal efficiency.

There is one area in which placement does become a concern, and this is a
subject of research and development. On a so-called nonuniform memory access
(NUMA) multiprocessor, the distributed, shared memory of the machine can be
referenced by any processor on the machine, but the time for accessing a particular
physical location varies with the distance between the processor and the memory
module. Thus, performance depends heavily on the extent to which data reside close
to the processors that use them [LARO92, BOLO89, COX89]. For NUMA systems,
an automatic placement strategy is desirable to assign pages to the memory module
that provides the best performance.

Replacement Policy

In most operating system texts, the treatment of memory management includes a sec-
tion entitled “replacement policy,” which deals with the selection of a page in main
memory to be replaced when a new page must be brought in. This topic is sometimes
difficult to explain because several interrelated concepts are involved:

•	 How many page frames are to be allocated to each active process

M08_STAL4290_09_GE_C08.indd 391 5/9/17 4:41 PM

392   Chapter 8 / Virtual Memory

•	 Whether the set of pages to be considered for replacement should be limited
to those of the process that caused the page fault or encompass all the page
frames in main memory

•	 Among the set of pages considered, which particular page should be selected
for replacement

We shall refer to the first two concepts as resident set management, which will be dealt
with in the next subsection, and reserve the term replacement policy for the third
concept, which is discussed in this subsection.

The area of replacement policy is probably the most studied of any area of
memory management. When all of the frames in main memory are occupied and
it is necessary to bring in a new page to satisfy a page fault, the replacement policy
determines which page currently in memory is to be replaced. All of the policies
have as their objective that the page to be removed should be the page least likely to
be referenced in the near future. Because of the principle of locality, there is often a
high correlation between recent referencing history and near-future referencing pat-
terns. Thus, most policies try to predict future behavior on the basis of past behavior.
One trade-off that must be considered is that the more elaborate and sophisticated
the replacement policy, the greater will be the hardware and software overhead to
implement it.

Frame Locking  One restriction on replacement policy needs to be mentioned
before looking at various algorithms: Some of the frames in main memory may be
locked. When a frame is locked, the page currently stored in that frame may not be
replaced. Much of the kernel of the OS, as well as key control structures, are held in
locked frames. In addition, I/O buffers and other time-critical areas may be locked
into main memory frames. Locking is achieved by associating a lock bit with each
frame. This bit may be kept in a frame table as well as being included in the current
page table.

Basic Algorithms  Regardless of the resident set management strategy (discussed
in the next subsection), there are certain basic algorithms that are used for the
selection of a page to replace. Replacement algorithms that have been discussed in
the literature include:

•	 Optimal

•	 Least recently used (LRU)

•	 First-in-first-out (FIFO)

•	 Clock

The optimal policy selects for replacement that page for which the time
to the next reference is the longest. It can be shown that this policy results in
the fewest number of page faults [BELA66]. Clearly, this policy is impossible to
implement, because it would require the OS to have perfect knowledge of future
events. However, it does serve as a standard against which to judge real-world
algorithms.

M08_STAL4290_09_GE_C08.indd 392 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   393

Figure 8.14 gives an example of the optimal policy. The example assumes a fixed
frame allocation (fixed resident set size) for this process of three frames. The execu-
tion of the process requires reference to five distinct pages. The page address stream
formed by executing the program is

2 3 2 1 5 2 4 5 3 2 5 2

which means that the first page referenced is 2, the second page referenced is 3, and
so on. The optimal policy produces three page faults after the frame allocation has
been filled.

The least recently used (LRU) policy replaces the page in memory that has not
been referenced for the longest time. By the principle of locality, this should be the
page least likely to be referenced in the near future. And, in fact, the LRU policy does
nearly as well as the optimal policy. The problem with this approach is the difficulty
in implementation. One approach would be to tag each page with the time of its last
reference; this would have to be done at each memory reference, both instruction
and data. Even if the hardware would support such a scheme, the overhead would
be tremendous. Alternatively, one could maintain a stack of page references, again
an expensive prospect.

Figure 8.14 shows an example of the behavior of LRU, using the same page
address stream as for the optimal policy example. In this example, there are four
page faults.

Figure 8.14  Behavior of Four Page Replacement Algorithms

2

2 3 2 1 5 2 4 5 3 2 5 2

2
3

2
3

2
3
1

F

F

F F F F F F

F F F

F F

2
3
5

2
3
5

4
3
5

4
3
5

4
3
5

2
3
5

2
3
5

2
3
5

2 2
3

2
3

2
3
1

2
5
1

2
5
1

2
5
4

2
5
4

3
5
4

3
5
2

3
5
2

3
5
2

2 2
3

2
3

2
3
1

5
3
1

5
2
1

5
2
4

5
2
4

3
2
4

3
2
4

3
5
4

3
5
2

2* 2*
3*

2*
3*

2*
3*
1*

5*
3
1
F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*
2*
1

5*
2*
4*

5*
2*
4*

3*
2
4

3*
2*
4

3*
2
5*

3*
2*
5*

OPT

Page address
stream

LRU

FIFO

CLOCK

M08_STAL4290_09_GE_C08.indd 393 5/9/17 4:41 PM

394   Chapter 8 / Virtual Memory

The first-in-first-out (FIFO) policy treats the page frames allocated to a process
as a circular buffer, and pages are removed in round-robin style. All that is required
is a pointer that circles through the page frames of the process. This is therefore one
of the simplest page replacement policies to implement. The logic behind this choice,
other than its simplicity, is that one is replacing the page that has been in memory the
longest: A page fetched into memory a long time ago may have now fallen out of use.
This reasoning will often be wrong, because there will often be regions of program
or data that are heavily used throughout the life of a program. Those pages will be
repeatedly paged in and out by the FIFO algorithm.

Continuing our example in Figure 8.14, the FIFO policy results in six page faults.
Note that LRU recognizes that pages 2 and 5 are referenced more frequently than
other pages, whereas FIFO does not.

Although the LRU policy does nearly as well as an optimal policy, it is difficult
to implement and imposes significant overhead. On the other hand, the FIFO policy
is very simple to implement but performs relatively poorly. Over the years, OS design-
ers have tried a number of other algorithms to approximate the performance of LRU
while imposing little overhead. Many of these algorithms are variants of a scheme
referred to as the clock policy.

The simplest form of clock policy requires the association of an additional bit
with each frame, referred to as the use bit. When a page is first loaded into a frame
in memory, the use bit for that frame is set to 1. Whenever the page is subsequently
referenced (after the reference that generated the page fault), its use bit is set to 1.
For the page replacement algorithm, the set of frames that are candidates for replace-
ment (this process: local scope; all of main memory: global scope5) is considered to
be a circular buffer, with which a pointer is associated. When a page is replaced, the
pointer is set to indicate the next frame in the buffer after the one just updated. When
it comes time to replace a page, the OS scans the buffer to find a frame with a use bit
set to 0. Each time it encounters a frame with a use bit of 1, it resets that bit to 0 and
continues on. If any of the frames in the buffer have a use bit of 0 at the beginning of
this process, the first such frame encountered is chosen for replacement. If all of the
frames have a use bit of 1, then the pointer will make one complete cycle through the
buffer, setting all the use bits to 0, and stop at its original position, replacing the page
in that frame. We can see that this policy is similar to FIFO, except that, in the clock
policy, any frame with a use bit of 1 is passed over by the algorithm. The policy is
referred to as a clock policy because we can visualize the page frames as laid out in
a circle. A number of operating systems have employed some variation of this simple
clock policy (e.g., Multics [CORB68]).

Figure 8.15 provides an example of the simple clock policy mechanism. A cir-
cular buffer of n main memory frames is available for page replacement. Just prior
to the replacement of a page from the buffer with incoming page 727, the next frame
pointer points at frame 2, which contains page 45. The clock policy is now executed.
Because the use bit for page 45 in frame 2 is equal to 1, this page is not replaced.
Instead, the use bit is set to 0 and the pointer advances. Similarly, page 191 in frame
3 is not replaced; its use bit is set to 0 and the pointer advances. In the next frame,

5The concept of scope will be discussed in the subsection “Replacement Scope.”

M08_STAL4290_09_GE_C08.indd 394 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   395

frame 4, the use bit is set to 0. Therefore, page 556 is replaced with page 727. The use
bit is set to 1 for this frame and the pointer advances to frame 5, completing the page
replacement procedure.

The behavior of the clock policy is illustrated in Figure 8.14. The presence of an
asterisk indicates that the corresponding use bit is equal to 1, and the arrow indicates
the current position of the pointer. Note the clock policy is adept at protecting frames
2 and 5 from replacement.

Figure 8.15  Example of Clock Policy Operation

0

6

1

2

3

4

5

7

8

n 2 1

n 2 1

Page 19
Use 5 1

Page 1
Use 5 1

Next frame
pointer

Page 45
Use 5 1

Page 191
Use 5 1

Page 556
Use 5 0

Page 13
Use 5 0

Page 67
Use 5 1

Page 33
Use 5 1

Page 222
Use 5 0

Page 9
Use 5 1

(a) State of bu�er just prior to a page replacement

0

6

1

2

3

4

5

7

8

Page 19
Use 5 1

Page 1
Use 5 1

Page 45
Use 5 0

Page 191
Use 5 0

Page 727
Use 5 1

Page 13
Use 5 0

Page 67
Use 5 1

Page 33
Use 5 1

Page 222
Use 5 0

Page 9
Use 5 1

(b) State of bu�er just after the next page replacement

First frame in
circular bu�er of
frames that are
candidates for replacement

M08_STAL4290_09_GE_C08.indd 395 5/9/17 4:41 PM

396   Chapter 8 / Virtual Memory

Figure 8.16 shows the results of an experiment reported in [BAER80], which
compares the four algorithms that we have been discussing; it is assumed the number
of page frames assigned to a process is fixed. The results are based on the execution of
0.25 * 106 references in a FORTRAN program, using a page size of 256 words. Baer
ran the experiment with frame allocations of 6, 8, 10, 12, and 14 frames. The differences
among the four policies are most striking at small allocations, with FIFO being over
a factor of 2 worse than optimal. All four curves have the same shape as the idealized
behavior shown in Figure 8.10b. In order to run efficiently, we would like to be to the
right of the knee of the curve (with a small page fault rate) while keeping a small frame
allocation (to the left of the knee of the curve). These two constraints indicate that a
desirable mode of operation would be at the knee of the curve.

Almost identical results have been reported in [FINK88], again showing a maxi-
mum spread of about a factor of 2. Finkel’s approach was to simulate the effects of
various policies on a synthesized page-reference string of 10,000 references selected
from a virtual space of 100 pages. To approximate the effects of the principle of local-
ity, an exponential distribution for the probability of referencing a particular page
was imposed. Finkel observes that some might be led to conclude that there is little
point in elaborate page replacement algorithms when only a factor of 2 is at stake.
But he notes that this difference will have a noticeable effect either on main memory
requirements (to avoid degrading operating system performance) or operating sys-
tem performance (to avoid enlarging main memory).

The clock algorithm has also been compared to these other algorithms when a
variable allocation and either global or local replacement scope (see the following
discussion of replacement policy) is used [CARR84]. The clock algorithm was found
to approximate closely the performance of LRU.

The clock algorithm can be made more powerful by increasing the number of
bits that it employs.6 In all processors that support paging, a modify bit is associated
with every page in main memory, and hence with every frame of main memory. This

6On the other hand, if we reduce the number of bits employed to zero, the clock algorithm degenerates
to FIFO.

Figure 8.16 � Comparison of Fixed-Allocation, Local Page
Replacement Algorithms

0
6 8

Number of frames allocated

Pa
ge

 f
au

lts
 p

er
 1

00
0

re
fe

re
nc

es

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

M08_STAL4290_09_GE_C08.indd 396 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   397

bit is needed so that when a page has been modified, it is not replaced until it has
been written back into secondary memory. We can exploit this bit in the clock algo-
rithm in the following way. If we take the use and modify bits into account, each frame
falls into one of four categories:

1.	 Not accessed recently, not modified (u = 0; m = 0)

2.	 Accessed recently, not modified (u = 1; m = 0)

3.	 Not accessed recently, modified (u = 0; m = 1)

4.	 Accessed recently, modified (u = 1; m = 1)

With this classification, the clock algorithm performs as follows:

1.	 Beginning at the current position of the pointer, scan the frame buffer. Dur-
ing this scan, make no changes to the use bit. The first frame encountered with
(u = 0; m = 0) is selected for replacement.

2.	 If step 1 fails, scan again, looking for the frame with (u = 0; m = 1). The first
such frame encountered is selected for replacement. During this scan, set the
use bit to 0 on each frame that is bypassed.

3.	 If step 2 fails, the pointer should have returned to its original position and all
of the frames in the set will have a use bit of 0. Repeat step 1 and, if necessary,
step 2. This time, a frame will be found for the replacement.

In summary, the page replacement algorithm cycles through all of the pages
in the buffer, looking for one that has not been modified since being brought in
and has not been accessed recently. Such a page is a good bet for replacement and
has the advantage that, because it is unmodified, it does not need to be written
back out to secondary memory. If no candidate page is found in the first sweep, the
algorithm cycles through the buffer again, looking for a modified page that has not
been accessed recently. Even though such a page must be written out to be replaced,
because of the principle of locality, it may not be needed again anytime soon. If
this second pass fails, all of the frames in the buffer are marked as having not been
accessed recently and a third sweep is performed.

This strategy was used on an earlier version of the Macintosh virtual memory
scheme [GOLD89]. The advantage of this algorithm over the simple clock algorithm
is that pages that are unchanged are given preference for replacement. Because a
page that has been modified must be written out before being replaced, there is an
immediate saving of time.

Page Buffering  Although LRU and the clock policies are superior to FIFO, they
both involve complexity and overhead not suffered with FIFO. In addition, there is
the related issue that the cost of replacing a page that has been modified is greater
than for one that has not, because the former must be written back out to secondary
memory.

An interesting strategy that can improve paging performance and allow
the use of a simpler page replacement policy is page buffering. The VAX VMS
approach is representative. The page replacement algorithm is simple FIFO.
To improve performance, a replaced page is not lost but rather is assigned to one
of two lists: the free page list if the page has not been modified, or the modified

M08_STAL4290_09_GE_C08.indd 397 5/9/17 4:41 PM

398   Chapter 8 / Virtual Memory

page list if it has. Note the page is not physically moved about in main memory;
instead, the entry in the page table for this page is removed and placed in either
the free or modified page list.

The free page list is a list of page frames available for reading in pages. VMS tries
to keep some small number of frames free at all times. When a page is to be read in,
the page frame at the head of the free page list is used, destroying the page that was
there. When an unmodified page is to be replaced, it remains in memory and its page
frame is added to the tail of the free page list. Similarly, when a modified page is to be
written out and replaced, its page frame is added to the tail of the modified page list.

The important aspect of these maneuvers is that the page to be replaced remains
in memory. Thus if the process references that page, it is returned to the resident set
of that process at little cost. In effect, the free and modified page lists act as a cache
of pages. The modified page list serves another useful function: Modified pages are
written out in clusters rather than one at a time. This significantly reduces the number
of I/O operations and therefore the amount of disk access time.

A simpler version of page buffering is implemented in the Mach operating system
[RASH88]. In this case, no distinction is made between modified and unmodified pages.

Replacement Policy and Cache Size  As discussed earlier, main memory size is
getting larger and the locality of applications is decreasing. In compensation, cache sizes
have been increasing. Large cache sizes, even multimegabyte ones, are now feasible
design alternatives [BORG90]. With a large cache, the replacement of virtual memory
pages can have a performance impact. If the page frame selected for replacement is in
the cache, then that cache block is lost as well as the page that it holds.

In systems that use some form of page buffering, it is possible to improve cache
performance by supplementing the page replacement policy with a policy for page
placement in the page buffer. Most operating systems place pages by selecting an
arbitrary page frame from the page buffer; typically a first-in-first-out discipline is
used. A study reported in [KESS92] shows that a careful page placement strategy can
result in 10–20% fewer cache misses than naive placement.

Several page placement algorithms are examined in [KESS92]. The details are
beyond the scope of this book, as they depend on the details of cache structure
and policies. The essence of these strategies is to bring consecutive pages into main
memory in such a way as to minimize the number of page frames that are mapped
into the same cache slots.

Resident Set Management

As was stated earlier in this chapter, the portion of a process that is actually in main
memory at any time is defined to be the resident set of the process.

Resident Set Size  With paged virtual memory, it is not necessary (and indeed may
not be possible) to bring all of the pages of a process into main memory to prepare
it for execution. Thus, the OS must decide how many pages to bring in, that is, how
much main memory to allocate to a particular process. Several factors come into play:

•	 The smaller the amount of memory allocated to a process, the more processes
that can reside in main memory at any one time. This increases the probability

M08_STAL4290_09_GE_C08.indd 398 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   399

that the OS will find at least one ready process at any given time, and hence
reduces the time lost due to swapping.

•	 If a relatively small number of pages of a process are in main memory, then,
despite the principle of locality, the rate of page faults will be rather high (see
Figure 8.10b).

•	 Beyond a certain size, additional allocation of main memory to a particular
process will have no noticeable effect on the page fault rate for that process
because of the principle of locality.

With these factors in mind, two sorts of policies are to be found in contempo-
rary operating systems. A fixed-allocation policy gives a process a fixed number of
frames in main memory within which to execute. That number is decided at initial
load time (process creation time) and may be determined based on the type of pro-
cess (interactive, batch, type of application) or may be based on guidance from the
programmer or system manager. With a fixed-allocation policy, whenever a page
fault occurs in the execution of a process, one of the pages of that process must be
replaced by the needed page.

A variable-allocation policy allows the number of page frames allocated to a
process to be varied over the lifetime of the process. Ideally, a process that is suffer-
ing persistently high levels of page faults (indicating that the principle of locality
only holds in a weak form for that process) will be given additional page frames to
reduce the page fault rate; whereas a process with an exceptionally low page fault
rate (indicating that the process is quite well behaved from a locality point of view)
will be given a reduced allocation, with the hope that this will not noticeably increase
the page fault rate. The use of a variable-allocation policy relates to the concept of
replacement scope, as explained in the next subsection.

The variable-allocation policy would appear to be the more powerful one. How-
ever, the difficulty with this approach is that it requires the OS to assess the behav-
ior of active processes. This inevitably requires software overhead in the OS, and is
dependent on hardware mechanisms provided by the processor platform.

Replacement Scope  The scope of a replacement strategy can be categorized as
global or local. Both types of policies are activated by a page fault when there are no
free page frames. A local replacement policy chooses only among the resident pages
of the process that generated the page fault in selecting a page to replace. A global
replacement policy considers all unlocked pages in main memory as candidates
for replacement, regardless of which process owns a particular page. As mentioned
earlier, when a frame is locked, the page currently stored in that frame may not be
replaced. An unlocked page is simply a page in a frame of main memory that is not
locked. While it happens that local policies are easier to analyze, there is no convincing
evidence that they perform better than global policies, which are attractive because
of their simplicity of implementation and minimal overhead [CARR84, MAEK87].

There is a correlation between replacement scope and resident set size (see
Table 8.5). A fixed resident set implies a local replacement policy: To hold the size of
a resident set fixed, a page that is removed from main memory must be replaced by
another page from the same process. A variable-allocation policy can clearly employ a
global replacement policy: The replacement of a page from one process in main memory

M08_STAL4290_09_GE_C08.indd 399 5/9/17 4:41 PM

400   Chapter 8 / Virtual Memory

with that of another causes the allocation of one process to grow by one page, and that
of the other to shrink by one page. We shall also see that variable allocation and local
replacement is a valid combination. We will now examine these three combinations.

Fixed Allocation, Local Scope  For this case, we have a process that is running
in main memory with a fixed number of frames. When a page fault occurs, the OS
must choose which page is to be replaced from among the currently resident pages
for this process. Replacement algorithms such as those discussed in the preceding
subsection can be used.

With a fixed-allocation policy, it is necessary to decide ahead of time the amount
of allocation to give to a process. This could be decided on the basis of the type of
application and the amount requested by the program. The drawback to this approach
is twofold: If allocations tend to be too small, then there will be a high page fault rate,
causing the entire multiprogramming system to run slowly. If allocations tend to be
unnecessarily large, then there will be too few programs in main memory, and there
will be either considerable processor idle time or considerable time spent in swapping.

Variable Allocation, Global Scope  This combination is perhaps the easiest
to implement and has been adopted in a number of operating systems. At any given
time, there are a number of processes in main memory, each with a certain number
of frames allocated to it. Typically, the OS also maintains a list of free frames. When a
page fault occurs, a free frame is added to the resident set of a process, and the page is
brought in. Thus, a process experiencing page faults will gradually grow in size, which
should help reduce overall page faults in the system.

The difficulty with this approach is in the replacement choice. When there are
no free frames available, the OS must choose a page currently in memory to replace.
The selection is made from among all of the frames in memory, except for locked
frames such as those of the kernel. Using any of the policies discussed in the preced-
ing subsection, the page selected for replacement can belong to any of the resident
processes; there is no discipline to determine which process should lose a page from
its resident set. Therefore, the process that suffers the reduction in resident set size
may not be optimum.

Local Replacement Global Replacement

Fixed Allocation •	Number of frames allocated to a
process is fixed.

•	Page to be replaced is chosen from
among the frames allocated to that
process.

•	Not possible.

Variable Allocation •	The number of frames allocated to a
process may be changed from time to
time to maintain the working set of
the process.

•	Page to be replaced is chosen from
among the frames allocated to that
process.

•	Page to be replaced is chosen from all
available frames in main memory; this
causes the size of the resident set of
processes to vary.

Table 8.5  Resident Set Management

M08_STAL4290_09_GE_C08.indd 400 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   401

One way to counter the potential performance problems of a variable-allo-
cation, global-scope policy is to use page buffering. In this way, the choice of which
page to replace becomes less significant, because the page may be reclaimed if it is
referenced before the next time that a block of pages are overwritten.

Variable Allocation, Local Scope  The variable-allocation, local-scope strategy
attempts to overcome the problems with a global-scope strategy. It can be summarized
as follows:

1.	 When a new process is loaded into main memory, allocate to it a certain num-
ber of page frames as its resident set, based on application type, program
request, or other criteria. Use either prepaging or demand paging to fill up
the allocation.

2.	 When a page fault occurs, select the page to replace from among the resident
set of the process that suffers the fault.

3.	 From time to time, reevaluate the allocation provided to the process, and
increase or decrease it to improve overall performance.

With this strategy, the decision to increase or decrease a resident set size is a
deliberate one, and is based on an assessment of the likely future demands of active
processes. Because of this evaluation, such a strategy is more complex than a simple
global replacement policy. However, it may yield better performance.

The key elements of the variable-allocation, local-scope strategy are the cri-
teria used to determine resident set size and the timing of changes. One specific
strategy that has received much attention in the literature is known as the working
set strategy. Although a true working set strategy would be difficult to implement, it
is useful to examine it as a baseline for comparison.

The working set is a concept introduced and popularized by Denning [DENN68,
DENN70, DENN80b]; it has had a profound impact on virtual memory management
design. The working set with parameter ∆ for a process at virtual time t, which we
designate as W(t, ∆), is the set of pages of that process that have been referenced in
the last ∆ virtual time units.

Virtual time is defined as follows. Consider a sequence of memory references,
r(1), r(2),, in which r(i) is the page that contains the ith virtual address gener-
ated by a given process. Time is measured in memory references; thus t = 1, 2, 3,
measures the process’s internal virtual time.

Let us consider each of the two variables of W. The variable ∆ is a window of
virtual time over which the process is observed. The working set size will be a non-
decreasing function of the window size. The result is illustrated in Figure 8.17 (based
on [BACH86]), which shows a sequence of page references for a process. The dots
indicate time units in which the working set does not change. Note that the larger
the window size, the larger is the working set. This can be expressed in the following
relationship:

W(t, ∆ + 1) ⊇ W(t, ∆)

The working set is also a function of time. If a process executes over ∆ time
units and uses only a single page, then �W(t, ∆) � = 1. A working set can also grow

M08_STAL4290_09_GE_C08.indd 401 5/9/17 4:41 PM

402   Chapter 8 / Virtual Memory

as large as the number of pages N of the process, if many different pages are rapidly
addressed and if the window size allows. Thus,

1 … �W(t, ∆) � … min (∆, N)

Figure 8.18 indicates the way in which the working set size can vary over time
for a fixed value of ∆. For many programs, periods of relatively stable working set
sizes alternate with periods of rapid change. When a process first begins executing,
it gradually builds up to a working set as it references new pages. Eventually, by the
principle of locality, the process should stabilize on a certain set of pages. Subsequent
transient periods reflect a shift of the program to a new locality. During the transition
phase, some of the pages from the old locality remain within the window, ∆, causing
a surge in the size of the working set as new pages are referenced. As the window
slides past these page references, the working set size declines until it contains only
those pages from the new locality.

This concept of a working set can be used to guide a strategy for resident set
size:

1.	 Monitor the working set of each process.

2.	 Periodically remove from the resident set of a process those pages that are not
in its working set. This is essentially an LRU policy.

Figure 8.17  Working Set of Process as Defined by Window Size

Sequence of
Page

References
W

24

15

18

23

24

17

18

24

18

17

17

15

24

17

24

18

Window Size, �
2 3 4 5

24 24 24 24

24 15 24 15 24 15 24 15

15 18 24 15 18 24 15 18 24 15 18

18 23 15 18 23 24 15 18 23 24 15 18 23

23 24 18 23 24 • •

24 17 23 24 17 18 23 24 17 15 18 23 24 17

17 18 24 17 18 • 18 23 24 17

18 24 • 24 17 18 •

• 18 24 • 24 17 18

18 17 24 18 17 • •

17 18 17 • •

17 15 17 15 18 17 15 24 18 17 15

15 24 17 15 24 17 15 24 •

24 17 • • 17 15 24

• 24 17 • •

24 18 17 24 18 17 24 18 15 17 24 18

M08_STAL4290_09_GE_C08.indd 402 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   403

Figure 8.18  Typical Graph of Working Set Size [MAEK87]

Transient Transient Transient Transient

Stable

D

Stable Stable Stable

W
or

ki
ng

 s
et

 s
iz

e

Time

3.	 A process may execute only if its working set is in main memory (i.e., if its
resident set includes its working set).

This strategy is appealing because it takes an accepted principle, the principle
of locality, and exploits it to achieve a memory management strategy that should
minimize page faults. Unfortunately, there are a number of problems with the work-
ing set strategy:

1.	 The past does not always predict the future. Both the size and the membership
of the working set will change over time (see Figure 8.18).

2.	 A true measurement of working set for each process is impractical. It would
be necessary to time-stamp every page reference for every process using the
virtual time of that process then maintain a time-ordered queue of pages for
each process.

3.	 The optimal value of ∆ is unknown and in any case would vary.

Nevertheless, the spirit of this strategy is valid, and a number of operating sys-
tems attempt to approximate a working set strategy. One way to do this is to focus not
on the exact page references, but on the page fault rate of a process. As Figure 8.10b
illustrates, the page fault rate falls as we increase the resident set size of a process.
The working set size should fall at a point on this curve such as indicated by W in the
figure. Therefore, rather than monitor the working set size directly, we can achieve
comparable results by monitoring the page fault rate. The line of reasoning is as fol-
lows: If the page fault rate for a process is below some minimum threshold, the system

M08_STAL4290_09_GE_C08.indd 403 5/9/17 4:41 PM

404   Chapter 8 / Virtual Memory

as a whole can benefit by assigning a smaller resident set size to this process (because
more page frames are available for other processes) without harming the process (by
causing it to incur increased page faults). If the page fault rate for a process is above
some maximum threshold, the process can benefit from an increased resident set size
(by incurring fewer faults) without degrading the system.

An algorithm that follows this strategy is the page fault frequency (PFF) algo-
rithm [CHU72, GUPT78]. It requires a use bit to be associated with each page in
memory. The bit is set to 1 when that page is accessed. When a page fault occurs,
the OS notes the virtual time since the last page fault for that process; this could
be done by maintaining a counter of page references. A threshold F is defined. If
the amount of time since the last page fault is less than F, then a page is added
to the resident set of the process. Otherwise, discard all pages with a use bit of
0, and shrink the resident set accordingly. At the same time, reset the use bit on
the remaining pages of the process to 0. The strategy can be refined by using two
thresholds: an upper threshold that is used to trigger a growth in the resident set
size, and a lower threshold that is used to trigger a contraction in the resident set
size.

The time between page faults is the reciprocal of the page fault rate. Although it
would seem to be better to maintain a running average of the page fault rate, the use
of a single time measurement is a reasonable compromise that allows decisions about
resident set size to be based on the page fault rate. If such a strategy is supplemented
with page buffering, the resulting performance should be quite good.

Nevertheless, there is a major flaw in the PFF approach, which is that it does
not perform well during the transient periods when there is a shift to a new locality.
With PFF, no page ever drops out of the resident set before F virtual time units have
elapsed since it was last referenced. During interlocality transitions, the rapid suc-
cession of page faults causes the resident set of a process to swell before the pages
of the old locality are expelled; the sudden peaks of memory demand may produce
unnecessary process deactivations and reactivations, with the corresponding undesir-
able switching and swapping overheads.

An approach that attempts to deal with the phenomenon of interlocality tran-
sition, with a similar relatively low overhead to that of PFF, is the variable-interval
sampled working set (VSWS) policy [FERR83]. The VSWS policy evaluates the
working set of a process at sampling instances based on elapsed virtual time. At the
beginning of a sampling interval, the use bits of all the resident pages for the process
are reset; at the end, only the pages that have been referenced during the interval
will have their use bit set; these pages are retained in the resident set of the process
throughout the next interval, while the others are discarded. Thus the resident set
size can only decrease at the end of an interval. During each interval, any faulted
pages are added to the resident set; thus the resident set remains fixed or grows
during the interval.

The VSWS policy is driven by three parameters:

M:	 The minimum duration of the sampling interval

L:	 The maximum duration of the sampling interval

Q:	� The number of page faults that are allowed to occur between sampling instances

M08_STAL4290_09_GE_C08.indd 404 5/9/17 4:41 PM

8.2 / OPERATING SYSTEM SOFTWARE   405

The VSWS policy is as follows:

1.	 If the virtual time since the last sampling instance reaches L, then suspend the
process and scan the use bits.

2.	 If, prior to an elapsed virtual time of L, Q page faults occur,
a.	 If the virtual time since the last sampling instance is less than M, then wait

until the elapsed virtual time reaches M to suspend the process and scan
the use bits.

b.	 If the virtual time since the last sampling instance is greater than or equal to
M, suspend the process and scan the use bits.

The parameter values are to be selected so the sampling will normally be
triggered by the occurrence of the Qth page fault after the last scan (case 2b).
The other two parameters (M and L) provide boundary protection for exceptional
conditions. The VSWS policy tries to reduce the peak memory demands caused by
abrupt interlocality transitions by increasing the sampling frequency, and hence the
rate at which unused pages drop out of the resident set, when the page fault rate
increases. Experience with this technique in the Bull mainframe operating system,
GCOS 8, indicates that this approach is as simple to implement as PFF and more
effective [PIZZ89].

Cleaning Policy

A cleaning policy is the opposite of a fetch policy; it is concerned with determining
when a modified page should be written out to secondary memory. Two common
alternatives are demand cleaning and precleaning. With demand cleaning, a page is
written out to secondary memory only when it has been selected for replacement.
A precleaning policy writes modified pages before their page frames are needed so
pages can be written out in batches.

Both precleaning and demand cleaning have drawbacks. With precleaning, a
page is written out but remains in main memory until the page replacement algorithm
dictates that it be removed. Precleaning allows the writing of pages in batches, but it
makes little sense to write out hundreds or thousands of pages only to find that the
majority of them have been modified again before they are replaced. The transfer
capacity of secondary memory is limited, and should not be wasted with unnecessary
cleaning operations.

On the other hand, with demand cleaning, the writing of a dirty page is coupled
to, and precedes, the reading in of a new page. This technique may minimize page
writes, but it means that a process that suffers a page fault may have to wait for two
page transfers before it can be unblocked. This may decrease processor utilization.

A better approach incorporates page buffering. This allows the adoption of the
following policy: Clean only pages that are replaceable, but decouple the cleaning
and replacement operations. With page buffering, replaced pages can be placed on
two lists: modified and unmodified. The pages on the modified list can periodically
be written out in batches and moved to the unmodified list. A page on the unmodi-
fied list is either reclaimed if it is referenced or lost when its frame is assigned to
another page.

M08_STAL4290_09_GE_C08.indd 405 5/9/17 4:41 PM

406   Chapter 8 / Virtual Memory

Load Control

Load control is concerned with determining the number of processes that will be
resident in main memory, which has been referred to as the multiprogramming
level. The load control policy is critical in effective memory management. If too
few processes are resident at any one time, then there will be many occasions when
all processes are blocked, and much time will be spent in swapping. On the other
hand, if too many processes are resident, then, on average, the size of the resident
set of each process will be inadequate and frequent faulting will occur. The result
is thrashing.

Multiprogramming Level  Thrashing is illustrated in Figure 8.19. As the multi
programming level increases from a small value, one would expect to see processor
utilization rise, because there is less chance that all resident processes are blocked.
However, a point is reached at which the average resident set is inadequate. At
this point, the number of page faults rises dramatically, and processor utilization
collapses.

There are a number of ways to approach this problem. A working set or PFF
algorithm implicitly incorporates load control. Only those processes whose resident
set is sufficiently large are allowed to execute. In providing the required resident set
size for each active process, the policy automatically and dynamically determines the
number of active programs.

Another approach, suggested by Denning and his colleagues [DENN80b], is
known as the L = S criterion, which adjusts the multiprogramming level so the
mean time between faults equals the mean time required to process a page fault.
Performance studies indicate this is the point at which processor utilization attained
a maximum. A policy with a similar effect, proposed in [LERO76], is the 50% cri-
terion, which attempts to keep utilization of the paging device at approximately
50%. Again, performance studies indicate this is a point of maximum processor
utilization.

Figure 8.19  Multiprogramming Effects

Multiprogramming level

Pr
oc

es
so

r
ut

ili
za

tio
n

M08_STAL4290_09_GE_C08.indd 406 5/9/17 4:41 PM

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT   407

Another approach is to adapt the clock page replacement algorithm described
earlier (see Figure 8.15). [CARR84] describes a technique, using a global scope, that
involves monitoring the rate at which the pointer scans the circular buffer of frames. If
the rate is below a given lower threshold, this indicates one or both of two circumstances:

1.	 Few page faults are occurring, resulting in few requests to advance the pointer.

2.	 For each request, the average number of frames scanned by the pointer is small,
indicating there are many resident pages not being referenced and are readily
replaceable.

In both cases, the multiprogramming level can safely be increased. On the other
hand, if the pointer scan rate exceeds an upper threshold, this indicates either a high
fault rate or difficulty in locating replaceable pages, which implies that the multipro-
gramming level is too high.

Process Suspension  If the degree of multiprogramming is to be reduced, one or
more of the currently resident processes must be suspended (swapped out). [CARR84]
lists six possibilities:

•	 Lowest-priority process: This implements a scheduling policy decision, and is
unrelated to performance issues.

•	 Faulting process: The reasoning is there is a greater probability that the fault-
ing task does not have its working set resident, and performance would suffer
least by suspending it. In addition, this choice has an immediate payoff because
it blocks a process that is about to be blocked anyway, and it eliminates the
overhead of a page replacement and I/O operation.

•	 Last process activated: This is the process least likely to have its working set
resident.

•	 Process with the smallest resident set: This will require the least future effort to
reload. However, it penalizes programs with strong locality.

•	 Largest process: This obtains the most free frames in an overcommitted mem-
ory, making additional deactivations unlikely soon.

•	 Process with the largest remaining execution window: In most process schedul-
ing schemes, a process may only run for a certain quantum of time before being
interrupted and placed at the end of the Ready queue. This approximates a
shortest-processing-time-first scheduling discipline.

As in so many other areas of OS design, which policy to choose is a matter of
judgment and depends on many other design factors in the OS, as well as the char-
acteristics of the programs being executed.

	 8.3	 UNIX AND SOLARIS MEMORY MANAGEMENT

Because UNIX is intended to be machine independent, its memory management
scheme will vary from one system to the next. Earlier versions of UNIX simply used
variable partitioning with no virtual memory scheme. Current implementations of
UNIX and Solaris make use of paged virtual memory.

M08_STAL4290_09_GE_C08.indd 407 5/9/17 4:41 PM

408   Chapter 8 / Virtual Memory

In SVR4 and Solaris, there are actually two separate memory management
schemes. The paging system provides a virtual memory capability that allocates page
frames in main memory to processes and also allocates page frames to disk block
buffers. Although this is an effective memory management scheme for user processes
and disk I/O, a paged virtual memory scheme is less suited to managing the memory
allocation for the kernel. For this latter purpose, a kernel memory allocator is used.
We will examine these two mechanisms in turn.

Paging System

Data Structures  For paged virtual memory, UNIX makes use of a number of data
structures that, with minor adjustment, are machine independent (see Figure 8.20 and
Table 8.6):

•	 Page table: Typically, there will be one page table per process, with one entry
for each page in virtual memory for that process.

•	 Disk block descriptor: Associated with each page of a process is an entry in this
table that describes the disk copy of the virtual page.

•	 Page frame data table: Describes each frame of real memory and is indexed by
frame number. This table is used by the replacement algorithm.

•	 Swap-use table: There is one swap-use table for each swap device, with one
entry for each page on the device.

Figure 8.20  UNIX SVR4 Memory Management Formats

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry

Reference
count

Page/storage
unit number

Page state Reference
count

Logical
device

Block
number

Pfdata
pointer

Swap device number Device block number Type of storage

Page frame number Age
Pro-
tect

Valid
Refe-
rence

Mod-
ify

Copy
on

write

M08_STAL4290_09_GE_C08.indd 408 5/9/17 4:41 PM

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT   409

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of
this field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate
copy of the page must first be made for all other processes that share the page. This feature allows the
copy operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to 0 when the page is first loaded, and may be periodi-
cally reset by the page replacement algorithm.

Valid
Indicates page is in main memory.

Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more
than one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether or
not the virtual memory to be allocated should be cleared first.

Page Frame Data Table Entry

Page state
Indicates whether this frame is available or has an associated page. In the latter case, the status of the
page is specified: on swap device, in executable file, or DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Swap-Use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.

Table 8.6  UNIX SVR4 Memory Management Parameters

M08_STAL4290_09_GE_C08.indd 409 5/9/17 4:41 PM

410   Chapter 8 / Virtual Memory

Most of the fields defined in Table 8.6 are self-explanatory. A few warrant fur-
ther comment. The Age field in the page table entry is an indication of how long it
has been since a program referenced this frame. However, the number of bits and the
frequency of update of this field are implementation dependent. Therefore, there is
no universal UNIX use of this field for page replacement policy.

The Type of Storage field in the disk block descriptor is needed for the follow-
ing reason: When an executable file is first used to create a new process, only a por-
tion of the program and data for that file may be loaded into real memory. Later, as
page faults occur, new portions of the program and data are loaded. It is only at the
time of first loading that virtual memory pages are created and assigned to locations
on one of the devices to be used for swapping. At that time, the OS is told whether
it needs to clear (set to 0) the locations in the page frame before the first loading of
a block of the program or data.

Page Replacement  The page frame data table is used for page replacement. Several
pointers are used to create lists within this table. All of the available frames are linked
together in a list of free frames available for bringing in pages. When the number of
available frames drops below a certain threshold, the kernel will steal a number of
frames to compensate.

The page replacement algorithm used in SVR4 is a refinement of the clock
policy algorithm (see Figure 8.15) known as the two-handed clock algorithm (see
Figure 8.21). The algorithm uses the reference bit in the page table entry for each page

Figure 8.21  Two-Handed Clock Page Replacement Algorithm

Beginning
of page list

End of
page list

H
an

ds
pr

ea
d

Fronthand

Back
hand

M08_STAL4290_09_GE_C08.indd 410 5/9/17 4:41 PM

8.3 / UNIX AND SOLARIS MEMORY MANAGEMENT   411

in memory that is eligible (not locked) to be swapped out. This bit is set to 0 when the
page is first brought in, and set to 1 when the page is referenced for a read or write.
One hand in the clock algorithm, the fronthand, sweeps through the pages on the
list of eligible pages and sets the reference bit to 0 on each page. Sometime later, the
backhand sweeps through the same list and checks the reference bit. If the bit is set
to 1, then that page has been referenced since the fronthand swept by; these frames
are ignored. If the bit is still set to 0, then the page has not been referenced in the
time interval between the visit by fronthand and backhand; these pages are placed
on a list to be paged out.

Two parameters determine the operation of the algorithm:

1.	 Scanrate: The rate at which the two hands scan through the page list, in pages
per second

2.	 Handspread: The gap between fronthand and backhand

These two parameters have default values set at boot time based on the amount
of physical memory. The scanrate parameter can be altered to meet changing condi-
tions. The parameter varies linearly between the values slowscan and fastscan (set at
configuration time) as the amount of free memory varies between the values lotsfree
and minfree. In other words, as the amount of free memory shrinks, the clock hands
move more rapidly to free up more pages. The handspread parameter determines the
gap between the fronthand and the backhand and therefore, together with scanrate,
determines the window of opportunity to use a page before it is swapped out due to
lack of use.

Kernel Memory Allocator

The kernel generates and destroys small tables and buffers frequently during the
course of execution, each of which requires dynamic memory allocation. [VAHA96]
lists the following examples:

•	 The pathname translation routing may allocate a buffer to copy a pathname
from user space.

•	 The allocb() routine allocates STREAMS buffers of arbitrary size.

•	 Many UNIX implementations allocate zombie structures to retain exit status
and resource usage information about deceased processes.

•	 In SVR4 and Solaris, the kernel allocates many objects (such as proc structures,
vnodes, and file descriptor blocks) dynamically when needed.

Most of these blocks are significantly smaller than the typical machine page size,
and therefore the paging mechanism would be inefficient for dynamic kernel memory
allocation. For SVR4, a modification of the buddy system, described in Section 7.2,
is used.

In buddy systems, the cost to allocate and free a block of memory is low com-
pared to that of best-fit or first-fit policies [KNUT97]. However, in the case of kernel
memory management, the allocation and free operations must be made as fast as

M08_STAL4290_09_GE_C08.indd 411 5/9/17 4:41 PM

412   Chapter 8 / Virtual Memory

possible. The drawback of the buddy system is the time required to fragment and
coalesce blocks.

Barkley and Lee at AT&T proposed a variation known as a lazy buddy system
[BARK89], and this is the technique adopted for SVR4. The authors observed that
UNIX often exhibits steady-state behavior in kernel memory demand; that is, the
amount of demand for blocks of a particular size varies slowly in time. Therefore, if
a block of size 2i is released and is immediately coalesced with its buddy into a block
of size 2i+ 1, the kernel may next request a block of size 2i, which may necessitate
splitting the larger block again. To avoid this unnecessary coalescing and splitting,
the lazy buddy system defers coalescing until it seems likely that it is needed, then
coalesces as many blocks as possible.

The lazy buddy system uses the following parameters:

Ni = current number of blocks of size 2i.

Ai = current number of blocks of size 2i that are allocated (occupied).

Gi = current number of blocks of size 2i that are globally free; these are blocks
that are eligible for coalescing; if the buddy of such a block becomes glob-
ally free, then the two blocks will be coalesced into a globally free block
of size 2i+ 1. All free blocks (holes) in the standard buddy system could
be considered globally free.

Li = current number of blocks of size 2i that are locally free; these are blocks
that are not eligible for coalescing. Even if the buddy of such a block
becomes free, the two blocks are not coalesced. Rather, the locally free
blocks are retained in anticipation of future demand for a block of that size.

The following relationship holds:

Ni = Ai + Gi + Li

In general, the lazy buddy system tries to maintain a pool of locally free blocks
and only invokes coalescing if the number of locally free blocks exceeds a threshold.
If there are too many locally free blocks, then there is a chance that there will be a
lack of free blocks at the next level to satisfy demand. Most of the time, when a block
is freed, coalescing does not occur, so there is minimal bookkeeping and operational
costs. When a block is to be allocated, no distinction is made between locally and
globally free blocks; again, this minimizes bookkeeping.

The criterion used for coalescing is that the number of locally free blocks of a
given size should not exceed the number of allocated blocks of that size (i.e., we must
have Li … Ai). This is a reasonable guideline for restricting the growth of locally free
blocks, and experiments in [BARK89] confirm that this scheme results in noticeable
savings.

To implement the scheme, the authors define a delay variable as follows:

Di = Ai - Li = Ni - 2Li - Gi

Figure 8.22 shows the algorithm.

M08_STAL4290_09_GE_C08.indd 412 5/9/17 4:41 PM

8.4 / LINUX MEMORY MANAGEMENT   413

	 8.4	 LINUX MEMORY MANAGEMENT

Linux shares many of the characteristics of the memory management schemes of
other UNIX implementations but has its own unique features. Overall, the Linux
memory management scheme is quite complex [DUBE98]. In this section, we will
give a brief overview of the two main aspects of Linux memory management: process
virtual memory and kernel memory allocation. The basic unit of memory is a physical
page, which is represented in the Linux kernel by struct page. The size of this page
depends on the architecture; typically it is 4kB . Linux also supports Hugepages,
which enables one to set larger sizes for pages (for example, 2MB). There are several
projects which use Hugepages in order to improve performance. For example, Data
Plane Development Kit (http://dpdk.org/) uses Hugepages for packet buffers, and
this decreases the number of Translation Lookaside Buffers accesses on the system,
comparing to when using the 4kB page size.

Figure 8.22  Lazy Buddy System Algorithm

Initial value of Di is 0.
After an operation, the value of Di is updated as follows:

(I)  if the next operation is a block allocate request:
if there is any free block, select one to allocate
  if the selected block is locally free

then Di : = Di + 2
else Di : = Di + 1

otherwise
 � first get two blocks by splitting a larger one into two (recursive

operation) allocate one and mark the other locally free
 � Di remains unchanged (but D may change for other block sizes because

of the recursive call)

(II)  if the next operation is a block free request
Case Di 7 2
  mark it locally free and free it locally
  Di = 2
Case Di = 1
  mark it globally free and free it globally; coalesce if possible
  Di = 0
Case Di = 0
  mark it globally free and free it globally; coalesce if possible
  select one locally free block of size 2i and free it globally; coalesce if possible
  Di := 0

M08_STAL4290_09_GE_C08.indd 413 5/9/17 4:41 PM

http://dpdk.org/

414   Chapter 8 / Virtual Memory

Linux Virtual Memory

Virtual Memory Addressing  Linux makes use of a three-level page table
structure, consisting of the following types of tables (each individual table is the size
of one page):

•	 Page directory: An active process has a single page directory that is the size of
one page. Each entry in the page directory points to one page of the page mid-
dle directory. The page directory must be in main memory for an active process.

•	 Page middle directory: The page middle directory may span multiple pages.
Each entry in the page middle directory points to one page in the page table.

•	 Page table: The page table may also span multiple pages. Each page table entry
refers to one virtual page of the process.

To use this three-level page table structure, a virtual address in Linux is viewed
as consisting of four fields (see Figure 8.23). The leftmost (most significant) field is
used as an index into the page directory. The next field serves as an index into the
page middle directory. The third field serves as an index into the page table. The
fourth field gives the offset within the selected page of memory.

The Linux page table structure is platform independent and was designed to
accommodate the 64-bit Alpha processor, which provides hardware support for three
levels of paging. With 64-bit addresses, the use of only two levels of pages on the
Alpha would result in very large page tables and directories. The 32-bit x86 architec-
ture has a two-level hardware paging mechanism. The Linux software accommodates
the two-level scheme by defining the size of the page middle directory as one. Note
all references to an extra level of indirection are optimized away at compile time, not
at run time. Therefore, there is no performance overhead for using generic three-level
design on platforms which support only two levels in hardware.

Figure 8.23  Address Translation in Linux Virtual Memory Scheme

Global directory

cr3
register

Page
directory

Page middle
directory

Page table

Page frame
in physical

memory

Virtual address

Middle directory Page table O�set

1

1

1

1

M08_STAL4290_09_GE_C08.indd 414 5/9/17 4:41 PM

8.4 / LINUX MEMORY MANAGEMENT   415

Page Allocation  To enhance the efficiency of reading in and writing out pages
to and from main memory, Linux defines a mechanism for dealing with contiguous
blocks of pages mapped into contiguous blocks of page frames. For this purpose, the
buddy system is used. The kernel maintains a list of contiguous page frame groups
of fixed size; a group may consist of 1, 2, 4, 8, 16, or 32 page frames. As pages are
allocated and deallocated in main memory, the available groups are split and merged
using the buddy algorithm.

Page Replacement Algorithm  Prior to Linux release 2.6.28, the Linux page
replacement algorithm was based on the clock algorithm described in Section 8.2 (see
Figure 8.15). In the simple clock algorithm, a use bit and a modify bit are associated
with each page in main memory. In the Linux scheme, the use bit was replaced with an
8-bit age variable. Each time that a page is accessed, the age variable is incremented.
In the background, Linux periodically sweeps through the global page pool and
decrements the age variable for each page as it rotates through all the pages in main
memory. A page with an age of 0 is an “old” page that has not been referenced in
some time and is the best candidate for replacement. The larger the value of age, the
more frequently a page has been used in recent times and the less eligible it is for
replacement. Thus, the Linux algorithm was a form of least frequently used policy.

Beginning with Linux release 2.6.28, the page replacement algorithm described
in the preceding paragraph was scrapped and a new algorithm, referred to as a split
LRU algorithm, was merged into the kernel. One problem with the older algorithm
is that the periodic sweeps through the page pool consumes increasing amounts of
processor time for increasingly large memories.

The new algorithm makes use of two flags added to each page table entry:
PG_active and PG_referenced. The entire physical memory is divided into differ-
ent “zones” in Linux based on their address. Two linked lists, namely the active and
inactive lists, are used in each zone for page reclamation by the memory manager.
A kernel daemon kswapd runs in the background periodically to perform periodic
page reclamation in each zone. This daemon sweeps through the page table entries
to which the system page frames are mapped. For all page table entries marked as
accessed, PG_referenced bit is set. This bit is set by the processor the first time a
page is accessed. For each iteration of kswapd, it checks whether the page accessed
bit is set in the page table entry. Every time it reads the page accessed bit, kswapd
clears the bit. We can summarize the steps involved in page management as follows
(see Figure 8.24):

1.	 The first time a page on the inactive list is accessed, the PG_referenced flag is set.

2.	 The next time that page is accessed, it is moved to the active list. That is, it takes
two accesses for a page to be declared active. More precisely, it takes two
accesses in different scans for a page to become active.

3.	 If the second access doesn’t happen soon enough, PG_referenced is reset.

4.	 Similarly, for active pages, two timeouts are required to move the page to the
inactive list.

Pages on the inactive list are then available for page replacement, using an LRU type
of algorithm.

M08_STAL4290_09_GE_C08.indd 415 5/9/17 4:41 PM

416   Chapter 8 / Virtual Memory

Kernel Memory Allocation

The Linux kernel memory capability manages physical main memory page frames.
Its primary function is to allocate and deallocate frames for particular uses. Possible
owners of a frame include user-space processes (i.e., the frame is part of the virtual
memory of a process that is currently resident in real memory), dynamically allocated
kernel data, static kernel code, and the page cache.7

The foundation of kernel memory allocation for Linux is the page allocation
mechanism used for user virtual memory management. As in the virtual memory
scheme, a buddy algorithm is used so memory for the kernel can be allocated and deal-
located in units of one or more pages. Because the minimum amount of memory that
can be allocated in this fashion is one page, the page allocator alone would be inefficient
because the kernel requires small short-term memory chunks in odd sizes. To accom-
modate these small chunks, Linux uses a scheme known as slab allocation [BONW94]
within an allocated page. On a x86 machine, the page size is 4 kB, and chunks within a
page may be allocated of sizes 32, 64, 128, 252, 508, 2,040, and 4,080 bytes.

The SLAB allocator is relatively complex and is not examined in detail here;
a good description can be found in [VAHA96]. In essence, Linux maintains a set of
linked lists, one for each size of chunk. Chunks may be split and aggregated in a man-
ner similar to the buddy algorithm and moved between lists accordingly.

While SLAB is the most commonly used, there are three memory allocators in
Linux for allocating small chunks of memory:

1.	 SLAB: Designed to be as cache-friendly as possible, minimizing cache misses.

2.	 SLUB (unqueued slab allocator): Designed to be simple and minimize instruc-
tion count [CORB07].

7The page cache has properties similar to a disk buffer, described in this chapter, as well as a disk cache, to
be described in Chapter 11. We defer a discussion of the Linux page cache to Chapter 11.

Figure 8.24  Linux Page Reclaiming

Inactive Active

used

used

us
edtimeout

timeout

timeout

used timeout

PG_active = 0
PG_referenced = 0

PG_active = 1
PG_referenced = 0

PG_active = 0
PG_referenced = 1

PG_active = 1
PG_referenced = 1

M08_STAL4290_09_GE_C08.indd 416 5/9/17 4:41 PM

8.5 / WINDOWS MEMORY MANAGEMENT   417

3.	 SLOB (simple list of blocks): Designed to be as compact as possible; intended
for systems with memory limitations [MACK05].

	 8.5	 WINDOWS MEMORY MANAGEMENT

The Windows virtual memory manager controls how memory is allocated and how
paging is performed. The memory manager is designed to operate over a variety of
platforms and to use page sizes ranging from 4 kB to 64 kB. Intel and AMD64 plat-
forms have 4 kB per page, and Intel Itanium platforms have 8 kB per page.

Windows Virtual Address Map

On 32-bit platforms, each Windows user process sees a separate 32-bit address space,
allowing 4 GB of virtual memory per process. By default, half of this memory is
reserved for the OS, so each user actually has 2 GB of available virtual address space
and all processes share most of the upper 2 GB of system space when running in
kernel mode. Large memory intensive applications, on both clients and servers, can
run more effectively using 64-bit Windows. Other than netbooks, most modern PCs
use the AMD64 processor architecture which is capable of running as either a 32-bit
or 64-bit system.

Figure 8.25 shows the default virtual address space seen by a normal 32-bit user
process. It consists of four regions:

1.	 0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-
pointer assignments.

2.	 0x00010000 to 0x7FFEFFFF: Available user address space. This space is divided
into pages that may be loaded into main memory.

3.	 0x7FFF0000 to 0x7FFFFFFF: A guard page inaccessible to the user. This page
makes it easier for the OS to check on out-of-bounds pointer references.

4.	 0x80000000 to 0xFFFFFFFF: System address space. This 2-GB process is used
for the Windows Executive, Kernel, HAL, and device drivers.

On 64-bit platforms, 8 TB of user address space is available in Windows.

Windows Paging

When a process is created, it can in principle make use of the entire user space of
almost 2 GB (or 8 TB on 64-bit Windows). This space is divided into fixed-size pages,
any of which can be brought into main memory, but the OS manages the addresses
in contiguous regions allocated on 64-kB boundaries. A region can be in one of three
states:

1.	 Available: addresses not currently used by this process.

2.	 Reserved: addresses that the virtual memory manager has set aside for a pro-
cess so they cannot be allocated to another use (e.g., saving contiguous space
for a stack to grow).

M08_STAL4290_09_GE_C08.indd 417 5/9/17 4:41 PM

418   Chapter 8 / Virtual Memory

3.	 Committed: addresses that the virtual memory manager has initialized for use
by the process to access virtual memory pages. These pages can reside either
on disk or in physical memory. When on disk, they can be either kept in files
(mapped pages) or occupy space in the paging file (i.e., the disk file to which it
writes pages when removing them from main memory).

The distinction between reserved and committed memory is useful because it
(1) reduces the amount of total virtual memory space needed by the system, allow-
ing the page file to be smaller; and (2) allows programs to reserve addresses without
making them accessible to the program or having them charged against their resource
quotas.

The resident set management scheme used by Windows is variable allocation,
local scope (see Table 8.5). When a process is first activated, it is assigned data struc-
tures to manage its working set. As the pages needed by the process are brought into
physical memory, the memory manager uses the data structures to keep track of the
pages assigned to the process. Working sets of active processes are adjusted using the
following general conventions:

•	 When main memory is plentiful, the virtual memory manager allows the resi-
dent sets of active processes to grow. To do this, when a page fault occurs, a new

0
64-kB region for
NULL-pointer assignments
(inaccessible)

64-kB region for
bad-pointer assignments
(inaccessible)

2-GB region for
the operating system
(inaccessible)

2-GB user
address space
(unreserved, usable)

0xFFFFFFFF

Figure 8.25  Windows Default 32-Bit Virtual Address Space

M08_STAL4290_09_GE_C08.indd 418 5/9/17 4:41 PM

8.6 / ANDROID MEMORY MANAGEMENT   419

physical page is added to the process but no older page is swapped out, resulting
in an increase of the resident set of that process by one page.

•	 When memory becomes scarce, the virtual memory manager recovers memory
for the system by removing less recently used pages out of the working sets of
active processes, reducing the size of those resident sets.

•	 Even when memory is plentiful, Windows watches for large processes that are
rapidly increasing their memory usage. The system begins to remove pages that
have not been recently used from the process. This policy makes the system
more responsive because a new program will not suddenly cause a scarcity of
memory and make the user wait while the system tries to reduce the resident
sets of the processes that are already running.

Windows Swapping

With the Metro UI comes a new virtual memory system to handle the interrupt
requests from Windows Store apps. Swapfile.sys joins its familiar Windows counter-
part pagefile.sys to provide access to temporary memory storage on the hard drive.
Paging will hold items that haven’t been accessed in a long time, whereas swapping
holds items that were recently taken out of memory. The items in pagingfile may not
be accessed again for a long time, whereas the items in swapfile might be accessed
much sooner. Only Store apps use the swapfile.sys file, and because of the relatively
small size of Store apps, the fixed size is only 256MB. The pagefile.sys file will be
roughly one to two times the size of the amount of physical RAM found in the system.
Swapfile.sys operates by swapping the entire process from system memory into the
swapfile. This immediately frees up memory for other applications to use. By contrast,
paging files function by moving “pages” of a program from system memory into the
paging file. These pages are 4kB in size. The entire program does not get swapped
wholesale into the paging file.

	 8.6	 ANDROID MEMORY MANAGEMENT

Android includes a number of extensions to the normal Linux kernel memory man-
agement facility. These include the following:

•	 ASHMem: This feature provides anonymous shared memory, which abstracts
memory as file descriptors. A file descriptor can be passed to another process
to share memory.

•	 ION: ION is a memory pool manager and also enables its clients to share buf-
fers. ION manages one or more memory pools, some of which are set aside at
boot time to combat fragmentation or to serve special hardware needs. GPUs,
display controllers, and cameras are some of the hardware blocks that may have
special memory requirements. ION presents its memory pools as ION heaps.
Each type of Android device can be provisioned with a different set of ION
heaps according to the memory requirements of the device.

•	 Low Memory Killer: Most mobile devices do not have a swap capability
(because of flash memory lifetime considerations). When main memory is

M08_STAL4290_09_GE_C08.indd 419 5/9/17 4:41 PM

420   Chapter 8 / Virtual Memory

exhausted, the application or applications using the most memory must either
back off their use of memory or be terminated. This feature enables the system
to notify an app or apps that they need to free up memory. If an app does not
cooperate, it is terminated.

	 8.7	 SUMMARY

To use the processor and the I/O facilities efficiently, it is desirable to maintain as
many processes in main memory as possible. In addition, it is desirable to free pro-
grammers from size restrictions in program development.

The way to address both of these concerns is virtual memory. With virtual mem-
ory, all address references are logical references that are translated at run time to real
addresses. This allows a process to be located anywhere in main memory and for that
location to change over time. Virtual memory also allows a process to be broken up
into pieces. These pieces need not be contiguously located in main memory during
execution and, indeed, it is not even necessary for all of the pieces of the process to
be in main memory during execution.

Two basic approaches to providing virtual memory are paging and segmenta-
tion. With paging, each process is divided into relatively small, fixed-size pages. Seg-
mentation provides for the use of pieces of varying size. It is also possible to combine
segmentation and paging in a single memory management scheme.

A virtual memory management scheme requires both hardware and software
support. The hardware support is provided by the processor. The support includes
dynamic translation of virtual addresses to physical addresses and the generation
of an interrupt when a referenced page or segment is not in main memory. Such an
interrupt triggers the memory management software in the OS.

A number of design issues relate to OS support for memory management:

•	 Fetch policy: Process pages can be brought in on demand, or a prepaging policy
can be used, which clusters the input activity by bringing in a number of pages
at once.

•	 Placement policy: With a pure segmentation system, an incoming segment must
be fit into an available space in memory.

•	 Replacement policy: When memory is full, a decision must be made as to which
page or pages are to be replaced.

•	 Resident set management: The OS must decide how much main memory to
allocate to a particular process when that process is swapped in. This can be a
static allocation made at process creation time, or it can change dynamically.

•	 Cleaning policy: Modified process pages can be written out at the time of
replacement, or a precleaning policy can be used, which clusters the output
activity by writing out a number of pages at once.

•	 Load control: Load control is concerned with determining the number of pro-
cesses that will be resident in main memory at any given time.

M08_STAL4290_09_GE_C08.indd 420 5/9/17 4:41 PM

8.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   421

	 8.8	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

associative mapping
demand paging
external fragmentation
fetch policy
frame
hash table
hashing
internal fragmentation
locality
page

page fault
page placement policy
page replacement policy
page table
paging
prepaging
real memory
resident set
resident set management
segment

segment table
segmentation
slab allocation
thrashing
translation lookaside buffer

(TLB)
virtual memory
working set

Review Questions

	 8.1.	 How does the use of virtual memory improve system utilization?
	 8.2.	 Explain thrashing.
	 8.3.	 Why is the principle of locality crucial to the use of virtual memory?
	 8.4.	 Which considerations determine the size of a page?
	 8.5.	 What is the purpose of a translation lookaside buffer?
	 8.6.	 What is demand paging?
	 8.7.	 What are the drawbacks of using either only a precleaning policy or only a demand

cleaning policy?
	 8.8.	 What is the relationship between FIFO and clock page replacement algorithms?
	 8.9.	 How is a page fault trap dealt with?
	8.10.	 Why is it not possible to combine a global replacement policy and a fixed allocation policy?
	8.11.	 What is the difference between a resident set and a working set?
	8.12.	 What is the difference between demand cleaning and precleaning?

Problems

	 8.1.	 Suppose the page table for the process currently executing on the processor looks like
the following. All numbers are decimal, everything is numbered starting from zero, and
all addresses are memory byte addresses. The page size is 2,048 bytes.

Virtual page
number Valid bit Reference bit Modify bit

Page frame
number

0 1 1 1 7

1 0 0 0 –

2 0 0 0 –

3 1 0 0 6

4 1 1 0 0

5 1 0 1 3

M08_STAL4290_09_GE_C08.indd 421 5/9/17 4:41 PM

422   Chapter 8 / Virtual Memory

a.	 Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.

b.	 What physical address, if any, would each of the following virtual addresses cor-
respond to? (Do not try to handle any page faults, if any.)

	 (i)	 6,204
	 (ii)	 3,021
	 (iii)	 9,000

	 8.2.	 Consider the following program.

#define Size 64

 int A[Size; Size], B[Size; Size], C[Size; Size];
 int register i, j;
 for (j = 0; j< Size; j ++)
 for (i = 0; i< Size; i++)
C[i; j] = A[i; j] + B[i; j];

Assume the program is running on a system using demand paging, and the page size is
1 kB. Each integer is 4 bytes long. It is clear that each array requires a 16-page space.
As an example, A[0, 0]-A[0, 63], A[1, 0]-A[1, 63], A[2, 0]-A[2, 63], and A[3, 0]-A[3, 63]
will be stored in the first data page. A similar storage pattern can be derived for the
rest of array A and for arrays B and C. Assume the system allocates a 4-page working
set for this process. One of the pages will be used by the program, and three pages can
be used for the data. Also, two index registers are assigned for i and j (so no memory
accesses are needed for references to these two variables).
a.	 Discuss how frequently the page fault would occur (in terms of number of times

C[i, j] = A[i, j] + B[i, j] are executed).
b.	 Can you modify the program to minimize the page fault frequency?
c.	 What will be the frequency of page faults after your modification?

	 8.3.	 a.	 How much memory space is needed for the user page table of Figure 8.3?
b.	 Assume you want to implement a hashed inverted page table for the same address-

ing scheme as depicted in Figure 8.3, using a hash function that maps the 24-bit
page number into an 8-bit hash value. The table entry contains the page number,
the frame number, and a chain pointer. If the page table allocates space for up to
4 overflow entries per hashed entry, how much memory space does the hashed
inverted page table take?

	 8.4.	 Consider the following page-reference string: a, b, d, c, b, e, d, b, d, b, a, c, b, c, a, c, f,
a, f, d. Assume that there are 3 frames available and that they are all initially empty.
Complete a figure, similar to Figure 8.14, showing the frame allocation for each of the
following page replacement policies:
a.	 First-in-first-out
b.	 Optimal
c.	 Least recently used
Then, find the relative performance of each policy with respect to page faults.

	 8.5.	 A process references five pages, A, B, C, D, and E, in the following order:

A; B; C; D; A; B; E; A; B; C; D; E

Assume the replacement algorithm is first-in-first-out and find the number of page
transfers during this sequence of references starting with an empty main memory with
three page frames. Repeat for four page frames.

	 8.6.	 A process contains eight virtual pages on disk and is assigned a fixed allocation of four
page frames in main memory. The following page trace occurs:

1, 0, 2, 2, 1, 7, 6, 7, 0, 1, 2, 0, 3, 0, 4, 5, 1, 5, 2, 4, 5, 6, 7, 6, 7, 2, 4, 2, 7, 3, 3, 2, 3

M08_STAL4290_09_GE_C08.indd 422 5/9/17 4:41 PM

8.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   423

a.	 Show the successive pages residing in the four frames using the LRU replacement
policy. Compute the hit ratio in main memory. Assume the frames are initially
empty.

b.	 Repeat part (a) for the FIFO replacement policy.
c.	 Compare the two hit ratios and comment on the effectiveness of using FIFO to

approximate LRU with respect to this particular trace.
	 8.7.	 In the VAX, user page tables are located at virtual addresses in the system space. What

is the advantage of having user page tables in virtual rather than main memory? What
is the disadvantage?

	 8.8.	 A system has a total of 128 frames. There are 4 processes in the system with the follow-
ing memory requirements:

p1 : 45     p2 : 75     p3 : 33     p4 : 135

Using the following allocation methods, compute the number of frames allocated to
each of the processes stated above:
a.	 Equal Allocation Algorithm
b.	 Proportional Allocation Algorithm

	 8.9.	 The IBM System/370 architecture uses a two-level memory structure and refers to the
two levels as segments and pages, although the segmentation approach lacks many of
the features described earlier in this chapter. For the basic 370 architecture, the page
size may be either 2 kB or 4 kB, and the segment size is fixed at either 64 kB or 1 MB.
For the 370/XA and 370/ESA architectures, the page size is 4 kB and the segment size
is 1 MB. Which advantages of segmentation does this scheme lack? What is the benefit
of segmentation for the 370?

	8.10.	 Suppose the virtual space accessed by memory is 6 GB, the page size is 8 KB, and each
page table entry is 6 bytes. Compute the number of virtual pages that is implied. Also,
compute the space required for the whole page table.

	8.11.	 Consider a system with memory mapping done on a page basis and using a single level
page table. Assume that the necessary page table is always in memory.
a.	 If a memory reference takes 250 ns, how long does a paged memory reference take?
b.	 Now we add an MMU that imposes an overhead of 30 ns on a hit or a miss. If we

assume that 85% of all memory references hit in the MMU TLB, what is the Effec-
tive Memory Access Time (EMAT)?

c.	 Explain how the TLB hit rate affects the EMAT.
	8.12.	 Consider a page reference string for a process with a working set of four frames, initially

all empty. The page reference string is of length 20 with six distinct page numbers in it.
For any page replacement algorithm,
a.	 What is the lower bound on the number of page faults? Justify your answer.
b.	 What is the upper bound on the number of page faults? Justify your answer.

	8.13.	 In discussing a page replacement algorithm, one author makes an analogy with a snow-
plow moving around a circular track. Snow is falling uniformly on the track, and a lone
snowplow continually circles the track at constant speed. The snow that is plowed off
the track disappears from the system.
a.	 For which of the page replacement algorithms discussed in Section 8.2 is this a

useful analogy?
b.	 What does this analogy suggest about the behavior of the page replacement algo-

rithm in question?
	8.14.	 In the S/370 architecture, a storage key is a control field associated with each page-sized

frame of real memory. Two bits of that key that are relevant for page replacement are
the reference bit and the change bit. The reference bit is set to 1 when any address
within the frame is accessed for read or write, and is set to 0 when a new page is loaded
into the frame. The change bit is set to 1 when a write operation is performed on any

M08_STAL4290_09_GE_C08.indd 423 5/9/17 4:41 PM

424   Chapter 8 / Virtual Memory

location within the frame. Suggest an approach for determining which page frames are
least recently used, making use of only the reference bit.

	8.15.	 Consider the following sequence of page references (each element in the sequence
represents a page number):

1 2 3 4 5 2 1 3 3 2 3 4 5 4 5 1 1 3 2 5

Define the mean working set size after the kth reference as sk(∆) =
1
k

 a
k

t=1
�W(t, ∆) � and

define the missing page probability after the kth reference as mk(∆) =
1
k

 a
k

t=1
�F(t, ∆) �

where F(t, ∆) = 1 if a page fault occurs at virtual time t and 0 otherwise.

a.	 Draw a diagram similar to that of Figure 8.17 for the reference sequence just
defined for the values ∆ = 1, 2, 3, 4, 5, 6.

b.	 Plot s20(∆) as a function of ∆.
c.	 Plot m20(∆) as a function of ∆.

	8.16.	 A key to the performance of the VSWS resident set management policy is the value of
Q. Experience has shown that with a fixed value of Q for a process, there are consider-
able differences in page fault frequencies at various stages of execution. Furthermore,
if a single value of Q is used for different processes, dramatically different frequencies
of page faults occur. These differences strongly indicate that a mechanism that would
dynamically adjust the value of Q during the lifetime of a process would improve the
behavior of the algorithm. Suggest a simple mechanism for this purpose.

	 8.17.	 Assume a task is divided into four equal-sized segments, and the system builds an eight-
entry page descriptor table for each segment. Thus, the system has a combination of
segmentation and paging. Assume also the page size is 2 kB.
a.	 What is the maximum size of each segment?
b.	 What is the maximum logical address space for the task?
c.	 Assume an element in physical location 00021ABC is accessed by this task. What

is the format of the logical address that the task generates for it? What is the maxi-
mum physical address space for the system?

	8.18.	 Consider the following sequence of page references:

A, B, B, C, A, E, D, B, D, E, A, C, E, B, A, C, A, F, D, F

		 and consider that a working set strategy is used for page replacement. What will the
contents of the working set at each stage be for the following?
a.	 Window Size = 2
b.	 Window Size = 3
c.	 Window Size = 4

	8.19.	 The UNIX kernel will dynamically grow a process’s stack in virtual memory as needed,
but it will never try to shrink it. Consider the case in which a program calls a C sub-
routine that allocates a local array on the stack that consumes 10 K. The kernel will
expand the stack segment to accommodate it. When the subroutine returns, the stack
pointer is adjusted and this space could be released by the kernel, but it is not released.
Explain why it would be possible to shrink the stack at this point, and why the UNIX
kernel does not shrink it.

M08_STAL4290_09_GE_C08.indd 424 5/9/17 4:41 PM

425

Chapter

9.1	 Types of Processor Scheduling
Long-Term Scheduling
Medium-Term Scheduling
Short-Term Scheduling

9.2	 Scheduling Algorithms
Short-Term Scheduling Criteria
The Use of Priorities
Alternative Scheduling Policies
Performance Comparison
Fair-Share Scheduling

9.3	 Traditional UNIX Scheduling

9.4	 Summary

9.5	 Key Terms, Review Questions, and Problems

Uniprocessor Scheduling

SchedulingPart 4

M09_STAL4290_09_GE_C09.indd 425 5/9/17 4:45 PM

426   Chapter 9 / Uniprocessor Scheduling

In a multiprogramming system, multiple processes exist concurrently in main mem-
ory. Each process alternates between using a processor and waiting for some event
to occur, such as the completion of an I/O operation. The processor or processors are
kept busy by executing one process while the others processes wait.

The key to multiprogramming is scheduling. In fact, four types of scheduling
are typically involved (see Table 9.1). One of these, I/O scheduling, will be more
conveniently addressed in Chapter 11, where I/O is discussed. The remaining three
types of scheduling, which are types of processor scheduling, will be addressed in
this chapter and the next.

This chapter begins with an examination of the three types of processor sched-
uling, showing how they are related. We see that long-term scheduling and medium-
term scheduling are driven primarily by performance concerns related to the degree
of multiprogramming. These issues are dealt with to some extent in Chapter 3, and
in more detail in Chapters 7 and 8. Thus, the remainder of this chapter concentrates
on short-term scheduling and is limited to a consideration of scheduling on a unipro-
cessor system. Because the use of multiple processors adds additional complexity, it
is best to focus on the uniprocessor case first, so the differences among scheduling
algorithms can be clearly seen.

Section 9.2 looks at the various algorithms that may be used to make short-term
scheduling decisions.

	 9.1	 TYPES OF PROCESSOR SCHEDULING

The aim of processor scheduling is to assign processes to be executed by the processor
or processors over time, in a way that meets system objectives, such as response time,
throughput, and processor efficiency. In many systems, this scheduling activity is bro-
ken down into three separate functions: long-, medium-, and short-term scheduling.
The names suggest the relative time scales with which these functions are performed.

Long-term scheduling The decision to add to the pool of processes to be executed.

Medium-term scheduling The decision to add to the number of processes that are partially or fully in main
memory.

Short-term scheduling The decision as to which available process will be executed by the processor.

I/O scheduling The decision as to which process’s pending I/O request shall be handled by an
available I/O device.

Table 9.1  Types of Scheduling

Learning Objectives

After studying this chapter, you should be able to:
•	 Explain the differences among long-, medium-, and short-term scheduling.
•	 Assess the performance of different scheduling policies.
•	 Understand the scheduling technique used in traditional UNIX.

M09_STAL4290_09_GE_C09.indd 426 5/9/17 4:45 PM

9.1 / TYPES OF PROCESSOR SCHEDULING   427

Figure 9.1 relates the scheduling functions to the process state transition dia-
gram (first shown in Figure 3.9b). Long-term scheduling is performed when a new
process is created. This is a decision whether to add a new process to the set of pro-
cesses that are currently active. Medium-term scheduling is a part of the swapping
function. This is a decision whether to add a process to those that are at least par-
tially in main memory and therefore available for execution. Short-term scheduling
is the actual decision of which ready process to execute next. Figure 9.2 reorganizes
the state transition diagram of Figure 3.9b to suggest the nesting of scheduling
functions.

Scheduling affects the performance of the system because it determines which
processes will wait, and which will progress. This point of view is presented in Figure 9.3,
which shows the queues involved in the state transitions of a process.1 Fundamentally,
scheduling is a matter of managing queues to minimize queueing delay and to opti-
mize performance in a queueing environment.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for
processing. Thus, it controls the degree of multiprogramming. Once admitted, a job or
user program becomes a process and is added to the queue for the short-term sched-
uler. In some systems, a newly created process begins in a swapped-out condition, in
which case it is added to a queue for the medium-term scheduler.

In a batch system, or for the batch portion of an OS, newly submitted jobs are
routed to disk and held in a batch queue. The long-term scheduler creates processes
from the queue when it can. There are two decisions involved. The scheduler must

1For simplicity, Figure 9.3 shows new processes going directly to the Ready state, whereas Figures 9.1
and 9.2 show the option of either the Ready state or the Ready/Suspend state.

Figure 9.1  Scheduling and Process State Transitions

New

Ready/
suspend Ready Running Exit

Long-term
scheduling

Long-term
scheduling

Medium-term
scheduling

Blocked/
suspend Blocked

Medium-term
scheduling

Short-term
scheduling

M09_STAL4290_09_GE_C09.indd 427 5/9/17 4:45 PM

428   Chapter 9 / Uniprocessor Scheduling

decide when the OS can take on one or more additional processes. And the scheduler
must decide which job or jobs to accept and turn into processes. We briefly consider
these two decisions.

The decision as to when to create a new process is generally driven by the
desired degree of multiprogramming. The more processes that are created, the smaller
is the percentage of time that each process can be executed (i.e., more processes are
competing for the same amount of processor time). Thus, the long-term scheduler
may limit the degree of multiprogramming to provide satisfactory service to the cur-
rent set of processes. Each time a job terminates, the scheduler may decide to add
one or more new jobs. Additionally, if the fraction of time that the processor is idle
exceeds a certain threshold, the long-term scheduler may be invoked.

The decision as to which job to admit next can be on a simple first-come-
first-served (FCFS) basis, or it can be a tool to manage system performance. The
criteria used may include priority, expected execution time, and I/O requirements.

Figure 9.2  Levels of Scheduling

Running

Ready

Blocked

Blocked,
suspend

Ready,
suspend

Short term

Medium term

Long term

New Exit

M09_STAL4290_09_GE_C09.indd 428 5/9/17 4:45 PM

9.1 / TYPES OF PROCESSOR SCHEDULING   429

For example, if the information is available, the scheduler may attempt to keep
a mix of processor-bound and I/O-bound processes.2 Also, the decision can
depend on which I/O resources are to be requested, in an attempt to balance
I/O usage.

For interactive programs in a time-sharing system, a process creation request
can be generated by the act of a user attempting to connect to the system. Time-
sharing users are not simply queued up and kept waiting until the system can accept
them. Rather, the OS will accept all authorized users until the system is saturated,
using some predefined measure of saturation. At that point, a connection request
is met with a message indicating that the system is full and the user should try
again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function. The issues involved are
discussed in Chapters 3, 7, and 8. Typically, the swapping-in decision is based on the
need to manage the degree of multiprogramming. On a system that does not use
virtual memory, memory management is also an issue. Thus, the swapping-in decision
will consider the memory requirements of the swapped-out processes.

2A process is regarded as processor bound if it mainly performs computational work and occasionally
uses I/O devices. A process is regarded as I/O bound if the time it takes to execute the process depends
primarily on the time spent waiting for I/O operations.

Figure 9.3  Queueing Diagram for Scheduling

Event wait

Timeout

ReleaseReady queue Short-term
scheduling

Medium-term
scheduling

Medium-term
scheduling

Interactive
users

Batch
jobs

Processor

Ready, suspend queue

Event
occurs

Blocked, suspend queue

Blocked queue

Long-term
scheduling

M09_STAL4290_09_GE_C09.indd 429 5/9/17 4:45 PM

430   Chapter 9 / Uniprocessor Scheduling

Short-Term Scheduling

In terms of frequency of execution, the long-term scheduler executes relatively infre-
quently and makes the coarse-grained decision of whether or not to take on a new
process, and which one to take. The medium-term scheduler is executed somewhat
more frequently to make a swapping decision. The short-term scheduler, also known
as the dispatcher, executes most frequently and makes the fine-grained decision of
which process to execute next.

The short-term scheduler is invoked whenever an event occurs that may lead to
the blocking of the current process, or that may provide an opportunity to preempt
a currently running process in favor of another. Examples of such events include:

•	 Clock interrupts

•	 I/O interrupts

•	 Operating system calls

•	 Signals (e.g., semaphores)

	 9.2	 SCHEDULING ALGORITHMS

Short-Term Scheduling Criteria

The main objective of short-term scheduling is to allocate processor time in such a
way as to optimize one or more aspects of system behavior. Generally, a set of criteria
is established against which various scheduling policies may be evaluated.

The commonly used criteria can be categorized along two dimensions. First,
we can make a distinction between user-oriented and system-oriented criteria. User-
oriented criteria relate to the behavior of the system as perceived by the individual
user or process. An example is response time in an interactive system. Response time
is the elapsed time between the submission of a request and when the response begins
to appear as output. This quantity is visible to the user and is naturally of interest to
the user. We would like a scheduling policy that provides “good” service to various
users. In the case of response time, a threshold may be defined as, say, two seconds.
Then a goal of the scheduling mechanism should be to maximize the number of users
who experience an average response time of two seconds or less.

Other criteria are system oriented. That is, the focus is on effective and efficient
utilization of the processor. An example is throughput, which is the rate at which pro-
cesses are completed. This is certainly a worthwhile measure of system performance
and one that we would like to maximize. However, it focuses on system performance
rather than service provided to the user. Thus, throughput is of concern to a system
administrator but not to the user population.

Whereas user-oriented criteria are important on virtually all systems, system-
oriented criteria are generally of minor importance on single-user systems. On a
single-user system, it probably is not important to achieve high processor utilization
or high throughput as long as the responsiveness of the system to user applications
is acceptable.

M09_STAL4290_09_GE_C09.indd 430 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   431

Another dimension along which criteria can be classified is those that are per-
formance related, and those that are not directly performance related. Performance-
related criteria are quantitative and generally can be readily measured. Examples
include response time and throughput. Criteria that are not performance-related
are either qualitative in nature or do not lend themselves readily to measurement
and analysis. An example of such a criterion is predictability. We would like for the
service provided to users to exhibit the same characteristics over time, independent
of other work being performed by the system. To some extent, this criterion can be
measured by calculating variances as a function of workload. However, this is not
nearly as straightforward as measuring throughput or response time as a function
of workload.

Table 9.2 summarizes key scheduling criteria. These are interdependent, and
it is impossible to optimize all of them simultaneously. For example, providing good
response time may require a scheduling algorithm that switches between processes

User Oriented, Performance Related

Turnaround time This is the interval of time between the submission of a process and its completion. Includes
actual execution time plus time spent waiting for resources, including the processor. This is an appropriate
measure for a batch job.

Response time For an interactive process, this is the time from the submission of a request until the response
begins to be received. Often a process can begin producing some output to the user while continuing to pro-
cess the request. Thus, this is a better measure than turnaround time from the user’s point of view. The schedul-
ing discipline should attempt to achieve low response time and to maximize the number of interactive users
receiving acceptable response time.

Deadlines When process completion deadlines can be specified, the scheduling discipline should subordinate
other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should run in about the same amount of time and at about the same cost regardless
of the load on the system. A wide variation in response time or turnaround time is distracting to users. It may
signal a wide swing in system workloads or the need for system tuning to cure instabilities.

System Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed per unit of
time. This is a measure of how much work is being performed. This clearly depends on the average length of a
process, but is also influenced by the scheduling policy, which may affect utilization.

Processor utilization This is the percentage of time that the processor is busy. For an expensive shared system,
this is a significant criterion. In single-user systems and in some other systems, such as real-time systems, this
criterion is less important than some of the others.

System Oriented, Other

Fairness In the absence of guidance from the user or other system-supplied guidance, processes should be
treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor higher-priority
processes.

Balancing resources The scheduling policy should keep the resources of the system busy. Processes that will
underutilize stressed resources should be favored. This criterion also involves medium-term and long-term
scheduling.

Table 9.2  Scheduling Criteria

M09_STAL4290_09_GE_C09.indd 431 5/9/17 4:45 PM

432   Chapter 9 / Uniprocessor Scheduling

frequently. This increases the overhead of the system, reducing throughput. Thus, the
design of a scheduling policy involves compromising among competing requirements;
the relative weights given the various requirements will depend on the nature and
intended use of the system.

In most interactive operating systems, whether single user or time shared, ade-
quate response time is the critical requirement. Because of the importance of this
requirement, and because the definition of adequacy will vary from one application
to another, the topic is explored further in Appendix G.

The Use of Priorities

In many systems, each process is assigned a priority, and the scheduler will always
choose a process of higher priority over one of lower priority. Figure 9.4 illustrates
the use of priorities. For clarity, the queueing diagram is simplified, ignoring the
existence of multiple blocked queues and of suspended states (compare to Figure
3.8a). Instead of a single ready queue, we provide a set of queues, in descending order
of priority: RQ0, RQ1, . . . , RQn, with priority[RQi] 7 priority[RQj] for i 7 j.3
When a scheduling selection is to be made, the scheduler will start at the highest-
priority ready queue (RQ0). If there are one or more processes in the queue, a
process is selected using some scheduling policy. If RQ0 is empty, then RQ1 is exam-
ined, and so on.

3In UNIX and many other systems, larger-priority values represent lower-priority processes; unless oth-
erwise stated we follow that convention. Some systems, such as Windows, use the opposite convention: a
higher number means a higher priority.

Figure 9.4  Priority Queueing

Event wait

Event
occurs

Preemption

Dispatch
ReleaseRQ0

RQ1

RQn

Admit

Processor

Blocked queue

M09_STAL4290_09_GE_C09.indd 432 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   433

One problem with a pure priority scheduling scheme is that lower-priority pro-
cesses may suffer starvation. This will happen if there is always a steady supply of
higher-priority ready processes. If this behavior is not desirable, the priority of a
process can change with its age or execution history. We will give one example of
this subsequently.

Alternative Scheduling Policies

Table 9.3 presents some summary information about the various scheduling policies
that are examined in this subsection. The selection function determines which process,
among ready processes, is selected next for execution. The function may be based on
priority, resource requirements, or the execution characteristics of the process. In the
latter case, three quantities are significant:

w = time spent in system so far, waiting

e = time spent in execution so far

s = �total service time required by the process, including e; generally, this quan-
tity must be estimated or supplied by the user

For example, the selection function max[w] indicates an FCFS discipline.

FCFS
Round
Robin

SPN SRT HRRN Feedback

Selection
Function

max[w] constant min[s] min[s - e] max aw + s
s

b (see text)

Decision
Mode

Non-
preemptive

Preemp-
tive (at time
quantum)

Non-
preemptive

Preemptive
(at arrival)

Non-
preemptive

Preemptive
(at time

quantum)

Throughput
Not

emphasized

May be low
if quantum is

too small
High High High

Not
emphasized

Response
Time

May be high,
especially

if there
is a large
variance

in process
execution

times

Provides
good

response
time for short

processes

Provides
good

response
time for

short
processes

Provides
good

response
time

Provides
good

response
time

Not
emphasized

Overhead Minimum Minimum Can be high Can be high Can be high Can be high

Effect on
Processes

Penalizes
short

processes;
penalizes

I/O-bound
processes

Fair
treatment

Penalizes
long

processes

Penalizes
long

processes

Good
balance

May favor
I/O-bound
processes

Starvation No No Possible Possible No Possible

Table 9.3  Characteristics of Various Scheduling Policies

M09_STAL4290_09_GE_C09.indd 433 5/9/17 4:45 PM

434   Chapter 9 / Uniprocessor Scheduling

Process Arrival Time Service Time

A 0 3

B 2 6

C 4 4

D 6 5

E 8 2

Table 9.4  Process Scheduling Example

The decision mode specifies the instants in time at which the selection function
is exercised. There are two general categories:

•	 Nonpreemptive: In this case, once a process is in the Running state, it contin-
ues to execute until (a) it terminates or (b) it blocks itself to wait for I/O or to
request some OS service.

•	 Preemptive: The currently running process may be interrupted and moved to
the Ready state by the OS. The decision to preempt may be performed when a
new process arrives, when an interrupt occurs that places a blocked process in
the Ready state, or periodically, based on a clock interrupt.

Preemptive policies incur greater overhead than nonpreemptive ones, but may
provide better service to the total population of processes because they prevent any
one process from monopolizing the processor for very long. In addition, the cost of
preemption may be kept relatively low by using efficient process-switching mech-
anisms (as much help from hardware as possible) and by providing a large main
memory to keep a high percentage of programs in main memory.

As we describe the various scheduling policies, we will use the set of processes
in Table 9.4 as a running example. We can think of these as batch jobs, with the service
time being the total execution time required. Alternatively, we can consider these to
be ongoing processes that require alternate use of the processor and I/O in a repeti-
tive fashion. In this latter case, the service times represent the processor time required
in one cycle. In either case, in terms of a queueing model, this quantity corresponds
to the service time.4

For the example of Table 9.4, Figure 9.5 shows the execution pattern for each
policy for one cycle, and Table 9.5 summarizes some key results. First, the finish time
of each process is determined. From this, we can determine the turnaround time. In
terms of the queueing model, turnaround time (TAT) is the residence time Tr, or
total time that the item spends in the system (waiting time plus service time). A more
useful figure is the normalized turnaround time, which is the ratio of turnaround
time to service time. This value indicates the relative delay experienced by a process.
Typically, the longer the process execution time, the greater is the absolute amount of
delay that can be tolerated. The minimum possible value for this ratio is 1.0; increasing
values correspond to a decreasing level of service.

4See Appendix H for a summary of queueing model terminology, and Chapter 20 for a more detailed
discussion of queueing analysis.

M09_STAL4290_09_GE_C09.indd 434 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   435

First-Come-First-Served  The simplest scheduling policy is first-come-first-
served (FCFS), also known as first-in, first-out (FIFO) or a strict queueing scheme.
As each process becomes ready, it joins the ready queue. When the currently running
process ceases to execute, the process that has been in the ready queue the longest
is selected for running.

Figure 9.5  A Comparison of Scheduling Policies

First-come-first-
served (FCFS)

0 5 10 15 20

0 5 10 15 20

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

Round robin
(RR), q 5 1

Round robin
(RR), q 5 4

Shortest process
next (SPN)

Shortest remaining
time (SRT)

Highest response
ratio next (HRRN)

Feedback (FB)
q 5 1

Feedback (FB)
q 5 2i

M09_STAL4290_09_GE_C09.indd 435 5/9/17 4:45 PM

436   Chapter 9 / Uniprocessor Scheduling

Process A B C D E

Arrival Time 0 2 4 6 8

Service Time (Ts) 3 6 4 5 2 Mean

FCFS

Finish Time      3      9     13     18     20

Turnaround Time (Tr)      3      7    9     12     12 8.60

Tr /Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR q = 1

Finish Time      4     18     17     20     15

Turnaround Time (Tr)      4     16     13     14      7 10.80

Tr /Ts 1.33 2.67 3.25 2.80 3.50   2.71

RR q = 4

Finish Time      3    17     11     20     19

Turnaround Time (Tr)      3    15      7     14     11 10.00

Tr /Ts 1.00 2.5 1.75 2.80 5.50   2.71

SPN

Finish Time      3      9     15     20     11

Turnaround Time (Tr)      3      7     11     14      3 7.60

Tr /Ts 1.00 1.17 2.75 2.80 1.50 1.84

SRT

Finish Time      3     15      8     20 10

Turnaround Time (Tr)      3     13      4     14      2 7.20

Tr /Ts 1.00 2.17 1.00 2.80 1.00 1.59

HRRN

Finish Time      3      9     13     20   15

Turnaround Time (Tr)      3      7      9     14     7 8.00

Tr /Ts 1.00 1.17 2.25 2.80 3.5 2.14

FB q = 1

Finish Time 4     20     16     19   11

Turnaround Time (Tr) 4     18     12     13       3 10.00

Tr /Ts 1.33 3.00 3.00 2.60 1.5   2.29

FB q = 2i

Finish Time      4     17     18     20     14

Turnaround Time (Tr)      4     15     14     14      6 10.60

Tr /Ts 1.33 2.50 3.50 2.80 3.00   2.63

Table 9.5  A Comparison of Scheduling Policies

M09_STAL4290_09_GE_C09.indd 436 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   437

FCFS performs much better for long processes than short ones. Consider the
following example, based on one in [FINK88]:

Process
Arrival
Time

Service
Time (Ts) Start Time

Finish
Time

Turnaround
Time (Tr) Tr /Ts

W 0    1    0    1    1    1

X 1 100    1 101 100    1

Y 2    1 101 102 100 100

Z 3 100 102 202 199 1.99

Mean 100   26

The normalized turnaround time for process Y is way out of line compared to the
other processes: the total time that it is in the system is 100 times the required process-
ing time. This will happen whenever a short process arrives just after a long process.
On the other hand, even in this extreme example, long processes do not fare poorly.
Process Z has a turnaround time that is almost double that of Y, but its normalized
residence time is under 2.0.

Another difficulty with FCFS is that it tends to favor processor-bound processes
over I/O-bound processes. Consider that there is a collection of processes, one of
which mostly uses the processor (processor bound) and a number of which favor
I/O (I/O bound). When a processor-bound process is running, all of the I/O-bound
processes must wait. Some of these may be in I/O queues (blocked state) but may
move back to the ready queue while the processor-bound process is executing. At
this point, most or all of the I/O devices may be idle, even though there is potentially
work for them to do. When the currently running process leaves the Running state,
the ready I/O-bound processes quickly move through the Running state and become
blocked on I/O events. If the processor-bound process is also blocked, the processor
becomes idle. Thus, FCFS may result in inefficient use of both the processor and the
I/O devices.

FCFS is not an attractive alternative on its own for a uniprocessor system. How-
ever, it is often combined with a priority scheme to provide an effective scheduler.
Thus, the scheduler may maintain a number of queues, one for each priority level, and
dispatch within each queue on a first-come-first-served basis. We see one example of
such a system later, in our discussion of feedback scheduling.

Round Robin  A straightforward way to reduce the penalty that short jobs suffer
with FCFS is to use preemption based on a clock. The simplest such policy is round
robin. A clock interrupt is generated at periodic intervals. When the interrupt occurs,
the currently running process is placed in the ready queue, and the next ready job is
selected on a FCFS basis. This technique is also known as time slicing, because each
process is given a slice of time before being preempted.

With round robin, the principal design issue is the length of the time quantum,
or slice, to be used. If the quantum is very short, then short processes will move
through the system relatively quickly. On the other hand, there is processing over-
head involved in handling the clock interrupt and performing the scheduling and

M09_STAL4290_09_GE_C09.indd 437 5/9/17 4:45 PM

438   Chapter 9 / Uniprocessor Scheduling

dispatching function. Thus, very short time quanta should be avoided. One useful
guide is that the time quantum should be slightly greater than the time required for
a typical interaction or process function. If it is less, then most processes will require
at least two time quanta. Figure 9.6 illustrates the effect this has on response time.
Note in the limiting case of a time quantum that is longer than the longest-running
process, round robin degenerates to FCFS.

Figure 9.5 and Table 9.5 show the results for our example using time quanta
q of 1 and 4 time units. Note process E, which is the shortest job, enjoys significant
improvement for a time quantum of 1.

Round robin is particularly effective in a general-purpose time-sharing sys-
tem or transaction processing system. One drawback to round robin is its relative
treatment of processor-bound and I/O-bound processes. Generally, an I/O-bound
process has a shorter processor burst (amount of time spent executing between I/O
operations) than a processor-bound process. If there is a mix of processor-bound and

Figure 9.6  Effect of Size of Preemption Time Quantum

Process allocated
time quantum

Time

Response time
s

Quantum
q

q 2 s

Interaction
complete

(a) Time quantum greater than typical interaction

Process allocated
time quantum

s

q

Process allocated
time quantum

Process
preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction
complete

M09_STAL4290_09_GE_C09.indd 438 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   439

I/O-bound processes, then the following will happen: An I/O-bound process uses a
processor for a short period, then is blocked for I/O; it waits for the I/O operation to
complete then joins the ready queue. On the other hand, a processor-bound process
generally uses a complete time quantum while executing and immediately returns to
the ready queue. Thus, processor-bound processes tend to receive an unfair portion
of processor time, which results in poor performance for I/O-bound processes, inef-
ficient use of I/O devices, and an increase in the variance of response time.

[HALD91] suggests a refinement to round robin to which he refers as a virtual
round robin (VRR) and that avoids this unfairness. Figure 9.7 illustrates the scheme.
New processes arrive and join the ready queue, which is managed on an FCFS basis.
When a running process times out, it is returned to the ready queue. When a process
is blocked for I/O, it joins an I/O queue. So far, this is as usual. The new feature is an
FCFS auxiliary queue to which processes are moved after being released from an I/O
block. When a dispatching decision is to be made, processes in the auxiliary queue get
preference over those in the main ready queue. When a process is dispatched from the
auxiliary queue, it runs no longer than a time equal to the basic time quantum minus
the total time spent running since it was last selected from the main ready queue.
Performance studies by the authors indicate that this approach is indeed superior to
round robin in terms of fairness.

Figure 9.7  Queueing Diagram for Virtual Round-Robin Scheduler

I/O 1 wait

I/O 2 wait

I/O n wait

Dispatch

Timeout

Release
Ready queue

Admit
Processor

I/O 1 queue

Auxiliary queue

I/O 1
occurs

I/O 2
occurs

I/O n
occurs

I/O 2 queue

I/O n queue

M09_STAL4290_09_GE_C09.indd 439 5/9/17 4:45 PM

440   Chapter 9 / Uniprocessor Scheduling

Shortest Process Next  Another approach to reducing the bias in favor of
long processes inherent in FCFS is the shortest process next (SPN) policy. This is
a nonpreemptive policy in which the process with the shortest expected processing
time is selected next. Thus, a short process will jump to the head of the queue past
longer jobs.

Figure 9.5 and Table 9.5 show the results for our example. Note process
E receives service much earlier than under FCFS. Overall performance is also
significantly improved in terms of response time. However, the variability of
response times is increased, especially for longer processes, and thus predictability
is reduced.

One difficulty with the SPN policy is the need to know (or at least estimate)
the required processing time of each process. For batch jobs, the system may require
the programmer to estimate the value and supply it to the OS. If the programmer's
estimate is substantially under the actual running time, the system may abort the
job. In a production environment, the same jobs run frequently, and statistics may
be gathered. For interactive processes, the OS may keep a running average of each
“burst” for each process. The simplest calculation would be the following:

	 Sn + 1 =
1
n a

n

i=1
Ti	 (9.1)

where

Ti = ��processor execution time for the ith instance of this process (total execu-
tion time for batch job; processor burst time for interactive job),

Si = predicted value for the ith instance, and

S1 = predicted value for first instance; not calculated.

To avoid recalculating the entire summation each time, we can rewrite
Equation (9.1) as

	 Sn + 1 =
1
n

 Tn +
n - 1

n
 Sn	 (9.2)

Note each term in this summation is given equal weight; that is, each term is
multiplied by the same constant 1/(n). Typically, we would like to give greater weight
to more recent instances, because these are more likely to reflect future behavior. A
common technique for predicting a future value on the basis of a time series of past
values is exponential averaging:

	 Sn + 1 = aTn + (1 - a)Sn	 (9.3)

where a is a constant weighting factor (0 6 a 6 1) that determines the relative
weight given to more recent observations relative to older observations. Compare
with Equation (9.2). By using a constant value of a, independent of the number
of past observations, Equation (9.3) considers all past values, but the less recent
ones have less weight. To see this more clearly, consider the following expansion of
Equation (9.3):

Sn + 1 = aTn + (1 - a)aTn - 1 + c + (1 - a)iaTn - i + c + (1 - a)nS1	 (9.4)

M09_STAL4290_09_GE_C09.indd 440 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   441

Because both a and (1 - a) are less than 1, each successive term in the preced-
ing equation is smaller. For example, for a = 0.8, Equation (9.4) becomes

Sn + 1 = 0.8Tn + 0.16Tn - 1 + 0.032Tn - 2 + 0.0064Tn - 3 + c + (0.2)nS1

The older the observation, the less it is counted in to the average.
The size of the coefficient as a function of its position in the expansion is shown

in Figure 9.8. The larger the value of a, the greater is the weight given to the more
recent observations. For a = 0.8, virtually all of the weight is given to the four most
recent observations, whereas for a = 0.2, the averaging is effectively spread out over
the eight or so most recent observations. The advantage of using a value of a close to
1 is that the average will quickly reflect a rapid change in the observed quantity. The
disadvantage is that if there is a brief surge in the value of the observed quantity and
it then settles back to some average value, the use of a large value of a will result in
jerky changes in the average.

Figure 9.9 compares simple averaging with exponential averaging (for two
different values of a). In Figure 9.9a, the observed value begins at 1, grows gradu-
ally to a value of 10, then stays there. In Figure 9.9b, the observed value begins
at 20, declines gradually to 10, then stays there. In both cases, we start out with an
estimate of S1 = 0. This gives greater priority to new processes. Note exponential
averaging tracks changes in process behavior faster than does simple averaging and
the larger value of a results in a more rapid reaction to the change in the observed
value.

A risk with SPN is the possibility of starvation for longer processes, as long
as there is a steady supply of shorter processes. On the other hand, although SPN
reduces the bias in favor of longer jobs, it still is not desirable for a time-sharing or
transaction-processing environment because of the lack of preemption. Looking back
at our worst-case analysis described under FCFS, processes W, X, Y, and Z will still
execute in the same order, heavily penalizing the short process Y.

Shortest Remaining Time  The shortest remaining time (SRT) policy is a
preemptive version of SPN. In this case, the scheduler always chooses the process

Figure 9.8  Exponential Smoothing Coefficients

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10987654321

Age of observation

C
oe

�
ci

en
t

va
lu

e a 5 0.2
a 5 0.5
a 5 0.8

M09_STAL4290_09_GE_C09.indd 441 5/9/17 4:45 PM

442   Chapter 9 / Uniprocessor Scheduling

that has the shortest expected remaining processing time. When a new process joins
the ready queue, it may in fact have a shorter remaining time than the currently
running process. Accordingly, the scheduler may preempt the current process when
a new process becomes ready. As with SPN, the scheduler must have an estimate of
processing time to perform the selection function, and there is a risk of starvation of
longer processes.

SRT does not have the bias in favor of long processes found in FCFS. Unlike
round robin, no additional interrupts are generated, reducing overhead. On the other

Figure 9.9  Use of Exponential Averaging

0

2

4

6

8

10

a = 0.8

a = 0.5

Simple average

Observed value

2019181716151413121110987654321

0

5

10

15

20

a = 0.8

a = 0.5
Simple average
Observed value

2019181716151413121110987654321

(a) Increasing function

(b) Decreasing function

Time

Time

O
bs

er
ve

d
or

 a
ve

ra
ge

 v
al

ue
O

bs
er

ve
d

or
 a

ve
ra

ge
 v

al
ue

M09_STAL4290_09_GE_C09.indd 442 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   443

hand, elapsed service times must be recorded, contributing to overhead. SRT should
also give superior turnaround time performance to SPN, because a short job is given
immediate preference to a running longer job.

Note in our example (see Table 9.5), the three shortest processes all receive
immediate service, yielding a normalized turnaround time for each of 1.0.

Highest Response Ratio Next  In Table 9.5, we have used the normalized
turnaround time, which is the ratio of turnaround time to actual service time, as a
figure of merit. For each individual process, we would like to minimize this ratio, and
we would like to minimize the average value over all processes. In general, we cannot
know ahead of time what the service time is going to be, but we can approximate it,
either based on past history or some input from the user or a configuration manager.
Consider the following ratio:

R =
w + s

s

where

R = response ratio,

w = time spent waiting for the processor, and

s = expected service time.

If the process with this value is dispatched immediately, R is equal to the normalized
turnaround time. Note the minimum value of R is 1.0, which occurs when a process
first enters the system.

Thus, our scheduling rule becomes the following: When the current process
completes or is blocked, choose the ready process with the greatest value of R. This
approach is attractive because it accounts for the age of the process. While shorter
jobs are favored (a smaller denominator yields a larger ratio), aging without service
increases the ratio so a longer process will eventually get past competing shorter jobs.

As with SRT and SPN, the expected service time must be estimated to use high-
est response ratio next (HRRN).

Feedback  If we have no indication of the relative length of various processes, then
none of SPN, SRT, and HRRN can be used. Another way of establishing a preference
for shorter jobs is to penalize jobs that have been running longer. In other words, if
we cannot focus on the time remaining to execute, let us focus on the time spent in
execution so far.

The way to do this is as follows. Scheduling is done on a preemptive (at time
quantum) basis, and a dynamic priority mechanism is used. When a process first
enters the system, it is placed in RQ0 (see Figure 9.4). After its first preemption,
when it returns to the Ready state, it is placed in RQ1. Each subsequent time that
it is preempted, it is demoted to the next lower-priority queue. A short process will
complete quickly, without migrating very far down the hierarchy of ready queues.
A longer process will gradually drift downward. Thus, newer, shorter processes are
favored over older, longer processes. Within each queue, except the lowest-priority
queue, a simple FCFS mechanism is used. Once in the lowest-priority queue, a process

M09_STAL4290_09_GE_C09.indd 443 5/9/17 4:45 PM

444   Chapter 9 / Uniprocessor Scheduling

cannot go lower, but is returned to this queue repeatedly until it completes execution.
Thus, this queue is treated in round-robin fashion.

Figure 9.10 illustrates the feedback scheduling mechanism by showing the path
that a process will follow through the various queues.5 This approach is known
as multilevel feedback, meaning the OS allocates the processor to a process and,
when the process blocks or is preempted, feeds it back into one of several priority
queues.

There are a number of variations on this scheme. A simple version is to perform
preemption in the same fashion as for round robin: at periodic intervals. Our example
shows this (see Figure 9.5 and Table 9.5) for a quantum of one time unit. Note that
in this case, the behavior is similar to round robin with a time quantum of q = 1.

One problem with the simple scheme just outlined is that the turnaround time
of longer processes can stretch out alarmingly. Indeed, it is possible for starvation to
occur if new jobs are entering the system frequently. To compensate for this, we can
vary the preemption times according to the queue: A process scheduled from RQ0 is
allowed to execute for one time unit and is then preempted; a process scheduled from
RQ1 is allowed to execute two time units, and so on. In general, a process scheduled
from RQi is allowed to execute q = 2i time units before preemption. This scheme is
illustrated for our example in Figure 9.5 and Table 9.5.

5Dotted lines are used to emphasize that this is a time sequence diagram rather than a static depiction of
possible transitions, such as Figure 9.4.

Figure 9.10  Feedback Scheduling

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

M09_STAL4290_09_GE_C09.indd 444 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   445

Even with the allowance for greater time allocation at lower priority, a longer
process may still suffer starvation. A possible remedy is to promote a process to a
higher-priority queue after it spends a certain amount of time waiting for service in
its current queue.

Performance Comparison

Clearly, the performance of various scheduling policies is a critical factor in the
choice of a scheduling policy. However, it is impossible to make definitive compari-
sons because relative performance will depend on a variety of factors, including the
probability distribution of service times of the various processes, the efficiency of the
scheduling and context switching mechanisms, and the nature of the I/O demand and
the performance of the I/O subsystem. Nevertheless, we attempt in what follows to
draw some general conclusions.

Queueing Analysis  In this section, we make use of basic queueing formulas, with
the common assumptions of Poisson arrivals and exponential service times.6

First, we make the observation that any such scheduling discipline that
chooses the next item to be served independent of service time obeys the following
relationship:

Tr

Ts
=

1
1 - r

where

Tr = �turnaround time or residence time; total time in system, waiting plus
execution,

Ts = average service time; average time spent in Running state, and

r = processor utilization.

In particular, a priority-based scheduler, in which the priority of each process
is assigned independent of expected service time, provides the same average turn-
around time and average normalized turnaround time as a simple FCFS discipline.
Furthermore, the presence or absence of preemption makes no differences in these
averages.

With the exception of round robin and FCFS, the various scheduling disciplines
considered so far do make selections on the basis of expected service time. Unfortu-
nately, it turns out to be quite difficult to develop closed analytic models of these dis-
ciplines. However, we can get an idea of the relative performance of such scheduling
algorithms, compared to FCFS, by considering priority scheduling in which priority
is based on service time.

If scheduling is done on the basis of priority, and if processes are assigned to
a priority class on the basis of service time, then differences do emerge. Table 9.6
shows the formulas that result when we assume two priority classes, with different
service times for each class. In the table, l refers to the arrival rate. These results

6The queueing terminology used in this chapter is summarized in Appendix H. Poisson arrivals essentially
mean random arrivals, as explained in Appendix H.

M09_STAL4290_09_GE_C09.indd 445 5/9/17 4:45 PM

446   Chapter 9 / Uniprocessor Scheduling

can be generalized to any number of priority classes. Note the formulas differ for
nonpreemptive versus preemptive scheduling. In the latter case, it is assumed a lower-
priority process is immediately interrupted when a higher-priority process becomes
ready.

As an example, let us consider the case of two priority classes, with an equal
number of process arrivals in each class and with the average service time for
the lower-priority class being five times that of the upper-priority class. Thus, we
wish to give preference to shorter processes. Figure 9.11 shows the overall result.
By giving preference to shorter jobs, the average normalized turnaround time is
improved at higher levels of utilization. As might be expected, the improvement is
greatest with the use of preemption. Notice, however, overall performance is not
much affected.

However, significant differences emerge when we consider the two priority
classes separately. Figure 9.12 shows the results for the higher-priority, shorter pro-
cesses. For comparison, the upper line on the graph assumes priorities are not used,
but that we are simply looking at the relative performance of that half of all processes
that have the shorter processing time. The other two lines assume these processes are
assigned a higher priority. When the system is run using priority scheduling without
preemption, the improvements are significant. They are even more significant when
preemption is used.

1.  Poisson arrival rate.

2.  Priority 1 items are serviced before priority 2 items.

3.  First-come-first-served dispatching for items of equal priority.

4.  No item is interrupted while being served.

5.  No items leave the queue (lost calls delayed).

(a) General formulas
l = l1 + l2

r1 = l1Ts1; r2 = l2Ts2

r = r1 + r2

Ts =
l1

l
 Ts1 +

l2

l
 Ts2

Tr =
l1

l
 Tr1 +

l2

l
 Tr2

(b) No interrupts; exponential service times

 Tr1 = Ts1 +
r1Ts1 + r2Ts2

1 + r1

 Tr2 = Ts2 +
Tr1 - Ts1

1 - r

(c) �Preemptive-resume queueing discipline;
exponential service times

 Tr1 = Ts1 +
r1Ts1

1 - r1

 Tr2 = Ts2 +
1

1 - r1
 ¢r1Ts2 +

rTs

1 - r
≤

Assumptions: 

Table 9.6  Formulas for Single-Server Queues with Two Priority Categories

M09_STAL4290_09_GE_C09.indd 446 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   447

Figure 9.11  Overall Normalized Response Time

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes
l1 5 l2
Ts2 5 5 3 Ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r/
T
s)

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Utilization ()

Figure 9.12  Normalized Response Time for Shorter Processes

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes
l1 5 l2
Ts2 5 5 3 Ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r1

/T
s1

)

0.6 0.7 0.8 0.9 1.0

No priority

Priority

Priority
with preemption

Utilization ()

M09_STAL4290_09_GE_C09.indd 447 5/9/17 4:45 PM

448   Chapter 9 / Uniprocessor Scheduling

Figure 9.13  Normalized Response Time for Longer Processes

0.1

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5

2 priority classes
l1 5 l2
Ts2 5 5 3 Ts1

N
or

m
al

iz
ed

 r
es

po
ns

e
ti

m
e

(T
r2

/T
s2

)

0.6 0.7 0.8 0.9 1.0

Priority

Priority
with preemption

No priority

Utilization ()

Figure 9.13 shows the same analysis for the lower-priority, longer processes. As
expected, such processes suffer a performance degradation under priority scheduling.

Simulation Modeling  Some of the difficulties of analytic modeling are overcome
by using discrete-event simulation, which allows a wide range of policies to be
modeled. The disadvantage of simulation is that the results for a given “run” only apply
to that particular collection of processes under that particular set of assumptions.
Nevertheless, useful insights can be gained.

The results of one such study are reported in [FINK88]. The simulation involved
50,000 processes with an arrival rate of l = 0.8 and an average service time of Ts = 1.
Thus, the assumption is the processor utilization is r = lTs = 0.8. Note, therefore,
we are only measuring one utilization point.

To present the results, processes are grouped into service-time percentiles,
each of which has 500 processes. Thus, the 500 processes with the shortest service
time are in the first percentile; with these eliminated, the 500 remaining processes
with the shortest service time are in the second percentile; and so on. This allows
us to view the effect of various policies on processes as a function of the length of
the process.

Figure 9.14 shows the normalized turnaround time, and Figure 9.15 shows
the average waiting time. Looking at the turnaround time, we can see that the per-
formance of FCFS is very unfavorable, with one-third of the processes having a
normalized turnaround time greater than 10 times the service time; furthermore,

M09_STAL4290_09_GE_C09.indd 448 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   449

Figure 9.14  Simulation Result for Normalized Turnaround Time

Percentile of time required

N
or

m
al

iz
ed

 t
ur

na
ro

un
d

ti
m

e

FCFS

FCFS

HRRN

HRRN

SPN

RR (q 5 1)
RR (q 5 1)

FB

FB

SRT

SRT

SPN

0

1

10

100

10 20 30 40 50 60 70 80 90 100

Figure 9.15  Simulation Result for Waiting Time

Percentile of time required

W
ai

t
ti

m
e

FCFS
FCFS

HRRN

HRRN

RR
(q 5 1)

RR (q 5 1)

FB

FB
SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

M09_STAL4290_09_GE_C09.indd 449 5/9/17 4:45 PM

450   Chapter 9 / Uniprocessor Scheduling

these are the shortest processes. On the other hand, the absolute waiting time is
uniform, as is to be expected because scheduling is independent of service time. The
figures show round robin using a quantum of one time unit. Except for the shortest
processes, which execute in less than one quantum, round robin yields a normalized
turnaround time of about five for all processes, treating all fairly. Shortest process
next performs better than round robin, except for the shortest processes. Shortest
remaining time, the preemptive version of SPN, performs better than SPN except
for the longest 7% of all processes. We have seen that, among nonpreemptive poli-
cies, FCFS favors long processes, and SPN favors short ones. Highest response ratio
next is intended to be a compromise between these two effects, and this is indeed
confirmed in the figures. Finally, the figure shows feedback scheduling with fixed,
uniform quanta in each priority queue. As expected, FB performs quite well for
short processes.

Fair-Share Scheduling

All of the scheduling algorithms discussed so far treat the collection of ready pro-
cesses as a single pool of processes from which to select the next running process. This
pool may be broken down by priority, but is otherwise homogeneous.

However, in a multiuser system, if individual user applications or jobs may be
organized as multiple processes (or threads), then there is a structure to the collec-
tion of processes that is not recognized by a traditional scheduler. From the user’s
point of view, the concern is not how a particular process performs but rather how
his or her set of processes (which constitute a single application) performs. Thus, it
would be attractive to make scheduling decisions on the basis of these process sets.
This approach is generally known as fair-share scheduling. Further, the concept can
be extended to groups of users, even if each user is represented by a single process.
For example, in a time-sharing system, we might wish to consider all of the users from
a given department to be members of the same group. Scheduling decisions could
then be made that attempt to give each group similar service. Thus, if a large number
of people from one department log onto the system, we would like to see response
time degradation primarily affect members of that department, rather than users
from other departments.

The term fair share indicates the philosophy behind such a scheduler. Each user
is assigned a weighting of some sort that defines that user’s share of system resources
as a fraction of the total usage of those resources. In particular, each user is assigned a
share of the processor. Such a scheme should operate in a more or less linear fashion,
so if user A has twice the weighting of user B, then in the long run, user A should be
able to do twice as much work as user B. The objective of a fair-share scheduler is
to monitor usage to give fewer resources to users who have had more than their fair
share, and more to those who have had less than their fair share.

A number of proposals have been made for fair-share schedulers [HENR84,
KAY88, WOOD86]. In this section, we describe the scheme proposed in [HENR84]
and implemented on a number of UNIX systems. The scheme is simply referred to
as the fair-share scheduler (FSS). FSS considers the execution history of a related
group of processes, along with the individual execution history of each process in

M09_STAL4290_09_GE_C09.indd 450 5/9/17 4:45 PM

9.2 / SCHEDULING ALGORITHMS   451

making scheduling decisions. The system divides the user community into a set of
fair-share groups and allocates a fraction of the processor resource to each group.
Thus, there might be four groups, each with 25% of the processor usage. In effect,
each fair-share group is provided with a virtual system that runs proportionally
slower than a full system.

Scheduling is done on the basis of priority, which takes into account the under-
lying priority of the process, its recent processor usage, and the recent processor
usage of the group to which the process belongs. The higher the numerical value of
the priority, the lower is the priority. The following formulas apply for process j in
group k:

 CPUj(i) =
CPUj(i - 1)

2

 GCPUk(i) =
GCPUk(i - 1)

2

 Pj(i) = Basej +
CPUj(i)

2
+

GCPUk(i)

4 * Wk
where

CPUj(i) = measure of processor utilization by process j through interval i,

GCPUk(i) = measure of processor utilization of group k through interval i,

Pj(i) = �priority of process j at beginning of interval i; lower values equal
higher priorities,

Basej = base priority of process j, and

Wk = ��weighting assigned to group k, with the constraint that and
0 6 Wk … 1 and a

k
Wk = 1.

Each process is assigned a base priority. The priority of a process drops as the
process uses the processor and as the group to which the process belongs uses the
processor. In the case of the group utilization, the average is normalized by dividing
by the weight of that group. The greater the weight assigned to the group, the less its
utilization will affect its priority.

Figure 9.16 is an example in which process A is in one group, and processes
B and C are in a second group, with each group having a weighting of 0.5. Assume
all processes are processor bound and are usually ready to run. All processes have
a base priority of 60. Processor utilization is measured as follows: The processor is
interrupted 60 times per second; during each interrupt, the processor usage field of
the currently running process is incremented, as is the corresponding group processor
field. Once per second, priorities are recalculated.

In the figure, process A is scheduled first. At the end of one second, it is pre-
empted. Processes B and C now have the higher priority, and process B is scheduled.
At the end of the second time unit, process A has the highest priority. Note the pat-
tern repeats: The kernel schedules the processes in order: A, B, A, C, A, B, and so on.
Thus, 50% of the processor is allocated to process A, which constitutes one group,
and 50% to processes B and C, which constitute another group.

M09_STAL4290_09_GE_C09.indd 451 5/9/17 4:46 PM

452   Chapter 9 / Uniprocessor Scheduling

	 9.3	 TRADITIONAL UNIX SCHEDULING

In this section, we examine traditional UNIX scheduling, which is used in both
SVR3 and 4.3 BSD UNIX. These systems are primarily targeted at the time-
sharing interactive environment. The scheduling algorithm is designed to provide
good response time for interactive users while ensuring that low-priority back-
ground jobs do not starve. Although this algorithm has been replaced in modern

Figure 9.16  Example of Fair-Share Scheduler—Three Processes, Two Groups

Priority

Colored rectangle represents executing process

60 0
1
2

60

0
1
2

60

74 15
16
17

75

15
16
17

75

78 18
19
20

78

18
19
20

78

67 0
1
2

60

15
16
17

75

74 15 15
16
17

75

60 0
1
2

60

60 0

60 0 0

90 30 30

96 37 37

98 39 39 70 3 18 76 15 18

90 30 30

81 7 37 93 30 37

75 0 30

60 0 0

Process
CPU
count

Process A

Group 1 Group 2

Process B Process C
Group
CPU
count

Process
CPU
count

Group
CPU
count

Process
CPU
count

Group
CPU
countPriority Priority

Time

0

1

2

3

4

5

0
1
2

60

0
1
2

60

M09_STAL4290_09_GE_C09.indd 452 5/9/17 4:46 PM

9.3 / TRADITIONAL UNIX SCHEDULING   453

UNIX systems, it is worthwhile to examine the approach because it is representa-
tive of practical time-sharing scheduling algorithms. The scheduling scheme for
SVR4 includes an accommodation for real-time requirements, and so its discussion
is deferred to Chapter 10.

The traditional UNIX scheduler employs multilevel feedback using round robin
within each of the priority queues. The system makes use of one-second preemp-
tion. That is, if a running process does not block or complete within one second, it
is preempted. Priority is based on process type and execution history. The following
formulas apply:

 CPUj(i) =
CPUj(i - 1)

2

 Pj(i) = Basej +
CPUj(i)

2
+ nicej

where

CPUj(i) = measure of processor utilization by process j through interval i,

Pj(i) = �priority of process j at beginning of interval i; lower values equal
higher priorities,

Basej = base priority of process j, and

nicej = user-controllable adjustment factor.

The priority of each process is recomputed once per second, at which time a new
scheduling decision is made. The purpose of the base priority is to divide all processes
into fixed bands of priority levels. The CPU and nice components are restricted to
prevent a process from migrating out of its assigned band (assigned by the base
priority level). These bands are used to optimize access to block devices (e.g., disk)
and to allow the OS to respond quickly to system calls. In decreasing order of priority,
the bands are:

•	 Swapper.

•	 Block I/O device control.

•	 File manipulation.

•	 Character I/O device control.

•	 User processes.

This hierarchy should provide the most efficient use of the I/O devices. Within
the user process band, the use of execution history tends to penalize processor-bound
processes at the expense of I/O-bound processes. Again, this should improve
efficiency. Coupled with the round-robin preemption scheme, the scheduling
strategy is well equipped to satisfy the requirements for general-purpose time
sharing.

An example of process scheduling is shown in Figure 9.17. Processes A, B, and C
are created at the same time with base priorities of 60 (we will ignore the nice value).
The clock interrupts the system 60 times per second and increments a counter for the
running process. The example assumes none of the processes block themselves, and
no other processes are ready to run. Compare this with Figure 9.16.

M09_STAL4290_09_GE_C09.indd 453 5/9/17 4:46 PM

454   Chapter 9 / Uniprocessor Scheduling

	 9.4	 SUMMARY

The OS must make three types of scheduling decisions with respect to the execution
of processes. Long-term scheduling determines when new processes are admitted
to the system. Medium-term scheduling is part of the swapping function and deter-
mines when a program is brought partially or fully into main memory so it may be
executed. Short-term scheduling determines which ready process will be executed

Figure 9.17  Example of a Traditional UNIX Process Scheduling

Priority Priority

Colored rectangle represents executing process

60 0
1
2

60 0

60 075 30

67 15 75 30

67 15

68 16

76 33

76 33

67 15

75 30

060
CPU count CPU count

Process A
Priority CPU count

Process CProcess B
Time

0

1

2

3

4

5

60
60 0

1
2

60
60 0

1
2

60
63 7

8
9

67
63 7

8
9

63 7
67

M09_STAL4290_09_GE_C09.indd 454 5/9/17 4:46 PM

9.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   455

next by the processor. This chapter focuses on the issues relating to short-term
scheduling.

A variety of criteria are used in designing the short-term scheduler. Some of
these criteria relate to the behavior of the system as perceived by the individual user
(user oriented), while others view the total effectiveness of the system in meeting the
needs of all users (system oriented). Some of the criteria relate specifically to quan-
titative measures of performance, while others are more qualitative in nature. From
a user’s point of view, response time is generally the most important characteristic
of a system, while from a system point of view, throughput or processor utilization
is important.

A variety of algorithms have been developed for making the short-term sched-
uling decision among all ready processes:

•	 First-come-first-served: Select the process that has been waiting the longest
for service.

•	 Round robin: Use time slicing to limit any running process to a short burst of
processor time, and rotate among all ready processes.

•	 Shortest process next: Select the process with the shortest expected processing
time, and do not preempt the process.

•	 Shortest remaining time: Select the process with the shortest expected remain-
ing process time. A process may be preempted when another process becomes
ready.

•	 Highest response ratio next: Base the scheduling decision on an estimate of
normalized turnaround time.

•	 Feedback: Establish a set of scheduling queues and allocate processes to queues
based on execution history and other criteria.

The choice of scheduling algorithm will depend on expected performance and
on implementation complexity.

	 9.5	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

arrival rate
dispatcher
exponential averaging
fair-share scheduling
fairness
first-come-first-served
first-in-first-out
long-term scheduler

medium-term scheduler
multilevel feedback
predictability
residence time
response time
round robin
scheduling priority
service time

short-term scheduler
throughput
time slicing
turnaround time (TAT)
utilization
waiting time

M09_STAL4290_09_GE_C09.indd 455 5/9/17 4:46 PM

456   Chapter 9 / Uniprocessor Scheduling

Review Questions

	 9.1.	 How is processor scheduling done in the batch portion of an OS?
	 9.2.	 What is the main function of a dispatcher? Give some examples of events when it is

invoked.
	 9.3.	 What scheduling criteria affect the performance of a system?
	 9.4.	 If purely priority-based scheduling is used in a system, what are the problems that the

system will face?
	 9.5.	 Identify the advantages and disadvantages of preemptive scheduling.
	 9.6.	 Briefly define FCFS scheduling.
	 9.7.	 Briefly define round-robin scheduling.
	 9.8.	 Briefly define shortest-process-next scheduling.
	 9.9.	 Briefly define shortest-remaining-time scheduling.
	9.10.	 Briefly define highest-response-ratio-next scheduling.
	9.11.	 Briefly define feedback scheduling.

Problems

	 9.1.	 Consider the following workload:

Process Burst Time Priority Arrival Time

P1   50 ms 4   0 ms

P2   20 ms 1 20 ms

P3 100 ms 3 40 ms

P4   40 ms 2 60 ms

a.	 Show the schedule using shortest remaining time, nonpreemptive priority (a
smaller priority number implies higher priority) and round robin with quantum
30 ms. Use time scale diagram as shown below for the FCFS example to show the
schedule for each requested scheduling policy.
Example for FCFS (1 unit = 10 ms):

P1 P1 P1 P1 P1 P2 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b.	 What is the average waiting time of the above scheduling policies?
	 9.2.	 What factors determine the time quantum in round robin scheduling? Consider the

system:

Process Arrival Time Processing Time

P1   0 12

P2   2   6

P3   8 18

P4 10   4

		 Context switch takes a time of 1 unit. Compute the average turnaround time of the
processes for the time quanta q = 2, q = 4, and q = 8 respectively.

M09_STAL4290_09_GE_C09.indd 456 5/9/17 4:46 PM

9.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   457

	 9.3.	 Consider that a uniprocessor system has n processes to be scheduled. If only nonpre-
emptive scheduling algorithms are allowed, can you determine the maximum number
of possible schedules in terms of n?

	 9.4.	 Assume the following burst-time pattern for a process: 6, 4, 6, 4, 13, 13, 13, and assume
the initial guess is 10. Produce a plot similar to those of Figure 9.9.

	 9.5.	 Consider the following pair of equations as an alternative to Equation (9.3):

 Sn + 1 = aTn + (1 - a)Sn

 Xn + 1 = min [Ubound, max[Lbound, (bSn + 1)]]

		 where Ubound and Lbound are prechosen upper and lower bounds on the estimated
value of T. The value of Xn + 1 is used in the shortest-process-next algorithm, instead of
the value of Sn + 1. What functions do a and b perform, and what is the effect of higher
and lower values on each?

	 9.6.	 In the bottom example in Figure 9.5, process A runs for two time units before control
is passed to process B. Another plausible scenario would be that A runs for three time
units before control is passed to process B. What policy differences in the feedback-
scheduling algorithm would account for the two different scenarios?

	 9.7.	 In a nonpreemptive uniprocessor system, the ready queue contains three jobs at time
t immediately after the completion of a job. These jobs arrived at times t1, t2, and t3
with estimated execution times of r1, r2, and r3, respectively. Figure 9.18 shows the
linear increase of their response ratios over time. Use this example to find a variant of
response ratio scheduling, known as minimax response ratio scheduling, that minimizes
the maximum response ratio for a given batch of jobs ignoring further arrivals. (Hint:
Decide, first, which job to schedule as the last one.)

	 9.8.	 Prove that the minimax response ratio algorithm of the preceding problem minimizes
the maximum response ratio for a given batch of jobs. (Hint: Focus attention on the job
that will achieve the highest response ratio and all jobs executed before it. Consider
the same subset of jobs scheduled in any other order and observe the response ratio
of the job that is executed as the last one among them. Notice this subset may now be
mixed with other jobs from the total set.)

	 9.9.	 Define residence time Tr as the average total time a process spends waiting and being
served. Show that for FIFO, with mean service time Ts, we have Tr = Ts/(1 - r), where
r is utilization.

Figure 9.18  Response Ratio as a Function of Time

t1 t2

r1

t3 t4
Time

1

1

R
es

po
ns

e
ra

ti
o

r2
1

r3
1

M09_STAL4290_09_GE_C09.indd 457 5/9/17 4:46 PM

458   Chapter 9 / Uniprocessor Scheduling

	9.10.	 A processor is multiplexed at infinite speed among all processes present in a ready
queue with no overhead. (This is an idealized model of round-robin scheduling
among ready processes using time slices that are very small compared to the mean
service time.) Show that for Poisson input from an infinite source with exponential
service times, the mean response time Rx of a process with service time x is given by
Rx = x/(1 - r). (Hint: Review the basic queueing equations in Appendix H or Chap-
ter 20. Then consider the number of items waiting, w, in the system upon arrival of the
given process.)

	9.11.	 Consider a variation of round robin scheduling, say NRR scheduling. In NRR sched-
uling, each process can have its own time quantum, q. The value of q starts out at
40 ms and decreases by 10 ms each time it goes through the round robin queue, until
it reaches a minimum of 10 ms. Thus, long jobs get decreasingly shorter time slices.
Analyze this scheduling algorithm for three jobs A, B, and C that arrive in the system
having estimated burst times of 100 ms, 120 ms, and 60 ms respectively. Also identify
some advantages and disadvantages that are associated with this algorithm.

	9.12.	 In a queueing system, new jobs must wait for a while before being served. While a job
waits, its priority increases linearly with time from zero at a rate a. A job waits until its
priority reaches the priority of the jobs in service; then, it begins to share the proces-
sor equally with other jobs in service using round robin while its priority continues to
increase at a slower rate b. The algorithm is referred to as selfish round robin, because
the jobs in service try (in vain) to monopolize the processor by increasing their prior-
ity continuously. Use Figure 9.19 to show that the mean response time Rx for a job of
service time x is given by:

Rx =
s

1 - r
+

x - s
1 - r′

		 where

r = ls r′ = ra1 -
b

a
b 0 … b 6 a

		 assuming arrival and service times are exponentially distributed with means 1/l and s,
respectively. (Hint: Consider the total system and the two subsystems separately.)

Figure 9.19  Selfish Round Robin

Waiting jobs

a
l l9

b

1/l

1/l9

a a

b

Served jobs

Time

In
cr

ea
si

ng
 p

ri
or

it
y

Departures

M09_STAL4290_09_GE_C09.indd 458 5/9/17 4:46 PM

9.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   459

	9.13.	 An interactive system using round-robin scheduling and swapping tries to give guar-
anteed response to trivial requests as follows. After completing a round-robin cycle
among all ready processes, the system determines the time slice to allocate to each
ready process for the next cycle by dividing a maximum response time by the number
of processes requiring service. Is this a reasonable policy?

	9.14.	 Which type of process is generally favored by a multilevel feedback queueing
scheduler—a processor-bound process, or an I/O-bound process? Briefly explain why.

	9.15.	 A variation of preemptive priority scheduling has dynamically changing priorities.
A new process is assigned a priority 0. While a process is in the ready queue, its priority
changes at the rate of a; and while it is executing, its priority changes at the rate of b.
The different values of a and b give different algorithms. If larger values imply higher
priorities, state with reasons the type of algorithm that will result if:
a.	 a 6 b 6 0
b.	 b 7 a 7 0

	9.16.	 Five batch jobs, A through E, arrive at a computer center at essentially the same time.
They have an estimated running time of 15, 9, 3, 6, and 12 minutes, respectively. Their
(externally defined) priorities are 6, 3, 7, 9, and 4, respectively, with a lower value cor-
responding to a higher priority. For each of the following scheduling algorithms, deter-
mine the turnaround time for each process and the average turnaround for all jobs.
Ignore process switching overhead. Explain how you arrived at your answers. In the
last three cases, assume only one job at a time runs until it finishes, and all jobs are
completely processor bound.
a.	 round robin with a time quantum of 1 minute
b.	 priority scheduling
c.	 FCFS (run in order 15, 9, 3, 6, and 12)
d.	 shortest job first

M09_STAL4290_09_GE_C09.indd 459 5/9/17 4:46 PM

460

Multiprocessor, Multicore,
and Real-Time Scheduling

10.1	 Multiprocessor and Multicore Scheduling
Granularity
Design Issues
Process Scheduling
Thread Scheduling
Multicore Thread Scheduling

10.2	 Real-Time Scheduling
Background
Characteristics of Real-Time Operating Systems
Real-Time Scheduling
Deadline Scheduling
Rate Monotonic Scheduling
Priority Inversion

10.3	 Linux Scheduling
Real-Time Scheduling
Non-Real-Time Scheduling

10.4	 UNIX SVR4 Scheduling

10.5	 UNIX FreeBSD Scheduling
Priority Classes
SMP and Multicore Support

10.6	 Windows Scheduling
Process and Thread Priorities
Multiprocessor Scheduling

10.7	 Summary

10.8	 Key Terms, Review Questions, and Problems

Chapter

M10_STAL4290_09_GE_C10.indd 460 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   461

This chapter continues our survey of process and thread scheduling. We begin with
an examination of issues raised by the availability of more than one processor. A
number of design issues are explored. This is followed by a look at the scheduling of
processes on a multiprocessor system. Then the somewhat different design consid-
erations for multiprocessor thread scheduling are examined. The second section of
this chapter covers real-time scheduling. The section begins with a discussion of the
characteristics of real-time processes, then looks at the nature of the scheduling pro-
cess. Two approaches to real-time scheduling, deadline scheduling and rate monotonic
scheduling, are examined.

	 10.1	MULTIPROCESSOR AND MULTICORE SCHEDULING

When a computer system contains more than a single processor, several new issues
are introduced into the design of the scheduling function. We begin with a brief
overview of multiprocessors then look at the rather different considerations when
scheduling is done at the process level and at the thread level.

We can classify multiprocessor systems as follows:

•	 Loosely coupled or distributed multiprocessor, or cluster: Consists of a
collection of relatively autonomous systems, each processor having its own
main memory and I/O channels. We will address this type of configuration in
Chapter 16.

•	 Functionally specialized processors: An example is an I/O processor. In this
case, there is a master, general-purpose processor; specialized processors are
controlled by the master processor and provide services to it. Issues relating to
I/O processors are addressed in Chapter 11.

•	 Tightly coupled multiprocessor: Consists of a set of processors that share a com-
mon main memory and are under the integrated control of an operating system.

Our concern in this section is with the last category, specifically with issues relating
to scheduling.

Granularity

A good way of characterizing multiprocessors and placing them in context with
other architectures is to consider the synchronization granularity, or frequency of

Learning Objectives

After studying this chapter, you should be able to:
•	 Understand the concept of thread granularity.
•	 Discuss the key design issues in multiprocessor thread scheduling and some

of the key approaches to scheduling.
•	 Understand the requirements imposed by real-time scheduling.
•	 Explain the scheduling methods used in Linux, UNIX SVR4, and Windows 10.

M10_STAL4290_09_GE_C10.indd 461 5/9/17 4:32 PM

462   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

synchronization, between processes in a system. We can distinguish five categories
of parallelism that differ in the degree of granularity. These are summarized in
Table 10.1.

Independent Parallelism  With independent parallelism, there is no explicit
synchronization among processes. Each represents a separate, independent
application or job. A typical use of this type of parallelism is in a time-sharing system.
Each user is performing a particular application, such as word processing or using
a spreadsheet. The multiprocessor provides the same service as a multiprogrammed
uniprocessor. Because more than one processor is available, average response time
to the users will be shorter.

It is possible to achieve a similar performance gain by providing each user with
a personal computer or workstation. If any files or information are to be shared, then
the individual systems must be hooked together into a distributed system supported
by a network. This approach will be examined in Chapter 16. On the other hand, a
single, multiprocessor shared system in many instances is more cost-effective than a
distributed system, allowing economies of scale in disks and other peripherals.

Coarse and Very Coarse-Grained Parallelism  With coarse and very coarse-
grained parallelism, there is synchronization among processes, but at a very gross
level. This kind of situation is easily handled as a set of concurrent processes running
on a multiprogrammed uniprocessor, and can be supported on a multiprocessor with
little or no change to user software.

A simple example of an application that can exploit the existence of a multi-
processor is given in [WOOD89]. The authors have developed a program that takes a
specification of files needing recompilation to rebuild a piece of software and deter-
mines which of these compiles (usually all of them) can be run simultaneously. The
program then spawns one process for each parallel compile. The authors report that
the speedup on a multiprocessor actually exceeds what would be expected by sim-
ply adding up the number of processors in use, due to synergies in the disk buffer
caches (a topic explored in Chapter 11) and sharing of compiler code, which is loaded
into memory only once.

Grain Size Description
Synchronization

Interval (Instructions)

Fine Parallelism inherent in a single instruction stream 6 20

Medium Parallel processing or multitasking within a single application 20–200

Coarse Multiprocessing of concurrent processes in a multiprogramming
environment

200–2,000

Very Coarse Distributed processing across network nodes to form a single
computing environment

2,000–1M

Independent Multiple unrelated processes Not applicable

Table 10.1  Synchronization Granularity and Processes

M10_STAL4290_09_GE_C10.indd 462 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   463

In general, any collection of concurrent processes that need to communicate or
synchronize can benefit from the use of a multiprocessor architecture. In the case of
very infrequent interaction among processes, a distributed system can provide good
support. However, if the interaction is somewhat more frequent, then the overhead
of communication across the network may negate some of the potential speedup. In
that case, the multiprocessor organization provides the most effective support.

Medium-Grained Parallelism  We saw in Chapter 4 that a single application can
be effectively implemented as a collection of threads within a single process. In this
case, the programmer must explicitly specify the potential parallelism of an application.
Typically, there will need to be rather a high degree of coordination and interaction
among the threads of an application, leading to a medium-grain level of synchronization.

Whereas independent, very coarse, and coarse-grained parallelism can be sup-
ported on either a multiprogrammed uniprocessor or a multiprocessor with little or
no impact on the scheduling function, we need to reexamine scheduling when dealing
with the scheduling of threads. Because the various threads of an application interact
so frequently, scheduling decisions concerning one thread may affect the performance
of the entire application. We will return to this issue later in this section.

Fine-Grained Parallelism  Fine-grained parallelism represents a much more
complex use of parallelism than is found in the use of threads. Although much
work has been done on highly parallel applications, this is so far a specialized and
fragmented area, with many different approaches.

Chapter 4 provides an example of the use of granularity for the Valve game
software.

Design Issues

Scheduling on a multiprocessor involves three interrelated issues:

1.	 The assignment of processes to processors

2.	 The use of multiprogramming on individual processors

3.	 The actual dispatching of a process

In looking at these three issues, it is important to keep in mind that the approach
taken will depend, in general, on the degree of granularity of the applications, and on
the number of processors available.

Assignment of Processes to Processors  If we assume the architecture of the
multiprocessor is uniform, in the sense that no processor has a particular physical
advantage with respect to access to main memory or to I/O devices, then the
simplest scheduling approach is to treat the processors as a pooled resource, and
assign processes to processors on demand. The question then arises as to whether
the assignment should be static or dynamic.

If a process is permanently assigned to one processor from activation until its
completion, then a dedicated short-term queue is maintained for each processor.
An advantage of this approach is that there may be less overhead in the scheduling

M10_STAL4290_09_GE_C10.indd 463 5/9/17 4:32 PM

464   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

function, because the processor assignment is made once and for all. Also, the use
of dedicated processors allows a strategy known as group or gang scheduling, as
discussed later.

A disadvantage of static assignment is that one processor can be idle, with an
empty queue, while another processor has a backlog. To prevent this situation, a com-
mon queue can be used. All processes go into one global queue and are scheduled to
any available processor. Thus, over the life of a process, the process may be executed
on different processors at different times. In a tightly coupled shared-memory archi-
tecture, the context information for all processes will be available to all processors,
and therefore the cost of scheduling a process will be independent of the identity of
the processor on which it is scheduled. Yet another option is dynamic load balancing,
in which threads are moved from a queue for one processor to a queue for another
processor; Linux uses this approach.

Regardless of whether processes are dedicated to processors, some means is
needed to assign processes to processors. Two approaches have been used: master/
slave and peer. With a master/slave architecture, key kernel functions of the oper-
ating system always run on a particular processor. The other processors may only
execute user programs. The master is responsible for scheduling jobs. Once a process
is active, if the slave needs service (e.g., an I/O call), it must send a request to the
master and wait for the service to be performed. This approach is quite simple and
requires little enhancement to a uniprocessor multiprogramming operating system.
Conflict resolution is simplified because one processor has control of all memory
and I/O resources. There are two disadvantages to this approach: (1) A failure of the
master brings down the whole system, and (2) the master can become a performance
bottleneck.

In a peer architecture, the kernel can execute on any processor, and each pro-
cessor does self-scheduling from the pool of available processes. This approach com-
plicates the operating system. The operating system must ensure that two processors
do not choose the same process and that the processes are not somehow lost from the
queue. Techniques must be employed to resolve and synchronize competing claims
to resources.

There is, of course, a spectrum of approaches between these two extremes.
One approach is to provide a subset of processors dedicated to kernel processing
instead of just one. Another approach is simply to manage the difference between
the needs of kernel processes and other processes on the basis of priority and execu-
tion history.

The Use of Multiprogramming on Individual Processors  When each
process is statically assigned to a processor for the duration of its lifetime, a new
question arises: Should that processor be multiprogrammed? The reader’s first
reaction may be to wonder why the question needs to be asked; it would appear
particularly wasteful to tie up a processor with a single process when that process may
frequently be blocked waiting for I/O or because of concurrency/synchronization
considerations.

In the traditional multiprocessor, which is dealing with coarse-grained or inde-
pendent synchronization granularity (see Table 10.1), it is clear that each individual
processor should be able to switch among a number of processes to achieve high

M10_STAL4290_09_GE_C10.indd 464 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   465

utilization and therefore better performance. However, for medium-grained applica-
tions running on a multiprocessor with many processors, the situation is less clear.
When many processors are available, it is no longer paramount that every single
processor be busy as much as possible. Rather, we are concerned to provide the
best performance, on average, for the applications. An application that consists of
a number of threads may run poorly unless all of its threads are available to run
simultaneously.

Process Dispatching  The final design issue related to multiprocessor scheduling
is the actual selection of a process to run. We have seen that, on a multiprogrammed
uniprocessor, the use of priorities or of sophisticated scheduling algorithms based on
past usage may improve performance over a simple-minded first-come-first-served
strategy. When we consider multiprocessors, these complexities may be unnecessary
or even counterproductive, and a simpler approach may be more effective with less
overhead. In the case of thread scheduling, new issues come into play that may be
more important than priorities or execution histories. We address each of these topics
in turn.

Process Scheduling

In most traditional multiprocessor systems, processes are not dedicated to processors.
Rather, there is a single queue for all processors, or if some sort of priority scheme is
used, there are multiple queues based on priority, all feeding into the common pool
of processors. In any case, we can view the system as being a multiserver queueing
architecture.

Consider the case of a dual-processor system in which each processor of the
dual-processor system has half the processing rate of a processor in the single-
processor system. [SAUE81] reports a queueing analysis that compares FCFS
scheduling to round robin and to shortest remaining time. The study is concerned
with process service time, which measures the amount of processor time a process
needs, either for a total job or the amount of time needed each time the process is
ready to use the processor. In the case of round robin, it is assumed that the time
quantum is large compared to context-switching overhead and small compared to
mean service time. The results depend on the variability that is seen in service times.
A common measure of variability is the coefficient of variation, Cs.

1 A value of Cs
corresponds to the case where there is no variability: the service times of all pro-
cesses are equal. Increasing values of Cs = 0 correspond to increasing variability
among the service times. That is, the larger the value of Cs, the more widely do the
values of the service times vary. Values of Cs of 5 or more are not unusual for proces-
sor service time distributions.

Figure 10.1a compares round-robin throughput to FCFS throughput as a func-
tion of Css. Note the difference in scheduling algorithms is much smaller in the dual-
processor case. With two processors, a single process with long service time is much

1The value of Cs is calculated as ss/Ts, where ss is the standard deviation of service time and Ts is the mean
service time. For a further explanation of Cs, see the discussion in Chapter 20.

M10_STAL4290_09_GE_C10.indd 465 5/9/17 4:32 PM

466   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

less disruptive in the FCFS case; other processes can use the other processor. Similar
results are shown in Figure 10.1b.

The study in [SAUE81] repeated this analysis under a number of assumptions
about degree of multiprogramming, mix of I/O-bound versus CPU-bound processes,
and the use of priorities. The general conclusion is that the specific scheduling disci-
pline is much less important with two processors than with one. It should be evident
that this conclusion becomes even stronger as the number of processors increases.
Thus, a simple FCFS discipline, or the use of FCFS within a static priority scheme,
may suffice for a multiprocessor system.

Figure 10.1 � Comparison of Scheduling Performance for One
and Two Processors

Single
processor

Dual
processorSR

T
 t

o
F

C
F

S
th

ro
ug

hp
ut

 r
at

io

0
1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4 5

Coe�cient of variation

(a) Comparison of RR and FCFS

Coe�cient of variation

(b) Comparison of SRT and FCFS

0 1 2

Single
processor

Dual
processor

0.98

R
R

 t
o

F
C

F
S

th
ro

ug
hp

ut
 r

at
io

3 4 5

1.00

1.05

1.10

1.15

M10_STAL4290_09_GE_C10.indd 466 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   467

Thread Scheduling

As we have seen, with threads, the concept of execution is separated from the rest
of the definition of a process. An application can be implemented as a set of threads
that cooperate and execute concurrently in the same address space.

On a uniprocessor, threads can be used as a program structuring aid and to
overlap I/O with processing. Because of the minimal penalty in doing a thread switch
compared to a process switch, these benefits are realized with little cost. However, the
full power of threads becomes evident in a multiprocessor system. In this environ-
ment, threads can be used to exploit true parallelism in an application. If the various
threads of an application are simultaneously run on separate processors, dramatic
gains in performance are possible. However, it can be shown for applications that
require significant interaction among threads (medium-grained parallelism), small
differences in thread management and scheduling can have a significant performance
impact [ANDE89].

Among the many proposals for multiprocessor thread scheduling and processor
assignment, four general approaches stand out:

1.	 Load sharing: Processes are not assigned to a particular processor. A global
queue of ready threads is maintained, and each processor, when idle, selects a
thread from the queue. The term load sharing is used to distinguish this strategy
from load-balancing schemes in which work is allocated on a more permanent
basis (e.g., see [FEIT90a]).2

2.	 Gang scheduling: A set of related threads is scheduled to run on a set of proces-
sors at the same time, on a one-to-one basis.

3.	 Dedicated processor assignment: This is the opposite of the load-sharing
approach and provides implicit scheduling defined by the assignment of threads
to processors. Each program, for the duration of its execution, is allocated a
number of processors equal to the number of threads in the program. When
the program terminates, the processors return to the general pool for possible
allocation to another program.

4.	 Dynamic scheduling: The number of threads in a process can be altered during
the course of execution.

Load Sharing  Load sharing is perhaps the simplest approach and the one that
carries over most directly from a uniprocessor environment. It has several advantages:

•	 The load is distributed evenly across the processors, assuring that no processor
is idle while work is available to do.

•	 No centralized scheduler is required; when a processor is available, the schedul-
ing routine of the operating system is run on that processor to select the next
thread.

2Some of the literature on this topic refers to this approach as self-scheduling, because each processor
schedules itself without regard to other processors. However, this term is also used in the literature to
refer to programs written in a language that allows the programmer to specify the scheduling (e.g., see
[FOST91]).

M10_STAL4290_09_GE_C10.indd 467 5/9/17 4:32 PM

468   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

•	 The global queue can be organized and accessed using any of the schemes dis-
cussed in Chapter 9, including priority-based schemes and schemes that con-
sider execution history or anticipated processing demands.

[LEUT90] analyzes three different versions of load sharing:

1.	 First-come-first-served (FCFS): When a job arrives, each of its threads is placed
consecutively at the end of the shared queue. When a processor becomes idle,
it picks the next ready thread, which it executes until completion or blocking.

2.	 Smallest number of threads first: The shared ready queue is organized as a pri-
ority queue, with highest priority given to threads from jobs with the smallest
number of unscheduled threads. Jobs of equal priority are ordered according to
which job arrives first. As with FCFS, a scheduled thread is run to completion
or blocking.

3.	 Preemptive smallest number of threads first: Highest priority is given to jobs
with the smallest number of unscheduled threads. An arriving job with a smaller
number of threads than an executing job will preempt threads belonging to the
scheduled job.

Using simulation models, the authors report that, over a wide range of job charac-
teristics, FCFS is superior to the other two policies in the preceding list. Further, the
authors find that some form of gang scheduling, discussed in the next subsection, is
generally superior to load sharing.

There are several disadvantages of load sharing:

•	 The central queue occupies a region of memory that must be accessed in a man-
ner that enforces mutual exclusion. Thus, it may become a bottleneck if many
processors look for work at the same time. When there is only a small number
of processors, this is unlikely to be a noticeable problem. However, when the
multiprocessor consists of dozens or even hundreds of processors, the potential
for bottleneck is real.

•	 Preempted threads are unlikely to resume execution on the same processor. If
each processor is equipped with a local cache, caching becomes less efficient.

•	 If all threads are treated as a common pool of threads, it is unlikely that all of
the threads of a program will gain access to processors at the same time. If a
high degree of coordination is required between the threads of a program, the
process switches involved may seriously compromise performance.

Despite the potential disadvantages, load sharing is one of the most commonly
used schemes in current multiprocessors.

A refinement of the load-sharing technique is used in the Mach operating sys-
tem [BLAC90, WEND89]. The operating system maintains a local run queue for each
processor and a shared global run queue. The local run queue is used by threads that
have been temporarily bound to a specific processor. A processor examines the local
run queue first to give bound threads absolute preference over unbound threads.
As an example of the use of bound threads, one or more processors could be dedi-
cated to running processes that are part of the operating system. Another example
is that the threads of a particular application could be distributed among a number

M10_STAL4290_09_GE_C10.indd 468 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   469

of processors; with the proper additional software, this provides support for gang
scheduling, discussed next.

Gang Scheduling  The concept of scheduling a set of processes simultaneously
on a set of processors predates the use of threads. [JONE80] refers to the concept as
group scheduling. This approach has the following performance benefits:

•	 If processes in the group are related or coordinated in some fashion, synchro-
nization blocking may be reduced, less process switching may be necessary, and
performance will increase.

•	 A single scheduling decision affects a number of processors and processes at
one time, reducing scheduling overhead.

On the Cm* multiprocessor, the term coscheduling is used [GEHR87].
Coscheduling is based on the concept of scheduling a related set of tasks, called a
task force. The individual elements of a task force tend to be quite small and are
hence close to the idea of a thread.

The term gang scheduling has been applied to the simultaneous scheduling of
the threads that make up a single process [FEIT90b]. Gang scheduling is useful for
medium-grained to fine-grained parallel applications whose performance severely
degrades when any part of the application is not running while other parts are ready
to run. It is also beneficial for any parallel application, even one that is not quite so
performance sensitive. The need for gang scheduling is widely recognized, and imple-
mentations exist on a variety of multiprocessor operating systems.

One obvious way in which gang scheduling improves the performance of a
single application is that process switches are minimized. Suppose one thread of a
process is executing and reaches a point at which it must synchronize with another
thread of the same process. If that other thread is not running, but is in a ready queue,
the first thread is hung up until a process switch can be done on some other proces-
sor to bring in the needed thread. In an application with tight coordination among
threads, such switches will dramatically reduce performance. The simultaneous sched-
uling of cooperating threads can also save time in resource allocation. For example,
multiple gang-scheduled threads can access a file without the additional overhead of
locking during a seek, read/write operation.

The use of gang scheduling creates a requirement for processor allocation. One
possibility is the following. Suppose we have N processors and M applications, each of
which has N or fewer threads. Then each application could be given 1/M of the avail-
able time on the N processors, using time slicing. [FEIT90a] notes that this strategy
can be inefficient. Consider an example in which there are two applications, one with
four threads, and one with one thread. Using uniform time allocation wastes 37.5%
of the processing resource, because when the single-thread application runs, three
processors are left idle (see Figure 10.2). If there are several one-thread applications,
these could all be fit together to increase processor utilization. If that option is not
available, an alternative to uniform scheduling is scheduling that is weighted by the
number of threads. Thus, the four-thread application could be given four-fifths of
the time and the one-thread application given only one-fifth of the time, reducing
the processor waste to 15%.

M10_STAL4290_09_GE_C10.indd 469 5/9/17 4:32 PM

470   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

Dedicated Processor Assignment  An extreme form of gang scheduling,
suggested in [TUCK89], is to dedicate a group of processors to an application for
the duration of the application. That is, when an application is scheduled, each of
its threads is assigned a processor that remains dedicated to that thread until the
application runs to completion.

This approach would appear to be extremely wasteful of processor time. If
a thread of an application is blocked waiting for I/O or for synchronization with
another thread, then that thread’s processor remains idle: There is no multiprogram-
ming of processors. Two observations can be made in defense of this strategy:

1.	 In a highly parallel system, with tens or hundreds of processors, each of which
represents a small fraction of the cost of the system, processor utilization is no
longer so important as a metric for effectiveness or performance.

2.	 The total avoidance of process switching during the lifetime of a program
should result in a substantial speedup of that program.

Both [TUCK89] and [ZAHO90] report analyses that support statement 2.
Table 10.2 shows the results of one experiment [TUCK89]. The authors ran two
applications simultaneously (executing concurrently), a matrix multiplication and
a fast Fourier transform (FFT) calculation, on a system with 16 processors. Each
application breaks its problem into a number of tasks, which are mapped onto
the threads executing that application. The programs are written in such a way as
to allow the number of threads to be used to vary. In essence, a number of tasks
are defined and queued by an application. Tasks are taken from the queue and
mapped onto the available threads by the application. If there are fewer threads
than tasks, then leftover tasks remain queued and are picked up by threads as they
complete their assigned tasks. Clearly, not all applications can be structured in this
way, but many numerical problems and some other applications can be dealt with
in this fashion.

Figure 10.2  Gang Scheduling

(a) Uniform scheduling

Processor

T
im

e
sl

ot

P1

0

1

2

3

4

P2 P3 P4

A1

B1 idle idle idle

B1 idle idle idle

A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

(b) Weighted scheduling

Processor

T
im

e
sl

ot

P1

0

1

2

3

4

P2 P3 P4

A1

B1 idle idle idle

A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

A1 A2 A3 A4

M10_STAL4290_09_GE_C10.indd 470 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   471

Number of Threads per
Application Matrix Multiplication FFT

  1 1 1

  2 1.8 1.8

  4 3.8 3.8

  8 6.5 6.1

12 5.2 5.1

16 3.9 3.8

20 3.3 3

24 2.8 2.4

Table 10.2  Application Speedup as a Function of Number of Threads

Table 10.2 shows the speedup for the applications as the number of threads
executing the tasks in each application is varied from 1 to 24. For example, we see
that when both applications are started simultaneously with 24 threads each, the
speedup obtained (compared to using a single thread for each application) is 2.8 for
matrix multiplication and 2.4 for FFT. Table 10.2 also shows that the performance of
both applications worsens considerably when the number of threads in each appli-
cation exceeds eight, and thus the total number of processes in the system exceeds
the number of processors. Furthermore, the larger the number of threads, the worse
the performance gets, because there is a greater frequency of thread preemption and
rescheduling. This excessive preemption results in inefficiency from many sources,
including time spent waiting for a suspended thread to leave a critical section, time
wasted in process switching, and inefficient cache behavior.

The authors conclude that an effective strategy is to limit the number of active
threads to the number of processors in the system. If most of the applications are
either single thread or can use the task-queue structure, this will provide an effective
and reasonably efficient use of the processor resources.

Both dedicated processor assignment and gang scheduling attack the schedul-
ing problem by addressing the issue of processor allocation. One can observe that
the processor allocation problem on a multiprocessor more closely resembles the
memory allocation problem on a uniprocessor than the scheduling problem on a
uniprocessor. The issue is how many processors to assign to a program at any given
time, which is analogous to how many page frames to assign to a given process at
any time. [GEHR87] proposes the term activity working set, analogous to a virtual
memory working set, as the minimum number of activities (threads) that must be
scheduled simultaneously on processors for the application to make acceptable prog-
ress. As with memory management schemes, the failure to schedule all of the ele-
ments of an activity working set can lead to processor thrashing. This occurs when
the scheduling of threads whose services are required induces the descheduling of
other threads whose services will soon be needed. Similarly, processor fragmentation
refers to a situation in which some processors are left over when others are allocated,
and the leftover processors are either insufficient in number or unsuitably organized
to support the requirements of waiting applications. Gang scheduling and dedicated
processor allocation are meant to avoid these problems.

M10_STAL4290_09_GE_C10.indd 471 5/9/17 4:32 PM

472   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

Dynamic Scheduling  For some applications, it is possible to provide language
and system tools that permit the number of threads in the process to be altered
dynamically. This would allow the operating system to adjust the load to improve
utilization.

[ZAHO90] proposes an approach in which both the operating system and the
application are involved in making scheduling decisions. The operating system is
responsible for partitioning the processors among the jobs. Each job uses the proces-
sors currently in its partition to execute some subset of its runnable tasks by mapping
these tasks to threads. An appropriate decision about which subset to run, as well as
which thread to suspend when a process is preempted, is left to the individual appli-
cations (perhaps through a set of run-time library routines). This approach may not
be suitable for all applications. However, some applications could default to a single
thread while others could be programmed to take advantage of this particular feature
of the operating system.

In this approach, the scheduling responsibility of the operating system is pri-
marily limited to processor allocation and proceeds according to the following policy.
When a job requests one or more processors (either when the job arrives for the first
time or because its requirements change),

1.	 If there are idle processors, use them to satisfy the request.

2.	 Otherwise, if the job making the request is a new arrival, allocate it a single
processor by taking one away from any job currently allocated more than one
processor.

3.	 If any portion of the request cannot be satisfied, it remains outstanding until
either a processor becomes available for it or the job rescinds the request (e.g.,
if there is no longer a need for the extra processors).

Upon release of one or more processors (including job departure),

4.	 Scan the current queue of unsatisfied requests for processors. Assign a single
processor to each job in the list that currently has no processors (i.e., to all wait-
ing new arrivals). Then scan the list again, allocating the rest of the processors
on an FCFS basis.

Analyses reported in [ZAHO90] and [MAJU88] suggest that for applica-
tions that can take advantage of dynamic scheduling, this approach is superior to
gang scheduling or dedicated processor assignment. However, the overhead of this
approach may negate this apparent performance advantage. Experience with actual
systems is needed to prove the worth of dynamic scheduling.

Multicore Thread Scheduling

The most widely used contemporary OSs, such as Windows and Linux, essentially
treat scheduling in multicore systems in the same fashion as a multiprocessor sys-
tem. Such schedulers tend to focus on keeping processors busy by load balancing
so threads ready to run are evenly distributed among the processors. However, this
strategy is unlikely to produce the desired performance benefits of the multicore
architecture.

M10_STAL4290_09_GE_C10.indd 472 5/9/17 4:32 PM

10.1 / MULTIPROCESSOR AND MULTICORE SCHEDULING   473

As the number of cores per chip increases, a need to minimize access to off-
chip memory takes precedence over a desire to maximize processor utilization. The
traditional (and still principal) means of minimizing off-chip memory access is the
use of caches to take advantage of locality. This approach is complicated by some of
the cache architectures used on multicore chips, specifically when a cache is shared
by some but not all of the cores. A good example is the AMD Bulldozer chip used in
the Operton FX-8000 system, illustrated in Figure 10.3. In this architecture, each core
has a dedicated L1 cache; each pair of cores share an L2 cache; and all cores share an
L3 cache. Compare this with the Intel Core i7-5960X (see Figure 1.20), in which both
L1 and L2 caches are dedicated to a single core.

When some but not all cores share a cache, the way in which threads are allo-
cated to cores during scheduling has a significant effect on performance. Let us define
two cores that share the same L2 cache as adjacent, and otherwise nonadjacent. Thus,
cores 0 and 1 in Figure 10.3 are adjacent, but cores 1 and 2 are nonadjacent. Ideally, if
two threads are going to share memory resources, they should be assigned to adjacent
cores to improve the effects of locality, and if they do not share memory resources,
they may be assigned to nonadjacent cores to achieve load balance.

There are in fact two different aspects of cache sharing to take into account:
cooperative resource sharing and resource contention. With cooperative resource
sharing, multiple threads access the same set of main memory locations. Examples
are applications that are multithreaded and producer–consumer thread interaction.
In both these cases, data brought into a cache by one thread need to be accessed by
a cooperating thread. For this case, it is desirable to schedule cooperating threads on
adjacent cores.

The other case is when threads, if operating on adjacent cores, compete for
cache memory locations. Whatever technique is used for cache replacement, such
as least-recently-used (LRU), if more of the cache is dynamically allocated to one

Figure 10.3  AMD Bulldozer Architecture

Core 0

16 kB L1D
Cache

16 kB L1D
Cache

16 kB L1D
Cache

16 kB L1D
Cache

2 MB
L2 Cache

2 MB
L2 Cache

Core 1

2 8B @ 1.86 GT/s

Core 6 Core 7

8 MB
L3 Cache

DDR3 Memory
Controllers

Hypertransport 3.1

8 2B @ 6.4 GT/s

M10_STAL4290_09_GE_C10.indd 473 5/9/17 4:32 PM

474   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

thread, the competing thread necessarily has less cache space available and thus suf-
fers performance degradation. The objective of contention-aware scheduling is to
allocate threads to cores in such a way as to maximize the effectiveness of the shared
cache memory, and therefore to minimize the need for off-chip memory accesses. The
design of algorithms for this purpose is an area of ongoing research and a subject
of some complexity. Accordingly, this area is beyond our scope; see [ZHUR12] for
a recent survey.

	 10.2	REAL-TIME SCHEDULING

Background

Real-time computing is becoming an increasingly important discipline. The operating
system, and in particular the scheduler, is perhaps the most important component
of a real-time system. Examples of current applications of real-time systems include
control of laboratory experiments, process control in industrial plants, robotics, air
traffic control, telecommunications, and military command and control systems. Next-
generation systems will include the autonomous land rover, controllers of robots
with elastic joints, systems found in intelligent manufacturing, the space station, and
undersea exploration.

Real-time computing may be defined as that type of computing in which the
correctness of the system depends not only on the logical result of the computa-
tion, but also on the time at which the results are produced. We can define a real-
time system by defining what is meant by a real-time process, or task.3 In general,
in a real-time system, some of the tasks are real-time tasks, and these have a
certain degree of urgency to them. Such tasks are attempting to control or react
to events that take place in the outside world. Because these events occur in “real
time,” a real-time task must be able to keep up with the events with which it is
concerned. Thus, it is usually possible to associate a deadline with a particular task,
where the deadline specifies either a start time or a completion time. Such a task
may be classified as hard or soft. A hard real-time task is one that must meet its
deadline; otherwise it will cause unacceptable damage or a fatal error to the sys-
tem. A soft real-time task has an associated deadline that is desirable but not
mandatory; it still makes sense to schedule and complete the task even if it has
passed its deadline.

Another characteristic of real-time tasks is whether they are periodic or aperi-
odic. An aperiodic task has a deadline by which it must finish or start, or it may have a
constraint on both start and finish time. In the case of a periodic task, the requirement
may be stated as “once per period T” or “exactly T units apart.”

3As usual, terminology poses a problem, because various words are used in the literature with varying
meanings. It is common for a particular process to operate under real-time constraints of a repetitive
nature. That is, the process lasts for a long time and, during that time, performs some repetitive function
in response to real-time events. Let us, for this section, refer to an individual function as a task. Thus, the
process can be viewed as progressing through a sequence of tasks. At any given time, the process is engaged
in a single task, and it is the process/task that must be scheduled.

M10_STAL4290_09_GE_C10.indd 474 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   475

Characteristics of Real-Time Operating Systems

Real-time operating systems can be characterized as having unique requirements in
five general areas [MORG92]:

1.	 Determinism

2.	 Responsiveness

3.	 User control

4.	 Reliability

5.	 Fail-soft operation

An operating system is deterministic to the extent that it performs operations
at fixed, predetermined times or within predetermined time intervals. When mul-
tiple processes are competing for resources and processor time, no system will be
fully deterministic. In a real-time operating system, process requests for service are
dictated by external events and timings. The extent to which an operating system can
deterministically satisfy requests depends first on the speed with which it can respond
to interrupts and, second, on whether the system has sufficient capacity to handle all
requests within the required time.

One useful measure of the ability of an operating system to function determin-
istically is the maximum delay from the arrival of a high-priority device interrupt
to when servicing begins. In non-real-time operating systems, this delay may be in
the range of tens to hundreds of milliseconds, while in real-time operating systems
that delay may have an upper bound of anywhere from a few microseconds to a
millisecond.

A related but distinct characteristic is responsiveness. Determinism is con-
cerned with how long an operating system delays before acknowledging an interrupt.
Responsiveness is concerned with how long, after acknowledgment, it takes an oper-
ating system to service the interrupt. Aspects of responsiveness include the following:

1.	 The amount of time required to initially handle the interrupt and begin execu-
tion of the interrupt service routine (ISR). If execution of the ISR requires a
process switch, then the delay will be longer than if the ISR can be executed
within the context of the current process.

2.	 The amount of time required to perform the ISR. This generally is dependent
on the hardware platform.

3.	 The effect of interrupt nesting. If an ISR can be interrupted by the arrival of
another interrupt, then the service will be delayed.

Determinism and responsiveness together make up the response time to external
events. Response time requirements are critical for real-time systems, because such
systems must meet timing requirements imposed by individuals, devices, and data
flows external to the system.

User control is generally much broader in a real-time operating system than
in ordinary operating systems. In a typical non-real-time operating system, the user
either has no control over the scheduling function of the operating system, or can
only provide broad guidance, such as grouping users into more than one priority

M10_STAL4290_09_GE_C10.indd 475 5/9/17 4:32 PM

476   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

class. In a real-time system, however, it is essential to allow the user fine-grained
control over task priority. The user should be able to distinguish between hard and
soft tasks and to specify relative priorities within each class. A real-time system may
also allow the user to specify such characteristics as the use of paging or process
swapping, what processes must always be resident in main memory, what disk trans-
fer algorithms are to be used, what rights the processes in various priority bands
have, and so on.

Reliability is typically far more important for real-time systems than non-real-
time systems. A transient failure in a non-real-time system may be solved by simply
rebooting the system. A processor failure in a multiprocessor non-real-time sys-
tem may result in a reduced level of service until the failed processor is repaired or
replaced. But a real-time system is responding to and controlling events in real time.
Loss or degradation of performance may have catastrophic consequences, ranging
from financial loss to major equipment damage and even loss of life.

As in other areas, the difference between a real-time and a non-real-time oper-
ating system is one of degree. Even a real-time system must be designed to respond to
various failure modes. Fail-soft operation is a characteristic that refers to the ability of
a system to fail in such a way as to preserve as much capability and data as possible.
For example, a typical traditional UNIX system, when it detects a corruption of data
within the kernel, issues a failure message on the system console, dumps the memory
contents to disk for later failure analysis, and terminates execution of the system. In
contrast, a real-time system will attempt either to correct the problem or minimize
its effects while continuing to run. Typically, the system notifies a user or user pro-
cess that it should attempt corrective action then continues operation perhaps at a
reduced level of service. In the event a shutdown is necessary, an attempt is made to
maintain file and data consistency.

An important aspect of fail-soft operation is referred to as stability. A real-time
system is stable if, in cases where it is impossible to meet all task deadlines, the system
will meet the deadlines of its most critical, highest-priority tasks, even if some less
critical task deadlines are not always met.

Although there is a wide variety of real-time OS designs to meet the wide vari-
ety of real-time applications, the following features are common to most real-time
OSs:

•	 A stricter use of priorities than in an ordinary OS, with preemptive scheduling
that is designed to meet real-time requirements

•	 Interrupt latency (the amount of time between when a device generates an
interrupt and when that device is serviced) is bounded and relatively short

•	 More precise and predictable timing characteristics than general purpose OSs

The heart of a real-time system is the short-term task scheduler. In designing
such a scheduler, fairness and minimizing average response time are not paramount.
What is important is that all hard real-time tasks complete (or start) by their deadline
and that as many as possible soft real-time tasks also complete (or start) by their
deadline.

Most contemporary real-time operating systems are unable to deal directly
with deadlines. Instead, they are designed to be as responsive as possible to real-time

M10_STAL4290_09_GE_C10.indd 476 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   477

tasks so when a deadline approaches, a task can be quickly scheduled. From this
point of view, real-time applications typically require deterministic response times
in the several-millisecond to submillisecond span under a broad set of conditions;
leading-edge applications (in simulators for military aircraft, for example) often have
constraints in the range of 109100 ms [ATLA89].

Figure 10.4 illustrates a spectrum of possibilities. In a preemptive scheduler
that uses simple round-robin scheduling, a real-time task would be added to the
ready queue to await its next timeslice, as illustrated in Figure 10.4a. In this case,
the scheduling time will generally be unacceptable for real-time applications.
Alternatively, in a nonpreemptive scheduler, we could use a priority scheduling
mechanism, giving real-time tasks higher priority. In this case, a real-time task
that is ready would be scheduled as soon as the current process blocks or runs to
completion (see Figure 10.4b). This could lead to a delay of several seconds if a
slow, low-priority task were executing at a critical time. Again, this approach is not
acceptable. A more promising approach is to combine priorities with clock-based
interrupts. Preemption points occur at regular intervals. When a preemption point
occurs, the currently running task is preempted if a higher-priority task is waiting.
This would include the preemption of tasks that are part of the operating system
kernel. Such a delay may be on the order of several milliseconds (see Figure 10.4c).
While this last approach may be adequate for some real-time applications, it will
not suffice for more demanding applications. In those cases, the approach that has
been taken is sometimes referred to as immediate preemption. In this case, the
operating system responds to an interrupt almost immediately, unless the system
is in a critical-code lockout section. Scheduling delays for a real-time task can then
be reduced to 100 ms or less.

Real-Time Scheduling

Real-time scheduling is one of the most active areas of research in computer science.
In this subsection, we provide an overview of the various approaches to real-time
scheduling and look at two popular classes of scheduling algorithms.

In a survey of real-time scheduling algorithms, [RAMA94] observes that the
various scheduling approaches depend on (1) whether a system performs schedulabil-
ity analysis, (2) if it does, whether it is done statically or dynamically, and (3) whether
the result of the analysis itself produces a schedule or plan according to which tasks
are dispatched at run time. Based on these considerations, the authors identify the
following classes of algorithms:

•	 Static table-driven approaches: These perform a static analysis of feasible
schedules of dispatching. The result of the analysis is a schedule that determines,
at run time, when a task must begin execution.

•	 Static priority-driven preemptive approaches: Again, a static analysis is per-
formed, but no schedule is drawn up. Rather, the analysis is used to assign
priorities to tasks, so a traditional priority-driven preemptive scheduler can
be used.

•	 Dynamic planning-based approaches: Feasibility is determined at run time
(dynamically) rather than offline prior to the start of execution (statically).

M10_STAL4290_09_GE_C10.indd 477 5/9/17 4:32 PM

478   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

Figure 10.4  Scheduling of Real-Time Process

Process 1

Request from a
real-time process

(a) Round-robin preemptive scheduler

Clock
tick

Process 2 Process n Real-time
process

Scheduling time

Real-time process added to
run queue to await its next slice

Request from a
real-time process

Request from a
real-time process

Current process

Current process
blocked or completed

(b) Priority-driven nonpreemptive scheduler

Real-time
process

Scheduling time

Real-time process added
to head of run queue

Preemption
point

Request from a
real-time process

Current process

(c) Priority-driven preemptive scheduler on preemption points

Real-time
process

Scheduling time

Wait for next
preemption point

Current process

(d) Immediate preemptive scheduler

Real-time
process

Scheduling time

Real-time process preempts current
process and executes immediately

M10_STAL4290_09_GE_C10.indd 478 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   479

An arriving task is accepted for execution only if it is feasible to meet its time
constraints. One of the results of the feasibility analysis is a schedule or plan
that is used to decide when to dispatch this task.

•	 Dynamic best effort approaches: No feasibility analysis is performed. The sys-
tem tries to meet all deadlines and aborts any started process whose deadline
is missed.

Static table-driven scheduling is applicable to tasks that are periodic. Input to the
analysis consists of the periodic arrival time, execution time, periodic ending deadline,
and relative priority of each task. The scheduler attempts to develop a schedule that
enables it to meet the requirements of all periodic tasks. This is a predictable approach
but one that is inflexible, because any change to any task requirements requires that
the schedule be redone. Earliest-deadline-first or other periodic deadline techniques
(discussed subsequently) are typical of this category of scheduling algorithms.

Static priority-driven preemptive scheduling makes use of the priority-driven
preemptive scheduling mechanism common to most non-real-time multiprogram-
ming systems. In a non-real-time system, a variety of factors might be used to deter-
mine priority. For example, in a time-sharing system, the priority of a process changes
depending on whether it is processor bound or I/O bound. In a real-time system,
priority assignment is related to the time constraints associated with each task. One
example of this approach is the rate monotonic algorithm (discussed subsequently),
which assigns static priorities to tasks based on the length of their periods.

With dynamic planning-based scheduling, after a task arrives, but before its
execution begins, an attempt is made to create a schedule that contains the previously
scheduled tasks as well as the new arrival. If the new arrival can be scheduled in such
a way that its deadlines are satisfied and that no currently scheduled task misses a
deadline, then the schedule is revised to accommodate the new task.

Dynamic best effort scheduling is the approach used by many real-time systems
that are currently commercially available. When a task arrives, the system assigns a
priority based on the characteristics of the task. Some form of deadline scheduling,
such as earliest-deadline scheduling, is typically used. Typically, the tasks are aperi-
odic, so no static scheduling analysis is possible. With this type of scheduling, until
a deadline arrives or until the task completes, we do not know whether a timing
constraint will be met. This is the major disadvantage of this form of scheduling. Its
advantage is that it is easy to implement.

Deadline Scheduling

Most contemporary real-time operating systems are designed with the objective of
starting real-time tasks as rapidly as possible, and hence emphasize rapid interrupt
handling and task dispatching. In fact, this is not a particularly useful metric in evalu-
ating real-time operating systems. Real-time applications are generally not concerned
with sheer speed but rather with completing (or starting) tasks at the most valuable
times, neither too early nor too late, despite dynamic resource demands and conflicts,
processing overloads, and hardware or software faults. It follows that priorities pro-
vide a crude tool and do not capture the requirement of completion (or initiation)
at the most valuable time.

M10_STAL4290_09_GE_C10.indd 479 5/9/17 4:32 PM

480   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

There have been a number of proposals for more powerful and appropriate
approaches to real-time task scheduling. All of these are based on having additional
information about each task. In its most general form, the following information
about each task might be used:

•	 Ready time: Time at which task becomes ready for execution. In the case of a
repetitive or periodic task, this is actually a sequence of times that is known in
advance. In the case of an aperiodic task, this time may be known in advance, or
the operating system may only be aware when the task is actually ready.

•	 Starting deadline: Time by which a task must begin

•	 Completion deadline: Time by which a task must be completed. The typical
real-time application will either have starting deadlines or completion dead-
lines, but not both.

•	 Processing time: Time required to execute the task to completion. In some
cases, this is supplied. In others, the operating system measures an exponential
average (as defined in Chapter 9). For still other scheduling systems, this infor-
mation is not used.

•	 Resource requirements: Set of resources (other than the processor) required
by the task while it is executing

•	 Priority: Measures relative importance of the task. Hard real-time tasks may
have an “absolute” priority, with the system failing if a deadline is missed. If the
system is to continue to run no matter what, then both hard and soft real-time
tasks may be assigned relative priorities as a guide to the scheduler.

•	 Subtask structure: A task may be decomposed into a mandatory subtask and
an optional subtask. Only the mandatory subtask possesses a hard deadline.

There are several dimensions to the real-time scheduling function when dead-
lines are taken into account: which task to schedule next and what sort of preemption
is allowed. It can be shown, for a given preemption strategy and using either starting or
completion deadlines, that a policy of scheduling the task with the earliest deadline min-
imizes the fraction of tasks that miss their deadlines [BUTT99, HONG89, PANW88].
This conclusion holds for both single-processor and multiprocessor configurations.

The other critical design issue is that of preemption. When starting deadlines
are specified, then a nonpreemptive scheduler makes sense. In this case, it would be
the responsibility of the real-time task to block itself after completing the mandatory
or critical portion of its execution, allowing other real-time starting deadlines to be
satisfied. This fits the pattern of Figure 10.4b. For a system with completion deadlines,
a preemptive strategy (see Figure 10.4c or 10.4d) is most appropriate. For example,
if task X is running and task Y is ready, there may be circumstances in which the
only way to allow both X and Y to meet their completion deadlines is to preempt X,
execute Y to completion, then resume X to completion.

As an example of scheduling periodic tasks with completion deadlines, con-
sider a system that collects and processes data from two sensors, A and B. The dead-
line for collecting data from sensor A must be met every 20 ms, and that for B every
50 ms. It takes 10 ms, including operating system overhead, to process each sample of
data from A and 25 ms to process each sample of data from B. Table 10.3 summarizes

M10_STAL4290_09_GE_C10.indd 480 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   481

Process Arrival Time Execution Time Ending Deadline

A(1) 0 10 20

A(2) 20 10 40

A(3) 40 10 60

A(4) 60 10 80

A(5) 80 10 100

• • • •

• • • •

• • • •

B(1) 0 25 50

B(2) 50 25 100

• • • •

• • • •

• • • •

Table 10.3  Execution Profile of Two Periodic Tasks

the execution profile of the two tasks. Figure 10.5 compares three scheduling tech-
niques using the execution profile of Table 10.3. The first row of Figure 10.6 repeats
the information in Table 10.3; the remaining three rows illustrate three scheduling
techniques.

The computer is capable of making a scheduling decision every 10 ms.4 Sup-
pose under these circumstances, we attempted to use a priority scheduling scheme.
The first two timing diagrams in Figure 10.5 show the result. If A has higher priority,
the first instance of task B is given only 20 ms of processing time, in two 10-ms
chunks, by the time its deadline is reached, and thus fails. If B is given higher priority,
then A will miss its first deadline. The final timing diagram shows the use of earliest-
deadline scheduling. At time t = 0, both A1 and B1 arrive. Because A1 has the earli-
est deadline, it is scheduled first. When A1 completes, B1 is given the processor. At
t = 20, A2 arrives. Because A2 has an earlier deadline than B1, B1 is interrupted so
A2 can execute to completion. Then B1 is resumed at t = 30. At t = 40, A3 arrives.
However, B1 has an earlier ending deadline and is allowed to execute to completion
at t = 45. A3 is then given the processor and finishes at t = 55.

In this example, by scheduling to give priority at any preemption point to the
task with the nearest deadline, all system requirements can be met. Because the tasks
are periodic and predictable, a static table-driven scheduling approach is used.

Now consider a scheme for dealing with aperiodic tasks with starting dead-
lines. The top part of Figure 10.6 shows the arrival times and starting deadlines for
an example consisting of five tasks, each of which has an execution time of 20 ms.
Table 10.4 summarizes the execution profile of the five tasks.

4This need not be on a 10-ms boundary if more than 10 ms has elapsed since the last scheduling decision.

M10_STAL4290_09_GE_C10.indd 481 5/9/17 4:32 PM

482   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

Figure 10.5 � Scheduling of Periodic Real-Time Tasks with Completion Deadlines (Based on
Table 10.3)

9070402010 30 50 60 80 1000 Time (ms)

B1 B2
A1 A2 A3 A4 A5Arrival times, execution

times, and deadlines

A1
deadline

A2
deadline

A3
deadline

A4
deadline

A5
deadline

B2
deadline

B1
deadline

A3 A4 A5A1 B1 A2 B1 B2 B2 B2

A1 A2 A3 A4 A5, B2B1

(missed)

A1

(missed)

A2 A3 A4

(missed)

A5, B2

B1 B2A2 A3 A5

A1 A2 A3 A4 A5, B2B1

A1 B1 A2 B1 A3 B2 A4 B2 A5

Fixed-priority scheduling;
A has priority

Fixed-priority scheduling;
B has priority

Earliest-deadline scheduling
using completion deadlines

B1

A straightforward scheme is to always schedule the ready task with the earli-
est deadline and let that task run to completion. When this approach is used in the
example of Figure 10.6, note although task B requires immediate service, the service
is denied. This is the risk in dealing with aperiodic tasks, especially with starting dead-
lines. A refinement of the policy will improve performance if deadlines can be known
in advance of the time that a task is ready. This policy, referred to as earliest deadline
with unforced idle times, operates as follows: Always schedule the eligible task with
the earliest deadline and let that task run to completion. An eligible task may not
be ready, and this may result in the processor remaining idle even though there are
ready tasks. Note in our example the system refrains from scheduling task A even
though that is the only ready task. The result is, even though the processor is not used
to maximum efficiency, all scheduling requirements are met. Finally, for comparison,
the FCFS policy is shown. In this case, tasks B and E do not meet their deadlines.

Rate Monotonic Scheduling

One of the more promising methods of resolving multitask scheduling conflicts for
periodic tasks is rate monotonic scheduling (RMS) [LIU73, BRIA99, SHA94]. RMS
assigns priorities to tasks on the basis of their periods.

M10_STAL4290_09_GE_C10.indd 482 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   483

For RMS, the highest-priority task is the one with the shortest period, the sec-
ond highest-priority task is the one with the second shortest period, and so on. When
more than one task is available for execution, the one with the shortest period is
serviced first. If we plot the priority of tasks as a function of their rate, the result is
a monotonically increasing function, hence the name “rate monotonic scheduling.”

Figure 10.7 illustrates the relevant parameters for periodic tasks. The task’s
period, T, is the amount of time between the arrival of one instance of the task
and the arrival of the next instance of the task. A task’s rate (in hertz) is simply the
inverse of its period (in seconds). For example, a task with a period of 50 ms occurs
at a rate of 20 Hz. Typically, the end of a task’s period is also the task’s hard deadline,
although some tasks may have earlier deadlines. The execution (or computation)
time, C, is the amount of processing time required for each occurrence of the task. It

Figure 10.6  Scheduling of Aperiodic Real-Time Tasks with Starting Deadlines

9070402010 30 50 60 80 100 1100 120

B C ADE

B C ADE

B (missed) C ADE

B (missed) C ADE (missed)

A B C D E

A B C D E

A B C D E

A B C D E

A C E D

B C E D A

A C D

Requirements

Arrival times

Starting deadline

Earliest
deadline

Arrival times

Starting deadline

Service

Earliest
deadline

with unforced
idle times

Arrival times

Starting deadline

Service

First-come-
first-served

(FCFS)

Arrival times

Starting deadline

Service

Process Arrival Time Execution Time Starting Deadline

A 10 20 110

B 20 20 20

C 40 20 50

D 50 20 90

E 60 20 70

Table 10.4  Execution Profile of Five Aperiodic Tasks

M10_STAL4290_09_GE_C10.indd 483 5/9/17 4:32 PM

484   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

should be clear that in a uniprocessor system, the execution time must be no greater
than the period (must have C … T). If a periodic task is always run to comple-
tion, that is, if no instance of the task is ever denied service because of insufficient
resources, then the utilization of the processor by this task is U = C/T. For example,
if a task has a period of 80 ms and an execution time of 55 ms, its processor utiliza-
tion is 55/80 = 0.6875. Figure 10.8 is a simple example of RMS. Task instances are
numbered sequentially within tasks. As can be seen, for task 3, the second instance
is not executed because the deadline is missed. The third instance experiences a
preemption but is still able to complete before the deadline.

(a) Arrival times and deadines for task Ti = (Pi, Ci);
Pi = period, Ci = processing time

(b) Scheduling results

T3 = (7,2)

= arrival time

5 10 15

T2 = (5,2)

T1 = (4,1)

= deadline

T3 = (7,2)

Deadline miss

5

1

1

1a 3a

2 3

2 3 4

10 15

T2 = (5,2)

T1 = (4,1)

3b 4a

Figure 10.8  Rate Monotonic Scheduling Example

Figure 10.7  Periodic Task Timing Diagram

Processing ProcessingIdleP

Task P execution time C

Cycle 1

Task P period T

Cycle 2

Time

M10_STAL4290_09_GE_C10.indd 484 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   485

One measure of the effectiveness of a periodic scheduling algorithm is whether
or not it guarantees that all hard deadlines are met. Suppose we have n tasks, each
with a fixed period and execution time. Then for it to be possible to meet all deadlines,
the following inequality must hold:

	
C1

T1
+

C2

T2
+ c +

Cn

Tn
… 1	 (10.1)

The sum of the processor utilizations of the individual tasks cannot exceed a value of
1, which corresponds to total utilization of the processor. Equation (10.1) provides a
bound on the number of tasks that a perfect scheduling algorithm can successfully
schedule. For any particular algorithm, the bound may be lower. For RMS, it can be
shown that the following inequality holds:

	
C1

T1
+

C2

T2
+ c +

Cn

Tn
… n(21/n - 1)	 (10.2)

Table 10.5 gives some values for this upper bound. As the number of tasks increases,
the scheduling bound converges to ln 2 ≈ 0.693.

As an example, consider the case of three periodic tasks, where Ui = Ci/Ti:

•	 Task P1: C1 = 20; T1 = 100; U1 = 0.2

•	 Task P2: C2 = 40; T2 = 150; U2 = 0.267

•	 Task P3: C3 = 100; T3 = 350; U3 = 0.286

The total utilization of these three tasks is 0.2 + 0.267 + 0.286 = 0.753. The
upper bound for the schedulability of these three tasks using RMS is

C1

T1
+

C2

T2
+

C3

T3
… n(21/3 - 1) = 0.779

Because the total utilization required for the three tasks is less than the upper bound
for RMS (0.753 6 0.779), we know if RMS is used, all tasks will be successfully
scheduled.

n n(21/n - 1)

1 1.0

2 0.828

3 0.779

4 0.756

5 0.743

6 0.734

• •

• •

• •

∞ ln 2 ≈ 0.693

Table 10.5  Value of the RMS Upper Bound

M10_STAL4290_09_GE_C10.indd 485 5/9/17 4:32 PM

486   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

It can also be shown that the upper bound of Equation (10.1) holds for earliest-
deadline scheduling. Thus, it is possible to achieve greater overall processor utilization
and therefore accommodate more periodic tasks with earliest-deadline schedul-
ing. Nevertheless, RMS has been widely adopted for use in industrial applications.
[SHA91] offers the following explanation:

1.	 The performance difference is small in practice. The upper bound of
Equation (10.2) is a conservative one and, in practice, utilization as high as 90%
is often achieved.

2.	 Most hard real-time systems also have soft real-time components, such as cer-
tain noncritical displays and built-in self tests that can execute at lower-priority
levels to absorb the processor time that is not used with RMS scheduling of
hard real-time tasks.

3.	 Stability is easier to achieve with RMS. When a system cannot meet all dead-
lines because of overload or transient errors, the deadlines of essential tasks
need to be guaranteed provided that this subset of tasks is schedulable. In a
static priority assignment approach, one only needs to ensure that essential
tasks have relatively high priorities. This can be done in RMS by structuring
essential tasks to have short periods or by modifying the RMS priorities to
account for essential tasks. With earliest-deadline scheduling, a periodic task’s
priority changes from one period to another. This makes it more difficult to
ensure that essential tasks meet their deadlines.

Priority Inversion

Priority inversion is a phenomenon that can occur in any priority-based preemptive
scheduling scheme, but is particularly relevant in the context of real-time scheduling.
The best-known instance of priority inversion involved the Mars Pathfinder mission.
This rover robot landed on Mars on July 4, 1997, and began gathering and transmitting
voluminous data back to Earth. But a few days into the mission, the lander software
began experiencing total system resets, each resulting in losses of data. After much
effort by the Jet Propulsion Laboratory (JPL) team that built the Pathfinder, the
problem was traced to priority inversion [JONE97].

In any priority scheduling scheme, the system should always be executing the
task with the highest priority. Priority inversion occurs when circumstances within the
system force a higher-priority task to wait for a lower-priority task. A simple example
of priority inversion occurs if a lower-priority task has locked a resource (such as a
device or a binary semaphore) and a higher-priority task attempts to lock that same
resource. The higher-priority task will be put in a blocked state until the resource
is available. If the lower-priority task soon finishes with the resource and releases
it, the higher-priority task may quickly resume and it is possible that no real-time
constraints are violated.

A more serious condition is referred to as an unbounded priority inversion, in
which the duration of a priority inversion depends not only on the time required to
handle a shared resource but also on the unpredictable actions of other unrelated
tasks. The priority inversion experienced in the Pathfinder software was unbounded
and serves as a good example of the phenomenon. Our discussion follows that of

M10_STAL4290_09_GE_C10.indd 486 5/9/17 4:32 PM

10.2 / REAL-TIME SCHEDULING   487

[TIME02]. The Pathfinder software included the following three tasks, in decreasing
order of priority:

T1: Periodically checks the health of the spacecraft systems and software

T2: Processes image data

T3: Performs an occasional test on equipment status

After T1 executes, it reinitializes a timer to its maximum value. If this timer
ever expires, it is assumed the integrity of the lander software has somehow been
compromised. The processor is halted, all devices are reset, the software is completely
reloaded, the spacecraft systems are tested, and the system starts over. This recov-
ery sequence does not complete until the next day. T1 and T3 share a common data
structure, protected by a binary semaphore s. Figure 10.9a shows the sequence that
caused the priority inversion:

t1: T3 begins executing.

t2: T3 locks semaphore s and enters its critical section.

t3: T1, which has a higher priority than T3, preempts T3 and begins executing.

t4: �T1 attempts to enter its critical section but is blocked because the semaphore
is locked by T3; T3 resumes execution in its critical section.

t5: T2, which has a higher priority than T3, preempts T3 and begins executing.

t6: T2 is suspended for some reason unrelated to T1 and T3; T3 resumes.

t7: �T3 leaves its critical section and unlocks the semaphore. T1 preempts T3, locks
the semaphore, and enters its critical section.

In this set of circumstances, T1 must wait for both T3 and T2 to complete and fails to
reset the timer before it expires.

In practical systems, two alternative approaches are used to avoid unbounded
priority inversion: priority inheritance protocol and priority ceiling protocol.

The basic idea of priority inheritance is that a lower-priority task inherits the
priority of any higher-priority task pending on a resource they share. This priority
change takes place as soon as the higher-priority task blocks on the resource; it should
end when the resource is released by the lower-priority task. Figure 10.9b shows that
priority inheritance resolves the problem of unbounded priority inversion illustrated
in Figure 10.9a. The relevant sequence of events is as follows:

t1: T3 begins executing.

t2: T3 locks semaphore s and enters its critical section.

t3: T1, which has a higher priority than T3, preempts T3 and begins executing.

t4: �T1 attempts to enter its critical section but is blocked because the semaphore
is locked by T3. T3 is immediately and temporarily assigned the same priority
as T1. T3 resumes execution in its critical section.

t5: �T2 is ready to execute, but because T3 now has a higher priority, T2 is unable
to preempt T3.

M10_STAL4290_09_GE_C10.indd 487 5/9/17 4:32 PM

488   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

t6: �T3 leaves its critical section and unlocks the semaphore: Its priority level is
downgraded to its previous default level. T1 preempts T3, locks the sema-
phore, and enters its critical section.

t7: T1 is suspended for some reason unrelated to T2, and T2 begins executing.

This was the approach taken to solving the Pathfinder problem.
In the priority ceiling approach, a priority is associated with each resource. The

priority assigned to a resource is one level higher than the priority of its highest-priority

Figure 10.9  Priority Inversion

T1

T2

T3

s locked

(a) Unbounded priority inversion

Preempted
by T1

Preempted
by T2

s unlocked

Time

Normal execution Execution in critical section

s locked
Blocked by T3

(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7 t8

T1

T2

T3

s locked
by T3

(b) Use of priority inheritance

Preempted
by T1

s unlocked

s unlocked

s locked
by T1

Blocked by T3
(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7

M10_STAL4290_09_GE_C10.indd 488 5/9/17 4:32 PM

10.3 / LINUX SCHEDULING   489

user. The scheduler then dynamically assigns this priority to any task that accesses
the resource. Once the task finishes with the resource, its priority returns to normal.

	 10.3	LINUX SCHEDULING

For Linux 2.4 and earlier, Linux provided a real-time scheduling capability coupled
with a scheduler for non-real-time processes that made use of the traditional UNIX
scheduling algorithm described in Section 9.3. Linux 2.6 includes essentially the same
real-time scheduling capability as previous releases, and a substantially revised sched-
uler for non-real-time processes. We examine these two areas in turn.

Real-Time Scheduling

The three primary Linux scheduling classes are as follows:

1.	 SCHED_FIFO: First-in-first-out real-time threads

2.	 SCHED_RR: Round-robin real-time threads

3.	 SCHED_NORMAL: Other, non-real-time threads (was called SCHED_OTHER in
older kernels).

Within each class, multiple priorities may be used, with priorities in the real-time
classes higher than the priorities for the SCHED_NORMAL class. The default values are
as follows: Real-time priority classes range from 0 to 99 inclusively, and SCHED_
NORMAL classes range from 100 to 139. A lower number equals a higher priority.

For FIFO threads, the following rules apply:

1.	 The system will not interrupt an executing FIFO thread except in the following
cases:

a.	 Another FIFO thread of higher priority becomes ready.

b.	 The executing FIFO thread becomes blocked waiting for an event, such as I/O.

c.	 The executing FIFO thread voluntarily gives up the processor following a
call to the primitive sched_yield.

2.	 When an executing FIFO thread is interrupted, it is placed in the queue associ-
ated with its priority.

3.	 When a FIFO thread becomes ready, and if that thread has a higher prior-
ity than the currently executing thread, then the currently executing thread
is preempted and the highest-priority ready FIFO thread is executed. If more
than one thread has that highest priority, the thread that has been waiting the
longest is chosen.

The SCHED_RR policy is similar to the SCHED_FIFO policy, except for the
addition of a timeslice associated with each thread. When a SCHED_RR thread has
executed for its timeslice, it is suspended and a real-time thread of equal or higher
priority is selected for running.

Figure 10.10 is an example that illustrates the distinction between FIFO and RR
scheduling. Assume a process has four threads with three relative priorities assigned

M10_STAL4290_09_GE_C10.indd 489 5/9/17 4:32 PM

490   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

as shown in Figure 10.10a. Assume all waiting threads are ready to execute when the
current thread waits or terminates, and no higher-priority thread is awakened while
a thread is executing. Figure 10.10b shows a flow in which all of the threads are in the
SCHED_FIFO class. Thread D executes until it waits or terminates. Next, although
threads B and C have the same priority, thread B starts because it has been waiting
longer than thread C. Thread B executes until it waits or terminates, then thread C
executes until it waits or terminates. Finally, thread A executes.

Figure 10.10c shows a sample flow if all of the threads are in the SCHED_RR
class. Thread D executes until it waits or terminates. Next, threads B and C are time
sliced, because they both have the same priority. Finally, thread A executes.

The final scheduling class is SCHED_NORMAL. A thread in this class can only
execute if there are no real-time threads ready to execute.

Non-Real-Time Scheduling

The Linux 2.4 scheduler for the SCHED_OTHER (now called SCHED_NORMAL) class
did not scale well with increasing number of processors and increasing number of
processes. The drawbacks of this scheduler include the following:

•	 The Linux 2.4 scheduler uses a single runqueue for all processors in a symmet-
ric multiprocessing system (SMP). This means a task can be scheduled on any
processor, which can be good for load balancing but bad for memory caches.
For example, suppose a task executed on CPU-1, and its data were in that pro-
cessor’s cache. If the task got rescheduled to CPU-2, its data would need to be
invalidated in CPU-1 and brought into CPU-2.

•	 The Linux 2.4 scheduler uses a single runqueue lock. Thus, in an SMP sys-
tem, the act of choosing a task to execute locks out any other processor from
manipulating the runqueues. The result is idle processors awaiting release of the
runqueue lock and decreased efficiency.

•	 Preemption is not possible in the Linux 2.4 scheduler; this means that a
lower-priority task can execute while a higher-priority task waited for it to
complete.

Figure 10.10  Example of Linux Real-Time Scheduling

Maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
MiddleC

MiddleB

MinimumA

(c) Flow with RR scheduling

D B C B C A

M10_STAL4290_09_GE_C10.indd 490 5/9/17 4:32 PM

10.3 / LINUX SCHEDULING   491

To correct these problems, Linux 2.6 uses a completely new priority scheduler
known as the O(1) scheduler.5 The scheduler is designed so the time to select the
appropriate process and assign it to a processor is constant, regardless of the load on
the system or the number of processors. However, the O(1) scheduler proved to be
unwieldy in the kernel. The amount of code is large and the algorithms are
complex.

As a result of the drawbacks of the O(1) scheduler, from Linux 2.6.23, a new
scheduler, called the Completely Fair Scheduler (CFS), is being used [PABL04].
The CFS models an ideal multitasking CPU on real hardware that provides fair
access to all tasks. In order to achieve this goal, the CFS maintains a virtual runtime
value for each task. The virtual runtime is the amount of time spent executing so
far, normalized by the number of runnable processes. The smaller a task’s virtual
runtime is (i.e., the smaller the amount of time a task has been permitted access to
the processor), the higher is its need for the processor. The CFS also includes the
concept of sleeper fairness to ensure that tasks that are not currently runnable (e.g.,
waiting for I/O) receive a comparable share of the processor when they eventually
need it.

The CFS scheduler is implemented by the fair_sched_class scheduler class. It is
based on using a Red Black tree, as opposed to other schedulers, which are typically
based on run queues. A Red Black tree is a type of self-balancing binary search tree
that obeys the following rules:

1.	 A node is either red or black.

2.	 The root is black.

5The term O(1) is an example of the “big-O” notation, used for characterizing the time complexity of
algorithms. Appendix I explains this notation.

Figure 10.11  Example of Red Black Tree for CFS

NIL

19

2

Virtual runtime

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

Most need of CPU

Shaded = red nodes

Least need of CPU

49 98

34

NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL

7 25 31 65

27

M10_STAL4290_09_GE_C10.indd 491 5/9/17 4:32 PM

492   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

3.	 All leaves (NIL) are black.

4.	 If a node is red, then both its children are black.

5.	 Every path from a given node to any of its descendant NIL nodes contains the
same number of black nodes.

This scheme provides high efficiency in inserting, deleting, and searching tasks,
due to its O(log N) complexity.

Figure 10.11 illustrates a Red Black Tree. The Linux RB tree contains informa-
tion about runnable processes. The rb_node elements of the tree are embedded in
sched_entity object. The Red Black tree is ordered by vruntime, where the leftmost
node of the tree represents the process that has the lowest vruntime, and that has the
highest need for CPU; this node is the first one to be picked by the CPU, and when it
runs, its vruntime is updated according to the time it consumed; so when it is inserted
back into the tree, very likely it will no longer be the one with the lowest vruntime,
and the tree will be rebalanced to reflect the current state. And this process of rebal-
ancing will continue with the next process to be picked by the CFS scheduler, and so
on. In this way, the CFS manages a fair scheduling policy.

While an insert operation is being performed in RB tree, the leftmost child
value is cached in sched_entity for fast lookup.

In Kernel 2.6.24, a new feature called CFS group scheduling was introduced.
This feature allows the kernel to schedule a group of tasks as if they were a single
task. Group scheduling is designed to provide fairness when a task spawns many
other tasks.

	 10.4	UNIX SVR4 SCHEDULING

The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the schedul-
ing algorithm used in earlier UNIX systems (described in Section 9.3). The new algo-
rithm is designed to give highest preference to real-time processes, next-highest
preference to kernel-mode processes, and lowest preference to other user-mode
processes, referred to as time-shared processes.6

The two major modifications implemented in SVR4 are as follows:

1.	 The addition of a preemptable static priority scheduler and the introduction of
a set of 160 priority levels divided into three priority classes.

2.	 The insertion of preemption points. Because the basic kernel is not preemptive,
it can only be split into processing steps that must run to completion without
interruption. In between the processing steps, safe places known as preemption
points have been identified where the kernel can safely interrupt processing
and schedule a new process. A safe place is defined as a region of code where
all kernel data structures are either updated and consistent, or locked via a
semaphore.

6Time-shared processes are the processes that correspond to users in a traditional time-sharing system.

M10_STAL4290_09_GE_C10.indd 492 5/9/17 4:32 PM

10.4 / UNIX SVR4 SCHEDULING   493

Figure 10.12 illustrates the 160 priority levels defined in SVR4. Each process
is defined to belong to one of three priority classes and is assigned a priority level
within that class. The classes are as follows:

•	 Real time (159-100): Processes at these priority levels are guaranteed to be
selected to run before any kernel or time-sharing process. In addition, real-time
processes can make use of preemption points to preempt kernel processes and
user processes.

•	 Kernel (99-60): Processes at these priority levels are guaranteed to be selected
to run before any time-sharing process, but must defer to real-time processes.

•	 Time-shared (59-0): The lowest-priority processes, intended for user applica-
tions other than real-time applications.

Figure 10.13 indicates how scheduling is implemented in SVR4. A dispatch
queue is associated with each priority level, and processes at a given priority level
are executed in round-robin fashion. A bit-map vector, dqactmap, contains one bit
for each priority level; the bit is set to one for any priority level with a nonempty

Figure 10.12 � SVR4 Dispatch
Queues

Priority
class

Real time

Kernel

Time shared

Global
value

Scheduling
sequence

159

100

First

Last

99

60
59

0

Figure 10.13  SVR4 Priority Classes

0 0111

159 012n

dqactmap

dispq

PP

P

P

P

P

P

P

M10_STAL4290_09_GE_C10.indd 493 5/9/17 4:32 PM

494   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

queue. Whenever a running process leaves the Running state, due to a block, timeslice
expiration, or preemption, the dispatcher checks dqactmap and dispatches a ready
process from the highest-priority nonempty queue. In addition, whenever a defined
preemption point is reached, the kernel checks a flag called kprunrun. If set, this
indicates at least one real-time process is in the Ready state, and the kernel preempts
the current process if it is of lower priority than the highest-priority real-time ready
process.

Within the time-sharing class, the priority of a process is variable. The scheduler
reduces the priority of a process each time it uses up a time quantum, and it raises its
priority if it blocks on an event or resource. The time quantum allocated to a time-
sharing process depends on its priority, ranging from 100 ms for priority 0 to 10 ms
for priority 59. Each real-time process has a fixed priority and a fixed-time quantum.

	 10.5	UNIX FREEBSD SCHEDULING

The UNIX FreeBSD scheduler is designed to provide a more efficient operation
than previous UNIX schedulers under heavy load and when used on a multiproces-
sor or multicore platform. The scheduler is quite complex, and here we present an
overview of the most significant design features; for more detail, see [MCKU15] and
[ROBE03].

Priority Classes

The underlying priority mechanism in the FreeBSD scheduler is similar to that of
UNIX SVR4. For FreeBSD, five priority classes are defined (see Table 10.6); the first
two classes are for kernel-mode threads and the remaining classes for user-mode
threads. Kernel threads execute code that is compiled into the kernel’s load image
and operate with the kernel’s privileged execution code.

The highest-priority threads are referred to as bottom-half kernel. Threads in
this class run in the kernel are scheduled based on interrupt priorities. These priorities
are set when the corresponding devices are configured and do not change. Top-half
kernel threads also run in the kernel and execute various kernel functions. These
priorities are set based on predefined priorities and never change.

Priority Class Thread Type Description

0–63 Bottom-half kernel Scheduled by interrupts. Can block to await a resource

64–127 Top-half kernel Runs until blocked or done. Can block to await a
resource

128–159 Real-time user Allowed to run until blocked or until a higher-priority
thread becomes available. Preemptive scheduling

160–223 Time-sharing user Adjusts priorities based on processor usage

224–255 Idle user Only run when there are no time sharing or real-time
threads to run

Note: Lower number corresponds to higher priority.

Table 10.6  FreeBSD Thread Scheduling Classes

M10_STAL4290_09_GE_C10.indd 494 5/9/17 4:32 PM

10.5 / UNIX FREEBSD SCHEDULING   495

The next lower-priority class is referred to as real-time user. A thread with a
real-time priority is not subject to priority degradation. That is, a real-time thread
maintains the priority it began with and does not drop to a lower priority as a result
of using resources. Next comes the time-sharing user priority class. For threads in this
class, priority is periodically recalculated based on a number of parameters, including
the amount of processor time used, the amount of memory resources held, and other
resource consumption parameters. The lowest range of priorities is referred to as the
idle user class. This class is intended for applications that will only consume processor
time when no other threads are ready to execute.

SMP and Multicore Support

The latest version of the FreeBSD scheduler, introduced with FreeBSD 5.0, was
designed to provide effective scheduling for an SMP or multicore system. The new
scheduler meets three design goals:

1.	 Address the need for processor affinity in SMP and multicore systems. The
term processor affinity refers to a scheduler that only migrates a thread (moves
thread from one processor to another) when necessary to avoid having an idle
processor.

2.	 Provide better support for multithreading on multicore systems.

3.	 Improve the performance of the scheduling algorithm, so it is no longer a func-
tion of the number of threads in the system.

In this subsection, we look at three key features of the new scheduler: queue
structure, interactivity scoring, and thread migration.

Queue Structure  The previous version of the FreeBSD schedule used a
single global scheduling queue for all processors that it traverses once per second
to recalculate their priorities. The use of a single list for all threads means the
performance of the scheduler is dependent on the number of tasks in the system,
and as the number of tasks grows, more processor time must be spent in the scheduler
maintaining the list.

The new scheduler performs scheduling independently for each processor. For
each processor, three queues are maintained. Each of the queues has the structure
shown in Figure 10.14 for SVR4. Two runqueues implement the kernel, real-time, and
time-sharing scheduling classes (priorities 0 through 223). The third queue is only for
the idle class (priorities 224 through 255).

The two runqueues are designated current and next. Every thread that is granted
a timeslice (place in the Ready state) is placed in either the current queue or the next
queue (as explained subsequently) at the appropriate priority for that thread. The
scheduler for a processor selects threads from the current queue in priority order
until the current queue is empty. When the current queue is empty, the scheduler
swaps the current and next queue, and begins to schedule threads from the new cur-
rent queue. The use of two runqueues guarantees that each thread will be granted
processor time at least once every two queue switches regardless of priority, avoiding
starvation.

M10_STAL4290_09_GE_C10.indd 495 5/9/17 4:32 PM

496   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

Several rules determine the assignment of a thread to either the current queue
or the next queue:

1.	 Kernel and real-time threads are always inserted onto the current queue.

2.	 A time-sharing thread is assigned to the current queue if it is interactive (explained
in the next subsection) or to the next queue otherwise. Inserting interactive
threads onto the current queue results in a low interactive response time for
such threads, compared to other time-sharing threads that do not exhibit a high
degree of interactivity.

Interactivity Scoring  A thread is considered to be interactive if the ratio of
its voluntary sleep time versus its run time is below a certain threshold. Interactive
threads typically have high sleep times as they wait for user input. These sleep

Figure 10.14  Windows Thread Dispatching Priorities

Highest (31)

Lowest (16)

Highest (15)

Lowest (0)

Real-time
priority
classes

Variable
priority
classes

M10_STAL4290_09_GE_C10.indd 496 5/9/17 4:32 PM

10.5 / UNIX FREEBSD SCHEDULING   497

intervals are followed by bursts of processor activity as the thread processes the
user’s request.

The interactivity threshold is defined in the scheduler code and is not configu-
rable. The scheduler uses two equations to compute the interactivity score of a thread.
First, we define a scaling factor:

Scaling factor =
Maximum interactivity score

2

For threads whose sleep time exceeds their run time, the following equation is
used:

Interactivity score = Scaling factor a run
sleep

b

When a thread’s run time exceeds its sleep time, the following equation is used
instead:

Interactivity score = Scaling factor a1 +
sleep
run

b

The result is that threads whose sleep time exceeds their run time score in the
lower half of the range of interactivity scores, and threads whose run time exceeds
their sleep time score in the upper half of the range.

Thread Migration  In general, it is desirable to schedule a Ready thread onto the
last processor that it ran on; this is called processor affinity. The alternative is to allow
a thread to migrate to another processor for its next execution time slice. Processor
affinity is significant because of local caches dedicated to a single processor. When
a thread is run, it may still have data in the cache of its last processor. Changing to
another processor means the necessary data must be loaded into caches in the new
processor and cache lines from the preceding processor must be invalidated. On the
other hand, processor migration may allow a better load balancing, and may prevent
idle periods on some processors while other processors have more work than they
can handle in a timely fashion.

The FreeBSD scheduler supports two mechanisms for thread migration to bal-
ance load: pull and push. With the pull mechanism, an idle processor steals a thread
from a nonidle processor. When a processor has no work to do, it sets a bit in a global
bit-mask indicating that it is idle. When an active processor is about to add work to
its own run queue, it first checks for such idle bits and if a set idle bit is found, passes
the thread to the idle processor. It is primarily useful when there is a light or sporadic
load, or in situations where processes are starting and exiting very frequently.

The pull mechanism is effective in preventing the waste of a processor due to
idleness. But it is not effective, or indeed relevant, in a situation in which every proces-
sor has work to do but the load has developed in an uneven fashion. With the push
mechanism, a periodic scheduler task evaluates the current load situation and evens
it out. Twice per second, this task picks the most-loaded and least-loaded processors
in the system and equalizes their run queues. Push migration ensures fairness among
the runnable threads.

M10_STAL4290_09_GE_C10.indd 497 5/9/17 4:33 PM

498   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

	 10.6	WINDOWS SCHEDULING

Windows is designed to be as responsive as possible to the needs of a single user in a
highly interactive environment or in the role of a server. Windows implements a pre-
emptive scheduler with a flexible system of priority levels that includes round-robin
scheduling within each level and, for some levels, dynamic priority variation on the
basis of their current thread activity. Threads are the unit of scheduling in Windows
rather than processes.

Process and Thread Priorities

Priorities in Windows are organized into two bands, or classes: real time and vari-
able. Each of these bands consists of 16 priority levels. Threads requiring immediate
attention are in the real-time class, which includes functions such as communications
and real-time tasks.

Overall, because Windows makes use of a priority-driven preemptive scheduler,
threads with real-time priorities have precedence over other threads. When a thread
becomes ready whose priority is higher than the currently executing thread, the
lower-priority thread is preempted and the processor is given to the higher-priority
thread.

Priorities are handled somewhat differently in the two classes (see Figure 10.14).
In the real-time priority class, all threads have a fixed priority that never changes. All
of the active threads at a given priority level are in a round-robin queue. In the vari-
able priority class, a thread’s priority begins an initial priority value and then may be
temporarily boosted (raised) during the thread’s lifetime. There is a FIFO queue at
each priority level; a thread will change queues among the variable priority classes
as its own priority changes. However, a thread at priority level 15 or below is never
boosted to level 16 (or any other level in the real-time class).

The initial priority of a thread in the variable priority class is determined by two
quantities: process base priority and thread base priority. The process base priority is
an attribute of the process object and can take on any value from 1 through 15 (prior-
ity 0 is reserved for the Executive’s per-processor idle threads). Each thread object
associated with a process object has a thread base priority attribute that indicates the
thread’s base priority relative to that of the process. The thread’s base priority can be
equal to that of its process or within two levels above or below that of the process.
So, for example, if a process has a base priority of 4 and one of its threads has a base
priority of -1, then the initial priority of that thread is 3.

Once a thread in the variable priority class has been created, its actual priority,
referred to as the thread’s current priority, may fluctuate within given boundaries.
The current priority may never fall below the thread’s base priority, and it may never
exceed 15. Figure 10.15 gives an example. The process object has a base priority attri-
bute of 4. Each thread object associated with this process object must have an initial
priority of between 2 and 6. Suppose the base priority for thread is 4. Then the current
priority for that thread may fluctuate in the range from 4 through 15 depending on
what boosts it has been given. If a thread is interrupted to wait on an I/O event, the
kernel boosts its priority. If a boosted thread is interrupted because it has used up its

M10_STAL4290_09_GE_C10.indd 498 5/9/17 4:33 PM

10.6 / WINDOWS SCHEDULING   499

current time quantum, the kernel lowers its priority. Thus, processor-bound threads
tend toward lower priorities, and I/O-bound threads tend toward higher priorities.
In the case of I/O-bound threads, the kernel boosts the priority more for interac-
tive waits (e.g., wait on keyboard or mouse) than for other types of I/O (e.g., disk
I/O). Thus, interactive threads tend to have the highest priorities within the variable
priority class.

Multiprocessor Scheduling

Windows supports multiprocessor and multicore hardware configurations. The
threads of any process, including those of the Executive, can run on any processor.
In the absence of affinity restrictions, explained in the next paragraph, the kernel
dispatcher assigns a ready thread to the next available processor. This assures that no
processor is idle or is executing a lower-priority thread when a higher-priority thread
is ready. Multiple threads from the same process can be executing simultaneously on
multiple processors.

As a default, the kernel dispatcher uses the policy of soft affinity in assign-
ing threads to processors: The dispatcher tries to assign a ready thread to the same
processor it last ran on. This helps reuse data still in that processor’s memory caches
from the previous execution of the thread. It is possible for an application to restrict
its thread execution only to certain processors (hard affinity).

When Windows is run on a single processor, the highest-priority thread is always
active unless it is waiting on an event. If there is more than one thread that has the
same highest priority, then the processor is shared, round robin, among all the threads
at that priority level. In a multiprocessor system with N processors, the kernel tries
to give the N processors to the N highest-priority threads that are ready to run. The
remaining, lower-priority threads must wait until the other threads block or have

Figure 10.15 � Example of Windows Priority
Relationship

Base priority Normal
Below normal

Lowest

Above normal
Highest

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Process
priority

Thread’s base
priority

Thread’s dynamic
priority

M10_STAL4290_09_GE_C10.indd 499 5/9/17 4:33 PM

500   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

their priority decay. Lower-priority threads may also have their priority boosted to
15 for a very short time if they are being starved, solely to correct instances of prior-
ity inversion.

The foregoing scheduling discipline is affected by the processor affinity attri-
bute of a thread. If a thread is ready to execute, but the only available processors
are not in its processor affinity set, then that thread is forced to wait, and the kernel
schedules the next available thread.

	 10.7	SUMMARY

With a tightly coupled multiprocessor, multiple processors have access to the same
main memory. In this configuration, the scheduling structure is somewhat more com-
plex. For example, a given process may be assigned to the same processor for its entire
life or dispatched to any processor each time it enters the Running state. Performance
studies suggest that the differences among various scheduling algorithms are less
significant in a multiprocessor system.

A real-time process or task is one that is executed in connection with some pro-
cess or function or set of events external to the computer system and that must meet
one or more deadlines to interact effectively and correctly with the external envi-
ronment. A real-time operating system is one that is capable of managing real-time
processes. In this context, the traditional criteria for a scheduling algorithm do not
apply. Rather, the key factor is the meeting of deadlines. Algorithms that rely heavily
on preemption, and on reacting to relative deadlines, are appropriate in this context.

	 10.8	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

aperiodic task
deadline scheduling
deterministic
deterministic operating system
fail-soft operation
gang scheduling
granularity
hard affinity
hard real-time task

load sharing
periodic task
priority ceiling
priority inheritance
priority inversion
processor affinity
pull mechanism
push mechanism
rate monotonic scheduling

real-time operating system
real-time scheduling
responsiveness
soft affinity
soft real-time task
thread scheduling
unbounded priority inversion

Review Questions

	10.1.	 List and briefly define five different categories of synchronization granularity.
	10.2.	 What grain size of parallelism is appropriate for a multiprogrammed uniprocessor?
	10.3.	 For which kinds of applications is gang scheduling of threads most useful?
	10.4.	 What is the difference between hard and soft real-time tasks?

M10_STAL4290_09_GE_C10.indd 500 5/9/17 4:33 PM

10.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   501

	10.5.	 Discuss the concept of dynamic scheduling.
	10.6.	 List and briefly define five general areas of requirements for a real-time operating

system.
	10.7.	 List and briefly define four classes of real-time scheduling algorithms.
	10.8.	 What is priority inversion? What is unbounded priority inversion?

Problems

	10.1.	 Consider a set of three periodic tasks with the execution profiles of Table 10.7. Develop
scheduling diagrams similar to those of Figure 10.5 for this set of tasks.

	10.2.	 Consider a set of five aperiodic tasks with the execution profiles of Table 10.8. Develop
scheduling diagrams similar to those of Figure 10.6 for this set of tasks.

	10.3.	 Least-laxity-first (LLF) is a real-time scheduling algorithm for periodic tasks. Slack
time, or laxity, is the amount of time between when a task would complete if it started
now and its next deadline. This is the size of the available scheduling window. Laxity
can be expressed as

Laxity = (deadline time) - (current time) - (processor time needed)

		 LLF selects the task with the minimum laxity to execute next. If two or more tasks
have the same minimum laxity value, they are serviced on a FCFS basis.
a.	 Suppose a task currently has a laxity of t. By how long may the scheduler delay

starting this task and still meet its deadline?
b.	 Suppose a task currently has a laxity of 0. What does this mean?
c.	 What does it mean if a task has negative laxity?
d.	 Consider a set of three periodic tasks with the execution profiles of Table 10.9a.

Develop scheduling diagrams similar to those of Figure 10.5 for this set of tasks

Process Arrival Time Execution Time Ending Deadline

A(1) 0 10 20

A(2) 20 10 40

• • • •

• • • •

• • • •

B(1) 0 10 50

B(2) 50 10 100

• • • •

• • • •

• • • •

C(1) 0 15 50

C(2) 50 15 100

• • • •

• • • •

• • • •

Table 10.7  Execution Profile for Problem 10.1

M10_STAL4290_09_GE_C10.indd 501 5/9/17 4:33 PM

502   Chapter 10 / Multiprocessor, Multicore, and Real-Time Scheduling

that compare rate monotonic, earliest-deadline first, and LLF. Assume preemption
may occur at 5-ms intervals. Comment on the results.

	10.4.	 Repeat Problem 10.3d for the execution profiles of Table 10.9b. Comment on the
results.

	10.5.	 Maximum-urgency-first (MUF) is a real-time scheduling algorithm for periodic tasks.
Each task is assigned an urgency that is defined as a combination of two fixed priorities
and one dynamic priority. One of the fixed priorities, the criticality, has precedence over
the dynamic priority. Meanwhile, the dynamic priority has precedence over the other
fixed priority, called the user priority. The dynamic priority is inversely proportional
to the laxity of a task. MUF can be explained as follows. First, tasks are ordered from
shortest to longest period. Define the critical task set as the first N tasks such that
worst-case processor utilization does not exceed 100%. Among critical set tasks that
are ready, the scheduler selects the task with the least laxity. If no critical set tasks are
ready, the schedule chooses among the noncritical tasks the one with the least laxity.
Ties are broken through an optional user priority then by FCFS. Repeat Problem 10.3d,
adding MUF to the diagrams. Assume user-defined priorities are A highest, B next, C
lowest. Comment on the results.

	10.6.	 Repeat Problem 10.4, adding MUF to the diagrams. Comment on the results.
	10.7.	 A system is predominated by periodic tasks and so rate monotonic scheduling (RMS)

is proposed as a way to resolve multitask scheduling conflicts. Assume that in a given
time span the system has five tasks with parameters as listed below:

•	 Task P1: Processing Time C1 = 20; Period T1 = 90
•	 Task P2: Processing Time C2 = 30; Period T2 = 250
•	 Task P3: Processing Time C3 = 70; Period T3 = 370

(a) Light load

Task Period Execution Time

A 6 2

B 8 2

C 12 3

(b) Heavy load

Task Period Execution Time

A 6 2

B 8 5

C 12 3

Table 10.9  Execution Profiles for Problems 10.3 through 10.6

Process Arrival Time Execution Time Starting Deadline

A 10 20 100

B 20 20 30

C 40 20 60

D 50 20 80

E 60 20 70

Table 10.8  Execution Profile for Problem 10.2

M10_STAL4290_09_GE_C10.indd 502 5/9/17 4:33 PM

10.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   503

•	 Task P4: Processing Time C4 = 50; Period T4 = 330
•	 Task P5: Processing Time C5 = 125; Period T5 = 2000

		 We have seen that Equation (10.2) provides an upper bound on the number of tasks
that a perfect scheduling algorithm can successfully schedule. If RMS is used, analyze
whether the tasks can be successfully scheduled as per Equation (10.2).

	10.8.	 Suppose that an application has three threads T1, T2 and T3 having decreasing priority.
Give a scenario that may cause unbounded priority inversion.

M10_STAL4290_09_GE_C10.indd 503 5/9/17 4:33 PM

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

505

11.1	 I/O Devices
11.2	 Organization of the I/O Function

The Evolution of the I/O Function
Direct Memory Access

11.3	 Operating System Design Issues
Design Objectives
Logical Structure of the I/O Function

11.4	 I/O Buffering
Single Buffer
Double Buffer
Circular Buffer
The Utility of Buffering

11.5	 Disk Scheduling
Disk Performance Parameters
Disk Scheduling Policies

11.6	 RAID
RAID Level 0
RAID Level 1
RAID Level 2
RAID Level 3
RAID Level 4
RAID Level 5
RAID Level 6

11.7	 Disk Cache
Design Considerations
Performance Considerations

11.8	 UNIX SVR4 I/O
Buffer Cache
Character Queue
Unbuffered I/O
UNIX Devices

11.9	 Linux I/O
Disk Scheduling
Linux Page Cache

11.10	 Windows I/O
Basic I/O Facilities
Asynchronous and Synchronous I/O
Software RAID
Volume Shadow Copies
Volume Encryption

11.11	 Summary
11.12	 Key Terms, Review Questions, and Problems

I/O Management and Disk
Scheduling

Chapter

Input/Output and FilesPart 5

M11_STAL4290_09_GE_C11.indd 505 5/9/17 4:32 PM

506   Chapter 11 / I/O Management and Disk Scheduling

Perhaps the messiest aspect of operating system design is input/output. Because there
is such a wide variety of devices and applications of those devices, it is difficult to
develop a general, consistent solution.

We begin with a brief discussion of I/O devices and the organization of the I/O
function. These topics, which generally come within the scope of computer architec-
ture, set the stage for an examination of I/O from the point of view of the OS.

The next section examines operating system design issues, including design
objectives, and the way in which the I/O function can be structured. Then I/O buffer-
ing is examined; one of the basic I/O services provided by the operating system is a
buffering function, which improves overall performance.

The next sections of the chapter are devoted to magnetic disk I/O. In contem-
porary systems, this form of I/O is the most important and is key to the performance
as perceived by the user. We begin by developing a model of disk I/O performance
then examine several techniques that can be used to enhance performance.

Appendix J summarizes characteristics of secondary storage devices, including
magnetic disk and optical memory.

  11.1	 I/O DEVICES

As was mentioned in Chapter 1, external devices that engage in I/O with computer
systems can be roughly grouped into three categories:

1.	 Human readable: Suitable for communicating with the computer user. Exam-
ples include printers and terminals, the latter consisting of video display, key-
board, and perhaps other devices such as a mouse.

2.	 Machine readable: Suitable for communicating with electronic equipment.
Examples are disk drives, USB keys, sensors, controllers, and actuators.

3.	 Communication: Suitable for communicating with remote devices. Examples
are digital line drivers and modems.

Learning Objectives

After studying this chapter, you should be able to:
•	 Summarize key categories of I/O devices on computers.
•	 Discuss the organization of the I/O function.
•	 Explain some of the key issues in the design of OS support for I/O.
•	 Analyze the performance implications of various I/O buffering alternatives.
•	 Understand the performance issues involved in magnetic disk access.
•	 Explain the concept of RAID and describe the various levels.
•	 Understand the performance implications of disk cache.
•	 Describe the I/O mechanisms in UNIX, Linux, and Windows.

M11_STAL4290_09_GE_C11.indd 506 5/9/17 4:32 PM

11.1 / I/O DEVICES   507

There are great differences across classes and even substantial differences
within each class. Among the key differences are the following:

•	 Data rate: There may be differences of several orders of magnitude between
the data transfer rates. Figure 11.1 gives some examples.

•	 Application: The use to which a device is put has an influence on the soft-
ware and policies in the OS and supporting utilities. For example, a disk used
for files requires the support of file management software. A disk used as a
backing store for pages in a virtual memory scheme depends on the use of
virtual memory hardware and software. Furthermore, these applications have
an impact on disk scheduling algorithms (discussed later in this chapter). As
another example, a terminal may be used by an ordinary user or a system
administrator. These uses imply different privilege levels and perhaps different
priorities in the OS.

•	 Complexity of control: A printer requires a relatively simple control interface. A
disk is much more complex. The effect of these differences on the OS is filtered
to some extent by the complexity of the I/O module that controls the device, as
discussed in the next section.

•	 Unit of transfer: Data may be transferred as a stream of bytes or characters
(e.g., terminal I/O) or in larger blocks (e.g., disk I/O).

•	 Data representation: Different data encoding schemes are used by different
devices, including differences in character code and parity conventions.

Figure 11.1  Typical I/O Device Data Rates

Keyboard

101 102 103 104 105

Data Rate (bps)

106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit ethernet

Floppy disk

Laser printer

Scanner

Optical disk

M11_STAL4290_09_GE_C11.indd 507 5/9/17 4:32 PM

508   Chapter 11 / I/O Management and Disk Scheduling

•	 Error conditions: The nature of errors, the way in which they are reported,
their consequences, and the available range of responses differ widely from
one device to another.

This diversity makes a uniform and consistent approach to I/O, both from the
point of view of the operating system and from the point of view of user processes,
difficult to achieve.

  11.2	 ORGANIZATION OF THE I/O FUNCTION

Appendix C summarizes three techniques for performing I/O:

1.	 Programmed I/O: The processor issues an I/O command, on behalf of a process,
to an I/O module; that process then busy waits for the operation to be com-
pleted before proceeding.

2.	 Interrupt-driven I/O: The processor issues an I/O command on behalf of a pro-
cess. There are then two possibilities. If the I/O instruction from the process
is nonblocking, then the processor continues to execute instructions from the
process that issued the I/O command. If the I/O instruction is blocking, then the
next instruction that the processor executes is from the OS, which will put the
current process in a blocked state and schedule another process.

3.	 Direct memory access (DMA): A DMA module controls the exchange of data
between main memory and an I/O module. The processor sends a request for
the transfer of a block of data to the DMA module, and is interrupted only after
the entire block has been transferred.

Table 11.1 indicates the relationship among these three techniques. In most
computer systems, DMA is the dominant form of transfer that must be supported by
the operating system.

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complexity
and sophistication of individual components. Nowhere is this more evident than in
the I/O function. The evolutionary steps can be summarized as follows:

1.	 The processor directly controls a peripheral device. This is seen in simple micro-
processor-controlled devices.

2.	 A controller or I/O module is added. The processor uses programmed I/O with-
out interrupts. With this step, the processor becomes somewhat divorced from
the specific details of external device interfaces.

No Interrupts Use of Interrupts

I/O-to-Memory Transfer through
Processor

Programmed I/O Interrupt-driven I/O

Direct I/O-to-Memory Transfer Direct memory access (DMA)

Table 11.1  I/O Techniques

M11_STAL4290_09_GE_C11.indd 508 5/9/17 4:32 PM

11.2 / ORGANIZATION OF THE I/O FUNCTION   509

3.	 The same configuration as step 2 is used, but now interrupts are employed. The
processor need not spend time waiting for an I/O operation to be performed,
thus increasing efficiency.

4.	 The I/O module is given direct control of memory via DMA. It can now move
a block of data to or from memory without involving the processor, except at
the beginning and end of the transfer.

5.	 The I/O module is enhanced to become a separate processor, with a specialized
instruction set tailored for I/O. The central processing unit (CPU) directs the
I/O processor to execute an I/O program in main memory. The I/O processor
fetches and executes these instructions without processor intervention. This
allows the processor to specify a sequence of I/O activities and to be interrupted
only when the entire sequence has been performed.

6.	 The I/O module has a local memory of its own and is, in fact, a computer in its
own right. With this architecture, a large set of I/O devices can be controlled,
with minimal processor involvement. A common use for such an architecture
has been to control communications with interactive terminals. The I/O proces-
sor takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O func-
tion is performed without processor involvement. The central processor is increas-
ingly relieved of I/O-related tasks, improving performance. With the last two steps
(5 and 6), a major change occurs with the introduction of the concept of an I/O
module capable of executing a program.

A note about terminology: For all of the modules described in steps 4 through
6, the term direct memory access is appropriate, because all of these types involve
direct control of main memory by the I/O module. Also, the I/O module in step 5 is
often referred to as an I/O channel, and that in step 6 as an I/O processor; however,
each term is, on occasion, applied to both situations. In the latter part of this section,
we will use the term I/O channel to refer to both types of I/O modules.

Direct Memory Access

Figure 11.2 indicates, in general terms, the DMA logic. The DMA unit is capable of
mimicking the processor and, indeed, of taking over control of the system bus just
like a processor. It needs to do this to transfer data to and from memory over the
system bus.

The DMA technique works as follows. When the processor wishes to read or
write a block of data, it issues a command to the DMA module by sending to the
DMA module the following information:

•	 Whether a read or write is requested, using the read or write control line
between the processor and the DMA module

•	 The address of the I/O device involved, communicated on the data lines

•	 The starting location in memory to read from or write to, communicated on the
data lines and stored by the DMA module in its address register

•	 The number of words to be read or written, again communicated via the data
lines and stored in the data count register

M11_STAL4290_09_GE_C11.indd 509 5/9/17 4:32 PM

510   Chapter 11 / I/O Management and Disk Scheduling

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module. The DMA module transfers the entire block of data, one
word at a time, directly to or from memory, without going through the processor.
When the transfer is complete, the DMA module sends an interrupt signal to the
processor. Thus, the processor is involved only at the beginning and end of the trans-
fer (see Figure C.4c).

The DMA mechanism can be configured in a variety of ways. Some possibilities
are shown in Figure 11.3. In the first example, all modules share the same system bus.
The DMA module, acting as a surrogate processor, uses programmed I/O to exchange
data between memory and an I/O module through the DMA module. This configura-
tion, while it may be inexpensive, is clearly inefficient: As with processor-controlled
programmed I/O, each transfer of a word consumes two bus cycles (transfer request
followed by transfer).

The number of required bus cycles can be cut substantially by integrating the
DMA and I/O functions. As Figure 11.3b indicates, this means there is a path between
the DMA module and one or more I/O modules that does not include the system bus.
The DMA logic may actually be a part of an I/O module, or it may be a separate mod-
ule that controls one or more I/O modules. This concept can be taken one step further
by connecting I/O modules to the DMA module using an I/O bus (see Figure 11.3c).
This reduces the number of I/O interfaces in the DMA module to one and provides
for an easily expandable configuration. In all of these cases (see Figures 11.3b and
11.3c), the system bus that the DMA module shares with the processor and main
memory is used by the DMA module only to exchange data with memory and to
exchange control signals with the processor. The exchange of data between the DMA
and I/O modules takes place off the system bus.

Figure 11.2  Typical DMA Block Diagram

Address
register

Control
logic

Data
register

Data
count

Data lines

Address lines

Request to DMA
Acknowledge from DMA

 Interrupt
Read
Write

M11_STAL4290_09_GE_C11.indd 510 5/9/17 4:32 PM

11.3 / OPERATING SYSTEM DESIGN ISSUES   511

  11.3	 OPERATING SYSTEM DESIGN ISSUES

Design Objectives

Two objectives are paramount in designing the I/O facility: efficiency and generality.
Efficiency is important because I/O operations often form a bottleneck in a comput-
ing system. Looking again at Figure 11.1, we see that most I/O devices are extremely
slow compared with main memory and the processor. One way to tackle this problem
is multiprogramming, which, as we have seen, allows some processes to be waiting
on I/O operations while another process is executing. However, even with the vast
size of main memory in today’s machines, it will still often be the case that I/O is not
keeping up with the activities of the processor. Swapping is used to bring in additional
ready processes to keep the processor busy, but this in itself is an I/O operation. Thus,
a major effort in I/O design has been schemes for improving the efficiency of the I/O.
The area that has received the most attention, because of its importance, is disk I/O,
and much of this chapter will be devoted to a study of disk I/O efficiency.

Figure 11.3  Alternative DMA Configurations

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, integrated DMA-I/O

(c) I/O bus

I/O bus

System bus

I/O I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

M11_STAL4290_09_GE_C11.indd 511 5/9/17 4:32 PM

512   Chapter 11 / I/O Management and Disk Scheduling

The other major objective is generality. In the interests of simplicity and free-
dom from error, it is desirable to handle all devices in a uniform manner. This applies
both to the way in which processes view I/O devices, and to the way in which the OS
manages I/O devices and operations. Because of the diversity of device characteris-
tics, it is difficult in practice to achieve true generality. What can be done is to use a
hierarchical, modular approach to the design of the I/O function. This approach hides
most of the details of device I/O in lower-level routines so user processes and upper
levels of the OS see devices in terms of general functions such as read, write, open,
close, lock, and unlock. We turn now to a discussion of this approach.

Logical Structure of the I/O Function

In Chapter 2, in the discussion of system structure, we emphasized the hierarchical
nature of modern operating systems. The hierarchical philosophy is that the func-
tions of the OS should be separated according to their complexity, their character-
istic time scale, and their level of abstraction. Applying this philosophy specifically
to the I/O facility leads to the type of organization suggested by Figure 11.4. The
details of the organization will depend on the type of device and the application.
The three most important logical structures are presented in the figure. Of course,
a particular operating system may not conform exactly to these structures. How-
ever, the general principles are valid, and most operating systems approach I/O in
approximately this way.

Let us consider the simplest case first, that of a local peripheral device that com-
municates in a simple fashion, such as a stream of bytes or records (see Figure 11.4a).
The following layers are involved:

•	 Logical I/O: The logical I/O module deals with the device as a logical resource
and is not concerned with the details of actually controlling the device. The
logical I/O module is concerned with managing general I/O functions on behalf
of user processes, allowing them to deal with the device in terms of a device
identifier and simple commands such as open, close, read, and write.

•	 Device I/O: The requested operations and data (buffered characters, records, etc.)
are converted into appropriate sequences of I/O instructions, channel commands,
and controller orders. Buffering techniques may be used to improve utilization.

•	 Scheduling and control: The actual queueing and scheduling of I/O operations
occurs at this layer, as well as the control of the operations. Thus, interrupts are
handled at this layer and I/O status is collected and reported. This is the layer of
software that actually interacts with the I/O module and hence the device hardware.

For a communications device, the I/O structure (see Figure 11.4b) looks much
the same as that just described. The principal difference is that the logical I/O module
is replaced by a communications architecture, which may itself consist of a number
of layers. An example is TCP/IP, which will be discussed in Chapter 17.

Figure 11.4c shows a representative structure for managing I/O on a secondary
storage device that supports a file system. The three layers not previously discussed
are as follows:

1.	 Directory management: At this layer, symbolic file names are converted to
identifiers that either reference the file directly or indirectly through a file

M11_STAL4290_09_GE_C11.indd 512 5/9/17 4:32 PM

11.3 / OPERATING SYSTEM DESIGN ISSUES   513

descriptor or index table. This layer is also concerned with user operations that
affect the directory of files, such as add, delete, and reorganize.

2.	 File system: This layer deals with the logical structure of files and with the
operations that can be specified by users, such as open, close, read, and write.
Access rights are also managed at this layer.

3.	 Physical organization: Just as virtual memory addresses must be converted into
physical main memory addresses, taking into account the segmentation and
paging structure, logical references to files and records must be converted to
physical secondary storage addresses, taking into account the physical track
and sector structure of the secondary storage device. Allocation of secondary
storage space and main storage buffers is generally treated at this layer as well.

Because of the importance of the file system, we will spend some time, in this
chapter and the next, looking at its various components. The discussion in this chap-
ter focuses on the lower three layers, while the upper two layers will be examined in
Chapter 12.

Figure 11.4  A Model of I/O Organization

User
processes

Device
I/O

Scheduling
& control

(b) Communications port

Hardware

User
processes

Logical
I/O

Device
I/O

Scheduling
& control

(a) Local peripheral device

Hardware

User
processes

Directory
management

File system

Physical
organization

Device
I/O

Scheduling
& control

(c) File system

Hardware

Communication
architecture

M11_STAL4290_09_GE_C11.indd 513 5/9/17 4:32 PM

514   Chapter 11 / I/O Management and Disk Scheduling

  11.4	 I/O BUFFERING

Suppose a user process wishes to read blocks of data from a disk one at a time, with
each block having a length of 512 bytes. The data are to be read into a data area within
the address space of the user process at virtual location 1000 to 1511. The simplest
way would be to execute an I/O command (something like Read_Block[1000,
disk]) to the disk unit then wait for the data to become available. The waiting could
either be busy waiting (continuously test the device status) or, more practically, pro-
cess suspension on an interrupt.

There are two problems with this approach. First, the program is hung up waiting
for the relatively slow I/O to complete. The second problem is that this approach to
I/O interferes with swapping decisions by the OS. Virtual locations 1000 to 1511 must
remain in main memory during the course of the block transfer. Otherwise, some of
the data may be lost. If paging is being used, at least the page containing the target
locations must be locked into main memory. Thus, although portions of the process
may be paged out to disk, it is impossible to swap the process out completely, even
if this is desired by the operating system. Notice also there is a risk of single-process
deadlock. If a process issues an I/O command, is suspended awaiting the result, and
then is swapped out prior to the beginning of the operation, the process is blocked
waiting on the I/O event, and the I/O operation is blocked waiting for the process to
be swapped in. To avoid this deadlock, the user memory involved in the I/O operation
must be locked in main memory immediately before the I/O request is issued, even
though the I/O operation is queued and may not be executed for some time.

The same considerations apply to an output operation. If a block is being trans-
ferred from a user process area directly to an I/O module, then the process is blocked
during the transfer and the process may not be swapped out.

To avoid these overheads and inefficiencies, it is sometimes convenient to per-
form input transfers in advance of requests being made, and to perform output trans-
fers some time after the request is made. This technique is known as buffering. In this
section, we look at some of the buffering schemes that are supported by operating
systems to improve the performance of the system.

In discussing the various approaches to buffering, it is sometimes important
to make a distinction between two types of I/O devices: block-oriented and stream-
oriented. A block-oriented device stores information in blocks that are usually of
fixed size, and transfers are made one block at a time. Generally, it is possible to
reference data by its block number. Disks and USB keys are examples of block-
oriented devices. A stream-oriented device transfers data in and out as a stream of
bytes, with no block structure. Terminals, printers, communications ports, mouse and
other pointing devices, and most other devices that are not secondary storage are
stream-oriented.

Single Buffer

The simplest type of support that the OS can provide is single buffering (see
Figure 11.5b). When a user process issues an I/O request, the OS assigns a buffer in
the system portion of main memory to the operation.

M11_STAL4290_09_GE_C11.indd 514 5/9/17 4:32 PM

11.4 / I/O BUFFERING   515

For block-oriented devices, the single buffering scheme can be described as fol-
lows: Input transfers are made to the system buffer. When the transfer is complete,
the process moves the block into user space and immediately requests another block.
This is called reading ahead, or anticipated input; it is done in the expectation that the
block will eventually be needed. For many types of computation, this is a reasonable
assumption most of the time because data are usually accessed sequentially. Only at
the end of a sequence of processing will a block be read in unnecessarily.

This approach will generally provide a speedup compared to the lack of system
buffering. The user process can be processing one block of data while the next block
is being read in. The OS is able to swap the process out because the input operation
is taking place in system memory rather than user process memory. This technique
does, however, complicate the logic in the operating system. The OS must keep track
of the assignment of system buffers to user processes. The swapping logic is also
affected: If the I/O operation involves the same disk that is used for swapping, it
hardly makes sense to queue disk writes to the same device for swapping the process
out. This attempt to swap the process and release main memory will itself not begin
until after the I/O operation finishes, at which time swapping the process to disk may
no longer be appropriate.

Figure 11.5  I/O Buffering Schemes (Input)

Operating system

I/O device
In

(a) No bu�ering

User process

Operating system

I/O device
In Move

(b) Single bu�ering

User process

Operating system

I/O device
In Move

(c) Double bu�ering

User process

Operating system

I/O device
In Move

(d) Circular bu�ering

User process

M11_STAL4290_09_GE_C11.indd 515 5/9/17 4:32 PM

516   Chapter 11 / I/O Management and Disk Scheduling

Similar considerations apply to block-oriented output. When data are being
transmitted to a device, they are first copied from the user space into the system buf-
fer, from which they will ultimately be written. The requesting process is now free to
continue or to be swapped as necessary.

[KNUT97] suggests a crude but informative performance comparison between
single buffering and no buffering. Suppose T is the time required to input one block,
and C is the computation time that intervenes between input requests. Without buff-
ering, the execution time per block is essentially T + C. With a single buffer, the time
is max [C, T] + M, where M is the time required to move the data from the system
buffer to user memory. In most cases, execution time per block is substantially less
with a single buffer compared to no buffer.

For stream-oriented I/O, the single buffering scheme can be used in a line-at-a-
time fashion or a byte-at-a-time fashion. Line-at-a-time operation is appropriate for
scroll-mode terminals (sometimes called dumb terminals). With this form of termi-
nal, user input is one line at a time, with a carriage return signaling the end of a line,
and output to the terminal is similarly one line at a time. A line printer is another
example of such a device. Byte-at-a-time operation is used on forms-mode terminals,
when each keystroke is significant, and for many other peripherals, such as sensors
and controllers.

In the case of line-at-a-time I/O, the buffer can be used to hold a single line.
The user process is suspended during input, awaiting the arrival of the entire line. For
output, the user process can place a line of output in the buffer and continue process-
ing. It need not be suspended unless it has a second line of output to send before the
buffer is emptied from the first output operation. In the case of byte-at-a-time I/O,
the interaction between the OS and the user process follows the producer/consumer
model discussed in Chapter 5.

Double Buffer

An improvement over single buffering can be had by assigning two system buffers to
the operation (see Figure 11.5c). A process now transfers data to (or from) one buffer
while the operating system empties (or fills) the other. This technique is known as
double buffering or buffer swapping.

For block-oriented transfer, we can roughly estimate the execution time as
max [C, T]. It is therefore possible to keep the block-oriented device going at full
speed if C … T. On the other hand, if C 7 T, double buffering ensures that the pro-
cess will not have to wait on I/O. In either case, an improvement over single buffering
is achieved. Again, this improvement comes at the cost of increased complexity.

For stream-oriented input, we again are faced with the two alternative modes
of operation. For line-at-a-time I/O, the user process need not be suspended for input
or output, unless the process runs ahead of the double buffers. For byte-at-a-time
operation, the double buffer offers no particular advantage over a single buffer of
twice the length. In both cases, the producer/consumer model is followed.

Circular Buffer

A double-buffer scheme should smooth out the flow of data between an I/O device
and a process. If the performance of a particular process is the focus of our concern,

M11_STAL4290_09_GE_C11.indd 516 5/9/17 4:32 PM

11.5 / DISK SCHEDULING   517

then we would like for the I/O operation to be able to keep up with the process.
Double buffering may be inadequate if the process performs rapid bursts of I/O. In
this case, the problem can often be alleviated by using more than two buffers.

When more than two buffers are used, the collection of buffers is itself referred
to as a circular buffer (see Figure 11.5d), with each individual buffer being one unit
in the circular buffer. This is simply the bounded-buffer producer/consumer model
studied in Chapter 5.

The Utility of Buffering

Buffering is a technique that smoothes out peaks in I/O demand. However, no
amount of buffering will allow an I/O device to keep pace with a process indefinitely
when the average demand of the process is greater than the I/O device can service.
Even with multiple buffers, all of the buffers will eventually fill up, and the process
will have to wait after processing each chunk of data. However, in a multiprogram-
ming environment, when there is a variety of I/O activity and a variety of process
activity to service, buffering is one tool that can increase the efficiency of the OS and
the performance of individual processes.

  11.5	 DISK SCHEDULING

Over the last 40 years, the increase in the speed of processors and main memory has
far outpaced that for disk access, with processor and main memory speeds increas-
ing by about two orders of magnitude compared to one order of magnitude for disk.
The result is disks are currently at least four orders of magnitude slower than main
memory. This gap is expected to continue into the foreseeable future. Thus, the per-
formance of disk storage subsystem is of vital concern, and much research has gone
into schemes for improving that performance. In this section, we highlight some of the
key issues and look at the most important approaches. Because the performance of
the disk system is tied closely to file system design issues, the discussion will continue
in Chapter 12.

Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the operat-
ing system, and the nature of the I/O channel and disk controller hardware. A general
timing diagram of disk I/O transfer is shown in Figure 11.6.

When the disk drive is operating, the disk is rotating at constant speed. To read
or write, the head must be positioned at the desired track and at the beginning of the

Figure 11.6  Timing of a Disk I/O Transfer

Wait for
device

Wait for
channel

Seek Rotational
delay

Data
transfer

Device busy

M11_STAL4290_09_GE_C11.indd 517 5/9/17 4:32 PM

518   Chapter 11 / I/O Management and Disk Scheduling

desired sector on that track.1 Track selection involves moving the head in a movable-
head system or electronically selecting one head on a fixed-head system. On a mov-
able-head system, the time it takes to position the head at the track is known as seek
time. In either case, once the track is selected, the disk controller waits until the
appropriate sector rotates to line up with the head. The time it takes for the beginning
of the sector to reach the head is known as rotational delay, or rotational latency. The
sum of the seek time, if any, and the rotational delay equals the access time, which is
the time it takes to get into position to read or write. Once the head is in position, the
read or write operation is then performed as the sector moves under the head; this is
the data transfer portion of the operation. The time required for the transfer is the
transfer time.

In addition to the access time and transfer time, there are several queueing
delays normally associated with a disk I/O operation. When a process issues an I/O
request, it must first wait in a queue for the device to be available. At that time, the
device is assigned to the process. If the device shares a single I/O channel or a set
of I/O channels with other disk drives, then there may be an additional wait for the
channel to be available. At that point, the seek is performed to begin disk access.

In some high-end systems for servers, a technique known as rotational posi-
tional sensing (RPS) is used. This works as follows: When the seek command has
been issued, the channel is released to handle other I/O operations. When the seek is
completed, the device determines when the data will rotate under the head. As that
sector approaches the head, the device tries to reestablish the communication path
back to the host. If either the control unit or the channel is busy with another I/O,
then the reconnection attempt fails and the device must rotate one whole revolution
before it can attempt to reconnect, which is called an RPS miss. This is an extra delay
element that must be added to the time line of Figure 11.6.

Seek Time  Seek time is the time required to move the disk arm to the required
track. It turns out this is a difficult quantity to pin down. The seek time consists of
two key components: the initial startup time, and the time taken to traverse the
tracks that have to be crossed once the access arm is up to speed. Unfortunately, the
traversal time is not a linear function of the number of tracks but includes a settling
time (time after positioning the head over the target track until track identification
is confirmed).

Much improvement comes from smaller and lighter disk components. Some
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most common
size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to travel. A
typical average seek time on contemporary hard disks is under 10 ms.

Rotational Delay  Rotational delay is the time required for the addressed
area of the disk to rotate into a position where it is accessible by the read/write
head. Disks rotate at speeds ranging from 3,600 rpm (for handheld devices such as
digital cameras) up to, as of this writing, 15,000 rpm; at this latter speed, there is one
revolution per 4 ms. Thus, on average, the rotational delay will be 2 ms.

1See Appendix J for a discussion of disk organization and formatting.

M11_STAL4290_09_GE_C11.indd 518 5/9/17 4:32 PM

11.5 / DISK SCHEDULING   519

Transfer Time  The transfer time to or from the disk depends on the rotation
speed of the disk in the following fashion:

T =
b

rN
where

T = transfer time,

b = number of bytes to be transferred,

N = number of bytes on a track, and

r = rotation speed, in revolutions per second.

Thus, the total average access time can be expressed as

Ta = Ts +
1
2r

+
b

rN
where Ts is the average seek time.

A Timing Comparison  With the foregoing parameters defined, let us look at
two different I/O operations that illustrate the danger of relying on average values.
Consider a disk with an advertised average seek time of 4 ms, rotation speed of 7,500
rpm, and 512-byte sectors with 500 sectors per track. Suppose we wish to read a file
consisting of 2,500 sectors for a total of 1.28 Mbytes. We would like to estimate the
total time for the transfer.

First, let us assume the file is stored as compactly as possible on the disk.
That is, the file occupies all of the sectors on 5 adjacent tracks (5 tracks *
500 sectors/track = 2,500 sectors). This is known as sequential organization. The time
to read the first track is as follows:

Average seek   4 ms

Rotational delay   4 ms

Read 500 sectors   8 ms

16 ms
Suppose the remaining tracks can now be read with essentially no seek time.

That is, the I/O operation can keep up with the flow from the disk. Then, at most, we
need to deal with rotational delay for each succeeding track. Thus, each successive
track is read in 4 + 8 = 12 ms. To read the entire file,

Total time = 16 + (4 * 12) = 64 ms = 0.064 seconds

Now, let us calculate the time required to read the same data using random
access rather than sequential access; that is, accesses to the sectors are distributed
randomly over the disk. For each sector, we have:

Average seek 4   ms

Rotational delay 4   ms

Read 1 sector 0.016 ms

8.016 ms

Total time = 2,500 * 8.016 = 20,040 ms = 20.04 seconds

M11_STAL4290_09_GE_C11.indd 519 5/9/17 4:32 PM

520   Chapter 11 / I/O Management and Disk Scheduling

It is clear the order in which sectors are read from the disk has a tremendous
effect on I/O performance. In the case of file access in which multiple sectors are read
or written, we have some control over the way in which sectors of data are deployed,
and we shall have something to say on this subject in the next chapter. However,
even in the case of a file access, in a multiprogramming environment, there will be
I/O requests competing for the same disk. Thus, it is worthwhile to examine ways in
which the performance of disk I/O can be improved over that achieved with purely
random access to the disk.

Disk Scheduling Policies

In the example just described, the reason for the difference in performance can be
traced to seek time. If sector access requests involve selection of tracks at random,
then the performance of the disk I/O system will be as poor as possible. To improve
matters, we need to reduce the average time spent on seeks.

Consider the typical situation in a multiprogramming environment, in which the
OS maintains a queue of requests for each I/O device. So, for a single disk, there will
be a number of I/O requests (reads and writes) from various processes in the queue. If
we selected items from the queue in random order, then we can expect that the tracks
to be visited will occur randomly, giving poor performance. This random scheduling
is useful as a benchmark against which to evaluate other techniques.

Figure 11.7 compares the performance of various scheduling algorithms for
an example sequence of I/O requests. The vertical axis corresponds to the tracks
on the disk. The horizontal axis corresponds to time or, equivalently, the number of
tracks traversed. For this figure, we assume the disk head is initially located at track
100. In this example, we assume a disk with 200 tracks, and the disk request queue
has random requests in it. The requested tracks, in the order received by the disk
scheduler, are 55, 58, 39, 18, 90, 160, 150, 38, 184. Table 11.2a tabulates the results.

First-In-First-Out  The simplest form of scheduling is first-in-first-out (FIFO)
scheduling, which processes items from the queue in sequential order. This strategy
has the advantage of being fair, because every request is honored, and the requests
are honored in the order received. Figure 11.7a illustrates the disk arm movement
with FIFO. This graph is generated directly from the data in Table 11.2a. As can
be seen, the disk accesses are in the same order as the requests were originally
received.

With FIFO, if there are only a few processes that require access and if many
of the requests are to clustered file sectors, then we can hope for good performance.
However, this technique will often approximate random scheduling in performance,
if there are many processes competing for the disk. Thus, it may be profitable to con-
sider a more sophisticated scheduling policy. A number of these are listed in Table
11.3 and will now be considered.

Priority  With a system based on priority (PRI), the control of the scheduling is
outside the control of disk management software. Such an approach is not intended
to optimize disk utilization, but to meet other objectives within the OS. Often, short
batch jobs and interactive jobs are given higher priority than jobs that require longer

M11_STAL4290_09_GE_C11.indd 520 5/9/17 4:32 PM

11.5 / DISK SCHEDULING   521

Figure 11.7  Comparison of Disk Scheduling Algorithms (see Table 11.2)

199

175

150

125

100

75

T
ra

ck
 n

um
be

r
T

ra
ck

 n
um

be
r

T
ra

ck
 n

um
be

r
T

ra
ck

 n
um

be
r

50

25

0

(a) FIFO

Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

0

(c) SCAN

199

175

150

125

100

75

50

25

(d) C-SCAN

M11_STAL4290_09_GE_C11.indd 521 5/9/17 4:32 PM

522   Chapter 11 / I/O Management and Disk Scheduling

Name Description Remarks

Selection according to requestor

Random Random scheduling For analysis and simulation

FIFO First-in-first-out Fairest of them all

PRI Priority by process Control outside of disk queue management

LIFO Last-in-first-out Maximize locality and resource utilization

Selection according to requested item

SSTF Shortest-service-time first High utilization, small queues

SCAN Back and forth over disk Better service distribution

C-SCAN One way with fast return Lower service variability

N-step-SCAN SCAN of N records at a time Service guarantee

FSCAN N-step-SCAN with N = queue size
at beginning of SCAN cycle

Load sensitive

Table 11.3  Disk Scheduling Algorithms

(a) FIFO (starting at
track 100)

(b) SSTF (starting at
track 100)

(c) SCAN (starting
at track 100, in the

direction of increasing
track number)

(d) C-SCAN (starting
at track 100, in the

direction of increasing
track number)

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

Next track
accessed

Number
of tracks
traversed

  55   45   90   10 150 50 150   50

  58    3   58   32 160 10 160   10

  39   19   55    3 184 24 184   24

  18   21   39   16   90 94   18 166

  90   72   38    1   58 32   38   20

160   70   18   20   55   3   39    1

150   10 150 132   39 16   55   16

  38 112 160   10   38   1   58    3

184 146 184   24   18 20   90   32

Average
seek

length

55.3 Average
seek

length

27.5 Average
seek

length

27.8 Average
seek

length

35.8

Table 11.2  Comparison of Disk Scheduling Algorithms

computation. This allows a lot of short jobs to be flushed through the system quickly
and may provide good interactive response time. However, longer jobs may have to
wait excessively long times. Furthermore, such a policy could lead to countermeasures
on the part of users, who split their jobs into smaller pieces to beat the system. This
type of policy tends to be poor for database systems.

M11_STAL4290_09_GE_C11.indd 522 5/9/17 4:32 PM

11.5 / DISK SCHEDULING   523

Last-In-First-Out  Surprisingly, a policy of always taking the most recent request
has some merit. In transaction-processing systems, giving the device to the most recent
user should result in little or no arm movement for moving through a sequential file.
Taking advantage of this locality improves throughput and reduces queue lengths.
As long as a job can actively use the file system, it is processed as fast as possible.
However, if the disk is kept busy because of a large workload, there is the distinct
possibility of starvation. Once a job has entered an I/O request in the queue and
fallen back from the head of the line, the job can never regain the head of the line
unless the queue in front of it empties.

FIFO, priority, and LIFO (last-in-first-out) scheduling are based solely on attri-
butes of the queue or the requester. If the current track position is known to the
scheduler, then scheduling based on the requested item can be employed. We will
examine these policies next.

Shortest-Service-Time-First  The shortest-service-time-first (SSTF) policy is
to select the disk I/O request that requires the least movement of the disk arm
from its current position. Thus, we always choose to incur the minimum seek
time. Of course, always choosing the minimum seek time does not guarantee the
average seek time over a number of arm movements will be minimum. However,
this should provide better performance than FIFO. Because the arm can move in
two directions, a random tie-breaking algorithm may be used to resolve cases of
equal distances.

Figure 11.7b and Table 11.2b show the performance of SSTF on the same exam-
ple as was used for FIFO. The first track accessed is 90, because this is the closest
requested track to the starting position. The next track accessed is 58 because this is
the closest of the remaining requested tracks to the current position of 90. Subsequent
tracks are selected accordingly.

SCAN  With the exception of FIFO, all of the policies described so far can leave
some request unfulfilled until the entire queue is emptied. That is, there may always
be new requests arriving that will be chosen before an existing request. A simple
alternative that prevents this sort of starvation is the SCAN algorithm, also known
as the elevator algorithm because it operates much the way an elevator does.

With SCAN, the arm is required to move in one direction only, satisfying all
outstanding requests en route, until it reaches the last track in that direction or until
there are no more requests in that direction. This latter refinement is sometimes
referred to as the LOOK policy. The service direction is then reversed and the scan
proceeds in the opposite direction, again picking up all requests in order.

Figure 11.7c and Table 11.2c illustrate the SCAN policy. Assuming the initial
direction is of increasing track number, then the first track selected is 150, since this
is the closest track to the starting track of 100 in the increasing direction.

As can be seen, the SCAN policy behaves almost identically with the SSTF
policy. Indeed, if we had assumed the arm was moving in the direction of lower track
numbers at the beginning of the example, then the scheduling pattern would have
been identical for SSTF and SCAN. However, this is a static example in which no new
items are added to the queue. Even when the queue is dynamically changing, SCAN
will be similar to SSTF unless the request pattern is unusual.

M11_STAL4290_09_GE_C11.indd 523 5/9/17 4:32 PM

524   Chapter 11 / I/O Management and Disk Scheduling

Note the SCAN policy is biased against the area most recently traversed. Thus,
it does not exploit locality as well as SSTF.

It is not difficult to see that the SCAN policy favors jobs whose requests are for
tracks nearest to both innermost and outermost tracks and favors the latest-arriving
jobs. The first problem can be avoided via the C-SCAN policy, while the second
problem is addressed by the N-step-SCAN policy.

C-SCAN  The C-SCAN (circular SCAN) policy restricts scanning to one direction
only. Thus, when the last track has been visited in one direction, the arm is returned
to the opposite end of the disk and the scan begins again. This reduces the maximum
delay experienced by new requests. With SCAN, if the expected time for a scan from
inner track to outer track is t, then the expected service interval for sectors at the
periphery is 2t. With C-SCAN, the interval is on the order of t + smax, where smax is
the maximum seek time.

Figure 11.7d and Table 11.2d illustrate C-SCAN behavior. In this case, the first
three requested tracks encountered are 150, 160, and 184. Then the scan begins start-
ing at the lowest track number, and the next requested track encountered is 18.

N-step-SCAN and FSCAN  With SSTF, SCAN, and C-SCAN, it is possible the
arm may not move for a considerable period of time. For example, if one or a few
processes have high access rates to one track, they can monopolize the entire device
by repeated requests to that track. High-density multisurface disks are more likely
to be affected by this characteristic than lower-density disks and/or disks with only
one or two surfaces. To avoid this “arm stickiness,” the disk request queue can be
segmented, with one segment at a time being processed completely. Two examples
of this approach are N-step-SCAN and FSCAN.

The N-step-SCAN policy segments the disk request queue into subqueues of
length N. Subqueues are processed one at a time, using SCAN. While a queue is being
processed, new requests must be added to some other queue. If fewer than N requests
are available at the end of a scan, then all of them are processed with the next scan.
With large values of N, the performance of N-step-SCAN approaches that of SCAN;
with a value of N = 1, the FIFO policy is adopted.

FSCAN is a policy that uses two subqueues. When a scan begins, all of the
requests are in one of the queues, with the other empty. During the scan, all new
requests are put into the other queue. Thus, service of new requests is deferred until
all of the old requests have been processed.

  11.6	 RAID

As discussed earlier, the rate in improvement in secondary storage performance has
been considerably less than the rate for processors and main memory. This mismatch
has made the disk storage system perhaps the main focus of concern in improving
overall computer system performance.

As in other areas of computer performance, disk storage designers recognize
that if one component can only be pushed so far, additional gains in performance are
to be had by using multiple parallel components. In the case of disk storage, this leads

M11_STAL4290_09_GE_C11.indd 524 5/9/17 4:32 PM

11.6 / RAID   525

to the development of arrays of disks that operate independently and in parallel. With
multiple disks, separate I/O requests can be handled in parallel, as long as the data
required reside on separate disks. Further, a single I/O request can be executed in
parallel if the block of data to be accessed is distributed across multiple disks.

With the use of multiple disks, there is a wide variety of ways in which the data
can be organized and in which redundancy can be added to improve reliability. This
could make it difficult to develop database schemes that are usable on a number of
platforms and operating systems. Fortunately, the industry has agreed on a standard-
ized scheme for multiple-disk database design, known as RAID (redundant array of
independent disks). The RAID scheme consists of seven levels,2 zero through six.
These levels do not imply a hierarchical relationship but designate different design
architectures that share three common characteristics:

1.	 RAID is a set of physical disk drives viewed by the OS as a single logical drive.

2.	 Data are distributed across the physical drives of an array in a scheme known
as striping, described subsequently.

3.	 Redundant disk capacity is used to store parity information, which guarantees
data recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID levels.
RAID 0 and RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers at
the University of California at Berkeley [PATT88].3 The paper outlined various
RAID configurations and applications, and introduced the definitions of the RAID
levels that are still used. The RAID strategy employs multiple disk drives and distrib-
utes data in such a way as to enable simultaneous access to data from multiple drives,
thereby improving I/O performance and allowing easier incremental increases in
capacity.

The unique contribution of the RAID proposal is to effectively address the
need for redundancy. Although allowing multiple heads and actuators to operate
simultaneously achieves higher I/O and transfer rates, the use of multiple devices
increases the probability of failure. To compensate for this decreased reliability,
RAID makes use of stored parity information that enables the recovery of data lost
due to a disk failure.

We now examine each of the RAID levels. Table 11.4 provides a rough guide
to the seven levels. In the table, I/O performance is shown both in terms of data
transfer capacity, or ability to move data, and I/O request rate, or ability to satisfy
I/O requests, since these RAID levels inherently perform differently relative to these
two metrics. Each RAID level’s strong point is highlighted in color. Figure 11.8 is
an example that illustrates the use of the seven RAID schemes to support a data

2Additional levels have been defined by some researchers and some companies, but the seven levels
described in this section are the ones universally agreed on.
3In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpensive
was used to contrast the small relatively inexpensive disks in the RAID array to the alternative, a single
large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk technology
being used for both RAID and non-RAID configurations. Accordingly, the industry has adopted the
term independent to emphasize that the RAID array creates significant performance and reliability gains.

M11_STAL4290_09_GE_C11.indd 525 5/9/17 4:32 PM

C
at

eg
or

y
L

ev
el

D
es

cr
ip

ti
on

D
is

ks

R
eq

ui
re

d
D

at
a

A
va

ila
bi

lit
y

L
ar

ge
 I

/O
 D

at
a

Tr
an

sf
er

C

ap
ac

it
y

Sm
al

l I
/O

 R
eq

ue
st

 R
at

e

St
ri

pi
ng

0
N

on
re

du
nd

an
t

N
L

ow
er

 th
an

 s
in

gl
e

di
sk

V
er

y
hi

gh
V

er
y

hi
gh

 fo
r

bo
th

 r
ea

d
an

d
w

ri
te

M
ir

ro
ri

ng
1

M
ir

ro
re

d
2N

H
ig

he
r

th
an

 R
A

ID

2,
 3

, 4
, o

r
5;

 lo
w

er

th
an

 R
A

ID
 6

H
ig

he
r

th
an

 s
in

gl
e

di
sk

 fo
r

re
ad

; s
im

ila
r

to
 s

in
gl

e
di

sk
 fo

r
w

ri
te

U
p

to
 tw

ic
e

th
at

 o
f a

 s
in

gl
e

di
sk

 fo
r

re
ad

; s
im

ila
r

to
 s

in
gl

e
di

sk
 fo

r
w

ri
te

Pa
ra

lle
l

ac
ce

ss

2
R

ed
un

da
nt

 v
ia

H

am
m

in
g

co
de

N
+

m

M
uc

h
hi

gh
er

th

an
 s

in
gl

e
di

sk
;

co
m

pa
ra

bl
e

to

R
A

ID
 3

, 4
, o

r
5

H
ig

he
st

 o
f a

ll
lis

te
d

al
te

rn
at

iv
es

A
pp

ro
xi

m
at

el
y

tw
ic

e
th

at
 o

f a

si
ng

le
 d

is
k

3
B

it
-i

nt
er

le
av

ed
 p

ar
it

y
N

+
1

M
uc

h
hi

gh
er

th

an
 s

in
gl

e
di

sk
;

co
m

pa
ra

bl
e

to

R
A

ID
 2

, 4
, o

r
5

H
ig

he
st

 o
f a

ll
lis

te
d

al
te

rn
at

iv
es

A
pp

ro
xi

m
at

el
y

tw
ic

e
th

at
 o

f a

si
ng

le
 d

is
k

In
de

pe
nd

en
t

ac
ce

ss

4
B

lo
ck

-i
nt

er
le

av
ed

pa

ri
ty

N
+

1

M
uc

h
hi

gh
er

th

an
 s

in
gl

e
di

sk
;

co
m

pa
ra

bl
e

to

R
A

ID
 2

, 3
, o

r
5

Si
m

ila
r

to
 R

A
ID

 0
 fo

r
re

ad
;

si
gn

if
ic

an
tl

y
lo

w
er

 th
an

 s
in

gl
e

di
sk

 fo
r

w
ri

te

Si
m

ila
r

to
 R

A
ID

 0
 fo

r
re

ad
;

si
gn

if
ic

an
tl

y
lo

w
er

 th
an

 s
in

gl
e

di
sk

 fo
r

w
ri

te

5
B

lo
ck

-i
nt

er
le

av
ed

 d
is

-
tr

ib
ut

ed
 p

ar
it

y
N

+
1

M
uc

h
hi

gh
er

th

an
 s

in
gl

e
di

sk
;

co
m

pa
ra

bl
e

to

R
A

ID
 2

, 3
, o

r
4

Si
m

ila
r

to
 R

A
ID

 0
 fo

r
re

ad
;

lo
w

er
 th

an
 s

in
gl

e
di

sk
 fo

r
w

ri
te

Si
m

ila
r

to
 R

A
ID

 0
 fo

r
re

ad
;

ge
ne

ra
lly

 lo
w

er
 th

an
 s

in
gl

e
di

sk
 fo

r
w

ri
te

6
B

lo
ck

-i
nt

er
le

av
ed

 d
ua

l
di

st
ri

bu
te

d
pa

ri
ty

N
+

2
H

ig
he

st
 o

f a
ll

lis
te

d
al

te
rn

at
iv

es
Si

m
ila

r
to

 R
A

ID
 0

 fo
r

re
ad

;
lo

w
er

 th
an

 R
A

ID
 5

 fo
r

w
ri

te

Si
m

ila
r

to
 R

A
ID

 0
 fo

r
re

ad
;

si
gn

if
ic

an
tl

y
lo

w
er

 th
an

 R
A

ID

5
fo

r
w

ri
te

N
ot

e:
 N

, n
um

be
r

of
 d

at
a

di
sk

s;
m

, p
ro

po
rt

io
na

l t
o

lo
g

N
.

T
ab

le
 1

1.
4 

R
A

ID
 L

ev
el

s

526

M11_STAL4290_09_GE_C11.indd 526 5/9/17 4:32 PM

11.6 / RAID   527

Figure 11.8  RAID Levels

strip 12

(a) RAID 0 (nonredundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

block 12

(e) RAID 4 (block-interleaved parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

block 11

M11_STAL4290_09_GE_C11.indd 527 5/9/17 4:32 PM

528   Chapter 11 / I/O Management and Disk Scheduling

capacity requiring four disks with no redundancy. The figure highlights the layout of
user data and redundant data and indicates the relative storage requirements of the
various levels. We refer to this figure throughout the following discussion.

Of the seven RAID levels described, only four are commonly used: RAID
levels 0, 1, 5, and 6.

RAID Level 0

RAID level 0 is not a true member of the RAID family, because it does not include
redundancy to improve performance or provide data protection. However, there are
a few applications, such as some on supercomputers, in which performance and capac-
ity are primary concerns and low cost is more important than improved reliability.

For RAID 0, the user and system data are distributed across all of the disks
in the array. This has a notable advantage over the use of a single large disk: If two
different I/O requests are pending for two different blocks of data, then there is a
good chance the requested blocks are on different disks. Thus, the two requests can
be issued in parallel, reducing the I/O queueing time.

But RAID 0, as with all of the RAID levels, goes further than simply distribut-
ing the data across a disk array: The data are striped across the available disks. This is
best understood by considering Figure 11.8. All user and system data are viewed as
being stored on a logical disk. The logical disk is divided into strips; these strips may
be physical blocks, sectors, or some other unit. The strips are mapped round robin to
consecutive physical disks in the RAID array. A set of logically consecutive strips that
maps exactly one strip to each array member is referred to as a stripe. In an n-disk
array, the first n logical strips are physically stored as the first strip on each of the n

Figure 11.8  RAID Levels (continued)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-interleaved distributed parity)

P(0-3)

block 12

(g) RAID 6 (block-interleaved dual distributed parity)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

M11_STAL4290_09_GE_C11.indd 528 5/9/17 4:32 PM

11.6 / RAID   529

disks, forming the first stripe; the second n strips are distributed as the second strips
on each disk; and so on. The advantage of this layout is that if a single I/O request
consists of multiple logically contiguous strips, then up to n strips for that request can
be handled in parallel, greatly reducing the I/O transfer time.

RAID 0 for High Data Transfer Capacity  The performance of any of the
RAID levels depends critically on the request patterns of the host system and
on the layout of the data. These issues can be most clearly addressed in RAID 0,
where the impact of redundancy does not interfere with the analysis. First, let us
consider the use of RAID 0 to achieve a high data transfer rate. For applications to
experience a high transfer rate, two requirements must be met. First, a high transfer
capacity must exist along the entire path between host memory and the individual
disk drives. This includes internal controller buses, host system I/O buses, I/O adapters,
and host memory buses.

The second requirement is the application must make I/O requests that drive
the disk array efficiently. This requirement is met if the typical request is for large
amounts of logically contiguous data, compared to the size of a strip. In this case, a
single I/O request involves the parallel transfer of data from multiple disks, increasing
the effective transfer rate compared to a single-disk transfer.

RAID 0 for High I/O Request Rate  In a transaction-oriented environment, the
user is typically more concerned with response time than with transfer rate. For an
individual I/O request for a small amount of data, the I/O time is dominated by the
motion of the disk heads (seek time) and the movement of the disk (rotational latency).

In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the I/O load
across multiple disks. Effective load balancing is achieved only if there are typically
multiple I/O requests outstanding. This, in turn, implies there are multiple indepen-
dent applications or a single transaction-oriented application that is capable of mul-
tiple asynchronous I/O requests. The performance will also be influenced by the
strip size. If the strip size is relatively large, so that a single I/O request only involves
a single disk access, then multiple waiting I/O requests can be handled in parallel,
reducing the queueing time for each request.

RAID Level 1

RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is
achieved. In these other RAID schemes, some form of parity calculation is used to
introduce redundancy, whereas in RAID 1, redundancy is achieved by the simple
expedient of duplicating all the data. Figure 11.8b shows data striping being used, as
in RAID 0. But in this case, each logical strip is mapped to two separate physical disks
so every disk in the array has a mirror disk that contains the same data. RAID 1 can
also be implemented without data striping, though this is less common.

There are a number of positive aspects to the RAID 1 organization:

1.	 A read request can be serviced by either of the two disks that contains the
requested data, whichever one involves the minimum seek time plus rotational
latency.

M11_STAL4290_09_GE_C11.indd 529 5/9/17 4:32 PM

530   Chapter 11 / I/O Management and Disk Scheduling

2.	 A write request requires both corresponding strips be updated, but this can be
done in parallel. Thus, the write performance is dictated by the slower of the two
writes (i.e., the one that involves the larger seek time plus rotational latency).
However, there is no “write penalty” with RAID 1. RAID levels 2 through 6
involve the use of parity bits. Therefore, when a single strip is updated, the array
management software must first compute and update the parity bits as well as
update the actual strip in question.

3.	 Recovery from a failure is simple. When a drive fails, the data may still be
accessed from the second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice the disk
space of the logical disk that it supports. Because of that, a RAID 1 configura-
tion is likely to be limited to drives that store system software and data and
other highly critical files. In these cases, RAID 1 provides real-time backup of
all data so in the event of a disk failure, all of the critical data is still immediately
available.

In a transaction-oriented environment, RAID 1 can achieve high I/O request
rates if the bulk of the requests are reads. In this situation, the performance of
RAID 1 can approach double of that of RAID 0. However, if a substantial fraction
of the I/O requests are write requests, then there may be no significant performance
gain over RAID 0. RAID 1 may also provide improved performance over RAID
0 for data transfer-intensive applications with a high percentage of reads. Improve-
ment occurs if the application can split each read request so both disk members
participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access
array, all member disks participate in the execution of every I/O request. Typically,
the spindles of the individual drives are synchronized so each disk head is in the same
position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2 and
3, the strips are very small, often as small as a single byte or word. With RAID 2, an
error-correcting code is calculated across corresponding bits on each data disk, and
the bits of the code are stored in the corresponding bit positions on multiple parity
disks. Typically, a Hamming code is used, which is able to correct single-bit errors and
detect double-bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly. The
number of redundant disks is proportional to the log of the number of data disks.
On a single read, all disks are simultaneously accessed. The requested data and the
associated error-correcting code are delivered to the array controller. If there is a
single-bit error, the controller can recognize and correct the error instantly, so the
read access time is not slowed. On a single write, all data disks and parity disks must
be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many
disk errors occur. Given the high reliability of individual disks and disk drives, RAID
2 is overkill and is not implemented.

M11_STAL4290_09_GE_C11.indd 530 5/9/17 4:32 PM

11.6 / RAID   531

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is RAID 3
requires only a single redundant disk, no matter how large the disk array. RAID
3 employs parallel access, with data distributed in small strips. Instead of an error-
correcting code, a simple parity bit is computed for the set of individual bits in the
same position on all of the data disks.

Redundancy  In the event of a drive failure, the parity drive is accessed and data
is reconstructed from the remaining devices. Once the failed drive is replaced, the
missing data can be restored on the new drive and operation resumed.

Data reconstruction is simple. Consider an array of five drives in which X0
through X3 contain data and X4 is the parity disk. The parity for the ith bit is calcu-
lated as follows:

X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)

where ⊕ is exclusive-OR function.
Suppose drive X1 has failed. If we add X4(i) ⊕ X1(i) to both sides of the pre-

ceding equation, we get

X1(i) = X4(i) ⊕ X3(i) ⊕ X2(i) ⊕ X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents
of the corresponding strips on the remaining disks in the array. This principle is true
for RAID levels 3 through 6.

In the event of a disk failure, all of the data are still available in what is referred
to as reduced mode. In this mode, for reads, the missing data are regenerated on the
fly using the exclusive-OR calculation. When data are written to a reduced RAID
3 array, consistency of the parity must be maintained for later regeneration. Return
to full operation requires the failed disk be replaced and the entire contents of the
failed disk be regenerated on the new disk.

Performance  Because data are striped in very small strips, RAID 3 can achieve
very high data transfer rates. Any I/O request will involve the parallel transfer of
data from all of the data disks. For large transfers, the performance improvement is
especially noticeable. On the other hand, only one I/O request can be executed at a
time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so separate I/O
requests can be satisfied in parallel. Because of this, independent access arrays are
more suitable for applications that require high I/O request rates and are relatively
less suitable for applications that require high data transfer rates.

As in the other RAID schemes, data striping is used. In the case of RAID 4
through 6, the strips are relatively large. With RAID 4, a bit-by-bit parity strip is cal-
culated across corresponding strips on each data disk, and the parity bits are stored
in the corresponding strip on the parity disk.

M11_STAL4290_09_GE_C11.indd 531 5/9/17 4:32 PM

532   Chapter 11 / I/O Management and Disk Scheduling

RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update
not only the user data but also the corresponding parity bits. Consider an array of
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose
a write is performed that only involves a strip on disk X1. Initially, for each bit i, we
have the following relationship:

	 X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)	 (11.1)

After the update, with potentially altered bits indicated by a prime symbol:

 X4′(i) = X3(i) ⊕ X2(i) ⊕ X1′(i) ⊕ X0(i)
 = X3(i) ⊕ X2(i) ⊕ X1′(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1(i)
 = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i) ⊕ X1(i) ⊕ X1′(i)
 = X4(i) ⊕ X1(i) ⊕ X1′(i)

The preceding set of equations is derived as follows. The first line shows a
change in X1 will also affect the parity disk X4. In the second line, we add the terms
[⊕ X1(i) ⊕ X1(i)]. Because the exclusive-OR of any quantity with itself is 0, this
does not affect the equation. However, it is a convenience that is used to create the
third line, by reordering. Finally, Equation (11.1) is used to replace the first four terms
by X4(i).

To calculate the new parity, the array management software must read the old
user strip and the old parity strip. Then it can update these two strips with the new
data and the newly calculated parity. Thus, each strip write involves two reads and
two writes.

In the case of a larger size I/O write that involves strips on all disk drives, parity
is easily computed by calculation using only the new data bits. Thus, the parity drive
can be updated in parallel with the data drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which therefore
can become a bottleneck.

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is RAID 5 dis-
tributes the parity strips across all disks. A typical allocation is a round-robin scheme,
as illustrated in Figure 11.8f. For an n-disk array, the parity strip is on a different disk
for the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O bottle-
neck of the single parity disk found in RAID 4. Further, RAID 5 has the characteristic
that the loss of any one disk does not result in data loss.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers [KATZ89].
In the RAID 6 scheme, two different parity calculations are carried out and stored
in separate blocks on different disks. Thus, a RAID 6 array whose user data require
N disks consists of N + 2 disks.

M11_STAL4290_09_GE_C11.indd 532 5/9/17 4:32 PM

11.7 / DISK CACHE   533

Figure 11.8g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the exclusive-OR calculation used in RAID 4 and 5. But the
other is an independent data check algorithm. This makes it possible to regenerate
data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability.
Three disks would have to fail within the MTTR (mean time to repair) interval to
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty,
because each write affects two parity blocks. Performance benchmarks [EISC07]
show a RAID 6 controller can suffer more than a 30% drop in overall write per-
formance compared with a RAID 5 implementation. RAID 5 and RAID 6 read
performance is comparable.

  11.7	 DISK CACHE

In Section 1.6 and Appendix 1A, we summarized the principles of cache memory. The
term cache memory is usually used to apply to a memory that is smaller and faster
than main memory, and that is interposed between main memory and the proces-
sor. Such a cache memory reduces average memory access time by exploiting the
principle of locality.

The same principle can be applied to disk memory. Specifically, a disk cache is a
buffer in main memory for disk sectors. The cache contains a copy of some of the sec-
tors on the disk. When an I/O request is made for a particular sector, a check is made
to determine if the sector is in the disk cache. If so, the request is satisfied via the
cache. If not, the requested sector is read into the disk cache from the disk. Because
of the phenomenon of locality of reference, when a block of data is fetched into the
cache to satisfy a single I/O request, it is likely that there will be future references to
that same block.

Design Considerations

Several design issues are of interest. First, when an I/O request is satisfied from the
disk cache, the data in the disk cache must be delivered to the requesting process.
This can be done either by transferring the block of data within main memory
from the disk cache to memory assigned to the user process, or simply by using a
shared memory capability and passing a pointer to the appropriate slot in the disk
cache. The latter approach saves the time of a memory-to-memory transfer and also
allows shared access by other processes using the readers/writers model described
in Chapter 5.

A second design issue has to do with the replacement strategy. When a new sec-
tor is brought into the disk cache, one of the existing blocks must be replaced.This is
the identical problem presented in Chapter 8; there, the requirement was for a page
replacement algorithm. A number of algorithms have been tried. The most commonly
used algorithm is least recently used (LRU): Replace the block that has been in the
cache longest with no reference to it. Logically, the cache consists of a stack of blocks,
with the most recently referenced block on the top of the stack. When a block in the
cache is referenced, it is moved from its existing position on the stack to the top of the

M11_STAL4290_09_GE_C11.indd 533 5/9/17 4:32 PM

534   Chapter 11 / I/O Management and Disk Scheduling

stack. When a block is brought in from secondary memory, remove the block on the
bottom of the stack and push the incoming block onto the top of the stack. Naturally,
it is not necessary actually to move these blocks around in main memory; a stack of
pointers can be associated with the cache.

Another possibility is least frequently used (LFU): Replace the block in the set
that has experienced the fewest references. LFU could be implemented by associat-
ing a counter with each block. When a block is brought in, it is assigned a count of
1; with each reference to the block, its count is incremented by 1. When replacement
is required, the block with the smallest count is selected. Intuitively, it might seem
that LFU is more appropriate than LRU because LFU makes use of more pertinent
information about each block in the selection process.

A simple LFU algorithm has the following problem. It may be that certain
blocks are referenced relatively infrequently overall, but when they are referenced,
there are short intervals of repeated references due to locality, thus building up high
reference counts. After such an interval is over, the reference count may be mislead-
ing and not reflect the probability that the block will soon be referenced again. Thus,
the effect of locality may actually cause the LFU algorithm to make poor replace-
ment choices.

To overcome this difficulty with LFU, a technique known as frequency-based
replacement is proposed in [ROBI90]. For clarity, let us first consider a simplified
version, illustrated in Figure 11.9a. The blocks are logically organized in a stack, as
with the LRU algorithm. A certain portion of the top part of the stack is designated
the new section. When there is a cache hit, the referenced block is moved to the top
of the stack. If the block was already in the new section, its reference count is not
incremented; otherwise, it is incremented by 1. Given a sufficiently large new section,
this results in the reference counts for blocks that are repeatedly re-referenced within
a short interval remaining unchanged. On a miss, the block with the smallest reference

Figure 11.9  Frequency-Based Replacement

MRU

Re-reference;
count unchanged

(a) FIFO

New section Old section

Miss (new block brought in)
count :5 1

Re-reference;
count :5 count 11

LRU

MRU

(b) Use of three sections

New section

LRU

Middle section Old section

M11_STAL4290_09_GE_C11.indd 534 5/9/17 4:32 PM

11.7 / DISK CACHE   535

count that is not in the new section is chosen for replacement; the least recently used
such block is chosen in the event of a tie.

The authors report this strategy achieved only slight improvement over LRU.
The problem is the following:

1.	 On a cache miss, a new block is brought into the new section, with a count of 1.

2.	 The count remains at 1 as long as the block remains in the new section.

3.	 Eventually the block ages out of the new section, with its count still at 1.

4.	 If the block is not now re-referenced fairly quickly, it is very likely to be replaced
because it necessarily has the smallest reference count of those blocks that are
not in the new section. In other words, there does not seem to be a sufficiently
long interval for blocks aging out of the new section to build up their reference
counts, even if they were relatively frequently referenced.

A further refinement addresses this problem: Divide the stack into three sec-
tions: new, middle, and old (see Figure 11.9b). As before, reference counts are not
incremented on blocks in the new section. However, only blocks in the old section
are eligible for replacement. Assuming a sufficiently large middle section, this allows
relatively frequently referenced blocks a chance to build up their reference counts
before becoming eligible for replacement. Simulation studies by the authors indicate
this refined policy is significantly better than simple LRU or LFU.

Regardless of the particular replacement strategy, the replacement can take
place on demand or preplanned. In the former case, a sector is replaced only when
the slot is needed. In the latter case, a number of slots are released at a time. The
reason for this latter approach is related to the need to write back sectors. If a sector
is brought into the cache and only read, then when it is replaced, it is not necessary
to write it back out to the disk. However, if the sector has been updated, then it is
necessary to write it back out before replacing it. In this latter case, it makes sense to
cluster the writing and to order the writing to minimize seek time.

Performance Considerations

The same performance considerations discussed in Appendix 1A apply here. The
issue of cache performance reduces itself to a question of whether a given miss
ratio can be achieved. This will depend on the locality behavior of the disk refer-
ences, the replacement algorithm, and other design factors. Principally, however,
the miss ratio is a function of the size of the disk cache. Figure 11.10 summarizes
results from several studies using LRU, one for a UNIX system running on a VAX
[OUST85] and one for IBM mainframe operating systems [SMIT85]. Figure 11.11
shows results for simulation studies of the frequency-based replacement algorithm.
A comparison of the two figures points out one of the risks of this sort of perfor-
mance assessment.

The figures appear to show LRU outperforms the frequency-based replacement
algorithm. However, when identical reference patterns using the same cache structure
are compared, the frequency-based replacement algorithm is superior. Thus, the exact
sequence of reference patterns, plus related design issues such as block size, will have
a profound influence on the performance achieved.

M11_STAL4290_09_GE_C11.indd 535 5/9/17 4:32 PM

536   Chapter 11 / I/O Management and Disk Scheduling

Figure 11.10  Some Disk Cache Performance Results Using LRU

50
Cache size (megabytes)

IBM SVS

IBM MVS

VAX UNIX

D
is

k
ca

ch
e

m
is

s
ra

te
 (

%
)

0

10

20

30

40

50

60

10 15 20 25 30

Figure 11.11  Disk Cache Performance Using Frequency-Based Replacement

50

Cache size (megabytes)

IBM VM

IBM MVS

VAX UNIX

D
is

k
ca

ch
e

m
is

s
ra

te
 (

%
)

0

10

20

30

40

50

60

70

10 15 20 25 30

M11_STAL4290_09_GE_C11.indd 536 5/9/17 4:32 PM

11.8 / UNIX SVR4 I/O   537

  11.8	 UNIX SVR4 I/O

In UNIX, each individual I/O device is associated with a special file. These are man-
aged by the file system and are read and written in the same manner as user data
files. This provides a clean, uniform interface to users and processes. To read from
or write to a device, read and write requests are made for the special file associated
with the device.

Figure 11.12 illustrates the logical structure of the I/O facility. The file subsys-
tem manages files on secondary storage devices. In addition, it serves as the process
interface to devices, because these are treated as files.

There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O
passes through system buffers, whereas unbuffered I/O typically involves the DMA
facility, with the transfer taking place directly between the I/O module and the pro-
cess I/O area. For buffered I/O, two types of buffers are used: system buffer caches
and character queues.

Buffer Cache

The buffer cache in UNIX is essentially a disk cache. I/O operations with disk are
handled through the buffer cache. The data transfer between the buffer cache and
the user process space always occurs using DMA. Because both the buffer cache and
the process I/O area are in main memory, the DMA facility is used in this case to
perform a memory-to-memory copy. This does not use up any processor cycles, but
it does consume bus cycles.

To manage the buffer cache, three lists are maintained:

1.	 Free list: List of all slots in the cache (a slot is referred to as a buffer in UNIX;
each slot holds one disk sector) that are available for allocation

2.	 Device list: List of all buffers currently associated with each disk

3.	 Driver I/O queue: List of buffers that are actually undergoing or waiting for
I/O on a particular device

All buffers should be on the free list or on the driver I/O queue list. A buffer,
once associated with a device, remains associated with the device even if it is on the

Figure 11.12  UNIX I/O Structure

Character Block

Bu�er cache

File subsystem

Device drivers

M11_STAL4290_09_GE_C11.indd 537 5/9/17 4:32 PM

538   Chapter 11 / I/O Management and Disk Scheduling

free list, until is actually reused and becomes associated with another device. These
lists are maintained as pointers associated with each buffer, rather than physically
separate lists.

When a reference is made to a physical block number on a particular device,
the OS first checks to see if the block is in the buffer cache. To minimize the search
time, the device list is organized as a hash table, using a technique similar to the
overflow with chaining technique discussed in Appendix F (see Figure F.1b). Figure
11.13 depicts the general organization of the buffer cache. There is a hash table of
fixed length that contains pointers into the buffer cache. Each reference to a (device#,
block#) maps into a particular entry in the hash table. The pointer in that entry points
to the first buffer in the chain. A hash pointer associated with each buffer points to
the next buffer in the chain for that hash table entry. Thus, for all (device#, block#)
references that map into the same hash table entry, if the corresponding block is in
the buffer cache, then that buffer will be in the chain for that hash table entry. Thus,
the length of the search of the buffer cache is reduced by a factor on the order of N,
where N is the length of the hash table.

For block replacement, a least-recently-used algorithm is used: After a buffer
has been allocated to a disk block, it cannot be used for another block until all other
buffers have been used more recently. The free list preserves this least-recently-used
order.

Figure 11.13  UNIX Buffer Cache Organization

Device#, Block#

Hash table Bu�er cache

Free list
pointer

Fr
ee

 li
st

 p
oi

nt
er

s

H
as

h
po

in
te

rs

M11_STAL4290_09_GE_C11.indd 538 5/9/17 4:32 PM

11.8 / UNIX SVR4 I/O   539

Character Queue

Block-oriented devices, such as disk and USB keys, can be effectively served by the
buffer cache. A different form of buffering is appropriate for character-oriented
devices, such as terminals and printers. A character queue is either written by
the I/O device and read by the process, or written by the process and read by the
device. In both cases, the producer/consumer model introduced in Chapter 5 is
used. Thus, character queues may only be read once; as each character is read, it
is effectively destroyed. This is in contrast to the buffer cache, which may be read
multiple times and hence follows the readers/writers model (also discussed in
Chapter 5).

Unbuffered I/O

Unbuffered I/O, which is simply DMA between device and process space, is always
the fastest method for a process to perform I/O. A process that is performing unbuf-
fered I/O is locked in main memory and cannot be swapped out. This reduces
the opportunities for swapping by tying up part of main memory, thus reducing
the overall system performance. Also, the I/O device is tied up with the process
for the duration of the transfer, making it unavailable for other processes.

UNIX Devices

Among the categories of devices recognized by UNIX are the following:

•	 Disk drives

•	 Tape drives

•	 Terminals

•	 Communication lines

•	 Printers

Table 11.5 shows the types of I/O suited to each type of device. Disk drives are
heavily used in UNIX, are block oriented, and have the potential for reasonable high
throughput. Thus, I/O for these devices tends to be unbuffered or via buffer cache.
Tape drives are functionally similar to disk drives and use similar I/O schemes.

Unbuffered I/O Buffer Cache Character Queue

Disk Drive X X

Tape Drive X X

Terminals X

Communication Lines X

Printers X X

Table 11.5  Device I/O in UNIX

M11_STAL4290_09_GE_C11.indd 539 5/9/17 4:32 PM

540   Chapter 11 / I/O Management and Disk Scheduling

Because terminals involve relatively slow exchange of characters, terminal I/O
typically makes use of the character queue. Similarly, communication lines require
serial processing of bytes of data for input or output and are best handled by char-
acter queues. Finally, the type of I/O used for a printer will generally depend on its
speed. Slow printers will normally use the character queue, while a fast printer might
employ unbuffered I/O. A buffer cache could be used for a fast printer. However,
because data going to a printer are never reused, the overhead of the buffer cache
is unnecessary.

  11.9	 LINUX I/O

In general terms, the Linux I/O kernel facility is very similar to that of other UNIX
implementation, such as SVR4. Block and character devices are recognized. In this
section, we look at several features of the Linux I/O facility.

Disk Scheduling

The default disk scheduler in Linux 2.4 is known as the Linux Elevator, which is a
variation on the LOOK algorithm discussed in Section 11.5. For Linux 2.6, the Eleva-
tor algorithm has been augmented by two additional algorithms: the deadline I/O
scheduler and the anticipatory I/O scheduler [LOVE04]. We examine each of these
in turn.

The Elevator Scheduler  The elevator scheduler maintains a single queue for
disk read and write requests and performs both sorting and merging functions on
the queue. In general terms, the elevator scheduler keeps the list of requests sorted
by block number. Thus, as the disk requests are handled, the drive moves in a single
direction, satisfying each request as it is encountered. This general strategy is refined
in the following manner. When a new request is added to the queue, four operations
are considered in order:

1.	 If the request is to the same on-disk sector or an immediately adjacent sector to
a pending request in the queue, then the existing request and the new request
are merged into one request.

2.	 If a request in the queue is sufficiently old, the new request is inserted at the
tail of the queue.

3.	 If there is a suitable location, the new request is inserted in sorted order.

4.	 If there is no suitable location, the new request is placed at the tail of the
queue.

Deadline Scheduler  Operation 2 in the preceding list is intended to prevent
starvation of a request, but is not very effective [LOVE04]. It does not attempt to
service requests in a given time frame, but merely stops insertion-sorting requests
after a suitable delay. Two problems manifest themselves with the elevator scheme.

M11_STAL4290_09_GE_C11.indd 540 5/9/17 4:32 PM

11.9 / LINUX I/O   541

The first problem is a distant block request can be delayed for a substantial time
because the queue is dynamically updated. For example, consider the following
stream of requests for disk blocks: 20, 30, 700, 25. The elevator scheduler reorders
these so the requests are placed in the queue as 20, 25, 30, 700, with 20 being the head
of the queue. If a continuous sequence of low-numbered block requests arrive, then
the request for 700 continues to be delayed.

An even more serious problem concerns the distinction between read and
write requests. Typically, a write request is issued asynchronously. That is, once
a process issues the write request, it need not wait for the request to actually

Figure 11.14  Linux I/O Schedulers

I/O block layer

Deadline scheduler

I/O scheduler

Each request is put
in both queues

FIFO deadline
queue (read &
write) by
expiration time

Sorted queue
(read & write)
by sector

Provide
dispatch
queue

Find optimal
request and
dispatch

Find timeslices for
each queue, wait
slice_idle ms if
no rqs left. Dispatch rqs
based on cfq_quantum

Device driver

CFQ scheduler

I/O block layer

I/O block layer

NOOP scheduler

I/O scheduler

—add bios to
existing requests
—merge
adjacent requests

Provide
dispatch
queue

Bio
Device
request

Device driver

Provide
dispatch
queue

RBTree
and FIFO
per process

r/w FIFO sorted
by exp. time

Device driver

M11_STAL4290_09_GE_C11.indd 541 5/9/17 4:32 PM

542   Chapter 11 / I/O Management and Disk Scheduling

be satisfied. When an application issues a write, the kernel copies the data into
an appropriate buffer, to be written out as time permits. Once the data are cap-
tured in the kernel’s buffer, the application can proceed. However, for many read
operations, the process must wait until the requested data are delivered to the
application before proceeding. Thus, a stream of write requests (e.g., to place a
large file on the disk) can block a read request for a considerable time, and thus
block a process.

To overcome these problems, a new deadline I/O scheduler was developed in
2002. This scheduler makes use of two pairs of queues (see Figure 11.14). Each incom-
ing request is placed in a sorted elevator queue (read or write), as before. In addition,
the same request is placed at the tail of a read FIFO queue for a read request or a
write FIFO queue for a write request. Thus, the read and write queues maintain a list
of requests in the sequence in which the requests were made. Associated with each
request is an expiration time, with a default value of 0.5 seconds for a read request
and of 5 seconds for a write request. Ordinarily, the scheduler dispatches from the
sorted queue. When a request is satisfied, it is removed from the head of the sorted
queue and of also from the appropriate FIFO queue. However, when the item at
the head of one of the FIFO queues becomes older than its expiration time, then
the scheduler next dispatches from that FIFO queue, taking the expired request,
plus the next few requests from the queue. As each request is dispatched, it is also
removed from the sorted queue.

The deadline I/O scheduler scheme overcomes the starvation problem and also
the read versus write problem.

Anticipatory I/O Scheduler  The original elevator scheduler and the deadline
scheduler both are designed to dispatch a new request as soon as the existing request
is satisfied, thus keeping the disk as busy as possible. This same policy applies to all
of the scheduling algorithms discussed in Section 11.5. However, such a policy can
be counterproductive if there are numerous synchronous read requests. Typically, an
application will wait until a read request is satisfied and the data is available before
issuing the next request. The small delay between receiving the data for the last read
and issuing the next read enables the scheduler to turn elsewhere for a pending
request and dispatch that request.

Because of the principle of locality, it is likely that successive reads from the
same process will be to disk blocks that are near one another. If the scheduler were
to delay a short period of time after satisfying a read request, to see if a new nearby
read request is made, the overall performance of the system could be enhanced.
This is the philosophy behind the anticipatory scheduler, proposed in [IYER01], and
implemented in Linux 2.6.

In Linux, the anticipatory scheduler is superimposed on the deadline scheduler.
When a read request is dispatched, the anticipatory scheduler causes the scheduling
system to delay for up to 6 ms, depending on the configuration. During this small
delay, there is a good chance that the application that issued the last read request
will issue another read request to the same region of the disk. If so, that request will
be serviced immediately. If no such read request occurs, the scheduler resumes using
the deadline scheduling algorithm.

M11_STAL4290_09_GE_C11.indd 542 5/9/17 4:32 PM

11.9 / LINUX I/O   543

[LOVE04] reports on two tests of the Linux scheduling algorithms. The first
test involved the reading of a 200-MB file while doing a long streaming write in the
background. The second test involved doing a read of a large file in the background
while reading every file in the kernel source tree. The results are listed in the follow-
ing table:

I/O Scheduler and Kernel Test 1 Test 2
Linux elevator on 2.4 45 seconds 30 minutes, 28 seconds

Deadline I/O scheduler on 2.6 40 seconds 3 minutes, 30 seconds

Anticipatory I/O scheduler on 2.6 4.6 seconds 15 seconds

As can be seen, the performance improvement depends on the nature of the
workload. But in both cases, the anticipatory scheduler provides a dramatic improve-
ment. In Kernel 2.6.33, the anticipatory scheduler was removed from the kernel, due
to adopting the CFQ scheduler (described subsequently).

The NOOP Scheduler  This is the simplest among Linux I/O schedulers. It is a
minimal scheduler that inserts I/O requests into a FIFO queue and uses merging.
Its main uses include nondisk-based block devices such as memory devices, and
specialized software or hardware environments that do their own scheduling and
need only minimal support in the kernel.

Completely Fair Queuing I/O Scheduler  The Completely Fair Queuing (CFQ)
I/O scheduler was developed in 2003, and is the default I/O scheduler in Linux.
The CFQ scheduler guarantees a fair allocation of the disk I/O bandwidth among
all processes. It maintains per process I/O queues; each process is assigned a single
queue. Each queue has an allocated timeslice. Requests are submitted into these
queues and are processed in round robin.

When the scheduler services a specific queue, and there are no more requests
in that queue, it waits in idle mode for a predefined time interval for new requests,
and if there are no requests, it continues to the next queue. This optimization
improves performance in the case that there are more requests in that time
interval.

We should note the I/O scheduler can be set as a boot parameter in grub or in
run time, for example, by echoing “noop”, “deadline”, or “cfq” into /sys/class/block/sda/
queue/scheduler. There are also several optimization sysfs scheduler settings, which
are described in the Linux kernel documentation.

Linux Page Cache

In Linux 2.2 and earlier releases, the kernel maintained a page cache for reads and
writes from regular file system files and for virtual memory pages, and a separate buf-
fer cache for block I/O. For Linux 2.4 and later, there is a single unified page cache
that is involved in all traffic between disk and main memory.

The page cache confers two benefits. First, when it is time to write back dirty
pages to disk, a collection of them can be ordered properly and written out efficiently.

M11_STAL4290_09_GE_C11.indd 543 5/9/17 4:32 PM

544   Chapter 11 / I/O Management and Disk Scheduling

Second, because of the principle of temporal locality, pages in the page cache are
likely to be referenced again before they are flushed from the cache, thus saving a
disk I/O operation.

Dirty pages are written back to disk in two situations:

1.	 When free memory falls below a specified threshold, the kernel reduces the
size of the page cache to release memory to be added to the free memory pool.

2.	 When dirty pages grow older than a specified threshold, a number of dirty pages
are written back to disk.

 11.10	WINDOWS I/O

Figure 11.15 shows the key kernel-mode components related to the Windows I/O
manager. The I/O manager is responsible for all I/O for the operating system and
provides a uniform interface that all types of drivers can call.

Basic I/O Facilities

The I/O manager works closely with four types of kernel components:

1.	 Cache manager: The cache manager handles file caching for all file systems. It
can dynamically increase and decrease the size of the cache devoted to a particu-
lar file as the amount of available physical memory varies. The system records
updates in the cache only and not on disk. A kernel thread, the lazy writer, period-
ically batches the updates together to write to disk. Writing the updates in batches
allows the I/O to be more efficient. The cache manager works by mapping regions
of files into kernel virtual memory then relying on the virtual memory manager
to do most of the work to copy pages to and from the files on disk.

2.	 File system drivers: The I/O manager treats a file system driver as just another
device driver and routes I/O requests for file system volumes to the appropriate
software driver for that volume. The file system, in turn, sends I/O requests to
the software drivers that manage the hardware device adapter.

3.	 Network drivers: Windows includes integrated networking capabilities and sup-
port for remote file systems. The facilities are implemented as software drivers
rather than part of the Windows Executive.

Figure 11.15  Windows I/O Manager

I/O manager

Cache
manager

File system
drivers

Network
drivers

Hardware
device drivers

M11_STAL4290_09_GE_C11.indd 544 5/9/17 4:32 PM

11.10 / WINDOWS I/O   545

4.	 Hardware device drivers: These software drivers access the hardware regis-
ters of the peripheral devices using entry points in the Hardware Abstraction
Layer. A set of these routines exists for every platform that Windows supports;
because the routine names are the same for all platforms, the source code of
Windows device drivers is portable across different processor types.

Asynchronous and Synchronous I/O

Windows offers two modes of I/O operation: asynchronous and synchronous. The
asynchronous mode is used whenever possible to optimize application performance.
With asynchronous I/O, an application initiates an I/O operation then can continue
processing while the I/O request is fulfilled. With synchronous I/O, the application is
blocked until the I/O operation completes.

Asynchronous I/O is more efficient, from the point of view of the calling thread,
because it allows the thread to continue execution while the I/O operation is queued by
the I/O manager and subsequently performed. However, the application that invoked
the asynchronous I/O operation needs some way to determine when the operation is
complete. Windows provides five different techniques for signaling I/O completion:

1.	 Signaling the file object: With this approach, the event associated with a file
object is set when an operation on that object is complete. The thread that
invoked the I/O operation can continue to execute until it reaches a point where
it must stop until the I/O operation is complete. At that point, the thread can
wait until the operation is complete then continue. This technique is simple
and easy to use but is not appropriate for handling multiple I/O requests. For
example, if a thread needs to perform multiple simultaneous actions on a single
file (such as reading from one portion and writing to another portion of the file)
with this technique the thread could not distinguish between the completion of
the read and the completion of the write. It would simply know that one of the
requested I/O operations on this file had finished.

2.	 Signaling an event object: This technique allows multiple simultaneous I/O
requests against a single device or file. The thread creates an event for each
request. Later, the thread can wait on a single one of these requests or on an
entire collection of requests.

3.	 Asynchronous procedure call: This technique makes use of a queue associated
with a thread, known as the asynchronous procedure call (APC) queue. In this
case, the thread makes I/O requests, specifying a user-mode routine to call when
the I/O completes. The I/O manager places the results of each request in the
calling thread’s APC queue. The next time the thread blocks in the kernel, the
APCs will be delivered, each causing the thread to return to user mode and
execute the specified routine.

4.	 I/O completion ports: This technique is used on a Windows server to optimize
the use of threads. The application creates a pool of threads for handling the
completion of I/O requests. Each thread waits on the completion port, and the
kernel wakes threads to handle each I/O completion. One of the advantages of
this approach is that the application can specify a limit for how many of these
threads will run at the same time.

M11_STAL4290_09_GE_C11.indd 545 5/9/17 4:32 PM

546   Chapter 11 / I/O Management and Disk Scheduling

5.	 Polling: Asynchronous I/O requests write a status and transfer count into the
process’s user virtual memory when the operation completes. A thread can just
check these values to see if the operation has completed.

Software RAID

Windows supports two sorts of RAID configurations, defined in [MS96] as follows:

1.	 Hardware RAID: Separate physical disks combined into one or more logical
disks by the disk controller or disk storage cabinet hardware

2.	 Software RAID: Noncontiguous disk space combined into one or more logical
partitions by the fault-tolerant software disk driver, FTDISK

In hardware RAID, the controller interface handles the creation and regenera-
tion of redundant information. The software RAID, available on Windows Server,
implements the RAID functionality as part of the operating system and can be used
with any set of multiple disks. The software RAID facility implements RAID 1 and
RAID 5. In the case of RAID 1 (disk mirroring), the two disks containing the primary
and mirrored partitions may be on the same disk controller or different disk control-
lers. The latter configuration is referred to as disk duplexing.

Volume Shadow Copies

Shadow copies are an efficient way of making consistent snapshots of volumes so
they can be backed up. They are also useful for archiving files on a per-volume
basis. If a user deletes a file, he or she can retrieve an earlier copy from any avail-
able shadow copy made by the system administrator. Shadow copies are imple-
mented by a software driver that makes copies of data on the volume before it is
overwritten.

Volume Encryption

Windows supports the encryption of entire volumes, using a feature called BitLocker.
This is more secure than encrypting individual files, as the entire system works to be
sure the data is safe. Up to three different methods of supplying the cryptographic
key can be provided, allowing multiple interlocking layers of security.

  11.11	SUMMARY

The computer system’s interface to the outside world is its I/O architecture. This
architecture is designed to provide a systematic means of controlling interaction with
the outside world, and to provide the operating system with the information it needs
to manage I/O activity effectively.

The I/O function is generally broken up into a number of layers, with lower lay-
ers dealing with details that are closer to the physical functions to be performed, and
higher layers dealing with I/O in a logical and generic fashion. The result is changes
in hardware parameters need not affect most of the I/O software.

M11_STAL4290_09_GE_C11.indd 546 5/9/17 4:33 PM

11.12 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   547

A key aspect of I/O is the use of buffers that are controlled by I/O utilities
rather than by application processes. Buffering smoothes out the differences between
the internal speeds of the computer system and the speeds of I/O devices. The use
of buffers also decouples the actual I/O transfer from the address space of the appli-
cation process. This allows the operating system more flexibility in performing its
memory management function.

The aspect of I/O that has the greatest impact on overall system performance
is disk I/O. Accordingly, there has been greater research and design effort in this area
than in any other kind of I/O. Two of the most widely used approaches to improve
disk I/O performance are disk scheduling and the disk cache.

At any time, there may be a queue of requests for I/O on the same disk. It is
the object of disk scheduling to satisfy these requests in a way that minimizes the
mechanical seek time of the disk and hence improves performance. The physical
layout of pending requests plus considerations of locality come into play.

A disk cache is a buffer, usually kept in main memory, that functions as a cache
of disk blocks between disk memory and the rest of main memory. Because of the
principle of locality, the use of a disk cache should substantially reduce the number
of block I/O transfers between main memory and disk.

  11.12	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

block
block-oriented device
buffer swapping
circular buffer
device I/O
direct memory access
disk access time
disk cache
double buffering
gap

interrupt-driven I/O
input/output (I/O)
least frequently used (LFU)
I/O buffer
I/O channel
I/O processor
logical I/O
magnetic disk
programmed I/O
read/write head

redundant array of
independent disks

rotational delay
sector
seek time
stream-oriented device
stripe
track
transfer time

Review Questions

	11.1.	 List and briefly define three techniques for performing I/O.
	11.2.	 What are the differences between a blocking I/O and a nonblocking I/O?
	11.3.	 What is the difference between block-oriented devices and stream-oriented devices?

Give a few examples of each.
	11.4.	 Why would you expect improved performance using a double buffer rather than a

single buffer for I/O?
	11.5.	 State some utilities of buffering.
	11.6.	 Briefly define the disk scheduling policies illustrated in Figure 11.7.
	11.7.	 Cite the differences between the implementation of hardware RAID and software RAID.
	11.8.	 What is a Linux Elevator? Point out some problems associated with it.

M11_STAL4290_09_GE_C11.indd 547 5/9/17 4:33 PM

548   Chapter 11 / I/O Management and Disk Scheduling

Problems

	11.1.	 Consider a program that accesses a single I/O device and compare unbuffered I/O to
the use of a buffer. Show that the use of the buffer can reduce the running time by at
most a factor of two.

	11.2.	 Generalize the result of Problem 11.1 to the case in which a program refers to n devices.
	11.3.	 Consider a disk drive with 4,000 cylinders, numbered from 0 to 3,999. The request

queue has the following composition:

1045   750   932   878   1365   1787   1245   664   1678   1897

If the current position is 1167 and the previous request was served at 1250, compute
the total distance (in cylinders) that the disk arm would move for each of the following
algorithms: FIFO, SSTF, SCAN, and C-SCAN scheduling.

	11.4.	 Consider a disk with N tracks numbered from 0 to (N - 1) and assume requested
sectors are distributed randomly and evenly over the disk. We want to calculate the
average number of tracks traversed by a seek.
a.	 Calculate the probability of a seek of length j when the head is currently positioned

over track t. (Hint: This is a matter of determining the total number of combina-
tions, recognizing that all track positions for the destination of the seek are equally
likely.)

b.	 Calculate the probability of a seek of length K, for an arbitrary current position
of the head. (Hint: This involves the summing over all possible combinations of
movements of K tracks.)

c.	 Calculate the average number of tracks traversed by a seek, using the formula for
expected value

 E[x] = a
N - 1

i=0
i * Pr [x = i]

 Hint: Use the equalitiesa
n

i=1
=

n(n + 1)

2
; a

n

i=1
i2 =

n(n + 1)(2n + 1)

6
.

d.	 Show that for large values of N, the average number of tracks traversed by a seek
approaches N/3.

	11.5.	 It has been found that in a certain disk drive about 80% of all requests are for a
small, fixed number of cylinders. Which of the scheduling algorithms will you recom-
mend for this situation? Justify your choice.

	11.6.	 In a single-user system, determine whether buffering, spooling, caching, or a combi-
nation of these should be used for each of the following I/O scenarios:
a.	 A mouse used with a graphical user interface.
b.	 A tape drive on a multitasking OS.
c.	 A disk drive containing user files.

	11.7.	 Calculate how much disk space (in sectors, tracks, and surfaces) will be required to
store 250,000 200-byte logical records if the disk is fixed sector with 1024 bytes/
sector, with 108 sectors/track, 140 tracks per surface, and 12 usable surfaces. Ignore
any file header record(s) and track indexes, and assume that records cannot span
two sectors.

	11.8.	 Consider the disk system described in Problem 11.7, and assume that the disk rotates at
1,200 rpm. A processor reads one sector from the disk using interrupt-driven I/O, with
one interrupt every 4 bytes. If it takes 1.5 μs to process each interrupt, what percentage
of the time will the processor spend handling I/O (disregard seek time)?

	11.9.	 Repeat the preceding problem using DMA, and assume one interrupt per sector.

M11_STAL4290_09_GE_C11.indd 548 5/9/17 4:33 PM

11.12 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   549

	11.10.	 A 32-bit computer has two selector channels and one multiplexor channel. Each selec-
tor channel supports two magnetic disk and three magnetic tape units. The multiplexor
channel has three line printers, two card readers, and twelve VDT terminals connected
to it. Assume the following transfer rates:

Disk drive 1100 Kbytes/s

Magnetic tape drive 400 Kbytes/s

Line printer 7.8 Kbytes/s

Card reader 1.6 Kbytes/s

VDT 1.2 Kbyte/s

		 Estimate the maximum aggregate I/O transfer rate in this system.
	11.11.	 A disk pack has the following specifications: it comprises 25 double sided disks; each

surface of a disk has 480 tracks and a track has 20 blocks in it. Each block is of 2048
bytes, with an inter-block gap of 64 bytes.

		   Compute the total capacity of a track, the useful capacity of a track (excluding
inter-block gap), the total capacity and useful capacity of a cylinder, the total capacity
and useful capacity of the disk pack, and the percentage of space wasted.

	11.12.	 In a certain device, the disk rotates at 7,500 rpm. What is the average rotational delay
of this disk drive?

M11_STAL4290_09_GE_C11.indd 549 5/9/17 4:33 PM

550

File Management
12.1	 Overview

Files and File Systems
File Structure
File Management Systems

12.2	 File Organization and Access
The Pile
The Sequential File
The Indexed Sequential File
The Indexed File
The Direct or Hashed File

12.3	 B-Trees
12.4	 File Directories

Contents
Structure
Naming

12.5	 File Sharing
Access Rights
Simultaneous Access

12.6	 Record Blocking
12.7	 Secondary Storage Management

File Allocation
Free Space Management
Volumes
Reliability

12.8	 UNIX File Management
Inodes
File Allocation
Directories
Volume Structure

12.9	 Linux Virtual File System
The Superblock Object
The Inode Object
The Dentry Object
The File Object
Caches

12.10	 Windows File System
Key Features of NTFS
NTFS Volume and File Structure
Recoverability

12.11	 Android File Management
File System
SQLite

12.12	 Summary
12.13	 Key Terms, Review Questions, and Problems

Chapter

M12_STAL4290_09_GE_C12.indd 550 5/2/17 5:40 PM

12.1 / OVERVIEW   551

In most applications, the file is the central element. With the exception of real-time
applications and some other specialized applications, the input to the application is
by means of a file. And in virtually all applications, output is saved in a file for long-
term storage, and for later access by the user and by other programs.

Files have a life outside of any individual application that uses them for input
and/or output. Users wish to be able to access files, save them, and maintain the
integrity of their contents. To aid in these objectives, virtually all operating systems
provide file management systems. Typically, a file management system consists of
system utility programs that run as privileged applications. However, at the very
least, a file management system needs special services from the operating system;
at the most, the entire file management system is considered part of the operating
system. Thus, it is appropriate to consider the basic elements of file management in
this book.

We begin with an overview, followed by a look at various file organization
schemes. Although file organization is generally beyond the scope of the operating
system, it is essential to have a general understanding of the common alternatives to
appreciate some of the design trade-offs involved in file management. The remainder
of this chapter looks at other topics in file management.

  12.1	 OVERVIEW

Files and File Systems

From the user’s point of view, one of the most important parts of an operating system
is the file system. The file system permits users to create data collections, called files,
with desirable properties, such as:

•	 Long-term existence: Files are stored on disk or other secondary storage and
do not disappear when a user logs off.

•	 Sharable between processes: Files have names and can have associated access
permissions that permit controlled sharing.

Learning Objectives

After studying this chapter, you should be able to:
•	 Describe the basic concepts of files and file systems.
•	 Understand the principal techniques for file organization and access.
•	 Define B-trees.
•	 Explain file directories.
•	 Understand the requirements for file sharing.
•	 Understand the concept of record blocking.
•	 Describe the principal design issues for secondary storage management.
•	 Understand the design issues for file system security.
•	 Explain the OS file systems used in Linux, UNIX, and Windows.

M12_STAL4290_09_GE_C12.indd 551 5/2/17 5:40 PM

552   Chapter 12 / File Management

•	 Structure: Depending on the file system, a file can have an internal structure
that is convenient for particular applications. In addition, files can be organized
into a hierarchical or more complex structure to reflect the relationships among
files.

Any file system provides not only a means to store data organized as files, but
a collection of functions that can be performed on files. Typical operations include
the following:

•	 Create: A new file is defined and positioned within the structure of files.

•	 Delete: A file is removed from the file structure and subsequently destroyed.

•	 Open: An existing file is declared to be “opened” by a process, allowing the
process to perform functions on the file.

•	 Close: The file is closed with respect to a process, so the process no longer may
perform functions on the file, until the process opens the file again.

•	 Read: A process reads all or a portion of the data in a file.

•	 Write: A process updates a file, either by adding new data that expands the size
of the file, or by changing the values of existing data items in the file.

Typically, a file system maintains a set of attributes associated with the file.
These include owner, creation time, time last modified, and access privileges.

File Structure

Four terms are in common use when discussing files:

•	 Field

•	 Record

•	 File

•	 Database

A field is the basic element of data. An individual field contains a single value,
such as an employee’s last name, a date, or the value of a sensor reading. It is char-
acterized by its length and data type (e.g., ASCII string, decimal). Depending on the
file design, fields may be fixed length or variable length. In the latter case, the field
often consists of two or three subfields: the actual value to be stored, the name of
the field, and, in some cases, the length of the field. In other cases of variable-length
fields, the length of the field is indicated by the use of special demarcation symbols
between fields.

A record is a collection of related fields that can be treated as a unit by some
application program. For example, an employee record would contain such fields
as name, social security number, job classification, date of hire, and so on. Again,
depending on design, records may be of fixed length or variable length. A record will
be of variable length if some of its fields are of variable length or if the number of
fields may vary. In the latter case, each field is usually accompanied by a field name.
In either case, the entire record usually includes a length field.

A file is a collection of similar records. The file is treated as a single entity by
users and applications and may be referenced by name. Files have file names and

M12_STAL4290_09_GE_C12.indd 552 5/2/17 5:40 PM

12.1 / OVERVIEW   553

may be created and deleted. Access control restrictions usually apply at the file level.
That is, in a shared system, users and programs are granted or denied access to entire
files. In some more sophisticated systems, such controls are enforced at the record
or even the field level.

Some file systems are structured only in terms of fields, not records. In that case,
a file is a collection of fields.

A database is a collection of related data. The essential aspects of a database are
that the relationships that exist among elements of data are explicit, and that the data-
base is designed for use by a number of different applications. A database may contain
all of the information related to an organization or a project, such as a business or
a scientific study. The database itself consists of one or more types of files. Usually,
there is a separate database management system that is independent of the operat-
ing system, although that system may make use of some file management programs.

Users and applications wish to make use of files. Typical operations that must
be supported include the following:

•	 Retrieve_All: Retrieve all the records of a file. This will be required for an
application that must process all of the information in the file at one time. For
example, an application that produces a summary of the information in the
file would need to retrieve all records. This operation is often equated with the
term sequential processing, because all of the records are accessed in sequence.

•	 Retrieve_One: This requires the retrieval of just a single record. Interactive,
transaction-oriented applications need this operation.

•	 Retrieve_Next: This requires the retrieval of the record that is “next” in
some logical sequence to the most recently retrieved record. Some interactive
applications, such as filling in forms, may require such an operation. A program
that is performing a search may also use this operation.

•	 Retrieve_Previous: Similar to Retrieve_Next, but in this case the
record that is “previous” to the currently accessed record is retrieved.

•	 Insert_One: Insert a new record into the file. It may be necessary that the
new record fit into a particular position to preserve a sequencing of the file.

•	 Delete_One: Delete an existing record. Certain linkages or other data struc-
tures may need to be updated to preserve the sequencing of the file.

•	 Update_One: Retrieve a record, update one or more of its fields, and rewrite
the updated record back into the file. Again, it may be necessary to preserve
sequencing with this operation. If the length of the record has changed, the
update operation is generally more difficult than if the length is preserved.

•	 Retrieve_Few: Retrieve a number of records. For example, an application or
user may wish to retrieve all records that satisfy a certain set of criteria.

The nature of the operations most commonly performed on a file will influence
the way the file is organized, as discussed in Section 12.2.

It should be noted that not all file systems exhibit the sort of structure discussed
in this subsection. On UNIX and UNIX-like systems, the basic file structure is just a
stream of bytes. For example, a C program is stored as a file but does not have physi-
cal fields, records, and so on.

M12_STAL4290_09_GE_C12.indd 553 5/2/17 5:40 PM

554   Chapter 12 / File Management

File Management Systems

A file management system is that set of system software that provides services to
users and applications in the use of files. Typically, the only way a user or application
may access files is through the file management system. This relieves the user or pro-
grammer of the necessity of developing special-purpose software for each application
and provides the system with a consistent, well-defined means of controlling its most
important asset. [GROS86] suggests the following objectives for a file management
system:

•	 To meet the data management needs and requirements of the user, which include
storage of data and the ability to perform the aforementioned operations

•	 To guarantee, to the extent possible, that the data in the file are valid

•	 To optimize performance, both from the system point of view in terms of overall
throughput, and from the user’s point of view in terms of response time

•	 To provide I/O support for a variety of storage device types

•	 To minimize or eliminate the potential for lost or destroyed data

•	 To provide a standardized set of I/O interface routines to user processes

•	 To provide I/O support for multiple users, in the case of multiple-user systems

With respect to the first point, meeting user requirements, the extent of such
requirements depends on the variety of applications and the environment in which
the computer system will be used. For an interactive, general-purpose system, the
following constitute a minimal set of requirements:

1.	 Each user should be able to create, delete, read, write, and modify files.

2.	 Each user may have controlled access to other users’ files.

3.	 Each user may control what types of accesses are allowed to the user’s files.

4.	 Each user should be able to move data between files.

5.	 Each user should be able to back up and recover the user’s files in case of
damage.

6.	 Each user should be able to access his or her files by name rather than by
numeric identifier.

These objectives and requirements should be kept in mind throughout our discussion
of file management systems.

File System Architecture  One way of getting a feel for the scope of file
management is to look at a depiction of a typical software organization, as suggested
in Figure 12.1. Of course, different systems will be organized differently, but this
organization is reasonably representative. At the lowest level, device drivers
communicate directly with peripheral devices or their controllers or channels. A
device driver is responsible for starting I/O operations on a device and processing
the completion of an I/O request. For file operations, the typical devices controlled
are disk and tape drives. Device drivers are usually considered to be part of the
operating system.

M12_STAL4290_09_GE_C12.indd 554 5/2/17 5:40 PM

12.1 / OVERVIEW   555

The next level is referred to as the basic file system, or the physical I/O level.
This is the primary interface with the environment outside of the computer system.
It deals with blocks of data that are exchanged with disk or tape systems. Thus, it is
concerned with the placement of those blocks on the secondary storage device and on
the buffering of those blocks in main memory. It does not understand the content of
the data or the structure of the files involved. The basic file system is often considered
part of the operating system.

The basic I/O supervisor is responsible for all file I/O initiation and termination.
At this level, control structures are maintained that deal with device I/O, scheduling,
and file status. The basic I/O supervisor selects the device on which file I/O is to be
performed, based on the particular file selected. It is also concerned with schedul-
ing disk and tape accesses to optimize performance. I/O buffers are assigned and
secondary memory is allocated at this level. The basic I/O supervisor is part of the
operating system.

Logical I/O enables users and applications to access records. Thus, whereas
the basic file system deals with blocks of data, the logical I/O module deals with file
records. Logical I/O provides a general-purpose record I/O capability and maintains
basic data about files.

The level of the file system closest to the user is often termed the access
method. It provides a standard interface between applications and the file systems
and devices that hold the data. Different access methods reflect different file struc-
tures and different ways of accessing and processing the data. Some of the most
common access methods are shown in Figure 12.1, and these are briefly described
in Section 12.2.

File Management Functions  Another way of viewing the functions of a file
system is shown in Figure 12.2. Let us follow this diagram from left to right. Users and
application programs interact with the file system by means of commands for creating
and deleting files and for performing operations on files. Before performing any

Figure 12.1  File System Software Architecture

Logical I/O

Basic I/O supervisor

Basic file system

Disk device driver Tape device driver

Indexed
sequentialPile Sequential Indexed Hashed

User program

M12_STAL4290_09_GE_C12.indd 555 5/2/17 5:40 PM

556   Chapter 12 / File Management

operation, the file system must identify and locate the selected file. This requires the
use of some sort of directory that serves to describe the location of all files, plus their
attributes. In addition, most shared systems enforce user access control: Only authorized
users are allowed to access particular files in particular ways. The basic operations that
a user or an application may perform on a file are performed at the record level. The
user or application views the file as having some structure that organizes the records,
such as a sequential structure (e.g., personnel records are stored alphabetically by last
name). Thus, to translate user commands into specific file manipulation commands, the
access method appropriate to this file structure must be employed.

Whereas users and applications are concerned with records or fields, I/O is done
on a block basis. Thus, the records or fields of a file must be organized as a sequence
of blocks for output and unblocked after input. To support block I/O of files, sev-
eral functions are needed. The secondary storage must be managed. This involves
allocating files to free blocks on secondary storage and managing free storage so as
to know what blocks are available for new files and growth in existing files. In addi-
tion, individual block I/O requests must be scheduled; this issue was dealt with in
Chapter 11. Both disk scheduling and file allocation are concerned with optimizing
performance. As might be expected, these functions therefore need to be considered
together. Furthermore, the optimization will depend on the structure of the files and
the access patterns. Accordingly, developing an optimum file management system
from the point of view of performance is an exceedingly complicated task.

Figure 12.2 suggests a division between what might be considered the concerns
of the file management system as a separate system utility and the concerns of the
operating system, with the point of intersection being record processing. This division
is arbitrary; various approaches are taken in various systems.

Figure 12.2  Elements of File Management

Directory
management

Access
method

Blocking
Disk

scheduling

File
allocation

File
structure

Records

File management concerns

Operating system concerns

Physical blocks
in main memory

bu�ers

Physical blocks
in secondary
storage (disk)

User access
control

User and program
commands Operation,

file name
Free storage
management

File
manipulation

functions

I/O

M12_STAL4290_09_GE_C12.indd 556 5/2/17 5:40 PM

12.2 / FILE ORGANIZATION AND ACCESS   557

In the remainder of this chapter, we look at some of the design issues suggested
in Figure 12.2. We begin with a discussion of file organizations and access methods.
Although this topic is beyond the scope of what is usually considered the concerns of the
operating system, it is impossible to assess the other file-related design issues without an
appreciation of file organization and access. Next, we look at the concept of file directo-
ries. These are often managed by the operating system on behalf of the file management
system. The remaining topics deal with the physical I/O aspects of file management and
are properly treated as aspects of OS design. One such issue is the way in which logical
records are organized into physical blocks. Finally, there are the related issues of file
allocation on secondary storage and the management of free secondary storage.

  12.2	 FILE ORGANIZATION AND ACCESS

In this section, we use the term file organization to refer to the logical structuring
of the records as determined by the way in which they are accessed. The physical
organization of the file on secondary storage depends on the blocking strategy and
the file allocation strategy, issues dealt with later in this chapter.

In choosing a file organization, several criteria are important:

•	 Short access time

•	 Ease of update

•	 Economy of storage

•	 Simple maintenance

•	 Reliability

The relative priority of these criteria will depend on the applications that will
use the file. For example, if a file is only to be processed in batch mode, with all of
the records accessed every time, then rapid access for retrieval of a single record is
of minimal concern. A file stored on CD-ROM will never be updated, and so ease of
update is not an issue.

These criteria may conflict. For example, for economy of storage, there should be
minimum redundancy in the data. On the other hand, redundancy is a primary means
of increasing the speed of access to data. An example of this is the use of indexes.

The number of alternative file organizations that have been implemented or
just proposed is unmanageably large, even for a book devoted to file systems. In this
brief survey, we will outline five fundamental organizations. Most structures used in
actual systems either fall into one of these categories, or can be implemented with a
combination of these organizations. The five organizations, the first four of which are
depicted in Figure 12.3, are as follows:

1.	 The pile

2.	 The sequential file

3.	 The indexed sequential file

4.	 The indexed file

5.	 The direct, or hashed, file

M12_STAL4290_09_GE_C12.indd 557 5/2/17 5:40 PM

558   Chapter 12 / File Management

The Pile

The least complicated form of file organization may be termed the pile. Data are
collected in the order in which they arrive. Each record consists of one burst of data.
The purpose of the pile is simply to accumulate the mass of data and save it. Records
may have different fields, or similar fields in different orders. Thus, each field should
be self-describing, including a field name as well as a value. The length of each field
must be implicitly indicated by delimiters, explicitly included as a subfield, or known
as default for that field type.

Because there is no structure to the pile file, record access is by exhaustive
search. That is, if we wish to find a record that contains a particular field with a par-
ticular value, it is necessary to examine each record in the pile until the desired record

Figure 12.3  Common File Organizations

(a) Pile file

(c) Indexed sequential file

(d) Indexed file

Variable-length records
Variable set of fields
Chronological order

(b) Sequential file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

Main file

Overflow
file

Index
levels

Exhaustive
index

Exhaustive
index

Partial
index

Primary file
(variable-length records)

Index

1
2

n

M12_STAL4290_09_GE_C12.indd 558 5/2/17 5:40 PM

12.2 / FILE ORGANIZATION AND ACCESS   559

is found or the entire file has been searched. If we wish to find all records that contain
a particular field or contain that field with a particular value, then the entire file must
be searched.

Pile files are encountered when data are collected and stored prior to process-
ing or when data are not easy to organize. This type of file uses space well when the
stored data vary in size and structure, is perfectly adequate for exhaustive searches,
and is easy to update. However, beyond these limited uses, this type of file is unsuit-
able for most applications.

The Sequential File

The most common form of file structure is the sequential file. In this type of file, a
fixed format is used for records. All records are of the same length, consisting of the
same number of fixed-length fields in a particular order. Because the length and
position of each field are known, only the values of fields need to be stored; the field
name and length for each field are attributes of the file structure.

One particular field, usually the first field in each record, is referred to as the
key field. The key field uniquely identifies the record; thus key values for different
records are always different. Further, the records are stored in key sequence: alpha-
betical order for a text key, and numerical order for a numerical key.

Sequential files are typically used in batch applications and are generally opti-
mum for such applications if they involve the processing of all the records (e.g., a
billing or payroll application). The sequential file organization is the only one that is
easily stored on tape as well as disk.

For interactive applications that involve queries and/or updates of individual
records, the sequential file provides poor performance. Access requires the sequen-
tial search of the file for a key match. If the entire file, or a large portion of the file,
can be brought into main memory at one time, more efficient search techniques are
possible. Nevertheless, considerable processing and delay are encountered to access
a record in a large sequential file. Additions to the file also present problems. Typi-
cally, a sequential file is stored in simple sequential ordering of the records within
blocks. That is, the physical organization of the file on tape or disk directly matches
the logical organization of the file. In this case, the usual procedure is to place new
records in a separate pile file, called a log file or transaction file. Periodically, a batch
update is performed that merges the log file with the master file to produce a new
file in correct key sequence.

An alternative is to organize the sequential file physically as a linked list. One
or more records are stored in each physical block. Each block on disk contains a
pointer to the next block. The insertion of new records involves pointer manipulation
but does not require that the new records occupy a particular physical block position.
Thus, some added convenience is obtained at the cost of additional processing and
overhead.

The Indexed Sequential File

A popular approach to overcoming the disadvantages of the sequential file is the
indexed sequential file. The indexed sequential file maintains the key characteristic
of the sequential file: Records are organized in sequence based on a key field. Two

M12_STAL4290_09_GE_C12.indd 559 5/2/17 5:40 PM

560   Chapter 12 / File Management

features are added: an index to the file to support random access, and an overflow
file. The index provides a lookup capability to reach quickly the vicinity of a desired
record. The overflow file is similar to the log file used with a sequential file but is
integrated so a record in the overflow file is located by following a pointer from its
predecessor record.

In the simplest indexed sequential structure, a single level of indexing is used.
The index in this case is a simple sequential file. Each record in the index file con-
sists of two fields: a key field, which is the same as the key field in the main file, and
a pointer into the main file. To find a specific field, the index is searched to find the
highest key value that is equal to or precedes the desired key value. The search con-
tinues in the main file at the location indicated by the pointer.

To see the effectiveness of this approach, consider a sequential file with 1 million
records. To search for a particular key value will require on average one-half million
record accesses. Now suppose an index containing 1,000 entries is constructed, with
the keys in the index more or less evenly distributed over the main file. Now it will
take on average 500 accesses to the index file followed by 500 accesses to the main
file to find the record. The average search length is reduced from 500,000 to 1,000.

Additions to the file are handled in the following manner: Each record in the
main file contains an additional field not visible to the application, which is a pointer
to the overflow file. When a new record is to be inserted into the file, it is added to the
overflow file. The record in the main file that immediately precedes the new record
in logical sequence is updated to contain a pointer to the new record in the overflow
file. If the immediately preceding record is itself in the overflow file, then the pointer
in that record is updated. As with the sequential file, the indexed sequential file is
occasionally merged with the overflow file in batch mode.

The indexed sequential file greatly reduces the time required to access a single
record, without sacrificing the sequential nature of the file. To process the entire file
sequentially, the records of the main file are processed in sequence until a pointer to the
overflow file is found, then accessing continues in the overflow file until a null pointer
is encountered, at which time accessing of the main file is resumed where it left off.

To provide even greater efficiency in access, multiple levels of indexing can be
used. Thus the lowest level of index file is treated as a sequential file and a higher-
level index file is created for that file. Consider again a file with 1 million records.
A lower-level index with 10,000 entries is constructed. A higher-level index into
the lower-level index of 100 entries can then be constructed. The search begins at
the higher-level index (average length = 50 accesses) to find an entry point into the
lower-level index. This index is then searched (average length = 50) to find an entry
point into the main file, which is then searched (average length = 50). Thus the aver-
age length of search has been reduced from 500,000 to 1,000 to 150.

The Indexed File

The indexed sequential file retains one limitation of the sequential file: Effective
processing is limited to that which is based on a single field of the file. For example,
when it is necessary to search for a record on the basis of some other attribute than
the key field, both forms of sequential file are inadequate. In some applications, the
flexibility of efficiently searching by various attributes is desirable.

M12_STAL4290_09_GE_C12.indd 560 5/2/17 5:40 PM

12.3 / B-TREES   561

To achieve this flexibility, a structure is needed that employs multiple indexes,
one for each type of field that may be the subject of a search. In the general indexed
file, the concept of sequentiality and a single key are abandoned. Records are accessed
only through their indexes. The result is there is now no restriction on the placement
of records as long as a pointer in at least one index refers to that record. Furthermore,
variable-length records can be employed.

Two types of indexes are used. An exhaustive index contains one entry for every
record in the main file. The index itself is organized as a sequential file for ease of
searching. A partial index contains entries to records where the field of interest exists.
With variable-length records, some records will not contain all fields. When a new
record is added to the main file, all of the index files must be updated.

Indexed files are used mostly in applications where timeliness of information
is critical and where data are rarely processed exhaustively. Examples are airline
reservation systems and inventory control systems.

The Direct or Hashed File

The direct, or hashed, file exploits the capability found on disks to access directly
any block of a known address. As with sequential and indexed sequential files, a
key field is required in each record. However, there is no concept of sequential
ordering here.

The direct file makes use of hashing on the key value. This function is explained
in Appendix F. Figure F.1b shows the type of hashing organization with an overflow
file that is typically used in a hash file.

Direct files are often used where very rapid access is required, where fixed-
length records are used, and where records are always accessed one at a time. Exam-
ples are directories, pricing tables, schedules, and name lists.

  12.3	 B-TREES

The preceding section referred to the use of an index file to access individual records
in a file or database. For a large file or database, a single sequential file of indexes on
the primary key does not provide for rapid access. To provide more efficient access, a
structured index file is typically used. The simplest such structure is a two-level orga-
nization in which the original file is broken into sections, and the upper level consists
of a sequenced set of pointers to the lower-level sections. This structure can then be
extended to more than two levels, resulting in a tree structure. Unless some discipline
is imposed on the construction of the tree index, it is likely to end up with an uneven
structure, with some short branches and some long branches, so the time to search
the index is uneven. Therefore, a balanced tree structure, with all branches of equal
length, would appear to give the best average performance. Such a structure is the
B-tree, which has become the standard method of organizing indexes for databases
and is commonly used in OS file systems, including those supported by Mac OS X,
Windows, and several Linux file systems. The B-tree structure provides for efficient
searching, adding, and deleting of items.

M12_STAL4290_09_GE_C12.indd 561 5/2/17 5:40 PM

562   Chapter 12 / File Management

Before illustrating the concept of B-tree, let us define a B-tree and its character-
istics more precisely. A B-tree is a tree structure (no closed loops) with the following
characteristics (see Figure 12.4):

1.	 The tree consists of a number of nodes and leaves.

2.	 Each node contains at least one key which uniquely identifies a file record, and
more than one pointer to child nodes or leaves. The number of keys and point-
ers contained in a node may vary, within limits explained below.

3.	 Each node is limited to the same number of maximum keys.

4.	 The keys in a node are stored in nondecreasing order. Each key has an associ-
ated child that is the root of a subtree containing all nodes with keys less than
or equal to the key but greater than the preceding key. A node also has an addi-
tional rightmost child that is the root for a subtree containing all keys greater
than any keys in the node. Thus, each node has one more pointer than keys.

A B-tree is characterized by its minimum degree d and satisfies the following
properties:

1.	 Every node has at most 2d - 1 keys and 2d children or, equivalently, 2d
pointers.1

2.	 Every node, except for the root, has at least d - 1 keys and d pointers. As a
result, each internal node, except the root, is at least half full and has at least
d children.

3.	 The root has at least 1 key and 2 children.

4.	 All leaves appear on the same level and contain no information. This is a logical
construct to terminate the tree; the actual implementation may differ. For exam-
ple, each bottom-level node may contain keys alternating with null pointers.

5.	 A nonleaf node with k pointers contains k - 1 keys.

Typically, a B-tree has a relatively large branching factor (large number of chil-
dren) resulting in a tree of low height.

Figure 12.4 illustrates two levels of a B-tree. The upper level has (k - 1) keys
and k pointers and satisfies the following relationship:

Key1 6 Key3 6 c 6 Keyk - 1

1Some treatments require, as stated here, that the maximum number of keys in a node is odd (e.g.,
[CORM09]); others specify even [COME79]; still others allow odd or even [KNUT98]. The choice does
not fundamentally affect the performance of B-trees.

Figure 12.4  A B-tree Node with k Children

Key1

Subtree1 Subtree2 Subtree3 Subtreek–1 Subtreek

Key2 Keyk–1

M12_STAL4290_09_GE_C12.indd 562 5/2/17 5:40 PM

12.3 / B-TREES   563

Each pointer points to a node that is the top level of a subtree of this upper-
level node. Each of these subtree nodes contains some number of keys and pointers,
unless it is a leaf node. The following relationships hold:
All the keys in Subtree1 are less than Key1

All the keys in Subtree2 are greater than Key1 and are less than Key2

All the keys in Subtree3 are greater than Key2 and are less than Key3

•
•
•

All the keys in Subtreek - 1 are greater than Keyk - 2 and are less than Keyk - 1

All the keys in Subtreek are greater than Keyk - 1

To search for a key, you start at the root node. If the key you want is in the node,
you’re done. If not, you go down one level. There are three cases:

1.	 The key you want is less then the smallest key in this node. Take the leftmost
pointer down to the next level.

2.	 The key you want is greater than the largest key in this node. Take the rightmost
pointer down to the next level.

3.	 The value of the key is between the values of two adjacent keys in this node.
Take the pointer between these keys down to the next level.

For example, consider the tree in Figure 12.5d and the desired key is 84. At the
root level, 84 7 51, so you take the rightmost branch down to the next level. Here,
we have 71 6 84 6 88, so take the pointer between 71 and 88 down to the next level,
where the key 84 is found. Associated with this key is a pointer to the desired record.
An advantage of this tree structure over other tree structures is that it is broad and
shallow, so the search terminates quickly. Furthermore, because it is balanced (all
branches from root to leaf are of equal length), there are no long searches compared
to other searches.

The rules for inserting a new key into the B-tree must maintain a balanced tree.
This is done as follows:

1.	 Search the tree for the key. If the key is not in the tree, then you have reached
a node at the lowest level.

2.	 If this node has fewer than 2d - 1 keys, then insert the key into this node in
the proper sequence.

3.	 If the node is full (having 2d - 1 keys), then split this node around its median
key into two new nodes with d - 1 keys each and promote the median key to
the next higher level, as described in step 4. If the new key has a value less than
the median key, insert it into the left–hand new node; otherwise, insert it into
the right–hand new node. The result is that the original node has been split into
two nodes: one with d - 1 keys, and one with d keys.

4.	 The promoted node is inserted into the parent node following the rules of step
3. Therefore, if the parent node is already full, it must be split and its median
key promoted to the next highest layer.

5.	 If the process of promotion reaches the root node and the root node is already
full, then insertion again follows the rules of step 3. However, in this case, the
median key becomes a new root node and the height of the tree increases by 1.

M12_STAL4290_09_GE_C12.indd 563 5/2/17 5:40 PM

564   Chapter 12 / File Management

Figure 12.5 illustrates the insertion process on a B-tree of degree d = 3. In each
part of the figure, the nodes affected by the insertion process are unshaded.

	 12.4	FILE DIRECTORIES

Contents

Associated with any file management system and collection of files is a file directory.
The directory contains information about the files, including attributes, location,
and ownership. Much of this information, especially that concerned with storage,

Figure 12.5  Inserting Nodes into a B-tree

(b) Key = 90 inserted. This is a simple insertion into a node.

(c) Key = 45 inserted. This requires splitting a node into two parts and promoting one key to the root node.

(d) Key = 84 inserted. This requires splitting a node into two parts and promoting one key to the root node.
This then requires the root node to be split and a new root created.

(a) B-tree of minimum degree d = 3.

2 30 52 59 60

60

60

67 68 73 85 88 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 43 44 45

23 39 51 61 71

10

2 30 52 59 60 67 68 73 84 85 90 9632 43 44 45

23 39

51

61 71 88

10

M12_STAL4290_09_GE_C12.indd 564 5/2/17 5:40 PM

12.4 / FILE DIRECTORIES   565

is managed by the operating system. The directory is itself a file, accessible by vari-
ous file management routines. Although some of the information in directories is
available to users and applications, this is generally provided indirectly by system
routines.

Table 12.1 suggests the information typically stored in the directory for each
file in the system. From the user’s point of view, the directory provides a mapping
between file names, known to users and applications, and the files themselves.
Thus, each file entry includes the name of the file. Virtually all systems deal with
different types of files and different file organizations, and this information is also
provided. An important category of information about each file concerns its stor-
age, including its location and size. In shared systems, it is also important to pro-
vide information that is used to control access to the file. Typically, one user is the
owner of the file and may grant certain access privileges to other users. Finally,
usage information is needed to manage the current use of the file and to record
the history of its usage.

Basic Information

File Name Name as chosen by creator (user or program). Must be unique within a specific
directory

File Type For example: text, binary, load module, etc.
File Organization For systems that support different organizations

Address Information

Volume Indicates device on which file is stored
Starting Address Starting physical address on secondary storage (e.g., cylinder, track, and block

number on disk)
Size Used Current size of the file in bytes, words, or blocks
Size Allocated The maximum size of the file

Access Control Information

Owner User who is assigned control of this file. The owner may be able to grant/deny
access to other users and to change these privileges.

Access Information A simple version of this element would include the user’s name and password
for each authorized user.

Permitted Actions Controls reading, writing, executing, and transmitting over a network

Usage Information

Date Created When file was first placed in directory
Identity of Creator Usually but not necessarily the current owner
Date Last Read Access Date of the last time a record was read
Identity of Last Reader User who did the reading
Date Last Modified Date of the last update, insertion, or deletion
Identity of Last Modifier User who did the modifying
Date of Last Backup Date of the last time the file was backed up on another storage medium
Current Usage Information about current activity on the file, such as process or processes that

have the file open, whether it is locked by a process, and whether the file has
been updated in main memory but not yet on disk

Table 12.1  Information Elements of a File Directory

M12_STAL4290_09_GE_C12.indd 565 5/2/17 5:40 PM

566   Chapter 12 / File Management

Structure

The way in which the information of Table 12.1 is stored differs widely among
various systems. Some of the information may be stored in a header record associ-
ated with the file; this reduces the amount of storage required for the directory,
making it easier to keep all or much of the directory in main memory to improve
speed.

The simplest form of structure for a directory is that of a list of entries, one for
each file. This structure could be represented by a simple sequential file, with the
name of the file serving as the key. In some earlier single-user systems, this technique
has been used. However, it is inadequate when multiple users share a system and even
for single users with many files.

To understand the requirements for a file structure, it is helpful to consider the
types of operations that may be performed on the directory:

•	 Search: When a user or application references a file, the directory must be
searched to find the entry corresponding to that file.

•	 Create file: When a new file is created, an entry must be added to the directory.

•	 Delete file: When a file is deleted, an entry must be removed from the directory.

•	 List directory: All or a portion of the directory may be requested. Generally,
this request is made by a user and results in a listing of all files owned by that
user, plus some of the attributes of each file (e.g., type, access control informa-
tion, usage information).

•	 Update directory: Because some file attributes are stored in the directory, a
change in one of these attributes requires a change in the corresponding direc-
tory entry.

The simple list is not suited to supporting these operations. Consider the needs
of a single user. The user may have many types of files, including word-processing
text files, graphic files, and spreadsheets. The user may like to have these organized
by project, by type, or in some other convenient way. If the directory is a simple
sequential list, it provides no help in organizing the files and forces the user to be
careful not to use the same name for two different types of files. The problem is much
worse in a shared system. Unique naming becomes a serious problem. Furthermore,
it is difficult to conceal portions of the overall directory from users when there is no
inherent structure in the directory.

A start in solving these problems would be to go to a two-level scheme. In
this case, there is one directory for each user, and a master directory. The mas-
ter directory has an entry for each user directory, providing address and access
control information. Each user directory is a simple list of the files of that user.
This arrangement means names must be unique only within the collection of
files of a single user, and the file system can easily enforce access restriction on
directories. However, it still provides users with no help in structuring collec-
tions of files.

A more powerful and flexible approach, and one that is almost universally
adopted, is the hierarchical, or tree-structure, approach (see Figure 12.6). As before,
there is a master directory, which has under it a number of user directories. Each of

M12_STAL4290_09_GE_C12.indd 566 5/2/17 5:40 PM

12.4 / FILE DIRECTORIES   567

these user directories, in turn, may have subdirectories and files as entries. This is true
at any level: That is, at any level, a directory may consist of entries for subdirectories
and/or entries for files.

It remains to say how each directory and subdirectory is organized. The simplest
approach, of course, is to store each directory as a sequential file. When directories
may contain a very large number of entries, such an organization may lead to unnec-
essarily long search times. In that case, a hashed structure is to be preferred.

Naming

Users need to be able to refer to a file by a symbolic name. Clearly, each file in the
system must have a unique name in order that file references be unambiguous. On
the other hand, it is an unacceptable burden on users to require they provide unique
names, especially in a shared system.

The use of a tree-structured directory minimizes the difficulty in assigning
unique names. Any file in the system can be located by following a path from the
root or master directory down various branches until the file is reached. The series
of directory names, culminating in the file name itself, constitutes a pathname for
the file. As an example, the file in the lower left-hand corner of Figure 12.7 has the
pathname User_B/Word/Unit_A/ABC. The slash is used to delimit names in the
sequence. The name of the master directory is implicit, because all paths start at that
directory. Note it is perfectly acceptable to have several files with the same file name,
as long as they have unique pathnames, which is equivalent to saying that the same
file name may be used in different directories. In our example, there is another file
in the system with the file name ABC, but that file has the pathname /User_B/
Draw/ABC.

Figure 12.6  Tree-Structured Directory

Master directory

Subdirectory

Subdirectory

File

Subdirectory

Subdirectory

File

Subdirectory

File

File

M12_STAL4290_09_GE_C12.indd 567 5/2/17 5:40 PM

568   Chapter 12 / File Management

Although the pathname facilitates the selection of file names, it would be awk-
ward for a user to have to spell out the entire pathname every time a reference is
made to a file. Typically, an interactive user or a process has associated with it a cur-
rent directory, often referred to as the working directory. Files are then referenced
relative to the working directory. For example, if the working directory for user B
is “Word,” then the pathname Unit_A/ABC is sufficient to identify the file in the
lower left-hand corner of Figure 12.7. When an interactive user logs on, or when a
process is created, the default for the working directory is the user home directory.
During execution, the user can navigate up or down in the tree to change to a differ-
ent working directory.

Figure 12.7  Example of Tree-Structured Directory

System

Master directory

User_A
User_B
User_C

Directory
"User_C"

Directory
"User_A"Directory "User_B"

Draw
Word

Directory "Unit_A"

ABC

Directory "Word"

Unit_A

Directory "Draw"

ABC

File
"ABC"

Pathname: /User_B/Word/Unit_A/ABC

Pathname: /User_B/Draw/ABC

File
"ABC"

M12_STAL4290_09_GE_C12.indd 568 5/2/17 5:40 PM

12.5 / FILE SHARING   569

  12.5	 FILE SHARING

In a multiuser system, there is almost always a requirement for allowing files to be
shared among a number of users. Two issues arise: access rights and the management
of simultaneous access.

Access Rights

The file system should provide a flexible tool for allowing extensive file sharing
among users. The file system should provide a number of options so the way in which
a particular file is accessed can be controlled. Typically, users or groups of users are
granted certain access rights to a file. A wide range of access rights has been used.
The following list is representative of access rights that can be assigned to a particular
user for a particular file:

•	 None: The user may not even learn of the existence of the file, much less access
it. To enforce this restriction, the user would not be allowed to read the user
directory that includes this file.

•	 Knowledge: The user can determine that the file exists and who its owner is. The
user is then able to petition the owner for additional access rights.

•	 Execution: The user can load and execute a program but cannot copy it. Propri-
etary programs are often made accessible with this restriction.

•	 Reading: The user can read the file for any purpose, including copying and
execution. Some systems are able to enforce a distinction between viewing and
copying. In the former case, the contents of the file can be displayed to the user,
but the user has no means for making a copy.

•	 Appending: The user can add data to the file, often only at the end, but cannot
modify or delete any of the file’s contents. This right is useful in collecting data
from a number of sources.

•	 Updating: The user can modify, delete, and add to the file’s data. This normally
includes writing the file initially, rewriting it completely or in part, and removing
all or a portion of the data. Some systems distinguish among different degrees
of updating.

•	 Changing protection: The user can change the access rights granted to other
users. Typically, this right is held only by the owner of the file. In some systems,
the owner can extend this right to others. To prevent abuse of this mechanism,
the file owner will typically be able to specify which rights can be changed by
the holder of this right.

•	 Deletion: The user can delete the file from the file system.

These rights can be considered to constitute a hierarchy, with each right imply-
ing those that precede it. Thus, if a particular user is granted the updating right for a
particular file, then that user is also granted the following rights: knowledge, execu-
tion, reading, and appending.

M12_STAL4290_09_GE_C12.indd 569 5/2/17 5:40 PM

570   Chapter 12 / File Management

One user is designated as the owner of a given file, usually the person who ini-
tially created the file. The owner has all of the access rights listed previously and may
grant rights to others. Access can be provided to different classes of users:

•	 Specific user: Individual users who are designated by user ID

•	 User groups: A set of users who are not individually defined. The system must
have some way of keeping track of the membership of user groups.

•	 All: All users who have access to this system. These are public files.

Simultaneous Access

When access is granted to append or update a file to more than one user, the operating
system or file management system must enforce discipline. A brute-force approach is
to allow a user to lock the entire file when it is to be updated. A finer grain of control
is to lock individual records during update. Essentially, this is the readers/writers
problem discussed in Chapter 5. Issues of mutual exclusion and deadlock must be
addressed in designing the shared access capability.

  12.6	 RECORD BLOCKING

As indicated in Figure 12.2, records are the logical unit of access of a structured file,2
whereas blocks are the unit of I/O with secondary storage. For I/O to be performed,
records must be organized as blocks.

There are several issues to consider. First, should blocks be of fixed or variable
length? On most systems, blocks are of fixed length. This simplifies I/O, buffer alloca-
tion in main memory, and the organization of blocks on secondary storage. Second,
what should the relative size of a block be compared to the average record size? The
trade-off is this: The larger the block, the more records that are passed in one I/O
operation. If a file is being processed or searched sequentially, this is an advantage,
because the number of I/O operations is reduced by using larger blocks, thus speeding
up processing. On the other hand, if records are being accessed randomly and no par-
ticular locality of reference is observed, then larger blocks result in the unnecessary
transfer of unused records. However, combining the frequency of sequential opera-
tions with the potential for locality of reference, we can say the I/O transfer time is
reduced by using larger blocks. The competing concern is that larger blocks require
larger I/O buffers, making buffer management more difficult.

Given the size of a block, there are three methods of blocking that can be used:

1.	 Fixed blocking: Fixed-length records are used, and an integral number of
records are stored in a block. There may be unused space at the end of each
block. This is referred to as internal fragmentation.

2.	 Variable-length spanned blocking: Variable-length records are used and are
packed into blocks with no unused space. Thus, some records must span two
blocks, with the continuation indicated by a pointer to the successor block.

2As opposed to a file that is treated only as a stream of bytes, such as in the UNIX file system.

M12_STAL4290_09_GE_C12.indd 570 5/2/17 5:40 PM

12.6 / RECORD BLOCKING   571

3.	 Variable-length unspanned blocking: Variable-length records are used, but
spanning is not employed. There is wasted space in most blocks because of the
inability to use the remainder of a block if the next record is larger than the
remaining unused space.

Figure 12.8 illustrates these methods assuming a file is stored in sequential
blocks on a disk. The figure assumes the file is large enough to span two tracks.3 The
effect would not be changed if some other file allocation scheme were used (see Sec-
tion 12.6).

Fixed blocking is the common mode for sequential files with fixed-length
records. Variable-length spanned blocking is efficient of storage and does not limit
the size of records. However, this technique is difficult to implement. Records that
span two blocks require two I/O operations, and files are difficult to update, regard-
less of the organization. Variable-length unspanned blocking results in wasted space
and limits record size to the size of a block.

The record-blocking technique may interact with the virtual memory hardware,
if such is employed. In a virtual memory environment, it is desirable to make the page
the basic unit of transfer. Pages are generally quite small, so it is impractical to treat a

3The organization of data on a disk is in a concentric set of rings, called tracks. Each track is the same width
as the read/write head. See Appendix J.

Figure 12.8  Record-Blocking Methods

(a) Fixed Blocking

(b) Variable Blocking: Spanned

(c) Variable Blocking: Unspanned

Track 1

Track 2

Track 1

Track 2

Record 1

Record 1

Record 4 Record 5 Record 6

Record 2 Record 3

Record 4 (rest) Record 5 Record 6 Record 1 Ptr

Record 2 Record 3 Record 4 Ptr

Track 1

Track 2

Record 1 Record 2 Record 3 Record 4

Record 5 Record 6 Record 7 Record 8

M12_STAL4290_09_GE_C12.indd 571 5/2/17 5:40 PM

572   Chapter 12 / File Management

page as a block for unspanned blocking. Accordingly, some systems combine multiple
pages to create a larger block for file I/O purposes. This approach is used for VSAM
files on IBM mainframes.

  12.7	 SECONDARY STORAGE MANAGEMENT

On secondary storage, a file consists of a collection of blocks. The operating system
or file management system is responsible for allocating blocks to files. This raises two
management issues. First, space on secondary storage must be allocated to files, and
second, it is necessary to keep track of the space available for allocation. We will see
that these two tasks are related; that is, the approach taken for file allocation may
influence the approach taken for free space management. Further, we will see that
there is an interaction between file structure and allocation policy.

We begin this section by looking at alternatives for file allocation on a single
disk. Then we will look at the issue of free space management, and finally we will
discuss reliability.

File Allocation

Several issues are involved in file allocation:

1.	 When a new file is created, is the maximum space required for the file allocated
at once?

2.	 Space is allocated to a file as one or more contiguous units, which we shall refer
to as portions. A portion is a contiguous set of allocated blocks. The size of a
portion can range from a single block to the entire file. What size of portion
should be used for file allocation?

3.	 What sort of data structure or table is used to keep track of the portions assigned
to a file? An example of such a structure is a file allocation table (FAT), found
on DOS and some other systems.

Let us examine these issues in turn.

Preallocation versus Dynamic Allocation  A preallocation policy requires
the maximum size of a file be declared at the time of the file creation request. In
a number of cases, such as program compilations, the production of summary data
files, or the transfer of a file from another system over a communications network,
this value can be reliably estimated. However, for many applications, it is difficult if
not impossible to estimate reliably the maximum potential size of the file. In those
cases, users and application programmers would tend to overestimate file size so as
not to run out of space. This clearly is wasteful from the point of view of secondary
storage allocation. Thus, there are advantages to the use of dynamic allocation, which
allocates space to a file in portions as needed.

M12_STAL4290_09_GE_C12.indd 572 5/2/17 5:40 PM

12.7 / SECONDARY STORAGE MANAGEMENT   573

Portion Size  The second issue listed is that of the size of the portion allocated to
a file. At one extreme, a portion large enough to hold the entire file is allocated. At
the other extreme, space on the disk is allocated one block at a time. In choosing a
portion size, there is a trade-off between efficiency from the point of view of a single
file versus overall system efficiency. [WIED87] lists four items to be considered in
the trade-off:

1.	 Contiguity of space increases performance, especially for Retrieve_Next
operations, and greatly for transactions running in a transaction-oriented oper-
ating system.

2.	 Having a large number of small portions increases the size of tables needed to
manage the allocation information.

3.	 Having fixed-size portions (e.g., blocks) simplifies the reallocation of space.

4.	 Having variable-size or small fixed-size portions minimizes waste of unused
storage due to overallocation.

Of course, these items interact and must be considered together. The result is
that there are two major alternatives:

1.	 Variable, large contiguous portions: This will provide better performance. The
variable size avoids waste, and the file allocation tables are small. However,
space is hard to reuse.

2.	 Blocks: Small fixed portions provide greater flexibility. They may require large
tables or complex structures for their allocation. Contiguity has been aban-
doned as a primary goal; blocks are allocated as needed.

Either option is compatible with preallocation or dynamic allocation. In the case
of variable, large contiguous portions, a file is preallocated one contiguous group of
blocks. This eliminates the need for a file allocation table; all that is required is a pointer
to the first block and the number of blocks allocated. In the case of blocks, all of the
portions required are allocated at one time. This means the file allocation table for the
file will remain of fixed size, because the number of blocks allocated is fixed.

With variable-size portions, we need to be concerned with the fragmentation
of free space. This issue was faced when we considered partitioned main memory in
Chapter 7. The following are possible alternative strategies:

•	 First fit: Choose the first unused contiguous group of blocks of sufficient size
from a free block list.

•	 Best fit: Choose the smallest unused group that is of sufficient size.

•	 Nearest fit: Choose the unused group of sufficient size that is closest to the
previous allocation for the file to increase locality.

It is not clear which strategy is best. The difficulty in modeling alternative strat-
egies is that so many factors interact, including types of files, pattern of file access,
degree of multiprogramming, other performance factors in the system, disk caching,
and disk scheduling.

M12_STAL4290_09_GE_C12.indd 573 5/2/17 5:40 PM

574   Chapter 12 / File Management

File Allocation Methods  Having looked at the issues of preallocation versus
dynamic allocation and portion size, we are in a position to consider specific file
allocation methods. Three methods are in common use: contiguous, chained, and
indexed. Table 12.2 summarizes some of the characteristics of each method.

With contiguous allocation, a single contiguous set of blocks is allocated to a
file at the time of file creation (see Figure 12.9). Thus, this is a preallocation strategy,
using variable-size portions. The file allocation table needs just a single entry for each
file, showing the starting block and the length of the file. Contiguous allocation is the
best from the point of view of the individual sequential file. Multiple blocks can be
read in at a time to improve I/O performance for sequential processing. It is also easy
to retrieve a single block. For example, if a file starts at block b, and the ith block of
the file is wanted, its location on secondary storage is simply b + i - 1. However,
contiguous allocation presents some problems. External fragmentation will occur,
making it difficult to find contiguous blocks of space of sufficient length. From time
to time, it will be necessary to perform a compaction algorithm to free up additional
space on the disk (see Figure 12.10). Also, with preallocation, it is necessary to declare
the size of the file at the time of creation, with the problems mentioned earlier.

Contiguous Chained Indexed

Preallocation? Necessary Possible Possible

Fixed or Variable Size Portions? Variable Fixed blocks Fixed blocks Variable

Portion Size Large Small Small Medium

Allocation Frequency Once Low to high High Low

Time to Allocate Medium Long Short Medium

File Allocation Table Size One entry One entry Large Medium

Table 12.2  File Allocation Methods

Figure 12.9  Contiguous File Allocation

0 1 2 3 4

5 6 7

File A

File allocation table

File B

File C

File E

File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File name

File A
File B
File C
File D
File E

2
9
18
30
26

3
5
8
2
3

Start block Length

M12_STAL4290_09_GE_C12.indd 574 5/2/17 5:40 PM

12.7 / SECONDARY STORAGE MANAGEMENT   575

At the opposite extreme from contiguous allocation is chained allocation (see
Figure 12.11). Typically, allocation is on an individual block basis. Each block con-
tains a pointer to the next block in the chain. Again, the file allocation table needs
just a single entry for each file, showing the starting block and the length of the file.
Although preallocation is possible, it is more common simply to allocate blocks as
needed. The selection of blocks is now a simple matter: Any free block can be added
to a chain. There is no external fragmentation to worry about, because only one block
at a time is needed. This type of physical organization is best suited to sequential files

Figure 12.10  Contiguous File Allocation (After Compaction)

0 1 2 3 4

5 6 7

File A

File allocation table

File B

File C

File E File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File name

File A
File B
File C
File D
File E

0
3
8
19
16

3
5
8
2
3

Start block Length

Figure 12.11  Chained Allocation

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Start block Length

1 5

M12_STAL4290_09_GE_C12.indd 575 5/2/17 5:40 PM

576   Chapter 12 / File Management

that are to be processed sequentially. To select an individual block of a file requires
tracing through the chain to the desired block.

One consequence of chaining, as described so far, is there is no accommodation
of the principle of locality. Thus, if it is necessary to bring in several blocks of a file at
a time (as in sequential processing) then a series of accesses to different parts of the
disk are required. This is perhaps a more significant effect on a single-user system, but
may also be of concern on a shared system. To overcome this problem, some systems
periodically consolidate files (see Figure 12.12).

Indexed allocation addresses many of the problems of contiguous and chained
allocation. In this case, the file allocation table contains a separate one-level index for
each file; the index has one entry for each portion allocated to the file. Typically, the
file indexes are not physically stored as part of the file allocation table. Rather, the
file index for a file is kept in a separate block, and the entry for the file in the file allo-
cation table points to that block. Allocation may be on the basis of either fixed-size
blocks (see Figure 12.13) or variable-size portions (see Figure 12.14). Allocation by
blocks eliminates external fragmentation, whereas allocation by variable-size portions
improves locality. In either case, file consolidation may be done from time to time. File
consolidation reduces the size of the index in the case of variable-size portions, but
not in the case of block allocation. Indexed allocation supports both sequential and
direct access to the file and thus is the most popular form of file allocation.

Free Space Management

Just as the space allocated to files must be managed, so the space that is not cur-
rently allocated to any file must be managed. To perform any of the file allocation
techniques described previously, it is necessary to know what blocks on the disk are
available. Thus, we need a disk allocation table in addition to a file allocation table.
We discuss here a number of techniques that have been implemented.

Figure 12.12  Chained Allocation (After Consolidation)

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Start block Length

0 5

M12_STAL4290_09_GE_C12.indd 576 5/2/17 5:40 PM

12.7 / SECONDARY STORAGE MANAGEMENT   577

Bit Tables  This method uses a vector containing one bit for each block on the disk.
Each entry of a 0 corresponds to a free block, and each 1 corresponds to a block in
use. For example, for the disk layout of Figure 12.9, a vector of length 35 is needed
and would have the following value:

00111000011111000011111111111011000

A bit table has the advantage that it is relatively easy to find one or a contigu-
ous group of free blocks. Thus, a bit table works well with any of the file allocation
methods outlined. Another advantage is that a bit table is as small as possible.

Figure 12.13  Indexed Allocation with Block Portions

0 1 2 3 4

5 6 7

File allocation table

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File B

File name Index block

24

1
8
3
14
28

Figure 12.14  Indexed Allocation with Variable-Length Portions

0 1 2 3 4

5 6 7

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Start block

1
28
14

3
4
1

Length

File allocation table

File B

File name Index block

24

M12_STAL4290_09_GE_C12.indd 577 5/2/17 5:40 PM

578   Chapter 12 / File Management

However, it can still be sizable. The amount of memory (in bytes) required for
a block bitmap is

disk size in bytes

8 * file system block size

Thus, for a 16-Gbyte disk with 512-byte blocks, the bit table occupies about 4 Mbytes.
Can we spare 4 Mbytes of main memory for the bit table? If so, then the bit table can
be searched without the need for disk access. But even with today’s memory sizes,
4 Mbytes is a hefty chunk of main memory to devote to a single function. The alterna-
tive is to put the bit table on disk. But a 4-Mbyte bit table would require about 8,000
disk blocks. We can’t afford to search that amount of disk space every time a block is
needed, so a bit table resident in memory is indicated.

Even when the bit table is in main memory, an exhaustive search of the table
can slow file system performance to an unacceptable degree. This is especially true
when the disk is nearly full and there are few free blocks remaining. Accordingly, most
file systems that use bit tables maintain auxiliary data structures that summarize the
contents of subranges of the bit table. For example, the table could be divided logi-
cally into a number of equal-size subranges. A summary table could include, for each
subrange, the number of free blocks and the maximum-sized contiguous number of
free blocks. When the file system needs a number of contiguous blocks, it can scan
the summary table to find an appropriate subrange and then search that subrange.

Chained Free Portions  The free portions may be chained together by using
a pointer and length value in each free portion. This method has negligible space
overhead because there is no need for a disk allocation table, merely for a pointer
to the beginning of the chain and the length of the first portion. This method is
suited to all of the file allocation methods. If allocation is a block at a time, simply
choose the free block at the head of the chain and adjust the first pointer or length
value. If allocation is by variable-length portion, a first-fit algorithm may be used: The
headers from the portions are fetched one at a time to determine the next suitable
free portion in the chain. Again, pointer and length values are adjusted.

This method has its own problems. After some use, the disk will become quite
fragmented and many portions will be a single block long. Also note every time you
allocate a block, you need to read the block first to recover the pointer to the new
first free block before writing data to that block. If many individual blocks need to
be allocated at one time for a file operation, this greatly slows file creation. Similarly,
deleting highly fragmented files is very time consuming.

Indexing  The indexing approach treats free space as a file and uses an index table
as described under file allocation. For efficiency, the index should be on the basis
of variable-size portions rather than blocks. Thus, there is one entry in the table for
every free portion on the disk. This approach provides efficient support for all of the
file allocation methods.

Free Block List  In this method, each block is assigned a number sequentially and
the list of the numbers of all free blocks is maintained in a reserved portion of the

M12_STAL4290_09_GE_C12.indd 578 5/2/17 5:40 PM

12.7 / SECONDARY STORAGE MANAGEMENT   579

disk. Depending on the size of the disk, either 24 or 32 bits will be needed to store a
single block number, so the size of the free block list is 24 or 32 times the size of the
corresponding bit table and thus must be stored on disk rather than in main memory.
However, this is a satisfactory method. Consider the following points:

1.	 The space on disk devoted to the free block list is less than 1% of the total disk
space. If a 32-bit block number is used, then the space penalty is 4 bytes for
every 512-byte block.

2.	 Although the free block list is too large to store in main memory, there are two
effective techniques for storing a small part of the list in main memory.

a.	 The list can be treated as a push-down stack (see Appendix P) with the first
few thousand elements of the stack kept in main memory. When a new block
is allocated, it is popped from the top of the stack, which is in main memory.
Similarly, when a block is deallocated, it is pushed onto the stack. There only
has to be a transfer between disk and main memory when the in-memory
portion of the stack becomes either full or empty. Thus, this technique gives
almost zero-time access most of the time.

b.	 The list can be treated as a FIFO queue, with a few thousand entries from
both the head and the tail of the queue in main memory. A block is allocated
by taking the first entry from the head of the queue, and deallocated by
adding it to the end of the tail of the queue. There only has to be a transfer
between disk and main memory when either the in-memory portion of the
head of the queue becomes empty or the in-memory portion of the tail of
the queue becomes full.

In either of the strategies listed in the preceding point (stack or FIFO queue),
a background thread can slowly sort the in-memory list or lists to facilitate contigu-
ous allocation.

Volumes

The term volume is used somewhat differently by different operating systems and file
management systems, but in essence a volume is a logical disk. [CARR05] defines a
volume as follows:

Volume: A collection of addressable sectors in secondary memory that an OS or
application can use for data storage. The sectors in a volume need not be consecu-
tive on a physical storage device; instead, they need only appear that way to the
OS or application. A volume may be the result of assembling and merging smaller
volumes.

In the simplest case, a single disk equals one volume. Frequently, a disk is
divided into partitions, with each partition functioning as a separate volume. It is
also common to treat multiple disks as a single volume or partitions on multiple disks
as a single volume.

M12_STAL4290_09_GE_C12.indd 579 5/2/17 5:40 PM

580   Chapter 12 / File Management

Reliability

Consider the following scenario:

1.	 User A requests a file allocation to add to an existing file.

2.	 The request is granted and the disk and file allocation tables are updated in
main memory but not yet on disk.

3.	 The system crashes and subsequently restarts.

4.	 User B requests a file allocation and is allocated space on disk that overlaps
the last allocation to user A.

5.	 User A accesses the overlapped portion via a reference that is stored inside
A’s file.

This difficulty arose because the system maintained a copy of the disk alloca-
tion table and file allocation table in main memory for efficiency. To prevent this type
of error, the following steps could be performed when a file allocation is requested:

1.	 Lock the disk allocation table on disk. This prevents another user from causing
alterations to the table until this allocation is completed.

2.	 Search the disk allocation table for available space. This assumes a copy of
the disk allocation table is always kept in main memory. If not, it must first be
read in.

3.	 Allocate space, update the disk allocation table, and update the disk. Updating
the disk involves writing the disk allocation table back onto disk. For chained
disk allocation, it also involves updating some pointers on disk.

4.	 Update the file allocation table and update the disk.

5.	 Unlock the disk allocation table.

This technique will prevent errors. However, when small portions are allocated
frequently, the impact on performance will be substantial. To reduce this overhead,
a batch storage allocation scheme could be used. In this case, a batch of free por-
tions on the disk is obtained for allocation. The corresponding portions on disk are
marked “in use.” Allocation using this batch may proceed in main memory. When the
batch is exhausted, the disk allocation table is updated on disk and a new batch may
be acquired. If a system crash occurs, portions on the disk marked “in use” must be
cleaned up in some fashion before they can be reallocated. The technique for cleanup
will depend on the file system’s particular characteristics.

  12.8	 UNIX FILE MANAGEMENT

In the UNIX file system, six types of files are distinguished:

1.	 Regular, or ordinary: Contains arbitrary data in zero or more data blocks. Regu-
lar files contain information entered in them by a user, an application program,
or a system utility program. The file system does not impose any internal struc-
ture to a regular file, but treats it as a stream of bytes.

M12_STAL4290_09_GE_C12.indd 580 5/2/17 5:40 PM

12.8 / UNIX FILE MANAGEMENT   581

2.	 Directory: Contains a list of file names plus pointers to associated inodes
(index nodes), described later. Directories are hierarchically organized (see
Figure 12.6). Directory files are actually ordinary files with special write protec-
tion privileges so only the file system can write into them, while read access is
available to user programs.

3.	 Special: Contains no data but provides a mechanism to map physical devices to
file names. The file names are used to access peripheral devices, such as termi-
nals and printers. Each I/O device is associated with a special file, as discussed
in Section 11.8.

4.	 Named pipes: As discussed in Section 6.7, a pipe is an interprocess communica-
tions facility. A pipe file buffers data received in its input so a process that reads
from the pipe’s output receives the data on a first-in-first-out basis.

5.	 Links: In essence, a link is an alternative file name for an existing file.

6.	 Symbolic links: This is a data file that contains the name of the file to which it
is linked.

In this section, we are concerned with the handling of ordinary files, which cor-
respond to what most systems treat as files.

Inodes

Modern UNIX operating systems support multiple file systems but map all of these
into a uniform underlying system for supporting file systems and allocating disk space
to files. All types of UNIX files are administered by the OS by means of inodes. An
inode (index node) is a control structure that contains the key information needed by
the operating system for a particular file. Several file names may be associated with
a single inode, but an active inode is associated with exactly one file, and each file is
controlled by exactly one inode.

The attributes of the file as well as its permissions and other control information
are stored in the inode. The exact inode structure varies from one UNIX implemen-
tation to another. The FreeBSD inode structure, shown in Figure 12.15, includes the
following data elements:

•	 The type and access mode of the file

•	 The file’s owner and group-access identifiers

•	 The time when the file was created, when it was most recently read and written,
and when its inode was most recently updated by the system

•	 The size of the file in bytes

•	 A sequence of block pointers, explained in the next subsection

•	 The number of physical blocks used by the file, including blocks used to hold
indirect pointers and attributes

•	 The number of directory entries that reference the file

•	 The kernel and user-settable flags that describe the characteristics of the file

•	 The generation number of the file (a randomly selected number assigned to the
inode each time that the latter is allocated to a new file; the generation number
is used to detect references to deleted files)

M12_STAL4290_09_GE_C12.indd 581 5/2/17 5:40 PM

582   Chapter 12 / File Management

•	 The blocksize of the data blocks referenced by the inode (typically the same as,
but sometimes larger than, the file system blocksize)

•	 The size of the extended attribute information

•	 Zero or more extended attribute entries

The blocksize value is typically the same as, but sometimes larger than, the file
system blocksize. On traditional UNIX systems, a fixed blocksize of 512 bytes was
used. FreeBSD has a minimum blocksize of 4,096 bytes (4 Kbytes); the blocksize can
be any power of 2 greater than or equal to 4,096. For typical file systems, the blocksize
is 8 Kbytes or 16 Kbytes. The default FreeBSD blocksize is 16 Kbytes.

Figure 12.15  Structure of FreeBSD Inode and File

Inode

Mode

Owners (2)

Timestamps (4)

Size

Direct (0)

Direct (1)

Direct (12)

Single indirect

Double indirect

Triple indirect

Block count

Reference count

Flags (2)

Generation number

Blocksize

Extended attr size

Extended
attribute
blocks

Data

Data Data Data

Data Data Data

Data Data

Data Data

Data

Data

Data

Data

Data

Data

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

M12_STAL4290_09_GE_C12.indd 582 5/2/17 5:40 PM

12.8 / UNIX FILE MANAGEMENT   583

Extended attribute entries are variable-length entries used to store auxiliary
data that are separate from the contents of the file. The first two extended attributes
defined for FreeBSD deal with security. The first of these support access control lists;
this will be described in Chapter 15. The second defined extended attribute supports
the use of security labels, which are part of what is known as a mandatory access
control scheme, also defined in Chapter 15.

On the disk, there is an inode table, or inode list, that contains the inodes of
all the files in the file system. When a file is opened, its inode is brought into main
memory and stored in a memory-resident inode table.

File Allocation

File allocation is done on a block basis. Allocation is dynamic, as needed, rather than
using preallocation. Hence, the blocks of a file on disk are not necessarily contiguous.
An indexed method is used to keep track of each file, with part of the index stored in
the inode for the file. In all UNIX implementations, the inode includes a number of
direct pointers and three indirect pointers (single, double, triple).

The FreeBSD inode includes 120 bytes of address information organized as
fifteen 64-bit addresses, or pointers. The first 12 addresses point to the first 12 data
blocks of the file. If the file requires more than 12 data blocks, one or more levels of
indirection is used as follows:

•	 The thirteenth address in the inode points to a block on disk that contains the
next portion of the index. This is referred to as the single indirect block. This
block contains the pointers to succeeding blocks in the file.

•	 If the file contains more blocks, the fourteenth address in the inode points to
a double indirect block. This block contains a list of addresses of additional
single indirect blocks. Each of single indirect blocks, in turn, contains pointers
to file blocks.

•	 If the file contains still more blocks, the fifteenth address in the inode points
to a triple indirect block that is a third level of indexing. This block points to
additional double indirect blocks.

All of this is illustrated in Figure 12.15. The total number of data blocks in
a file depends on the capacity of the fixed-size blocks in the system. In FreeBSD,
the minimum block size is 4 Kbytes, and each block can hold a total of 512 block
addresses. Thus, the maximum size of a file with this block size is over 500 GB (see
Table 12.3).

Level Number of Blocks Number of Bytes

Direct 12 48K

Single Indirect 512 2M

Double Indirect 512 * 512 = 256K 1G

Triple Indirect 512 * 256K = 128M 512G

Table 12.3  Capacity of a FreeBSD File with 4-Kbyte Block Size

M12_STAL4290_09_GE_C12.indd 583 5/2/17 5:40 PM

584   Chapter 12 / File Management

This scheme has several advantages:

1.	 The inode is of fixed size and relatively small, and hence may be kept in main
memory for long periods.

2.	 Smaller files may be accessed with little or no indirection, reducing processing
and disk access time.

3.	 The theoretical maximum size of a file is large enough to satisfy virtually all
applications.

Directories

Directories are structured in a hierarchical tree. Each directory can contain files and/
or other directories. A directory inside another directory is referred to as a subdirec-
tory. As was mentioned, a directory is simply a file that contains a list of file names
plus pointers to associated inodes. Figure 12.16 shows the overall structure. Each
directory entry (dentry) contains a name for the associated file or subdirectory plus
an integer called the i-number (index number). When the file or directory is accessed,
its i-number is used as an index into the inode table.

Volume Structure

A UNIX file system resides on a single logical disk or disk partition and is laid out
with the following elements:

•	 Boot block: Contains code required to boot the operating system

Figure 12.16  UNIX Directories and Inodes

Inode table Directory

Name1i1

Name2i2

Name3i3

Name4i4

M12_STAL4290_09_GE_C12.indd 584 5/2/17 5:40 PM

12.9 / LINUX VIRTUAL FILE SYSTEM   585

•	 Superblock: Contains attributes and information about the file system, such as
partition size, and inode table size

•	 Inode table: The collection of inodes for each file

•	 Data block: Storage space available for data files and subdirectories

	 12.9	LINUX VIRTUAL FILE SYSTEM

Linux includes a versatile and powerful file-handling facility, designed to support a
wide variety of file management systems and file structures. The approach taken in
Linux is to make use of a virtual file system (VFS), which presents a single, uniform
file system interface to user processes. The VFS defines a common file model that is
capable of representing any conceivable file system’s general feature and behavior.
The VFS assumes files are objects in a computer’s mass storage memory that share
basic properties regardless of the target file system or the underlying processor hard-
ware. Files have symbolic names that allow them to be uniquely identified within
a specific directory within the file system. A file has an owner, protection against
unauthorized access or modification, and a variety of other properties. A file may
be created, read from, written to, or deleted. For any specific file system, a mapping
module is needed to transform the characteristics of the real file system to the char-
acteristics expected by the virtual file system.

Figure 12.17 indicates the key ingredients of the Linux file system strategy. A
user process issues a file system call (e.g., read) using the VFS file scheme. The VFS
converts this into an internal (to the kernel) file system call that is passed to a map-
ping function for a specific file system [e.g., ext2 FS (second extended filesystem)]. In
most cases, the mapping function is simply a mapping of file system functional calls
from one scheme to another. In some cases, the mapping function is more complex.

Figure 12.17  Linux Virtual File System Context

Virtual File
System (VFS)

Individual File
Systems

Device drivers

Bu�er cache

System call interface

User applications

GNU C library

Inode
cache

User
space

Kernel
space

File
system

Directory
cache

M12_STAL4290_09_GE_C12.indd 585 5/2/17 5:40 PM

586   Chapter 12 / File Management

For example, some file systems use a file allocation table (FAT), which stores the
position of each file in the directory tree. In these file systems, directories are not files.
For such file systems, the mapping function must be able to construct dynamically,
and when needed, the files corresponding to the directories. In any case, the original
user file system call is translated into a call that is native to the target file system. The
target file system software is then invoked to perform the requested function on a
file or directory under its control and secondary storage. The results of the operation
are then communicated back to the user in a similar fashion.

Figure 12.18 indicates the role that VFS plays within the Linux kernel. When
a process initiates a file-oriented system call (e.g., read), the kernel calls a function
in the VFS. This function handles the file-system-independent manipulations and
initiates a call to a function in the target file system code. This call passes through
a mapping function that converts the call from the VFS into a call to the target file
system. The VFS is independent of any file system, so the implementation of a map-
ping function must be part of the implementation of a file system on Linux. The target
file system converts the file system request into device-oriented instructions that are
passed to a device driver by means of page cache functions.

VFS is an object-oriented scheme. Because it is written in C, rather than a
language that supports object programming (such as C+ + or Java), VFS objects are
implemented simply as C data structures. Each object contains both data and pointers
to file-system-implemented functions that operate on data. The four primary object
types in VFS are as follows:

•	 Superblock object: Represents a specific mounted file system

•	 Inode object: Represents a specific file

•	 Dentry object: Represents a specific directory entry

•	 File object: Represents an open file associated with a process

This scheme is based on the concepts used in UNIX file systems, as described in
Section 12.7. The key concepts of UNIX file system to remember are the following:
A file system consists of a hierarchal organization of directories. A directory is the
same as what is known as a folder on many non-UNIX platforms and may contain
files and/or other directories. Because a directory may contain other directories, a

Figure 12.18  Linux Virtual File System Concept

User
process

Files on secondary
storage maintained

by file system X

Linux
virtual

file
system

Mapping
function
 to file

system X

File
system X

System calls
using VFS

user interface

System calls
using

f ile system X
interface

Disk I/O
calls

VFS
system
calls

M12_STAL4290_09_GE_C12.indd 586 5/2/17 5:40 PM

12.9 / LINUX VIRTUAL FILE SYSTEM   587

tree structure is formed. A path through the tree structure from the root consists of a
sequence of directory entries, ending in either a directory entry (dentry) or a file name.
In UNIX, a directory is implemented as a file that lists the files and directories con-
tained within it. Thus, file operations can be performed on either files or directories.

The Superblock Object

The superblock object stores information describing a specific file system. Typically,
the superblock corresponds to the file system superblock or file system control block,
which is stored in a special sector on disk.

The superblock object consists of a number of data items. Examples include
the following:

•	 The device this file system is mounted on

•	 The basic block size of the file system

•	 Dirty flag, to indicate that the superblock has been changed but not written
back to disk

•	 File system type

•	 Flags, such as a read-only flag

•	 Pointer to the root of the file system directory

•	 List of open files

•	 Semaphore for controlling access to the file system

•	 List of superblock operations

The last item on the preceding list refers to an operations object contained
within the superblock object. The operations object (super_operations) defines
the object methods (functions) that the kernel can invoke against the superblock
object. The methods defined for the superblock object include the following:

•	 alloc_inode: Allocate an inode.

•	 write_inode: Write given inode to disk.

•	 put_super: Called by the VFS on unmount to release the given superblock.

•	 statfs: Obtain file system statistics.

•	 remount_fs: Called by the VFS when the file system is remounted with new
mount options.

The Inode Object

An inode is associated with each file. The inode object holds all the information
about a named file except its name and the actual data contents of the file. Items
contained in an inode object include owner, group, permissions, access times for a
file, size of data it holds, and number of links.

The inode object also includes an inode operations object that describes the file
system’s implemented functions that the VFS can invoke on an inode. The methods
defined for the inode object include the following:

M12_STAL4290_09_GE_C12.indd 587 5/2/17 5:40 PM

588   Chapter 12 / File Management

•	 create: Creates a new inode for a regular file associated with a dentry object
in some directory

•	 lookup: Searches a directory for an inode corresponding to a file name

•	 mkdir: Creates a new inode for a directory associated with a dentry object in
some directory

The Dentry Object

A dentry (directory entry) is a specific component in a path. The component may be
either a directory name or a file name. Dentry objects facilitate quick lookups to files
and directories, and are used in a dentry cache for that purpose. The dentry object
includes a pointer to the inode and superblock. It also includes a pointer to the parent
dentry and pointers to any subordinate dentrys.

The File Object

The file object is used to represent a file opened by a process. The object is
created in response to the open() system call, and destroyed in response to the
close() system call. The file object consists of a number of items, including the
following:

•	 Dentry object associated with the file

•	 File system containing the file

•	 File objects usage counter

•	 User’s user ID

•	 User’s group ID

•	 File pointer, which is the current position in the file from which the next opera-
tion will take place

The file object also includes an inode operations object that describes the file
system’s implemented functions that the VFS can invoke on a file object. The meth-
ods defined for the file object include read, write, open, release, and lock.

Caches

The VFS employs three caches to improve performance:

1.	 Inode cache: Because every file and directory is represented by a VFS inode, a
directory listing command or a file access command causes a number of inodes
to be accessed. The inode cache stores recently visited inodes to make access
quicker.

2.	 Directory cache: The directory cache stores the mapping between the full direc-
tory names and their inode numbers. This speeds up the process of listing a
directory.

3.	 Buffer cache: The buffer cache is independent of the file systems and is inte-
grated into the mechanisms that the Linux kernel uses to allocate and read

M12_STAL4290_09_GE_C12.indd 588 5/2/17 5:40 PM

12.10 / WINDOWS FILE SYSTEM   589

and write data buffers. As the real file systems read data from the under-
lying physical disks, this results in requests to the block device drivers to
read physical blocks from the device that they control. So, if the same data
is needed often, it will be retrieved from the buffer cache rather than read
from the disk.

  12.10	WINDOWS FILE SYSTEM

The developers of Windows NT designed a new file system, the New Technology File
System (NTFS), which is intended to meet high-end requirements for workstations
and servers. Examples of high-end applications include the following:

•	 Client/server applications such as file servers, compute servers, and database
servers

•	 Resource-intensive engineering and scientific applications

•	 Network applications for large corporate systems

This section provides an overview of NTFS.

Key Features of NTFS

NTFS is a flexible and powerful file system built, as we shall see, on an elegantly sim-
ple file system model. The most noteworthy features of NTFS include the following:

•	 Recoverability: High on the list of requirements for the new Windows file sys-
tem was the ability to recover from system crashes and disk failures. In the event
of such failures, NTFS is able to reconstruct disk volumes and return them to a
consistent state. It does this by using a transaction-processing model for changes
to the file system; each significant change is treated as an atomic action that is
either entirely performed or not performed at all. Each transaction that was in
process at the time of a failure is subsequently backed out or brought to comple-
tion. In addition, NTFS uses redundant storage for critical file system data, so
failure of a disk sector does not cause the loss of data describing the structure
and status of the file system.

•	 Security: NTFS uses the Windows object model to enforce security. An open
file is implemented as a file object with a security descriptor that defines its
security attributes. The security descriptor is persisted as an attribute of each
file on disk.

•	 Large disks and large files: NTFS supports very large disks and very large files
more efficiently than other file systems, such as FAT.

•	 Multiple data streams: The actual contents of a file are treated as a stream of
bytes. In NTFS, it is possible to define multiple data streams for a single file.
An example of the utility of this feature is that it allows Windows to be used by
remote Macintosh systems to store and retrieve files. On Macintosh, each file
has two components: the file data and a resource fork that contains information

M12_STAL4290_09_GE_C12.indd 589 5/2/17 5:40 PM

590   Chapter 12 / File Management

about the file. NTFS treats these two components as two data streams within
a single file.

•	 Journaling: NTFS keeps a log of all changes made to files on the volumes.
Programs, such as desktop search, can read the journal to identify what files
have changed.

•	 Compression and encryption: Entire directories and individual files can be
transparently compressed and/or encrypted.

•	 Hard and symbolic links: In order to support POSIX, Windows has always sup-
ported “hard links,” which allow a single file to be accessible by multiple path
names on the same volume. Starting with Windows Vista, “symbolic links” are
supported which allow a file or directory to be accessible by multiple path
names, even if the names are on different volumes. Windows also supports
“mount points” which allow volumes to appear at junction points on other
volumes, rather than be named by driver letters, such as “D:”.

NTFS Volume and File Structure

NTFS makes use of the following disk storage concepts:

•	 Sector: The smallest physical storage unit on the disk. The data size in bytes is
a power of 2 and is almost always 512 bytes.

•	 Cluster: One or more contiguous (next to each other on the disk) sectors. The
cluster size in sectors is a power of 2.

•	 Volume: A logical partition on a disk, consisting of one or more clusters and
used by a file system to allocate space. At any time, a volume consists of file
system information, a collection of files, and any additional unallocated space
remaining on the volume that can be allocated to files. A volume can be all or
a portion of a single disk, or it can extend across multiple disks. If hardware or
software RAID 5 is employed, a volume consists of stripes spanning multiple
disks. The maximum volume size for NTFS is 264 clusters.

The cluster is the fundamental unit of allocation in NTFS, which does not rec-
ognize sectors. For example, suppose each sector is 512 bytes and the system is con-
figured with two sectors per cluster (one cluster = 1K bytes). If a user creates a file
of 1,600 bytes, two clusters are allocated to the file. Later, if the user updates the file
to 3,200 bytes, another two clusters are allocated. The clusters allocated to a file need
not be contiguous; it is permissible to fragment a file on the disk. Currently, the maxi-
mum file size supported by NTFS is 232 clusters, which is equivalent to a maximum
of 248 bytes. A cluster can have at most 216 bytes.

The use of clusters for allocation makes NTFS independent of physical sec-
tor size. This enables NTFS to support easily nonstandard disks that do not have a
512-byte sector size, and to support efficiently very large disks and very large files
by using a larger cluster size. The efficiency comes from the fact that the file system
must keep track of each cluster allocated to each file; with larger clusters, there are
fewer items to manage.

M12_STAL4290_09_GE_C12.indd 590 5/2/17 5:40 PM

12.10 / WINDOWS FILE SYSTEM   591

Table 12.4 shows the default cluster sizes for NTFS. The defaults depend on the
size of the volume. The cluster size that is used for a particular volume is established
by NTFS when the user requests that a volume be formatted.

NTFS Volume Layout  NTFS uses a remarkably simple but powerful approach
to organizing information on a disk volume. Every element on a volume is a file,
and every file consists of a collection of attributes. Even the data contents of a file is
treated as an attribute. With this simple structure, a few general-purpose functions
suffice to organize and manage a file system.

Figure 12.19 shows the layout of an NTFS volume, which consists of four
regions. The first few sectors on any volume are occupied by the partition boot sec-
tor (although it is called a sector, it can be up to 16 sectors long), which contains
information about the volume layout and the file system structures as well as boot
startup information and code. This is followed by the master file table (MFT), which
contains information about all of the files and folders (directories) on this NTFS
volume. In essence, the MFT is a list of all files and their attributes on this NTFS
volume, organized as a set of rows in a table structure.

Following the MFT is a region containing system files. Among the files in this
region are the following:

•	 MFT2: A mirror of the first few rows of the MFT, used to guarantee access to
the volume in the case of a single-sector failure in the sectors storing the MFT

•	 Log file: A list of transaction steps used for NTFS recoverability

•	 Cluster bit map: A representation of the space on the volume, showing which
clusters are in use

Volume Size Sectors per Cluster Cluster Size

…512 Mbyte    1 512 bytes

512 Mbyte–1 Gbyte    2 1K

1 Gbyte–2 Gbyte    4 2K

2 Gbyte–4 Gbyte    8 4K

4 Gbyte–8 Gbyte   16 8K

8 Gbyte–16 Gbyte   32 16K

16 Gbyte–32 Gbyte   64 32K

732 Gbyte 128 64K

Table 12.4  Windows NTFS Partition and Cluster Sizes

Figure 12.19  NTFS Volume Layout

Partition
boot

sector
Master file table File areaSystem

files

M12_STAL4290_09_GE_C12.indd 591 5/2/17 5:40 PM

592   Chapter 12 / File Management

•	 Attribute definition table: Defines the attribute types supported on this volume
and indicates whether they can be indexed, and whether they can be recovered
during a system recovery operation

Master File Table  The heart of the Windows file system is the MFT. The MFT is
organized as a table of 1,024-byte rows, called records. Each row describes a file on
this volume, including the MFT itself, which is treated as a file. If the contents of a
file are small enough, then the entire file is located in a row of the MFT. Otherwise,
the row for that file contains partial information and the remainder of the file spills
over into other available clusters on the volume, with pointers to those clusters in
the MFT row of that file.

Each record in the MFT consists of a set of attributes that serve to define the
file (or folder) characteristics and the file contents. Table 12.5 lists the attributes that
may be found in a row, with the required attributes indicated by shading.

Recoverability

NTFS makes it possible to recover the file system to a consistent state following a
system crash or disk failure. The key elements that support recoverability are as fol-
lows (see Figure 12.20):

•	 I/O manager: Includes the NTFS driver, which handles the basic open, close,
read, and write functions of NTFS. In addition, the software RAID module
FTDISK can be configured for use.

•	 Log file service: Maintains a log of file system metadata changes on disk. The
log file is used to recover an NTFS-formatted volume in the case of a system
failure (i.e., without having to run the file system check utility).

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.); time stamps, including when
the file was created or last modified; and how many directories point to the file
(link count)

Attribute list A list of attributes that make up the file and the file reference of the MFT file
record in which each attribute is located. Used when all attributes do not fit into a
single MFT file record

File name A file or directory must have one or more names.

Security descriptor Specifies who owns the file and who can access it

Data The contents of the file. A file has one default unnamed data attribute and may
have one or more named data attributes.

Index root Used to implement folders

Index allocation Used to implement folders

Volume information Includes volume-related information, such as the version and name of the volume

Bitmap Provides a map representing records in use on the MFT or folder

Note: Green-colored rows refer to required file attributes; the other attributes are optional.

Table 12.5  Windows NTFS File and Directory Attribute Types

M12_STAL4290_09_GE_C12.indd 592 5/2/17 5:40 PM

12.10 / WINDOWS FILE SYSTEM   593

•	 Cache manager: Responsible for caching file reads and writes to enhance per-
formance. The cache manager optimizes disk I/O.

•	 Virtual memory manager: The NTFS accesses cached files by mapping file ref-
erences to virtual memory references, and reading and writing virtual memory.

It is important to note the recovery procedures used by NTFS are designed
to recover file system metadata, not file contents. Thus, the user should never lose
a volume or the directory/file structure of an application because of a crash. How-
ever, user data are not guaranteed by the file system. Providing full recoverability,
including user data, would make for a much more elaborate and resource-consuming
recovery facility.

The essence of the NTFS recovery capability is logging. Each operation that
alters a file system is treated as a transaction. Each suboperation of a transaction
that alters important file system data structures is recorded in a log file before being
recorded on the disk volume. Using the log, a partially completed transaction at the
time of a crash can later be redone or undone when the system recovers.

In general terms, these are the steps taken to ensure recoverability, as described
in [RUSS11]:

1.	 NTFS first calls the log file system to record in the log file (in the cache) any
transactions that will modify the volume structure.

2.	 NTFS modifies the volume (in the cache).

3.	 The cache manager calls the log file system to prompt it to flush the log file to
disk.

4.	 Once the log file updates are safely on disk, the cache manager flushes the
volume changes to disk.

Figure 12.20  Windows NTFS Components

Log file
service

NTFS driver

I/O manager

Fault-tolerant
driver

Disk driver

Cache
manager

Virtual memory
manager

Flush the
log file

Write the
cache

Log the transaction

Read/write a
mirrored or

striped volume

Read/write
the disk

Read/write
the file

Load data from
disk into
memory

Access the mapped
file or flush the cache

M12_STAL4290_09_GE_C12.indd 593 5/2/17 5:40 PM

594   Chapter 12 / File Management

  12.11	ANDROID FILE MANAGEMENT

File System

Android makes use of the file management capabilities built into Linux. The Android
file system directory is similar to what is seen on a typical Linux installation, with
some Android-specific features.

Figure 12.21 shows the top levels of a typical Android file system directory.
The system directory contains the core parts of the operating system, including sys-
tem binaries, system libraries, and configuration files. It also includes a basic set of
Android applications, such as Alarmclock, Calculator, and Camera. The system image
is locked, with only read-only access granted to file system users. The remaining
directories shown in Figure 12.21 are read-write.

The data directory provides the principal location used by applications to store
their private data. This partition contains the user’s data, such as contacts, SMS, set-
tings, and all Android applications that you have installed. While the user performs a
factory reset on the device, this partition is wiped out. Then, the device will be in the
state when used for the first time, or the way it was after the last official or custom
ROM installation. When a new application is installed in the system, the following
actions, among others, are taken with respect to the data directory:

•	 The .apk (Android package) is placed into /data/app.

•	 Application-centric libraries are installed into /data/data/6application name7 .
This is an application-specific sandbox area, accessible by the application but
not accessible to other applications.

•	 Application-relevant files databases are set up.

The cache directory is used for temporary storage by the OS. This is the parti-
tion where Android stores frequently accessed data and app components. Wiping the

Figure 12.21  Typical Directory Tree of Android

/system

/(root)

(ro)

ro: mounted as read only
rw: mounted as read and write

(rw)

(rw)

removable storage (rw)

/data

/cache

/mnt/sdcard

bin

etc

lib

usr

M12_STAL4290_09_GE_C12.indd 594 5/2/17 5:40 PM

12.12 / SUMMARY   595

cache doesn’t affect the user’s personal data but simply gets rid of the existing data
there, which gets automatically rebuilt as the user continues using the device.

The mnt/sdcard directory is not a partition on the internal memory of the device
but rather the SD card, which is a nonvolatile memory card that can be incorporated
with the Android devices. The SD card is a removable memory card the user can
remove and plug into his or her computer. In terms of usage, this is storage space for
the user to read/write data, audio and video files. On devices with both an internal
and external SD card, the /sdcard partition is always used to refer to the internal SD
card. For the external SD card, if present, an alternative partition is used, which dif-
fers from device to device.

SQLite

SQLite, which is based on SQL, is worth special mention. The Structured Query
Language (SQL) provides as standardized means for definition of, and access to, a
relational database by either a local or remote user or application. Structured Query
Language (SQL), originally developed by IBM in the mid-1970s, is a standardized
language that can be used to define schema, manipulate, and query data in a rela-
tional database. There are several versions of the ANSI/ISO standard and a variety
of different implementations, but all follow the same basic syntax and semantics.

SQLite is the most widely deployed SQL database engine in the world. It is
designed to provide a streamlined SQL-based database management system suitable
for embedded systems and other limited-memory systems. The full SQLite library
can be implemented in under 400 kilobytes (KB). Unnecessary features can be dis-
abled at compile time to further reduce the size of the library to under 190 KB if
desired.

In contrast to other database management systems, SQLite is not a separate
process that is accessed from the client application. Instead, the SQLite library is
linked in, and thus becomes an integral part of the application program.

  12.12	SUMMARY

A file management system is a set of system software that provides services to users
and applications in the use of files, including file access, directory maintenance, and
access control. The file management system is typically viewed as a system service
that itself is served by the operating system, rather than being part of the operating
system itself. However, in any system, at least part of the file management function
is performed by the operating system.

A file consists of a collection of records. The way in which these records may
be accessed determines its logical organization, and to some extent, its physical orga-
nization on disk. If a file is primarily to be processed as a whole, then a sequential
file organization is the simplest and most appropriate. If sequential access is needed
but random access to individual file is also desired, then an indexed sequential file
may give the best performance. If access to the file is principally at random, then an
indexed file or hashed file may be the most appropriate.

M12_STAL4290_09_GE_C12.indd 595 5/2/17 5:40 PM

596   Chapter 12 / File Management

Whatever file structure is chosen, a directory service is also needed. This allows
files to be organized in a hierarchical fashion. This organization is useful to the user
in keeping track of files, and is useful to the file management system in providing
access control and other services to users.

File records, even when of fixed size, generally do not conform to the size of a
physical disk block. Accordingly, some sort of blocking strategy is needed. A trade-
off among complexity, performance, and space utilization determines the blocking
strategy to be used.

A key function of any file management scheme is the management of disk
space. Part of this function is the strategy for allocating disk blocks to a file. A variety
of methods have been employed, and a variety of data structures have been used to
keep track of the allocation for each file. In addition, the space on disk that has not
been allocated must be managed. This latter function primarily consists of maintain-
ing a disk allocation table indicating which blocks are free.

  12.13	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access method
basic file system
bit table
block
cache directory
chained file allocation
contiguous file
allocation
database
data directory
device driver
disk allocation table
field

file
file allocation
file allocation table (FAT)
file directory
file management system
file name
hashed file
indexed file
indexed file allocation
indexed sequential file
inode
key field
logical I/O

master file table (MFT)
mnt/sdcard
partition boot sector
pathname
physical I/O
pile
portion
record
sequential file
system directory
system files
virtual file system (VFS)
working directory

Review Questions

	12.1.	 What are the desirable properties of a file system?
	12.2.	 What is the difference between a file and a database?
	12.3.	 What is a file management system?
	12.4.	 What criteria are important in choosing a file organization?
	12.5.	 What are some advantages and disadvantages of sequential file organization?
	12.6.	 Why is the average search time to find a record in a file less for an indexed sequential

file than for a sequential file?
	12.7.	 What is a pathname? State the two alternate ways to assign pathnames.
	12.8.	 What is the relationship between a pathname and a working directory?

M12_STAL4290_09_GE_C12.indd 596 5/2/17 5:40 PM

12.13 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   597

	12.9.	 What are typical access rights that may be granted or denied to a particular user for a
particular file?

	12.10.	 What is an inode in UNIX?
	12.11.	 List and briefly define three file allocation methods.

Problems

	12.1.	 A file contains 20,000 records, each of a fixed size of 140 bytes. The file is to be stored in
a disk drive having blocks of 3096 bytes with 512 bytes of inter-block gaps. If unspanned
blocking is used, compute the following:
a.	 Blocking factor (i.e., the average number of blocks per record).
b.	 Number of blocks needed to store the 20,000 records.
c.	 Total size of the file.

	12.2.	 One scheme to avoid the problem of preallocation versus waste or lack of contiguity
is to allocate portions of increasing size as the file grows. For example, begin with a
portion size of one block, and double the portion size for each allocation. Consider a
file of n records with a blocking factor of F, and suppose a simple one-level index is
used as a file allocation table.
a.	 Give an upper limit on the number of entries in the file allocation table as a func-

tion of F and n.
b.	 What is the maximum amount of the allocated file space that is unused at any time?

	12.3.	 In a hashed file organization, the division method is used to compute the hash address
of a record. This method can be stated as follows:

Choose a large prime number m which is close to the number of keys n. Define
the hash function h(k) = k (mod m) + c, where c is the lower limit of addresses.

		 If a set of records needs to be stored in 100 locations, starting from the address 7865,
compute the address for the records having IDs 1234, 2345, 3333, and 4433.

	12.4.	 For the B-tree in Figure 12.4c, show the result of inserting the key 97.
	12.5.	 An alternative algorithm for insertion into a B-tree is the following: As the insertion

algorithm travels down the tree, each full node that is encountered is immediately split,
even though it may turn out that the split was unnecessary.
a.	 What is the advantage of this technique?
b.	 What are the disadvantages?

	12.6.	 Both the search and the insertion time for a B-tree are a function of the height of the
tree. We would like to develop a measure of the worst-case search or insertion time.
Consider a B-tree of degree d that contains a total of n keys. Develop an inequality
that shows an upper bound on the height h of the tree as a function of d and n.

	12.7.	 A sequential file is stored in a disk occupying 100 contiguous disk blocks. The disk has
an average rotational delay of 2.5 ms. The time taken to seek the head of the drive to
the required cylinder is 25 ms and the time taken to read a block is 0.25 ms. Find the
minimum, maximum, and average time to search for a record using a linear search
process.

	12.8.	 What will be the size of the bit table for a 160-GB disk with 1024-byte blocks?
	12.9.	 Fragmentation of a disk can be removed by the process of compaction. Compaction

involves a relocation of the files. But disks do not have relocation registers or base
registers. How, then, can files be relocated in a disk?

	12.10.	 Some operating systems have a tree–structured file system but limit the depth of the
tree to some small number of levels. What effect does this limit have on users? How
does this simplify file system design (if it does)?

M12_STAL4290_09_GE_C12.indd 597 5/2/17 5:40 PM

598   Chapter 12 / File Management

	12.11.	 Consider a hierarchical file system in which free disk space is kept in a free space list.
a.	 Suppose the pointer to free space is lost. Can the system reconstruct the free space

list?
b.	 Suggest a scheme to ensure that the pointer is never lost as a result of a single

memory failure.
	12.12.	 A sequential file has 10 million records. How does efficiency in access improve by using

a two-level index? Assume 100 entries in a higher-level index and 10,000 entries in a
lower-level index.

	12.13.	 Consider the organization of a UNIX file as represented by the inode (see Figure 12.15).
Assume there are 12 direct block pointers, and a singly, doubly, and triply indirect
pointer in each inode. Further, assume the system block size and the disk sector size
are both 8K. If the disk block pointer is 32 bits, with 8 bits to identify the physical disk
and 24 bits to identify the physical block, then:
a.	 What is the maximum file size supported by this system?
b.	 What is the maximum file system partition supported by this system?
c.	 Assuming no information other than that the file inode is already in main memory,

how many disk accesses are required to access the byte in position 13,423,956?

M12_STAL4290_09_GE_C12.indd 598 5/2/17 5:40 PM

599

13.1	 Embedded Systems
Embedded System Concepts
Application Processors versus Dedicated Processors
Microprocessors
Microcontrollers
Deeply Embedded Systems

13.2	 Characteristics of Embedded Operating Systems
Host and Target Environments
Development Approaches
Adapting an Existing Commercial Operating System
Purpose-Built Embedded Operating System

13.3	 Embedded Linux
Characteristics of an Embedded Linux System
Embedded Linux File Systems
Advantages of Embedded Linux
mClinux
Android

13.4	 TinyOS
Wireless Sensor Networks
TinyOS Goals
TinyOS Components
TinyOS Scheduler
Example Configuration
TinyOS Resource Interface

13.5	 Key Terms, Review Questions, and Problems

Embedded Operating Systems

Chapter

Embedded SystemsPart 6

M13_STAL4290_09_GE_C13.indd 599 4/13/17 11:14 AM

600   Chapter 13 / Embedded Operating Systems

In this chapter, we examine one of the most important and widely used categories of
operating systems: embedded operating systems. The embedded system environment
places unique and demanding requirements on the OS and calls for design strategies
quite different than those found in ordinary operating systems.

We begin with an overview of the concept of embedded systems then turn to
an examination of the principles of embedded operating systems. Finally, this chapter
surveys two very different approaches to embedded OS design: embedded Linux and
TinyOS. Appendix Q discusses eCos, another important embedded OS.

  13.1	 EMBEDDED SYSTEMS

This section introduces the concept of an embedded system. In doing so, we need to
also explain the difference between a microprocessor and a microcontroller.

Embedded System Concepts

The term embedded system refers to the use of electronics and software within a
product that has a specific function or set of functions, as opposed to a general-
purpose computer, such as a laptop or desktop system. We can also define an
embedded system as any device that includes a computer chip, but that is not a
general-purpose workstation, or desktop or laptop computer. Hundreds of millions
of computers are sold every year, including laptops, personal computers, work-
stations, servers, mainframes, and supercomputers. In contrast, tens of billions of
microcontrollers are produced each year that are embedded within larger devices.
Today, many, perhaps most devices that use electric power have an embedded com-
puting system. It is likely in the near future, virtually all such devices will have
embedded computing systems.

Types of devices with embedded systems are almost too numerous to list.
Examples include cell phones, digital cameras, video cameras, calculators,
microwave ovens, home security systems, washing machines, lighting systems, ther-
mostats, printers, various automotive systems (e.g., transmission control, cruise
control, fuel injection, anti-lock brakes, and suspension systems), tennis rackets,
toothbrushes, and numerous types of sensors and actuators in automated systems.

Often, embedded systems are tightly coupled to their environment. This can give
rise to real-time constraints imposed by the need to interact with the environment.
Constraints, such as required speeds of motion, required precision of measurement,

Learning Objectives

After studying this chapter, you should be able to:
•	 Explain the concept of embedded system.
•	 Understand the characteristics of embedded operating systems.
•	 Explain the distinction between Linux and embedded Linux.
•	 Describe the architecture and key features of TinyOS.

M13_STAL4290_09_GE_C13.indd 600 4/13/17 11:14 AM

13.1 / EMBEDDED SYSTEMS   601

and required time durations, dictate the timing of software operations. If multiple
activities must be managed simultaneously, this imposes more complex real-time
constraints.

Figure 13.1 shows in general terms an embedded system organization. In addi-
tion to the processor and memory, there are a number of elements that differ from
the typical desktop or laptop computer:

•	 There may be a variety of interfaces that enable the system to measure, manipu-
late, and otherwise interact with the external environment. Embedded systems
often interact (sense, manipulate, and communicate) with the external world
through sensors and actuators, and hence are typically reactive systems; a reac-
tive system is in continual interaction with the environment and executes at a
pace determined by that environment.

•	 The human interface may be as simple as a flashing light or as complicated as
real-time robotic vision. In many cases, there is no human interface.

•	 The diagnostic port may be used for diagnosing the system that is being
controlled—not just for diagnosing the computer.

•	 Special-purpose field programmable (FPGA), application-specific (ASIC), or
even nondigital hardware may be used to increase performance or reliability.

•	 Software often has a fixed function and is specific to the application.

•	 Efficiency is of paramount importance for embedded systems. These systems
are optimized for energy, code size, execution time, weight and dimensions,
and cost.

There are several noteworthy areas of similarity to general-purpose computer
systems as well:

•	 Even with nominally fixed function software, the ability to field upgrade to fix
bugs, to improve security, and to add functionality have become very important
for embedded systems, and not just in consumer devices.

Figure 13.1 � Possible Organization of an Embedded
System

Human
interface

Diagnostic
port

Memory
Custom

logic

D/A
conversion

A/D
conversion

Sensors Actuators/
indicators

Processor

M13_STAL4290_09_GE_C13.indd 601 4/13/17 11:14 AM

602   Chapter 13 / Embedded Operating Systems

•	 One comparatively recent development has been of embedded system plat-
forms that support a wide variety of apps. Good examples of this are smart-
phones and audio/visual devices, such as smart TVs.

Application Processors versus Dedicated Processors

Application processors are defined by the processor’s ability to execute complex
operating systems, such as Linux, Android, and Chrome. Thus, the application pro-
cessor is general purpose in nature. A good example of the use of an embedded
application processor is the smartphone. The embedded system is designed to support
numerous apps and perform a wide variety of functions.

Most embedded systems employ a dedicated processor, which, as the name
implies, is dedicated to one or a small number of specific tasks required by the
host device. Because such an embedded system is dedicated to a specific task or
tasks, the processor and associated components can be engineered to reduce size
and cost.

Microprocessors

A microprocessor is a processor whose elements have been miniaturized into one
or a few integrated circuits. Early microprocessor chips included registers, an arith-
metic logic unit (ALU), and some sort of control unit or instruction processing logic.
As transistor density increased, it became possible to increase the complexity of
the instruction set architecture, and ultimately to add memory and more than one
processor. Contemporary microprocessor chips include multiple processors, called
cores, and a substantial amount of cache memory. However, as shown in Figure 13.2,
a microprocessor chip includes only some of the elements that make up a computer
system.

Most computers, including embedded computers in smartphones and tablets, as
well as personal computers, laptops, and workstations, are housed on a motherboard.
Before describing this arrangement, we need to define some terms. A printed circuit
board (PCB) is a rigid, flat board that holds and interconnects chips and other elec-
tronic components. The board is made of layers, typically two to ten, that interconnect
components via copper pathways that are etched into the board. The main PCB in a
computer is called a system board or motherboard, while smaller ones that plug into
the slots in the main board are called expansion boards.

The most prominent elements on the motherboard are the chips. A chip is a sin-
gle piece of semiconducting material, typically silicon, upon which electronic circuits
and logic gates are fabricated. The resulting product is referred to as an integrated
circuit.

The motherboard contains a slot or socket for the processor chip, which typi-
cally contains multiple individual cores, in what is known as a multicore processor.
There are also slots for memory chips, I/O controller chips, and other key computer
components. For desktop computers, expansion slots enable the inclusion of more
components on expansion boards. Thus, a modern motherboard connects only a few
individual chip components, with each chip containing from a few thousand up to
hundreds of millions of transistors.

M13_STAL4290_09_GE_C13.indd 602 4/13/17 11:14 AM

13.1 / EMBEDDED SYSTEMS   603

Microcontrollers

A microcontroller is a single chip that contains the processor, nonvolatile memory
for the program (ROM or flash), volatile memory for input and output (RAM), a
clock, and an I/O control unit. It is also called a “computer on a chip.” A microcon-
troller chip makes a substantially different use of the logic space available. Figure 13.3
shows in general terms the elements typically found on a microcontroller chip. The
processor portion of the microcontroller has a much lower silicon area than other
microprocessors and much higher energy efficiency.

Billions of microcontroller units are embedded each year in myriad products
from toys to appliances to automobiles. For example, a single vehicle can use 70
or more microcontrollers. Typically, especially for the smaller, less-expensive micro-
controllers, they are used as dedicated processors for specific tasks. For example,

Figure 13.2 � Simplified View of Major Elements of a Multicore computer

MOTHERBOARD
Main memory chips

I/O chips

PROCESSOR CHIP

Core

L3 cache L3 cache

Core Core Core

Core Core Core Core

CORE

Instruction
logic

L1 I-cache

L2 instruction
cache

L2 data
cache

L1 data cache

Arithmetic
and logic

unit (ALU)

Load/
store logic

Processor
chip

M13_STAL4290_09_GE_C13.indd 603 4/13/17 11:14 AM

604   Chapter 13 / Embedded Operating Systems

microcontrollers are heavily utilized in automation processes. By providing simple
reactions to input, they can control machinery, turn fans on and off, open and close
valves, and so forth. They are integral parts of modern industrial technology and are
among the most inexpensive ways to produce machinery that can handle extremely
complex functionalities.

Microcontrollers come in a range of physical sizes and processing power. Pro-
cessors range from 4-bit to 32-bit architectures. Microcontrollers tend to be much
slower than microprocessors, typically operating in the MHz range rather than the
GHz speeds of microprocessors. Another typical feature of a microcontroller is that
it does not provide for human interaction. The microcontroller is programmed for a
specific task, embedded in its device, and executes as and when required.

Deeply Embedded Systems

A large percentage of the total number of embedded systems are referred to as
deeply embedded systems. Although this term is widely used in the technical and
commercial literature, you will search the Internet in vain (at least the writer did) for
a straightforward definition. Generally, we can say a deeply embedded system has
a processor whose behavior is difficult to observe both by the programmer and the
user. A deeply embedded system uses a microcontroller rather than a microproces-
sor, is not programmable once the program logic for the device has been burned into
ROM (read-only memory), and has no interaction with a user.

Deeply embedded systems are dedicated, single-purpose devices that detect
something in the environment, perform a basic level of processing, then do some-
thing with the results. Deeply embedded systems often have wireless capability

Figure 13.3  Typical Microcontroller Chip Elements

A/D
converter

Analog data
acquisition

Temporary
data

Processor

System
bus

RAM

D/A
converter

ROM

Serial I/O
ports

EEPROM

Parallel I/O
ports

TIMER

Program
and data

Permanent
data

Timing
functions

Analog data
transmission

Send/receive
data

Peripheral
interfaces

M13_STAL4290_09_GE_C13.indd 604 4/13/17 11:14 AM

13.2 / CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS   605

and appear in networked configurations, such as networks of sensors deployed
over a large area (e.g., factory, agricultural field). The Internet of Things depends
heavily on deeply embedded systems. Typically, deeply embedded systems have
extreme resource constraints in terms of memory, processor size, time, and power
consumption.

  13.2	 CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS

A simple embedded system, with simple functionality, may be controlled by a special-
purpose program or set of programs with no other software. Typically, more complex
embedded systems include an OS. Although it is possible in principle to use a general-
purpose OS (such as Linux) for an embedded system, constraints of memory space,
power consumption, and real-time requirements typically dictate the use of a special-
purpose OS designed for the embedded system environment.

The following are some of the unique characteristics and design requirements
for embedded operating systems:

•	 Real-time operation: In many embedded systems, the correctness of a com-
putation depends, in part, on the time at which it is delivered. Often, real-time
constraints are dictated by external I/O and control stability requirements.

•	 Reactive operation: Embedded software may execute in response to external
events. If these events do not occur periodically or at predictable intervals, the
embedded software may need to take into account worst-case conditions and
set priorities for execution of routines.

•	 Configurability: Because of the large variety of embedded systems, there is
a large variation in the requirements, both qualitative and quantitative, for
embedded OS functionality. Thus, an embedded OS intended for use on a vari-
ety of embedded systems must lend itself to flexible configuration so only the
functionality needed for a specific application and hardware suite is provided.
[MARW06] gives the following examples: The linking and loading functions can
be used to select only the necessary OS modules to load. Conditional compila-
tion can be used. If an object-oriented structure is used, proper subclasses can
be defined. However, verification is a potential problem for designs with a large
number of derived tailored operating systems. Takada cites this as a potential
problem for eCos [TAKA01].

•	 I/O device flexibility: There is virtually no device that needs to be supported
by all versions of the OS, and the range of I/O devices is large. [MARW06] sug-
gests that it makes sense to handle relatively slow devices (such as disks and
network interfaces) by using special tasks instead of integrating their drives
into the OS kernel.

•	 Streamlined protection mechanisms: Embedded systems are typically designed
for a limited, well-defined functionality. Untested programs are rarely added
to the software. After the software has been configured and tested, it can be
assumed to be reliable. Thus, apart from security measures, embedded sys-
tems have limited protection mechanisms. For example, I/O instructions need

M13_STAL4290_09_GE_C13.indd 605 4/13/17 11:14 AM

606   Chapter 13 / Embedded Operating Systems

not be privileged instructions that trap to the OS; tasks can directly perform
their own I/O. Similarly, memory protection mechanisms can be minimized.
[MARW06] provides the following example: Let switch correspond to the
memory-mapped I/O address of a value that needs to be checked as part of
an I/O operation. We can allow the I/O program to use an instruction such as
load register, switch to determine the current value. This approach is
preferable to the use of an OS service call, which would generate overhead for
saving and restoring the task context.

•	 Direct use of interrupts: General-purpose operating systems typically do not
permit any user process to use interrupts directly. [MARW06] lists three rea-
sons why it is possible to let interrupts directly start or stop tasks (e.g., by
storing the task’s start address in the interrupt vector address table) rather
than going through OS interrupt service routines: (1) Embedded systems
can be considered to be thoroughly tested, with infrequent modifications to
the OS or application code; (2) protection is not necessary, as discussed in
the preceding bullet item; and (3) efficient control over a variety of devices
is required.

Host and Target Environments

A key differentiator between desktop/server and embedded Linux distributions is
that desktop and server software is typically compiled or configured on the platform
where it will execute, while embedded Linux distributions are usually compiled or
configured on one platform, called the host platform, but are intended to be executed
on another, called the target platform (see Figure 13.4). The key elements that are
developed on the host system and then transferred to the target system are the boot
loader, the kernel, and the root file system.

Figure 13.4  Host-Target Environment

Host

• Cross-platform development
 environment

Target

• Kernel
• Root file system
• Boot loader

M13_STAL4290_09_GE_C13.indd 606 4/13/17 11:14 AM

13.2 / CHARACTERISTICS OF EMBEDDED OPERATING SYSTEMS   607

Boot Loader  The boot loader is a small program that calls the OS into memory
(RAM) after the power is turned on. It is responsible for the initial boot process of
the system, and for loading the kernel into main memory. A typical sequence in an
embedded system is the following:

1.	 The processor in the embedded system executes code in ROM to load a first-
stage boot loader from internal flash memory, a Secure Digital (SD) card, or a
serial I/O port.

2.	 The first-stage boot loader initializes the memory controller and a few periph-
erals and loads a second-stage boot loader into RAM. No interaction is pos-
sible with this boot loader, and it is typically provided by the processor vendor
on ROM.

3.	 The second-stage boot loader loads the kernel and root file system from flash
memory to main memory (RAM). The kernel and the root file system are gen-
erally stored in flash memory in compressed files, so part of the book loading
process is to decompress the files into binary images of the kernel and root file
system. The boot loader then passes control to the kernel. Typically, an open-
source boot loader is used for the second stage.

Kernel  The full kernel includes a number of separate modules, including:

•	 Memory management.

•	 Process/thread management.

•	 Inter process communication, timers.

•	 Device drivers for I/O, network, sound, storage, graphics, etc.

•	 File systems.

•	 Networking.

•	 Power management.

From the full kernel software for a given OS, a number of optional compo-
nents will be left out for an embedded system. For example, if the embedded system
hardware does not support paging, then the memory management subsystem can be
eliminated. The full kernel will include multiple file systems, device drivers, and so
on, and only a few of these may be needed.

A key differentiator between desktop/server and embedded Linux distributions
is that desktop and server software is typically compiled on the platform where it will
execute, while embedded Linux distributions are usually compiled on one platform
but are intended to be executed on another. The software used for this purpose is
referred to as a cross-compiler. Figure 13.5 illustrates its use.

Root File System  In an embedded OS, or any OS, a global single hierarchy of
directories and files is used to represent all the files in the system. At the top, or
root of this hierarchy is the root file system, which contains all the files needed for
the system to work properly. The root file system of an embedded OS is similar to
that found on a workstation or server, except that it contains only the minimal set of
applications, libraries, and related files needed to run the system.

M13_STAL4290_09_GE_C13.indd 607 4/13/17 11:14 AM

608   Chapter 13 / Embedded Operating Systems

Development Approaches

There are two general approaches to developing an embedded OS. The first approach
is to take an existing OS and adapt it for the embedded application. The other
approach is to design and implement an OS intended solely for embedded use.

Adapting an Existing Commercial Operating System

An existing commercial OS can be used for an embedded system by adding real-time
capability, streamlining operation, and adding necessary functionality. This approach
typically makes use of Linux, but FreeBSD, Windows, and other general-purpose
operating systems have also been used. Such operating systems are typically slower
and less predictable than a special-purpose embedded OS. An advantage of this
approach is that the embedded OS derived from a commercial general-purpose OS
is based on a set of familiar interfaces, which facilitates portability.

The disadvantage of using a general-purpose OS is that it is not optimized
for real-time and embedded applications. Thus, considerable modification may be
required to achieve adequate performance. In particular, a typical OS optimizes for
the average case rather than the worst case for scheduling, usually assigns resources
on demand, and ignores most if not all semantic information about an application.

Purpose-Built Embedded Operating System

A significant number of operating systems have been designed from the ground up
for embedded applications. Two prominent examples of this latter approach are eCos
and TinyOS, both of which will be discussed later in this chapter.

Typical characteristics of a specialized embedded OS include the following:

•	 Has a fast and lightweight process or thread switch

•	 Scheduling policy is real time and dispatcher module is part of scheduler instead
of separate component.

•	 Has a small size

Figure 13.5  Kernel Compilation

Kernel configuration

Kernel image

Defined according to
target hardware and
system requirements

From open source
or hardware vendor

Executable on target
system; ready to be

started by boot loader
on target system

Kernel source

Cross compiler

Executable on
host system

M13_STAL4290_09_GE_C13.indd 608 4/13/17 11:14 AM

13.3 / EMBEDDED LINUX   609

•	 Responds to external interrupts quickly; typical requirement is response time
of less than 10 ms.

•	 Minimizes intervals during which interrupts are disabled

•	 Provides fixed or variable-sized partitions for memory management as well as
the ability to lock code and data in memory

•	 Provides special sequential files that can accumulate data at a fast rate

To deal with timing constraints, the kernel:

•	 Provides bounded execution time for most primitives.

•	 Maintains a real-time clock.

•	 Provides for special alarms and time-outs.

•	 Supports real-time queuing disciplines such as earliest deadline first and primi-
tives for jamming a message into the front of a queue.

•	 Provides primitives to delay processing by a fixed amount of time and to
suspend/resume execution.

The characteristics just listed are common in embedded operating systems with
real-time requirements. However, for complex embedded systems, the requirement
may emphasize predictable operation over fast operation, necessitating different
design decisions, particularly in the area of task scheduling.

  13.3	 EMBEDDED LINUX

The term embedded Linux simply means a version of Linux running in an embed-
ded system. Typically, an embedded Linux system uses one of the official kernel
releases, although some systems use a modified kernel tailored to a specific hardware
configuration or to support a certain class of applications. Primarily, an embedded
Linux kernel differs from a Linux kernel used on a workstation or server by the build
configuration and development framework.

In this section, we highlight some of the key differences between embedded
Linux and a version of Linux running on a desktop or server, then examine a popular
software offering, mClinux.

Characteristics of an Embedded Linux System

Kernel Size  Desktop and server Linux systems need to support a large number
of devices because of the wide variety of configurations that use Linux. Similarly,
such systems also need to support a range of communication and data exchange
protocols so they can be used for a large number of different purposes. Embedded
devices typically require support for a specific set of devices, peripherals, and
protocols, depending on the hardware that is present in a given device and the
intended purpose of that device. Fortunately, the Linux kernel is highly configurable
in terms of the architecture for which it is compiled and the processors and devices
that it supports.

M13_STAL4290_09_GE_C13.indd 609 4/13/17 11:14 AM

610   Chapter 13 / Embedded Operating Systems

An embedded Linux distribution is a version of Linux to be customized for the
size and hardware constraints of embedded devices, and includes software packages
that support a variety of services and applications on those devices. Thus, an embed-
ded Linux kernel will be far smaller than an ordinary Linux kernel.

Memory Size  [ETUT16] classifies the size of an embedded Linux system by the
amount of available ROM and RAM, using the three broad categories of small,
medium, and large. Small systems are characterized by a low-powered processor
with a minimum of 2 MB of ROM and 4 MB of RAM. Medium-sized systems
are characterized by a medium-powered processor with around 32 MB of ROM
and 64 MB of RAM. Large systems are characterized by a powerful processor or
collection of processors combined with large amounts of RAM and permanent
storage.

On a system without permanent storage, the entire Linux kernel must fit in
the RAM and ROM. A full-featured modern Linux system would not do so. As an
indication of this, Figure 13.6 shows the compressed size of the full Linux kernel as it
has grown over time. Of course, any Linux system will be configured with only some
of the components of the full release. Even so, this chart gives an indication of the
fact that substantial amounts of the kernel must be left out, especially for small and
medium-sized embedded systems.

Other Characteristics  Other characteristics of embedded Linux systems
include:

•	 Time constraints: Stringent time constraints require the system to respond in
a specified time period. Mild time constraints are appropriate for systems in
which timely response is not critical.

Figure 13.6  Size of Linux Kernel (shown in GZIP-compressed file size)

1992

15

0

30

45

60

75

90

106

120

135

1994 1996

M
eg

ab
yt

es

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

M13_STAL4290_09_GE_C13.indd 610 4/13/17 11:14 AM

13.3 / EMBEDDED LINUX   611

•	 Networkability: Networkability refers to whether a system can be connected to
a network. Virtually all embedded devices today have this capability, typically
wireless.

•	 Degree of user interaction: Some devices are centered on user interaction, such
as smartphones. Other devices, such as industrial process control, might provide
a very simple interface, such as LEDs and buttons for interaction. And other
devices have no end user interaction, such as IoT sensors that gather informa-
tion and transmit them to a cloud.

Table 13.1, from [ETUT16], gives characteristics of some commercially available
embedded systems using a Linux kernel.

Embedded Linux File Systems

Some applications may create relatively small file systems to be used only for the
duration of the application and which can be stored in main memory. But in general,
a file system must be stored in persistent memory, such as flash memory or traditional
disk-based storage devices. For most embedded systems, an internal or external disk
is not an option, and persistent storage is generally provided by flash memory.

As with other aspects of an embedded Linux system, the file system must be as
small as possible. A number of such compact file systems have been designed for use
in embedded systems. The following are commonly used examples:

•	 cramfs: The Compressed RAM file system is a simple read-only file system
designed to minimize size by maximizing the efficient use of underlying storage.
Files on cramfs file systems are compressed in units that match the Linux page
size (typically 4096 bytes or 4 MB, based on kernel version and configuration)
to provide efficient random access to file contents.

Description Type Size
Time
Constraints Networkability

Degree of User
Interaction

Accelerator control
devices

Industrial
process
control

Medium Stringent Yes Low

Computer-aided
training system

Aerospace Large Stringent No High

Bluetooth device
for accessing local
information

Networking Small Mild Yes Very low

System control and
data acquisition
protocol converter

Industrial
process
control

Medium Stringent No Very low

Personal digital
assistant

Consumer
electronics

Medium Mild Yes Very high

Motor control device
involved with space
vehicle control

Aerospace Large Stringent Yes High

Table 13.1  Characteristics of Example Embedded Linux Systems

M13_STAL4290_09_GE_C13.indd 611 4/13/17 11:14 AM

612   Chapter 13 / Embedded Operating Systems

•	 squashfs: Like cramfs, squashfs is a compressed, read-only file system that was
designed for use on low memory or limited storage size environments such as
embedded Linux systems.

•	 jffs2: The Journaling Flash File System, version 2, is a log-based file system that,
as the name suggests, is designed for use on NOR and NAND flash devices with
special attention to flash-oriented issues such as wear leveling.

•	 ubifs: The Unsorted Block Image File System generally provides better per-
formance than jffs2 on larger flash devices, and also supports write caching to
provide additional performance improvements.

•	 yaffs2: Yet another Flash File System, version 2, provides a fast and robust file
system for large flash devices. yaffs2 requires less RAM to hold file system state
information than files systems such as jffs2, and also generally provides better
performance if the file system is being written too frequently.

Advantages of Embedded Linux

Embedded versions of Linux began to appear as early as 1999. A number of compa-
nies have developed their own versions tailored to specific platforms. Advantages of
using Linux as the basis for an embedded OS include:

•	 Vendor independence: The platform provider is not dependent on a particular
vendor to provide needed features and meet deadlines for deployment.

•	 Varied hardware support: Linux support for a wide range of processor archi-
tectures and peripheral devices makes it suitable for virtually any embedded
system.

•	 Low cost: The use of Linux minimizes cost for development and training.

•	 Open source: The use of Linux provides all of the advantages of open-source
software.

MClinux

mClinux (microcontroller Linux) is a popular open-source Linux kernel variation
targeted at microcontrollers and other very small embedded systems. Because of
the modular nature of Linux, it is easy to slim down the operating environment by
removing utility programs, tools, and other system services that are not needed in an
embedded environment. This is the design philosophy for mClinux.

To get some feel for the size of a mClinux bootable image (kernel plus root file
system), we look at the experience of EmCraft Systems, which builds board-level
systems using Cortex-M microcontrollers and Cortex-A microprocessors [EMCR15].
These are by no means the smallest embedded systems that use mClinux. A minimal
configuration could be as little as 0.5 MB, but the vendor found the size of a practi-
cal bootable image, with Ethernet, TCP/IP and a reasonable set of user space tools
and applications configured, would be in the range of 1.5 to 2 MB. The size of RAM
required for run-time mClinux operation would be in the range of 8 to 32 MB. These
numbers are dramatically smaller than those of a typical Linux system.

M13_STAL4290_09_GE_C13.indd 612 4/13/17 11:14 AM

13.3 / EMBEDDED LINUX   613

Comparison with Full Linux  Key differences between mClinux and Linux for
larger systems include the following (see [MCCU04] for a further discussion):

•	 Linux is a multiuser OS based on UNIX. mClinix is a version of Linux intended
for embedded systems typically with no interactive user.

•	 Unlike Linux, mClinix does not support memory management. Thus, with
mClinix there are no virtual address spaces; applications must be linked to
absolute addresses.

•	 The Linux kernel maintains a separate virtual address space for each process.
mClinix has a single shared address space for all processes.

•	 In Linux, address space is recovered on context switching; this is not done in
mClinix.

•	 Unlike Linux, mClinix does not provide the fork system call; the only option
is to use vfork. The fork call essentially makes a duplicate of the calling pro-
cess, identical in almost every way (not everything is copied over, for example,
resource limits in some implementations, but the idea is to create as close a
copy as possible). The new process (child) gets a different process ID (PID)
and has the PID of the old process (parent) as its parent PID (PPID). The basic
difference between vfork and fork is that when a new process is created with
vfork, the parent process is temporarily suspended, and the child process might
borrow the parent’s address space. This continues until the child process either
exits, or calls execve, at which point the parent process continues.

•	 mClinix modifies device drivers to use the local system bus rather than ISA
or PCI.

The most significant difference between full Linux and mClinux is in the area
of memory management. The lack of memory management support in mClinux has
a number of implications, including:

•	 The main memory allocated to a process must generally be contiguous. If a
number of processes swap in and out of memory, this can lead to fragmenta-
tion (see Figure 7.4). However, embedded systems typically have a fixed set of
processes that are loaded at boot up time and continue until the next reset, so
this feature is generally not needed.

•	 mClinux cannot expand memory for running process, because there may be
other processes contiguous to it. Thus, the brk and sbrk calls (dynamically
change the amount of space allocated for the data segment of the calling pro-
cess) are not available. But mClinux does provide an implementation of malloc,
which is used to allocate a block of memory from a global memory pool.

•	 mClinux lacks a dynamic application stack. This can result in a stack overflow,
which will corrupt memory. Care must be taken in application development and
configuration to avoid this.

•	 mClinux does not provide memory protection, which presents the risk of an
application corrupting part of another application or even the kernel. Some
implementations do provide a fix for this. For example, the Cortex-M3/M4
architecture provides a memory protection mechanism called MPU (Memory

M13_STAL4290_09_GE_C13.indd 613 4/13/17 11:14 AM

614   Chapter 13 / Embedded Operating Systems

Protection Unit). Using the MPU, Emcraft Systems has added to the kernel
an optional feature that implements process-to-process and process-to-kernel
protection on par with the memory protection mechanisms implemented in
Linux using MMU [KHUS12].

MClibc  mClibc is a C system library originally developed to support mClinux and it
generally used in conjunction with mClinux. However, mClibc can also be used with
other Linux kernels. The main objective for mClibc is to provide a system library that
is to provide a C library suitable for developing embedded Linux system. It is much
smaller than the GNU C Library, which is widely used on Linux systems, but nearly all
applications supported by glibc also work perfectly with mClibc. Porting applications
from glibc to mClibc typically involves just recompiling the source code. mClibc even
supports shared libraries and threading.

Table 13.2, based on [ANDE05], compares the sizes of functions in the two
libraries. As can be seen, the space savings are considerable. These savings are
achieved by disabling some features by default and aggressively rewriting the code
to eliminate redundancy.

Figure 13.7 shows the top-level software architecture of an embedded system
using mClinux and mClibc.

Android

As we have discussed throughout this book, Android is an embedded OS based on
a Linux kernel. Thus, it is reasonable to consider Android an example of embedded
Linux. However, many embedded Linux developers do not consider Android to be
an instance of embedded Linux [CLAR13]. From the point of view of these develop-
ers, a classic embedded device has a fixed function, frozen at the factory. Android is
more of a platform OS that can support a variety of applications that vary from one
platform to the next. Further, Android is a vertically integrated system, including
some Android-specific modifications to the Linux kernel. The focus of Android lies in

glibc name glibc size MClibc name MClibc size

libc-2.3.2.so 1.2M libuClibc-0.9.2.7.so 284K

ld-2.3.2.so   92K libcrypt-0.9.2.7.so   20K

libcrypt-2.3.2.so   20K libdl-0.9.2.7.so   12K

libdl-2.3.2.so   12K libm-0.9.2.7.so    8K

libm-2.3.2.so 136K libnsl-0.9.2.7so   56K

libnsl-2.3.2.so   76K libpthread-0.9.2.7.so    4K

libpthread-2.3.2.so   84K libresolv-0.9.2.7.so   84K

libresolv-2.3.2.so   68K libutil-0.9.2.7.so    4K

libutil-2.3.2.so    8K libcrypt-0.9.2.7.so    8K

Table 13.2  Size of Some Functions in GNU C Library and mClibc

M13_STAL4290_09_GE_C13.indd 614 4/13/17 11:14 AM

13.4 / TINYOS   615

the vertical integration of the Linux kernel and the Android user space components.
Ultimately, it is a matter of semantics, with no “official” definition of embedded Linux
on which to rely.

  13.4	 TINYOS

TinyOS provides a more streamlined approach for an embedded OS than one based
on a commercial general-purpose OS, such as an embedded version of Linux. Thus,
TinyOS and similar systems are better suited for small embedded systems with tight
requirements on memory, processing time, real-time response, power consumption,
and so on. TinyOS takes the process of streamlining quite far, resulting in a very
minimal OS for embedded systems. The core OS requires 400 bytes of code and data
memory, combined.

TinyOS represents a significant departure from other embedded operating sys-
tems. One striking difference is that TinyOS is not a real-time OS. The reason for

Figure 13.7  MClinux/MClibc Software Architecture

I/O
interface

Linux
process

scheduler

Linux
memory
manager

µclibc

Applications

Function calls

System calls

System calls

IPC
manager

Virtual
file

system

Network
interface

M13_STAL4290_09_GE_C13.indd 615 4/13/17 11:14 AM

616   Chapter 13 / Embedded Operating Systems

this is the expected workload, which is in the context of a wireless sensor network,
as described in the next subsection. Because of power consumption, these devices
are off most of the time. Applications tend to be simple, with processor contention
not much of an issue.

Additionally, in TinyOS there is no kernel, as there is no memory protection
and it is a component-based OS; there are no processes; the OS itself does not have
a memory allocation system (although some rarely used components do introduce
one); interrupt and exception handling is dependent on the peripheral; and it is com-
pletely nonblocking, so there are few explicit synchronization primitives.

TinyOS has become a popular approach to implementing wireless sensor net-
work software. Currently, over 500 organizations are developing and contributing to
an open-source standard for Tiny OS.

Wireless Sensor Networks

TinyOS was developed primarily for use with networks of small wireless sensors. A
number of trends have enabled the development of extremely compact, low-power
sensors. The well-known Moore’s law continues to drive down the size of memory
and processing logic elements. Smaller size in turn reduces power consumption. Low
power and small-size trends are also evident in wireless communications hardware,
micro-electromechanical sensors (MEMS), and transducers. As a result, it is possible
to develop an entire sensor complete with logic in a cubic millimeter. The applica-
tion and system software must be compact enough that sensing, communication, and
computation capabilities can be incorporated into a complete, but tiny, architecture.

Low–cost, small–size, low-power-consuming wireless sensors can be used in a
host of applications [ROME04]. Figure 13.8 shows a typical configuration. A base
station connects the sensor network to a host PC and passes on sensor data from
the network to the host PC, which can do data analysis and/or transmit the data

Figure 13.8  Typical Wireless Sensor Network Topology

Internet

Host PC
Base

station

Sensor
and relay

Sensor
and relay

Sensor
and relay

Sensor
and relay

Sensor

Sensor

Wired link

Wireless link

Sensor

M13_STAL4290_09_GE_C13.indd 616 4/13/17 11:14 AM

13.4 / TINYOS   617

over a corporate network or Internet to an analysis server. Individual sensors col-
lect data and transmit these to the base station, either directly or through sensors
that act as data relays. Routing functionality is needed to determine how to relay the
data through the sensor network to the base station. [BUON01] points out that, in
many applications, the user will want to be able to quickly deploy a large number of
low-cost devices without having to configure or manage them. This means that they
must be capable of assembling themselves into an ad hoc network. The mobility of
individual sensors and the presence of RF interference means the network will have
to be capable of reconfiguring itself in a matter of seconds.

TinyOS Goals

With the tiny, distributed sensor application in mind, a group of researchers from UC
Berkeley [HILL00] set the following goals for TinyOS:

•	 Allow high concurrency: In a typical wireless sensor network application, the
devices are concurrency intensive. Several different flows of data must be kept
moving simultaneously. While sensor data are input in a steady stream, pro-
cessed results must be transmitted in a steady stream. In addition, external
controls from remote sensors or base stations must be managed.

•	 Operate with limited resources: The target platform for TinyOS will have lim-
ited memory and computational resources and run on batteries or solar power.
A single platform may offer only kilobytes of program memory and hundreds of
bytes of RAM. The software must make efficient use of the available processor
and memory resources while enabling low-power communication.

•	 Adapt to hardware evolution: Most hardware is in constant evolution; applica-
tions and most system services must be portable across hardware generations.
Thus, it should be possible to upgrade the hardware with little or no software
change, if the functionality is the same.

•	 Support a wide range of applications: Applications exhibit a wide range of
requirements in terms of lifetime, communication, sensing, and so on. A modu-
lar, general-purpose embedded OS is desired so a standardized approach leads
to economies of scale in developing applications and support software.

•	 Support a diverse set of platforms: As with the preceding point, a general-
purpose embedded OS is desirable.

•	 Be robust: Once deployed, a sensor network must run unattended for months
or years. Ideally, there should be redundancy both within a single system and
across the network of sensors. However, both types of redundancy require addi-
tional resources. One software characteristic that can improve robustness is to
use highly modular, standardized software components.

It is worth elaborating on the concurrency requirement. In a typical application,
there will be dozens, hundreds, or even thousands of sensors networked together.
Usually, little buffering is done, because of latency issues. For example, if you are
sampling every 5 minutes and want to buffer four samples before sending, the average
latency is 10 minutes. Thus, information is typically captured, processed, and streamed
onto the network in a continuous flow. Further, if the sensor sampling produces a

M13_STAL4290_09_GE_C13.indd 617 4/13/17 11:14 AM

618   Chapter 13 / Embedded Operating Systems

significant amount of data, the limited memory space available limits the number of
samples that could be buffered. Even so, in some applications, each of the flows may
involve a large number of low-level events interleaved with higher-level processing.
Some of the high-level processing will extend over multiple real-time events. Further,
sensors in a network, because of the low power of transmission available, typically
operate over a short physical range. Thus data from outlying sensors must be relayed
to one or more base stations by intermediate nodes.

TinyOS Components

An embedded software system built using TinyOS consists of a set of small mod-
ules, called components, each of which performs a simple task or set of tasks and
which interface with each other and with hardware in limited and well-defined ways.
The only other software module is the scheduler, discussed subsequently. In fact,
because there is no kernel, there is no actual OS. But we can take the following view.
The application area of interest is the wireless sensor network (WSN). To meet the
demanding software requirements of this application, a rigid, simplified software
architecture is dictated, consisting of components. The TinyOS development com-
munity has implemented a number of open-source components that provide the
basic functions needed for the WSN application. Examples of such standardized
components include single-hop networking, ad hoc routing, power management,
timers, and nonvolatile storage control. For specific configurations and applications,
users build additional special-purpose components and link and load all of the com-
ponents needed for the user’s application. TinyOS, then, consists of a suite of stan-
dardized components. Some, but not all, of these components are used, together
with application-specific user-written components, for any given implementation.
The OS for that implementation is simply the set of standardized components from
the TinyOS suite.

All components in a TinyOS configuration have the same structure, an example
of which is shown in Figure 13.9a. The shaded box in the diagram indicates the com-
ponent, which is treated as an object that can only be accessed by defined interfaces,
indicated by white boxes. A component may be hardware or software. Software com-
ponents are implemented in nesC, which is an extension of C with two distinguishing
features: 1) a programming model where components interact via interfaces, and 2) an
event-based concurrency model with run-to-completion task and interrupt handlers,
explained subsequently.

The architecture consists of a layered arrangement of components. Each com-
ponent can link to only two other components, one below it in the hierarchy and one
above it. A component issues commands to its lower-level component and receives
event signals from it. Similarly, the component accepts commands from its upper-level
component and issues event signals to it. At the bottom of the hierarchy are hardware
components, and at the top of the hierarchy are application components, which may
not be part of the standardized TinyOS suite but which must conform to the TinyOS
component structure.

A software component implements one or more tasks. Each task in a com-
ponent is similar to a thread in an ordinary OS, with certain limitations. Within a
component, tasks are atomic: Once a task has started, it runs to completion. It cannot

M13_STAL4290_09_GE_C13.indd 618 4/13/17 11:14 AM

13.4 / TINYOS   619

be preempted by another task in the same component, and there is no time slicing.
However, a task can be preempted by an event. A task cannot block or spin wait.
These limitations greatly simplify the scheduling and management of tasks within
a component. There is only a single stack, assigned to the currently running task.
Tasks can perform computations, call lower-level components (commands) and signal
higher-level events, and schedule other tasks.

Commands are nonblocking requests. That is, a task that issues a command
does not block or spin wait for a reply from the lower-level component. A command
is typically a request for the lower-level component to perform some service, such as
initiating a sensor reading. The effect on the component that receives the command is
specific to the command given and the task required to satisfy the command. Gener-
ally, when a command is received, a task is scheduled for later execution, because a
command cannot preempt the currently running task. The command returns imme-
diately to the calling component; at a later time, an event will signal completion to
the calling component. Thus, a command does not cause a preemption in the called
component, and does not cause blocking in the calling component.

Figure 13.9  Example of Component and Configuration

(a) TimerM component

(b) TimerC con�guration

TimerM

StdControl

Clock

Timer

TimerM

StdControl

Clock

Clock

HWClock

Timer

StdControl Timer

module TimerM {
 provides {
 interface StdControl;
 interface Timer;
 }
 uses interface Clock as Clk;
} ...

configuration TimerC {
 provides {
 interface StdControl;
 interface Timer;
 }
}

implementation {
 components TimerM, HWClock;
 StdControl = TimerM.StdControl;
 Timer = TimerM.Timer;
 TimerM.Clk -> HWClock.Clock;
}

M13_STAL4290_09_GE_C13.indd 619 4/13/17 11:14 AM

620   Chapter 13 / Embedded Operating Systems

Events in TinyOS may be tied either directly or indirectly to hardware events.
The lowest-level software components interface directly to hardware interrupts,
which may be external interrupts, timer events, or counter events. An event handler
in a lowest-level component may handle the interrupt itself, or may propagate event
messages up through the component hierarchy. A command can post a task that will
signal an event in the future. In this case, there is no tie of any kind to a hardware
event.

A task can be viewed as having three phases. A caller posts a command to a
module. The module then runs the requested task. The module then notifies the caller,
via an event, that the task is complete.

The component depicted in Figure 13.9a, TimerM, is part of the TinyOS timer
service. This component provides the StdControl and Timer interface and uses a
Clock interface. Providers implement commands (i.e., the logic in this component).
Users implement events (i.e., external to the component). Many TinyOS components
use the StdControl interface to be initialized, started, or stopped. TimerM provides
the logic that maps from a hardware clock into TinyOS’s timer abstraction. The timer
abstraction can be used for counting down a given time interval. Figure 13.9a also
shows the formal specification of the TimerM interfaces.

The interfaces associated with TimerM are specified as follows:

interface StdControl {
    command result_t init();
    command result_t start();
    command result_t stop();
}
interface Timer {
    command result_t start(char type, uint32_t interval);
    command result_t stop();
    event result_t fired();
}
interface Clock {
    command result_t setRate(char interval, char scale);
    event result_t fire();
}

Components are organized into configurations by “wiring” them together at
their interfaces and equating the interfaces of the configuration with some of the
interfaces of the components. A simple example is shown in Figure 13.9b. The upper-
case C stands for Component. It is used to distinguish between an interface (e.g.,
Timer) and a component that provides the interface (e.g., TimerC). The uppercase
M stands for Module. This naming convention is used when a single logical compo-
nent has both a configuration and a module. The TimerC component, providing the
Timer interface, is a configuration that links its implementation (TimerM) to Clock
and LED providers. Otherwise, any user of TimerC would have to explicitly wire its
subcomponents.

M13_STAL4290_09_GE_C13.indd 620 4/13/17 11:14 AM

13.4 / TINYOS   621

TinyOS Scheduler

The TinyOS scheduler operates across all components. Virtually all embedded
systems using TinyOS will be uniprocessor systems, so only one task among
all the tasks in all the components may execute at a time. The scheduler is a
separate component. It is the one portion of TinyOS that must be present in
any system.

The default scheduler in TinyOS is a simple FIFO (first-in-first-out) queue.
A task is posted to the scheduler (place in the queue) either as a result of an event,
which triggers the posting, or as a result of a specific request by a running task to
schedule another task. The scheduler is power aware. This means the scheduler puts
the processor to sleep when there are no tasks in the queue. The peripherals remain
operating, so one of them can wake up the system by means of a hardware event
signaled to a lowest-level component. Once the queue is empty, another task can be
scheduled only as a result of a direct hardware event. This behavior enables efficient
battery usage.

The scheduler has gone through two generations. In TinyOS 1.x, there is a
shared task queue for all tasks, and a component can post a task to the scheduler
multiple times. If the task queue is full, the post operation fails. Experience with
networking stacks showed this to be problematic, as the task might signal comple-
tion of a split-phase operation: If the post fails, the component above might block
forever, waiting for the completion event. In TinyOS 2.x, every task has its own
reserved slot in the task queue, and a task can only be posted once. A post fails if
and only if the task has already been posted. If a component needs to post a task
multiple times, it can set an internal state variable so that when the task executes,
it reposts itself. This slight change in semantics greatly simplifies a lot of compo-
nent code. Rather than test to see if a task is posted already before posting it, a
component can just post the task. Components do not have to try to recover from
failed posts and retry. The cost is one byte of state per task.

A user can replace the default scheduler with one that uses a different dis-
patching scheme, such as a priority-based scheme or a deadline scheme. However,
preemption and time slicing should not be used because of the overhead such sys-
tems generate. More importantly, they violate the TinyOS concurrency model, which
assumes tasks do not preempt each other.

Example of Configuration

Figure 13.10 shows a configuration assembled from software and hardware
components. This simplified example, called Surge and described in [GAY03],
performs periodic sensor sampling and uses ad hoc multihop routing over the
wireless network to deliver samples to the base station. The upper part of the
figure shows the components of Surge (represented by boxes) and the interfaces
by which they are wired (represented by arrowed lines). The SurgeM compo-
nent is the application-level component that orchestrates the operation of the
configuration.

M13_STAL4290_09_GE_C13.indd 621 4/13/17 11:14 AM

622   Chapter 13 / Embedded Operating Systems

Figure 13.10b shows a portion of the configuration for the Surge application.
The following is a simplified excerpt from the SurgeM specification.

module SurgeM {
    provides interface StdControl;
    uses interface ADC;
    uses interface Timer;
    uses interface SendMsg;
    uses interface LEDs;
}

Figure 13.10  Examples of TinyOS Application

(a) Simplified view of the Surge application

(b) Top-level Surge configuration

LED 5 light-emitting diode
ADC 5 analog-to-digital converter

Timer SendMsg

SendMsgClock

ReceiveMsg

LEDs ADC

Main

Photo TimerC Multihop LEDsC

SurgeM

StdControl

StdControl StdControl StdControlADC Timer SndMsg LEDs

ADC Timer SndMsg LEDs

StdControl

M13_STAL4290_09_GE_C13.indd 622 4/13/17 11:14 AM

13.4 / TINYOS   623

implementation {
    uint16_t sensorReading;
    command result_t StdControl.init() {
    return call Timer.start(TIMER_REPEAT, 1000);
    }
    event result_t Timer.fired() {
    call ADC.getData();
    return SUCCESS;
    }
    event result_t ADC.dataReady(uint16_t data) {
    sensorReading = data;
    ...send message with data in it...
    return SUCCESS;
    }
    ...
}

This example illustrates the strength of the TinyOS approach. The software is orga-
nized as an interconnected set of simple modules, each of which defines one or a few
tasks. Components have simple, standardized interfaces to other components, be they
hardware or software. Thus, components can easily be replaced. Components can be
hardware or software, with a boundary change not visible to the application programmer.

TinyOS Resource Interface

TinyOS provides a simple but powerful set of conventions for dealing with resources.
Three abstractions for resources are used in TinyOS:

1.	 Dedicated: A resource that a subsystem needs exclusive access to at all times. In
this class of resources, no sharing policy is needed since only a single component
ever requires use of the resource. Examples of dedicated abstractions include
interrupts and counters.

2.	 Virtualized: Every client of a virtualized resource interacts with it as if it were
a dedicated resource, with all virtualized instances being multiplexed on top of
a single underlying resource. The virtualized abstraction may be used when the
underlying resource need not be protected by mutual exclusion. An example
is a clock or timer.

3.	 Shared: The shared resource abstraction provides access to a dedicated resource
through an arbiter component. The arbiter enforces mutual exclusion, allow-
ing only one user (called a client) at a time to have access to a resource and
enabling the client to lock the resource.

In the remainder of this subsection, we briefly define the shared resource facil-
ity of TinyOS. The arbiter determines which client has access to the resource at which
time. While a client holds a resource, it has complete and unfettered control. Arbiters
assume clients are cooperative, only acquiring the resource when needed and holding
on to it no longer than necessary. Clients explicitly release resources: There is no way
for an arbiter to forcibly reclaim it.

M13_STAL4290_09_GE_C13.indd 623 4/13/17 11:14 AM

624   Chapter 13 / Embedded Operating Systems

Figure 13.11 shows a simplified view of the shared resource configuration used
to provide access to an underlying resource. Associated with each resource to be
shared is an arbiter component. The Arbiter enforces a policy that enables a client to
lock the resource, use it, then release the resource. The shared resource configuration
provides the following interfaces to a client:

•	 Resource: The client issues a request at this interface, requesting access to the
resource. If the resource is currently locked, the arbiter places the request in a
queue. When a client is finished with the resource, it issues a release command
at this interface.

•	 Resource requested: This is similar to the Resource interface. In this case, the
client is able to hold on to a resource until the client is notified that someone
else needs the resource.

•	 Resource Configure: This interface allows a resource to be automatically con-
figured just before a client is granted access to it. Components providing the
Resource Configure interface use the interfaces provided by an underlying
dedicated resource to configure it into one of its desired modes of operation.

•	 Resource-specific interfaces: Once a client has access to a resource, it uses
resource-specific interfaces to exchange data and control information with the
resource.

In addition to the dedicated resource, the shared resource configuration consists
of two components. The Arbiter accepts requests for access and configuration from a

Figure 13.11  Shared Resource Configuration

Arbiter

Resource
Resource
requested

Resource
Resource
requested

Resource-specific
interfaces

Resource-specific
interfaces

Resource-specific
interfaces

Resource
configure

Resource
configure

Arbiter
info

Arbiter
Info

Shared resource

Resource-specific
interfaces

Dedicated resource

M13_STAL4290_09_GE_C13.indd 624 4/13/17 11:14 AM

13.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   625

client and enforces the lock on the underlying resource. The shared resource compo-
nent mediates data exchange between the client and the underlying resource. Arbiter
information passed from the arbiter to the shared resource component controls the
access of the client to the underlying resource.

  13.5	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

application processors,
chip
commands
dedicated processor
eCos

embedded operating system
embedded system
events
deeply embedded system
integrated circuit

microcontroller
motherboard
printed circuit board
task
TinyOS

Review Questions

	13.1.	 What is an embedded system?
	13.2.	 What are some typical requirements or constraints on embedded systems?
	13.3.	 What is an embedded OS?
	13.4.	 What are some of the key characteristics of an embedded OS?
	13.5.	 Explain the relative advantages and disadvantages of an embedded OS based on an

existing commercial OS compared to a purpose-built embedded OS.
	13.6.	 What is the target application for TinyOS?
	13.7.	 What are the design goals for TinyOS?
	13.8.	 What is a TinyOS component?
	13.9.	 What software comprises the TinyOS operating system?
	13.10.	 What is the default scheduling discipline for TinyOS?

Problems

	13.1.	 In a particular sensor network that runs on TinyOS, the default FIFO algorithm has
been replaced with a priority-based one that continually checks for high priority tasks
before assigning it to schedulers. What constraints will this technique face?

	13.2.	 a.	 The TinyOS Resource interface does not allow a component that already has a
request in the queue for a resource to make a second request. Suggest a reason.

b.	 However, the TinyOS Resource interface allows a component holding the resource
lock to re-request the lock. This request is queued for a later grant. Suggest a reason
for this policy. Hint: What might cause there to be latency between one component
releasing a lock and the next requester being granted it?

Note: The remaining problems concern eCos, discussed in Appendix Q.

	13.3.	 With reference to the device driver interface to the eCos kernel (see Table Q.1), it is
recommended that device drivers should use the _intsave() variants to claim and
release spinlocks rather than the non-_intsave() variants. Explain why

	13.4.	 Also in Table Q.1, it is recommended that cyg_drv_spinlock_spin should be used
sparingly, and in situations where deadlocks/livelocks cannot occur. Explain why.

M13_STAL4290_09_GE_C13.indd 625 4/13/17 11:14 AM

626   Chapter 13 / Embedded Operating Systems

	13.5.	 In Table Q.1, what should be the limitations on the use of cyg_drv_spinlock_
destroy? Explain.

	13.6.	 In Table Q.1, what limitations should be placed in the use of cyg_drv_mutex_destroy?
	13.7.	 Why does the eCos bitmap scheduler not support time slicing?
	13.8.	 The implementation of mutexes within the eCos kernel does not support recursive

locks. If a thread has locked a mutex then attempts to lock the mutex again, typically
as a result of some recursive call in a complicated call graph, then either an assertion
failure will be reported or the thread will deadlock. Suggest a reason for this policy.

	13.9.	 Figure 13.12 is a listing of code intended for use on the eCos kernel.
a.	 Explain the operation of the code. Assume thread B begins execution first, and

thread A begins to execute after some event occurs.
b.	 What would happen if the mutex unlock and wait code execution in the call to

cyg_cond_wait, on line 30, were not atomic?
c.	 Why is the while loop on line 26 needed?

	13.10.	 The discussion of eCos spinlocks included an example showing why spinlocks should
not be used on a uniprocessor system if two threads of different priorities can compete
for the same spinlock. Explain why the problem still exists even if only threads of the
same priority can claim the same spinlock.

Figure 13.12  Condition Variable Example Code

1   unsigned char buffer_empty = true;
2   cyg_mutex_t mut_cond_var;
3   cyg_cond-t cond_var;
4  
5   void thread_a(cyg_addrword_t index)
6   {
7      while (1) // run this thread forever
8      {
9         // acquire data into the buffer...
10 
11         // there is data in the buffer now
12         buffer_empty = false;
13 
14         cyg_mutex_lock(&mut_cond_var);
15 
16         cyg_cond_signal(&cond_var);
17 
18         cyg_mutex_unlock(&mut_cond_var);
19     }
20   }
21 
22   void thread_b(cyg_addrword_t index)
23   {
24     while (1) // run this thread forever
25     {
26         cyg_mutex_lock(&mut_cond_var);
27 
28         while (buffer_empty == true)
29         {
30         cyg_cond_wait(&cond_var);
31         }
32 
33 
34         // get the buffer data...
35 
36         // set flag to indicate the data in the buffer has been processed
37         buffer_empty = true;
38 
39         cyg_mutex_unlock(&mut_cond_var);
40 
41         // process the data in the buffer
42     }
43   {

VideoNote

M13_STAL4290_09_GE_C13.indd 626 4/13/17 11:14 AM

627

Virtual Machines
14.1	 Virtual Machine Concepts

14.2	 Hypervisors
Hypervisors
Paravirtualization
Hardware-Assisted Virtualization
Virtual Appliance

14.3	 Container Virtualization
Kernel Control Groups
Container Concepts
Container File System
Microservices
Docker

14.4	 Processor Issues

14.5	 Memory Management

14.6	 I/O Management

14.7	 VMware ESXi

14.8	 Microsoft Hyper-V and Xen Variants

14.9	 Java VM

14.10	Linux Vserver Virtual Machine Architecture
Architecture
Process Scheduling

14.11	Summary

14.12	Key Terms, Review Questions, and Problems

Chapter

M14_STAL4290_09_GE_C14.indd 627 4/13/17 11:15 AM

628   Chapter 14 / Virtual Machines

This chapter focuses on the application of virtualization to operating system design.
Virtualization encompasses a variety of technologies for managing computing
resources by providing a software translation layer, known as an abstraction layer,
between the software and the physical hardware. Virtualization turns physical
resources into logical, or virtual, resources. Virtualization enables users, applications,
and management software operating above the abstraction layer to manage and
use resources without needing to be aware of the physical details of the underlying
resources.

The first three sections of this chapter deal with the two main approaches to
virtualization: virtual machines and containers. The remainder of the chapter looks
at some specific systems.

	 14.1	VIRTUAL MACHINE CONCEPTS

Traditionally, applications have run directly on an operating system (OS) on a per-
sonal computer (PC) or on a server, with the PC or server running only one OS at
a time. Thus, the application vendor had to rewrite parts of its applications for each
OS/platform they would run on and support, which increased time to market for
new features/functions, increased the likelihood of defects, increased quality test-
ing efforts, and usually led to increased price. To support multiple OSs, application
vendors needed to create, manage, and support multiple hardware and OS infrastruc-
tures, a costly and resource-intensive process. One effective strategy for dealing with
this problem is known as hardware virtualization. Virtualization technology enables
a single PC or server to simultaneously run multiple OSs or multiple sessions of a
single OS. A machine with virtualization software can host numerous applications,
including those that run on different OSs, on a single platform. In essence, the host
OS can support a number of virtual machines (VMs), each of that has the character-
istics of a particular OS and, in some versions of virtualization, the characteristics of
a particular hardware platform. A VM is also referred to as a system virtual machine,
emphasizing that it is the hardware of the system that is being virtualized.

Learning Objectives

After studying this chapter, you should be able to:
•	 Discuss Type 1 and Type 2 virtualization.
•	 Explain container virtualization and compare it to the hypervisor approach.
•	 Understand the processor issues involved in implementing a virtual machine.
•	 Understand the memory management issues involved in implementing a

virtual machine.
•	 Understand the I/O management issues involved in implementing a virtual

machine.
•	 Compare and contrast VMware ESXi, Hyper-V, Xen, and Java VM.
•	 Explain the operation of the Linux virtual machine.

M14_STAL4290_09_GE_C14.indd 628 4/13/17 11:15 AM

14.1 / VIRTUAL MACHINE CONCEPTS   629

Virtualization is not a new technology. During the 1970s, IBM mainframe sys-
tems offered the first capabilities that would allow programs to use only a portion of
a system’s resources. Various forms of that ability have been available on platforms
since that time. Virtualization came into mainstream computing in the early 2000s
when the technology was commercially available on x86 servers. Organizations were
suffering from a surfeit of servers due to a Microsoft Windows-driven “one applica-
tion, one server” strategy. Moore’s Law drove rapid hardware improvements out-
pacing software’s ability, and most of these servers were vastly underutilized, often
consuming less than 5% of the available resources in each server. In addition, this
overabundance of servers filled datacenters and consumed vast amounts of power
and cooling, straining a corporation’s ability to manage and maintain their infrastruc-
ture. Virtualization helped relieve this stress.

The solution that enables virtualization is a virtual machine monitor (VMM),
or commonly known today as a hypervisor. This software sits between the hardware
and the VMs acting as a resource broker. Simply put, it allows multiple VMs to safely
coexist on a single physical server host and share that host’s resources. Figure 14.1
illustrates this type of virtualization in general terms. On top of the hardware plat-
form sits some sort of virtualizing software, which may consist of the host OS plus
specialized virtualizing software or a simply a software package that includes host
OS functions and virtualizing functions, as explained subsequently. The virtualizing
software provides abstraction of all physical resources (such as processor, memory,
network, and storage) and thus enables multiple computing stacks, called virtual
machines, to be run on a single physical host.

Each VM includes an OS, called the guest OS. This OS may be the same as the
host OS or a different one. For example, a guest Windows OS could be run in a VM

Figure 14.1  Virtual Machine Concept

M14_STAL4290_09_GE_C14.indd 629 4/13/17 11:15 AM

630   Chapter 14 / Virtual Machines

on top of a Linux host OS. The guest OS, in turn, supports a set of standard library
functions and other binary files and applications. From the point of view of the appli-
cations and the user, this stack appears as an actual machine, with hardware and an
OS; thus, the term virtual machine is appropriate. In other words, it is the hardware
that is being virtualized.

The number of guests that can exist on a single host is measured a consolidation
ratio. For example, a host that is supporting 4 VMs is said to have a consolidation
ratio of 4 to 1, also written as 4:1 (see Figure 14.1). The initial commercially available
hypervisors provided consolidation ratios of between 4:1 and 12:1, but even at the
low end, if a company virtualized all of their servers, they could remove 75% of the
servers from their datacenters. More importantly, they could remove the cost as well,
which often ran into the millions or tens of millions of dollars annually. With fewer
physical servers, less power and less cooling was needed. Also this leads to fewer
cables, fewer network switches, and less floor space. Server consolidation became,
and continues to be, a tremendously valuable way to solve a costly and wasteful
problem. Today, more virtual servers are deployed in the world than physical servers,
and virtual server deployment continues to accelerate.

We can summarize the key reasons the organizations use virtualization as
follows:

•	 Legacy hardware: Applications built for legacy hardware can still be run by
virtualizing (emulating) the legacy hardware, enabling the retirement of the
old hardware.

•	 Rapid deployment: As discussed subsequently, whereas it may take weeks or
longer to deploy new servers in an infrastructure, a new VM may be deployed
in a matter of minutes. As explained subsequently, a VM consists of files. By
duplicating those files, in a virtual environment there is a perfect copy of the
server available.

•	 Versatility: Hardware usage can be optimized by maximizing the number of
kinds of applications that a single computer can handle.

•	 Consolidation: A large-capacity or high-speed resource, such a server can be
used more efficiently by sharing the resource among multiple applications
simultaneously.

•	 Aggregating: Virtualization makes it easy to combine multiple resources in to
one virtual resource, such as in the case of storage virtualization.

•	 Dynamics: With the use of virtual machines, hardware resources can be easily
allocated in a dynamic fashion. This enhances load balancing and fault tolerance.

•	 Ease of management: Virtual machines facilitate deployment and testing of
software.

•	 Increased availability: Virtual machine hosts are clustered together to form pools
of compute resources. Multiple VMs are hosted on each of these servers and, in
the case of a physical server failure, the VMs on the failed host can be quickly
and automatically restarted on another host in the cluster. Compared with pro-
viding this type of availability for a physical server, virtual environments can
provide higher availability at significantly less cost and with less complexity.

M14_STAL4290_09_GE_C14.indd 630 4/13/17 11:15 AM

14.2 / HYPERVISORS   631

Commercial VM offerings by companies such as VMware and Microsoft are
widely used on servers, with millions of copies having been sold. A key aspect of
server virtualization is, in addition to the capability of running multiple VMs on
one machine, VMs can be viewed as network resources. Server virtualization masks
server resources, including the number and identity of individual physical servers,
processors, and OSs, from server users. This makes it possible to partition a single host
into multiple independent servers, conserving hardware resources. It also makes it
possible to quickly migrate a server from one machine to another for load balancing,
or for dynamic switchover in the case of machine failure. Server virtualization has
become a central element in dealing with “big data” applications and in implementing
cloud computing infrastructures.

In addition to their use in server environments, these VM technologies also are
used in desktop environments to run multiple OSs, typically Windows and Linux.

	 14.2	HYPERVISORS

There is no definitive classification of the various approaches that have been taken to
the development of virtual machines. Various methods of classification are discussed
in [UHLI05], [PEAR13], [RPSE04], [ROSE05], [NAND05], and [GOLD11]. This
section examines the concept of a hypervisor, which is the most common basis for
classifying virtual machine approaches.

Hypervisors

Virtualization is a form of abstraction. Much like an OS abstracts the disk I/O com-
mands from a user through the use of program layers and interfaces, virtualization
abstracts the physical hardware from the virtual machines it supports. The virtual
machine monitor or hypervisor is the software that provides this abstraction. It acts
as a broker, or traffic cop, acting as a proxy for the guests (VMs) as they request and
consume resources of the physical host.

A virtual machine is a software construct that mimics the characteristics of
a physical server. It is configured with some number of processors, some amount
of RAM, storage resources, and connectivity through the network ports. Once that
VM is created, it can be powered on like a physical server, loaded with an OS and
software solutions, and utilized in the manner of a physical server. Unlike a physical
server, this virtual server only sees the resources it has been configured with, not all
of the resources of the physical host itself. This isolation allows a host machine to
run many virtual machines, each of them running the same or different copies of an
OS, sharing RAM, storage and network bandwidth, without problems. An OS in a
virtual machine accesses the resource that is presented to it by the hypervisor. The
hypervisor facilitates the translation and I/O from the virtual machine to the physi-
cal server devices, and back again to the correct virtual machine. In this way, certain
privileged instructions that a “native” OS would be executing on its hosts hardware
are trapped and run by the hypervisor as a proxy for the virtual machine. This creates
some performance degradation in the virtualization process, though over time both
hardware and software improvements have minimalized this overhead.

M14_STAL4290_09_GE_C14.indd 631 4/13/17 11:15 AM

632   Chapter 14 / Virtual Machines

A VM instance is defined in files. A typical virtual machine can consist of just
a few files. There is a configuration file that describes the attributes of the virtual
machine. It contains the server definition, how many virtual processors (vCPUs) are
allocated to this virtual machine, how much RAM is allocated, to which I/O devices
the VM has access, how many network interface cards (NICs) are in the virtual server,
and more. It also describes the storage that the VM can access. Often that storage
is presented as virtual disks that exist as additional files in the physical file system.
When a virtual machine is powered on, or instantiated, additional files are created for
logging, for memory paging, and other functions. Because a VM essentially consists
of files, certain functions in a virtual environment can be defined simpler and quicker
than in a physical environment. Since the earliest days of computers, backing up
data has been a critical function. Since VMs are already files, copying them produces
not only a backup of the data but also a copy of the entire server, including the OS,
applications, and the hardware configuration itself.

A common method to rapidly deploy new VMs is through the use of templates.
A template provides a standardized group of hardware and software settings that can
be used to create new VMs configured with those settings. Creating a new VM from
a template consists of providing unique identifiers for the new VM, and having the
provisioning software build a VM from the template and adding in the configuration
changes as part of the deployment.

Hypervisor Functions  The principal functions performed by a hypervisor are
the following:

•	 Execution management of VMs: Includes scheduling VMs for execution, virtual
memory management to ensure VM isolation from other VMs, context switch-
ing between various processor states. Also includes isolation of VMs to prevent
conflicts in resource usage and emulation of timer and interrupt mechanisms.

•	 Devices emulation and access control: Emulating all network and storage
(block) devices that different native drivers in VMs are expecting, mediating
access to physical devices by different VMs.

•	 Execution of privileged operations by hypervisor for guest VMs: Certain opera-
tions invoked by guest OSs, instead of being executed directly by the host hard-
ware, may have to be executed on its behalf by the hypervisor, because of their
privileged nature.

•	 Management of VMs (also called VM lifecycle management): Configuring
guest VMs and controlling VM states (e.g., Start, Pause, and Stop).

•	 Administration of hypervisor platform and hypervisor software: Involves set-
ting of parameters for user interactions with the hypervisor host as well as
hypervisor software.

Type 1 Hypervisor  There are two types of hypervisors, distinguished by whether
there is an OS between the hypervisor and the host. A type 1 hypervisor (see
Figure 14.2a) is loaded as a software layer directly onto a physical server, much like
an OS is loaded. The type 1 hypervisor can directly control the physical resources of

M14_STAL4290_09_GE_C14.indd 632 4/13/17 11:15 AM

14.2 / HYPERVISORS   633

the host. Once it is installed and configured, the server is then capable of supporting
virtual machines as guests. In mature environments, where virtualization hosts are
clustered together for increased availability and load balancing, a hypervisor can be
staged on a new host. Then, that new host is joined to an existing cluster, and VMs can
be moved to the new host without any interruption of service. Some examples of type
1 hypervisors are VMware ESXi, Microsoft Hyper-V, and the various Xen variants.

Type 2 Hypervisor  A type 2 hypervisor exploits the resources and functions of a
host OS and runs as a software module on top of the OS (see Figure 14.2b). It relies
on the OS to handle all of the hardware interactions on the hypervisor’s behalf. Some
examples of type 2 hypervisors are VMware Workstation and Oracle VM Virtual Box.

Key differences between the two hypervisor types are as follows:

•	 Typically, type 1 hypervisors perform better than type 2 hypervisors. Because
a type 1 hypervisor doesn’t compete for resources with an OS, there are more
resources available on the host, and by extension, more virtual machines can
be hosted on a virtualization server using a type 1 hypervisor.

•	 Type 1 hypervisors are also considered to be more secure than the type 2
hypervisors. Virtual machines on a type 1 hypervisor make resource requests
that are handled external to that guest, and they cannot affect other VMs or
the hypervisor they are supported by. This is not necessarily true for VMs on
a type 2 hypervisor, and a malicious guest could potentially affect more than
itself.

•	 Type 2 hypervisors allow a user to take advantage of virtualization without
needing to dedicate a server to only that function. Developers who need to run
multiple environments as part of their process, in addition to taking advantage
of the personal productive workspace that a PC OS provides, can do both with
a type 2 hypervisor installed as an application on their LINUX or Windows
desktop. The virtual machines that are created and used can be migrated or

Figure 14.2  Type 1 and Type 2 Hypervisors

Shared Hardware

(a) Type 1 Hypervisor

Hypervisor Type 1

Guest OS

libraries

Guest OS

Applications

Virtual
Machine 1

Applications

(b) Type 2 Hypervisor

libraries

Shared Hardware

Host Operating System

Hypervisor Type 2

Guest OS

libraries

Guest OS

Applications Applications

libraries

Virtual
Machine 2

Virtual
Machine 1

Virtual
Machine 2

M14_STAL4290_09_GE_C14.indd 633 4/13/17 11:15 AM

634   Chapter 14 / Virtual Machines

copied from one hypervisor environment to another, reducing deployment time
and increasing the accuracy of what is deployed, reducing the time to market
of a project.

Paravirtualization

As virtualization became more prevalent in corporations, both hardware and soft-
ware vendors looked for ways to provide even more efficiencies. Unsurprisingly,
these paths led to both software-assisted virtualization and hardware-assisted virtu-
alization. Paravirtualization is a software-assisted virtualization technique that uses
specialized APIs to link virtual machines with the hypervisor to optimize their perfor-
mance. The OS in the virtual machine, Linux or Microsoft Windows, has specialized
paravirtualization support as part of the kernel, as well as specific paravirtualization
drivers that allow the OS and hypervisor to work together more efficiently with the
overhead of the hypervisor translations. This software-assisted offers optimized vir-
tualization support on servers with or without processors that provide virtualization
extensions. Paravirtualization support has been offered as part of many of the general
Linux distributions since 2008.

Although the details of this approach differ among the various offerings, a gen-
eral description is as follows (see Figure 14.3). Without paravirtualization, the guest
OS can run without modification if the hypervisor emulates the hardware. In this case,
calls from the guest OS drivers to the hardware are intercepted by the hypervisor,
which does any necessary translation for native hardware and redirects the call to real
driver. With paravirtualization, the source code of an OS is modified to run as a guest
OS in a specific virtual machine environment. Calls to the hardware are replaced to
calls to the hypervisor, which is able to accept these calls and redirect them without

Figure 14.3  Paravirtualization

Hypervisor

Real
Drivers

Hardware

(a) Type 1 Hypervisor

VM

Real
Drivers

App

Guest
OS

VM

Real
Drivers

App

Guest
OS

VM

Real
Drivers

App

Guest
OS

Device Models
(emulated hardware)

Hypervisor

Real
Drivers

Hardware

(b) Paravirtualized Type 1 Hypervisor
with Paravirtualized Guest OSs

VM

Modified
Drivers

App

Guest
OS

VM

App

Guest
OS

VM

App

Guest
OS

Hypervisor
Driver Interface

Modified
Drivers

Modified
Drivers

M14_STAL4290_09_GE_C14.indd 634 4/13/17 11:15 AM

14.3 / CONTAINER VIRTUALIZATION   635

modification to the real drivers. This arrangement is faster with less overhead than a
non-paravirtualized configuration.

Hardware-Assisted Virtualization

Similarly, processor manufacturers AMD and Intel added functionality to their pro-
cessors to enhance performance with hypervisors. AMD-V and Intel’s VT-x desig-
nate the hardware-assisted virtualization extensions that the hypervisors can take
advantage of during processing. Intel processors offer an extra instruction set called
Virtual Machine Extensions (VMX). By having some of these instructions as part
of the processor, the hypervisors no longer need to maintain these functions as part
of their codebase, the code itself can be smaller and more efficient, and the oper-
ations they support are much faster as they occur entirely on the processor. This
hardware-assisted support does not require a modified guest OS in contrast with
paravirtualization.

Virtual Appliance

A virtual appliance is standalone software that can be distributed as a virtual machine
image. Thus, it consists of a packaged set of applications and guest OS. It is indepen-
dent of hypervisor or processor architecture, and can run on either a type 1 or type
2 hypervisor.

Deploying a pre-installed and pre-configured application appliance is far easier
than preparing a system, installing the app, and configuring and setting it up. Virtual
appliances are becoming a de-facto means of software distribution and have spawned
a new type of business—the virtual appliance vendor.

In addition to many useful application-oriented virtual appliances, a relatively
recent and important development is the security virtual appliance (SVA). The SVA
is a security tool that performs the function of monitoring and protecting the other
VMs (User VMs), and is run outside of those VMs in a specially security-hardened
VM. The SVA obtains its visibility into the state of a VM (including processor state,
registers, and state of memory and I/O devices) as well as the network traffic between
VMs, and between VMs and the hypervisor, through the virtual machine introspection
API of the hypervisor. NIST SP 800-125 (Security Recommendations for Hypervisor
Deployment, October 2014) points out the advantages of this solution. Specifically,
the SVA is:

•	 Not vulnerable to a flaw in the Guest OS

•	 Independent of the virtual network configuration and does not have to be recon-
figured every time the virtual network configuration changes due to migration
of VMs or change in connectivity among VMs resident on the hypervisor host.

	 14.3	CONTAINER VIRTUALIZATION

A relatively recent approach to virtualization is known as container virtualization. In
this approach, software, known as a virtualization container, runs on top of the host
OS kernel and provides an isolated execution environment for applications. Unlike

M14_STAL4290_09_GE_C14.indd 635 4/13/17 11:15 AM

636   Chapter 14 / Virtual Machines

hypervisor-based VMs, containers do not aim to emulate physical servers. Instead, all
containerized applications on a host share a common OS kernel. This eliminates the
resources needed to run a separate OS for each application and can greatly reduce
overhead.

Kernel Control Groups

Much of the technology for containers as used today was developed for Linux and
Linux-based containers are by far the most widely used. Before turning to a discus-
sion of containers, it is useful to introduce the concept of Linux kernel control group.
In 2007 [MENA07], the standard Linux process API was extended to incorporate the
containerization of user environment so as to allow grouping of multiple processes,
user security permission and system resource management. Initially referred to as
process containers, in late 2007, the nomenclature changed to control groups (cgroups)
to avoid confusion caused by multiple meanings of the term container in the Linux
kernel context, and the control groups functionality was merged into the Linux kernel
mainline in kernel version 2.6.24, released in January 2008.

Linux process namespace is hierarchical, in which all the processes are child
of common boot time process called init. This forms a single process hierarchy. The
kernel control group allows multiple process hierarchies to coexist in single OS. Each
hierarchy is attached to system resources at configuration time.

Cgroups provide:

•	 Resource limiting: Groups can be set to not exceed a configured memory limit.

•	 Prioritization: Some groups may get a larger share of CPU utilization or disk
I/O throughput.

•	 Accounting: This measures a group’s resource usage, which may be used, as an
example, for billing purposes.

•	 Control: Freezing groups of processes, their checkpointing and restarting.

Container Concepts

Figure 14.4 compares container and hypervisor software stacks. For containers,
only a small container engine is required as support for the containers. The con-
tainer engine sets up each container as an isolated instance by requesting dedicated
resources from the OS for each container. Each container app then directly uses the
resources of the host OS. Although the details differ from one container product to
another, the following are typical tasks performed by a container engine:

•	 Maintain a lightweight runtime environment and toolchain that manages con-
tainers, images and builds.

•	 Create a process for the container.

•	 Manage file system mount points.

•	 Request resources from kernel, such as memory, I/O devices, and IP addresses.

A typical life cycle of Linux-based containers can be understood through dif-
ferent phases of Linux containers:

M14_STAL4290_09_GE_C14.indd 636 4/13/17 11:15 AM

14.3 / CONTAINER VIRTUALIZATION   637

•	 Setup: Setup phase includes the environment to create and start the Linux
containers. A typical example of setup phase is Linux kernel enabled with flags
or packages installed so as to allow userspace partition. Setup also includes
installation of toolchain and utilities (e.g., lxc, bridge utils) to instantiate the
container environment and networking configuration into host OS.

•	 Configuration: Containers are configured to run specific applications or com-
mands. Linux container configuration includes networking parameters (e.g.,
IP address), root file systems, mount operations, and devices that are allowed
access through the container environment. In general, containers are configured
to allow execution of an application in controlled system resources (such as
upper bound on application memory access).

•	 Management: Once a container is set up and configured, it has to be managed so
as to allow seamless bootstrap (start up) and shutdown of the container. Typically,
managed operations for a container-based environment include start, stop, freeze,
and migrate. In addition, there are meta commands and toolchains that allows con-
trolled and managed allocation of containers in a single node for end user access.

Because all the containers on one machine execute on the same kernel, thus
sharing most of the base OS, a configuration with containers is much smaller and
lighter weight compared to a hypervisor/guest OS virtual machine arrangement.
Accordingly, an OS can have many containers running on top of it, compared to the
limited number of hypervisors and guest OSs that can be supported.

Figure 14.4  Comparison of Virtual Machines and Containers

(a) Type 1 Hypervisor

Hardware

Hypervisor

Guest OS Guest OS

Libraries

V
ir

tu
al

 m
ac

hi
ne

Libraries

App App App App

Hardware

Container Engine

Host OS

Libraries Libraries

App App App App

(c) Container

(b) Type 2 Hypervisor

Hardware

Hypervisor

Host OS

Guest OS Guest OS

Libraries

V
ir

tu
al

 m
ac

hi
ne

Libraries

App App App App

C
on

ta
in

er

C
on

ta
in

er

M14_STAL4290_09_GE_C14.indd 637 4/13/17 11:15 AM

638   Chapter 14 / Virtual Machines

Virtual containers are feasible due to resource control and process isolations
as explained using techniques such as the kernel control group. This approach allows
system resources being shared between multiple instances of isolated containers.
Cgroups provides a mechanism to manage and monitor the system resources. The
application performance is close to native system performance due to single kernel
shared between all userspace container instances, and overhead is only to provide
mechanism to isolate the containers via cgroups. Linux subsystems partitioned using
control group primitives include filesystem, process namespace, network stack, host-
name, IPC, and users.

To compare virtual machines with containers, consider I/O operation in during
an application with process P in virtualized environment. In classical system virtu-
alization environment (with no hardware support), process P would be executed
inside a guest virtual machine. I/O operation is routed though guest OS stack to
emulated guest I/O device. I/O call is further intercepted by hypervisor that forward
it through host OS stack to the physical device. In comparison, the container is pri-
marily based on indirection mechanism provided by container framework extensions
that have been incorporated into main stream kernel. Here, a single kernel is shared
between multiple containers (in comparison with individual OS kernel in system
virtual machines). Figure 14.5 gives an overview of the dataflow of virtual machines
and containers.

Figure 14.5 � Data Flow for I/O Operation via Hypervisor and
Container

(a) Hypervisor (b) Container

Application

Guest OS device driver

Virtual I/O device

Hypervisor interception

Physical device driver

Physical I/O device

Application

Indirection through kernel control groups

Physical device driver

Physical I/O device

M14_STAL4290_09_GE_C14.indd 638 4/13/17 11:15 AM

14.3 / CONTAINER VIRTUALIZATION   639

The two noteworthy characteristics of containers are the following:

1.	 There is no need for a guest OS in the container environment. Therefore, con-
tainers are lightweight and have less overhead compared to virtual machines.

2.	 Container management software simplifies the procedure for container cre-
ation and management.

Because they are light weight, containers are an attractive alternative to virtual
machines. An additional attractive feature of containers is that they provide applica-
tion portability. Containerized applications can be quickly moved from one system
to another.

These container benefits do not mean containers are always a preferred alterna-
tive to virtual machines, as the following considerations show:

•	 Container applications are only portable across systems that support the same
OS kernel with the same virtualization support features, which typically means
Linux. Thus, a containerized Windows application would only run on Windows
machines.

•	 A virtual machine may require a unique kernel setup that is not applicable to
other VMs on the host; this requirement is addressed by the use of the guest OS.

•	 VM virtualization functions at the border of hardware and OS. It’s able to
provide strong performance isolation and security guarantees with the nar-
rowed interface between VMs and hypervisors. Containerization, which sits
in between the OS and applications, incurs lower overhead, but potentially
introduces greater security vulnerabilities.

One potential use case, cited in [KERN16], revolves around Kubernetes, an
open source container orchestration technology built by Google but now managed
by the Cloud Native Computing Foundation (CNCF). The foundation itself oper-
ates as a Linux Foundation Collaborative project. As an example, if an administra-
tor dedicates 500 Mbps to a particular application running on Kubernetes, then the
networking control plane can be involved in the scheduling of this application to find
the best place to guarantee that bandwidth. Or, by working with the Kubernetes API,
a network control plane can start making ingress firewall rules that are aware of the
container applications.

Container File System

As part of the isolation of a container, each container must maintain its own isolated
file system. The specific features vary from one container product to another, but the
essential principals are the same.

As an example, we look at the container file system used in OpenVZ. This is
depicted in Figure 14.6. The scheduler init is run to schedule user applications and
each container has its own init process, which from the hardware nodes perspective
is just another running process.

The multiple containers on a host are most likely running the same processes,
but each of them doesn’t have an individual copy even though the ls command shows
the container’s /bin directory is full of programs. Instead the containers share a tem-
plate, a design feature in which all the apps that come with the OS, and many of the

M14_STAL4290_09_GE_C14.indd 639 4/13/17 11:15 AM

640   Chapter 14 / Virtual Machines

most common applications, are packaged together as groups of files hosted by the
platform’s OS and symbolically linked into each container. This includes configura-
tion files as well, unless the container modifies them; when that happens, the OS cop-
ies the template file (called copy on write), removes the virtual sym link and puts the
modified file in the container’s file system. By using this virtual file sharing scheme, a
considerable space saving is achieved, with only locally created files actually existing
in the container’s file system.

At a disk level, a container is a file, and can easily be scaled up or down. From
a virus checking point of view, the container’s file system is mounted under a special
mount point on the hardware node so system tools at the hardware node level can
safely and securely check every file if needed.

Figure 14.6  OpenVZ File scheme

bin dev etc system

2y

/vz/root

1x 3z

users

abrady rjones

var

docsdesktop library

M14_STAL4290_09_GE_C14.indd 640 4/13/17 11:15 AM

14.3 / CONTAINER VIRTUALIZATION   641

Microservices

A concept related to containers is that of microservice. NIST SP 800-180 (NIST
Definition of Microservices, Application Containers and System Virtual Machines,
February 2016) defines a microservice as a basic element that results from the archi-
tectural decomposition of an application’s components into loosely coupled patterns
consisting of self-contained services that communicate with each other using a stan-
dard communications protocol 219 and a set of well-defined APIs, independent of
any vendor, product, or technology.

The basic idea behind microservices is, instead of having a monolithic applica-
tion stack, each specific service in an application delivery chain is broken out into
individual parts. When using containers, people are making a conscious effort to
break their infrastructure down into more understandable units. This opens an oppor-
tunity for networking technologies to make decisions on behalf of the user that they
couldn’t make before in a machine-focused world.

Two key advantages of microservices are the following:

•	 Microservices implement much smaller deployable units, which then enables
the user to push out updates or do features and capabilities much more quickly.
This coincides with continuous delivery practices, where the goal is to push out
small units without having to create a monolithic system.

•	 Microservices also support precise scalability. Because a microservice is sec-
tion of a much larger application, it can easily be replicated to create multiple
instances, and spread the load for just that one small piece of the application
instead of having to do so for the entire application.

Docker

Historically, containers emerged as a way of running applications in a more flexible
and agile way. Linux containers enabled running lightweight applications, within Linux
OS directly. Without a need for the hypervisor and virtual machines, applications can
run in isolation in the same operating system. Google has been using Linux contain-
ers in its data centers since 2006. But the container approach became more popular
with the arrival of Docker containers in 2013. Docker provides a simpler and more
standardized way to run containers compared to earlier version of containers. The
Docker container also runs in Linux. But Docker is not the only way to run containers.
Linux Containers (LXC) is another way to run containers. Both LXC and Docker have
roots in Linux. One of the reasons the Docker container is more popular compared
to competing containers such as LXC is its ability to load a container image on a host
operating system in a simple and quick manner. Docker containers are stored in the
cloud as images and called upon for execution by users when needed in a simple way.

Docker consists of the following principal components:

•	 Docker image: Docker images are read-only templates from which Docker
containers are instantiated.

•	 Docker client: A Docker client request that an image be used to create a new
container. The client can be on the same platform as a Docker host or a Docker
machine.

M14_STAL4290_09_GE_C14.indd 641 4/13/17 11:15 AM

642   Chapter 14 / Virtual Machines

•	 Docker host: A platform with it own host OS that executes containerized
applications.

•	 Docker engine: This is the lightweight runtime package that builds and runs the
Docker containers on a host system.

•	 Docker machine: The Docker machine can run on a separate system from the
Docker hosts, used to set up Docker engines. The Docker machine installs the
Docker engine on a host and configures the Docker client to talk to the Docker
engine. The Docker machine can also be used locally to set up a Docker image
on the same host as is running Docker machine.

•	 Docker registry: A Docker registry stores Docker images. After you build a
Docker image, you can push it to a public registry such as Docker hub or to a
private registry running behind your firewall. You can also search for existing
images and pull them from the registry to a host.

•	 Docker hub: This is the collaboration platform, a public repository of Docker
container images. Users can use images stored in a hub that are contributed by
others and contribute their own custom images.

	 14.4	PROCESSOR ISSUES

In a virtual environment, there are two main strategies for providing proces-
sor resources. The first is to emulate a chip as software and provide access to that
resource. Examples of this method are QEMU and the Android Emulator in the
Android SDK. They have the benefit of being easily transportable since they are not
platform dependent, but they are not very efficient from a performance standpoint, as
the emulation process is resource intensive. The second model doesn’t actually virtu-
alize processors but provides segments of processing time on the physical processors
(pCPUs) of the virtualization host to the virtual processors of the virtual machines
hosted on the physical server. This is how most of the virtualization hypervisors offer
processor resources to their guests. When the operating system in a virtual machine
passes instructions to the processor, the hypervisor intercepts the request. It then
schedules time on the host’s physical processors, sends the request for execution, and
returns the results to the VM’s operating system. This ensures the most efficient use
of the available processor resources on the physical server. To add some complexity,
when multiple VMs are contending for processor, the hypervisor acts as the traffic
controller, scheduling processor time for each VM’s request as well as directing the
requests and data to and from the virtual machines.

Along with memory, the number of processors a server has is one of the more
important metrics when sizing a server. This is especially true, and in some way more
critical, in a virtual environment than a physical one. In a physical server, typically
the application has exclusive use of all the compute resources configured in the sys-
tem. For example, in a server with four quad-core processors, the application can
utilize sixteen cores of processor. Usually, the application’s requirements are far less
than that. This is because the physical server has been sized for some possible future
state of the application that includes growth over three to five years and also incor-
porates some degree of high-water performance spikes. In reality, from a processor

M14_STAL4290_09_GE_C14.indd 642 4/13/17 11:15 AM

14.4 / PROCESSOR ISSUES   643

standpoint, most servers are vastly underutilized, which is a strong driver for consoli-
dation through virtualization as discussed earlier.

When applications are migrated to virtual environments, one of the larger top-
ics of discussion is how many virtual processors should be allocated to their virtual
machines. Since the physical server they are vacating had sixteen cores, often the
request from the application team is to duplicate that in the virtual environment,
regardless of what their actual usage was. In addition to ignoring the usage on the
physical server, another overlooked item is the improved capabilities of the proces-
sors on the newer virtualization server. If the application was migrated at the low
end of when its server’s life/lease ended, it would be three to five years. Even at three
years, Moore’s law provides processors that would be four times faster than those
on the original physical server. In order to help “right-size” the virtual machine con-
figurations, there are tools available that will monitor resource (processor, memory,
network, and storage I/O) usage on the physical servers then make recommendations
for the optimum VM sizing. If that consolidation estimate utility cannot be run, there
are a number of good practices in place. One basic rule during VM creation is to begin
with one vCPU and monitor the application’s performance. Adding additional vCPUs
in a VM is simple, requiring an adjustment in the VM settings. Most modern operating
systems do not even require a reboot before being able to recognize and utilize the
additional vCPU. Another good practice is not to overallocate the number of vCPUs
in a VM. A matching number of pCPUs need to be scheduled for the vCPUs in a VM.
If you have four vCPUs in your VM, the hypervisor needs to simultaneously schedule
four pCPUs on the virtualization host on behalf of the VM. On a very busy virtualiza-
tion host, having too many vCPUs configured for a VM can actually negatively impact
the performance of the VM’s application since it is faster to schedule a single pCPU.
This doesn’t mean there are not applications that require multiple vCPUs. There are,
and they should be configured appropriately, but most do not.

Native operating systems manage hardware by acting as the intermediary
between application code requests and the hardware. As requests for data or pro-
cessing are made, the operating system passes these to the correct device drivers,
through the physical controllers, to the storage or I/O devices, and back again. The
operating system is the central router of information and controls access to all of the
physical resources of the hardware. One key function of the operating system is to
help prevent malicious or accidental system calls from disrupting the applications
or the operating system itself. Protection rings describe level of access or privilege
inside of a computer system, and many operating systems and processor architectures
take advantage of this security model. The most trusted layer is often called Ring 0
(zero) and is where the operating system kernel works and can interact directly with
hardware. Rings 1 and 2 are where device drivers execute while user applications
run in the least trusted area, Ring 3. In practice, though, Rings 1 and 2 are not often
used, simplifying the model to trusted and untrusted execution spaces. Application
code cannot directly interact with hardware since it runs in Ring 3 and needs the
operating system to execute the code on its behalf in Ring 0. This separation prevents
unprivileged code from causing untrusted actions such as a system shutdown or an
unauthorized access of data from a disk or network connection.

Hypervisors run in Ring 0 controlling hardware access for the virtual machines
they host. The operating systems in those virtual machines also believe they run

M14_STAL4290_09_GE_C14.indd 643 4/13/17 11:15 AM

644   Chapter 14 / Virtual Machines

in Ring 0, and in a way they do, but only on the virtual hardware that is created as
part of the virtual machine. In the case of a system shutdown, the operating sys-
tem on the guest would request a shutdown command in Ring 0. The hypervisor
intercepts the request; otherwise, the physical server would be shutdown, causing
havoc for the hypervisor and any other virtual machines being hosted. Instead, the
hypervisor replies to the guest operating system that the shutdown is proceeding as
requested, which allows the guest operating system to complete the necessary soft-
ware shutdown processes.

	 14.5	MEMORY MANAGEMENT

Like the number of vCPUs, the amount of memory allocated to a virtual machine
is one of the more crucial configuration choices; in fact, memory resources are usu-
ally the first bottleneck that virtual infrastructures reach as they grow. Also, like the
virtualization of processors, memory usage in virtual environments is more about the
management of the physical resource rather than the creation of a virtual entity. As
with a physical server, a virtual machine needs to be configured with enough memory
to function efficiently by providing space for the operating system and applications.
Again, the virtual machine is configured with fewer resources than the physical host
contains. A simple example would be a physical server with 8GB of RAM. A virtual
machine provisioned with 1GB of memory would only see 1GB of memory, even
though the physical server on which it is hosted has more. When the virtual machine
uses memory resources, the hypervisor manages the memory requests through the
use of translation tables so the guest (VM) operating system addresses the memory
space at the addresses that they expect. This is a good first step, but problems remain.
Similar to processor, application owners ask for memory allocations that mirror the
physical infrastructures they migrated from, regardless of whether the size of the allo-
cation is warranted or not. This leads to overprovisioned virtual machines and wasted
memory resources. In the case of our 8GB server, only seven 1GB VMs could be
hosted, with the remaining 1GB needed for the hypervisor itself. Aside from “right-
sizing” the virtual machines based on their actual performance characteristics, there
are features built into hypervisors that help optimize memory usage. One of these is
page sharing (see Figure 14.7). Page sharing is similar to data de-duplication, a stor-
age technique that reduces the number of storage blocks being used. When a VM
is instantiated, operating system and application pages are loaded into memory. If
multiple VMs are loading the same version of the OS, or running the same applica-
tions, many of these memory blocks are duplicates. The hypervisor is already manag-
ing the virtual to physical memory transfers and can determine if a page is already
loaded into memory. Rather than loading a duplicate page into physical memory,
the hypervisor provides a link to the shared page in the virtual machine’s translation
table. On hosts where the guests are running the same operating system and the same
applications, between 10 and 40% of the actual physical memory can be reclaimed.
At 25%, an 8-GB server could host two additional 1-GB virtual machines.

Since the hypervisor manages page sharing, the virtual machine operating sys-
tems are unaware of what is happening in the physical system. Another strategy for
efficient memory use is akin to thin provisioning in storage management. This allows

M14_STAL4290_09_GE_C14.indd 644 4/13/17 11:15 AM

14.6 / I/O MANAGEMENT   645

an administrator to allocate more storage to a user than is actually present in the
system. The reason is to provide a high water mark that often is never approached.
The same can be done with virtual machine memory. We allocate 1GB of memory
but that is what is seen by the VM operating system. The hypervisor can use some
portion of that allocated memory for another VM by reclaiming older pages that are
not being used. The reclamation process is done through ballooning. The hypervisor
activates a balloon driver that (virtually) inflates and presses the guest operating
system to flush pages to disk. Once the pages are cleared, the balloon driver deflates
and the hypervisor can use the physical memory for other VMs. This process happens
during times of memory contention. If our 1GB VMs used half of their memory on
average, nine VMs would require only 4.5GB with the remainder as a shared pool
managed by the hypervisor and some for the hypervisor overhead. Even if we host
an additional three 1GB VMs, there is still a shared reserve. This capability to allo-
cate more memory than physically exists on a host is called memory overcommit. It
is not uncommon for virtualized environments to have between 1.2 and 1.5 times the
memory allocated, and in extreme cases, many times more.

There are additional memory management techniques that provide better
resource utilization. In all cases, the operating systems in the virtual machines see and
have access to the amount of memory that has been allocated to them. The hypervi-
sor manages that access to the physical memory to Ensure vs. Insure all requests are
serviced in a timely manner without impacting the virtual machines. In cases where
more physical memory is required than is available, the hypervisor will be forced to
resort to paging to disk. In multiple host cluster environments, virtual machines can
be automatically live migrated to other hosts when certain resources become scarce.

	 14.6	I/O MANAGEMENT

Application performance is often directly linked to the bandwidth that a server has
been allocated. Whether it is storage access that has been bottlenecked, or constrained
traffic to the network, either case will cause an application to be perceived as under-
performing. In this way, during the virtualization of workloads, I/O virtualization
is a critical item. The architecture of how I/O is managed in a virtual environment

Figure 14.7  Page Sharing

Virtual memory Virtual memory Virtual memory

Physical memory

M14_STAL4290_09_GE_C14.indd 645 4/13/17 11:15 AM

646   Chapter 14 / Virtual Machines

is straightforward (see Figure 14.8). In the virtual machine, the operating system
makes a call to the device driver as it would in a physical server. The device driver
then connects with the device; though in the case of the virtual server, the device is
an emulated device that is staged and managed by the hypervisor. These emulated
devices are usually a common actual device, such as an Intel e1000 network interface
card or simple generic SGVA or IDE controllers. This virtual device plugs into the
hypervisor’s I/O stack that communicates with the device driver that is mapped to a
physical device in the host server, translating guest I/O addresses to the physical host
I/O addresses. The hypervisor controls and monitors the requests from the virtual
machine’s device driver, through the I/O stack, out the physical device, and back again,
routing the I/O calls to the correct devices on the correct virtual machines. There are
some architectural differences between vendors, but the basic model is similar.

The advantages of virtualizing the workload’s I/O path are many. It enables
hardware independence by abstracting vendor-specific drivers to more generalized
versions that run on the hypervisor. A virtual machine running on an IBM server
as a host can be live migrated to an HP blade server host without worrying about
hardware incompatibilities or versioning mismatches. This abstraction enables of one
of virtualization’s greatest availability strengths: live migration. Sharing of aggregate
resources, network paths, for example, is also due to this abstraction. In more mature
solutions, capabilities exist to granularly control the types of network traffic and
the bandwidth afforded to individual VMs or groups of virtual machines to insure
adequate performance in a shared environment to guarantee a chosen Quality of
Service level. In addition to these, there are other features that enhance security and
availability. The trade-off is that the hypervisor is managing all the traffic, for which
it is designed, but it requires processor overhead. In the early days of virtualization
this was an issue that could be a limiting factor, but faster multicore processors and
sophisticated hypervisors have all but removed this concern.

Figure 14.8  I/O in a Virtual Environment

Applications

NIC driver

NIC

Hypervisor

V
ir

tu
al

 m
ac

hi
ne

Ph
ys

ic
al

 s
er

ve
r

Network

Operating system

NIC driver

Emulated device

M14_STAL4290_09_GE_C14.indd 646 4/13/17 11:15 AM

14.7 / VMware ESXi   647

A faster processor enables the hypervisor to perform its I/O management func-
tions more quickly, and also speeds the rate at which the guest processor processing is
done. Explicit hardware changes for virtualization support also improve performance.
Intel offers I/O Acceleration Technology (I/OAT), a physical subsystem that moves
memory copies via direct memory access (DMA) from the main processor to this
specialized portion of the motherboard. Though designed for improving network
performance, remote DMA also improves live migration speeds. Offloading work
from the processor to intelligent devices is another path to improved performance.
Intelligent network interface cards support a number of technologies in this space.
TCP Offload Engine (TOE) removes the TCP/IP processing from the server proces-
sor entirely to the NIC. Other variations on this theme are Large Receive Offload
(LRO), which aggregates incoming packets into bundles for more efficient process-
ing, and its inverse Large Segment Offload (LSO), which allows the hypervisor to
aggregate multiple outgoing TCP/IP packets and has the NIC hardware segment
them into separate packets.

In addition to the model described earlier, some applications or users will
demand a dedicated path. In this case, there are options to bypass the hypervisor’s
I/O stack and oversight, and directly connect from the virtual machine’s device driver
to physical device on the virtualization host. This provides the virtue of having a
dedicated resource without any overhead delivering the greatest throughput possible.
In addition to better throughput, since the hypervisor is minimally involved, there is
less impact on the host server’s processor. The disadvantage to a directly connected
I/O device is that the virtual machine is tied to the physical server it is running on.
Without the device abstraction, live migration is not easily possible, which can poten-
tially reduce availability. Features provided by the hypervisor, like memory over-
commit or I/O control, are not available, which could waste underutilized resources
and mitigate the need for virtualization. Though a dedicated device model provides
better performance, today it is rarely used, as datacenters opt for the flexibility that
virtualized I/O provides.

	 14.7	VMware ESXi

ESXi is a commercially available hypervisor from VMware that provides users a
Type 1, or bare-metal, hypervisor to host virtual machines on their servers. VMware
developed their initial x86-based solutions in the late 1990s and were the first
to deliver a commercial product to the marketplace. This first-to-market timing,
coupled with continuous innovations, has kept VMware firmly on top of the heap
in market share, but more importantly, in the lead from a breadth of feature and
maturity of solution standpoint. The growth of the virtualization market and the
changes in the VMware solutions have been outlined elsewhere, but there are
certain fundamental differences in the ESXi architecture compared to the other
available solutions.

The virtualization kernel (VMkernel) is the core of the hypervisor and performs
all of the virtualization functions. In earlier releases of ESX (see Figure 14.9a), the
hypervisor was deployed alongside a Linux installation that served as a manage-
ment layer. Certain management functions like logging, name services, and often

M14_STAL4290_09_GE_C14.indd 647 4/13/17 11:15 AM

648   Chapter 14 / Virtual Machines

third-party agents for backup or hardware monitoring were installed on this service
console. It also made a great place for administrators to run other scripts and pro-
grams. The service console had two issues. The first was that it was considerably larger
than the hypervisor; a typical install required about 32MB for the hypervisor and
about 900MB for the service console. The second was that the Linux-based service
console was a well-understood interface and system, and was vulnerable to attack by
malware or people. VMware then re-architected ESX to be installed and managed
without the service console.

This new architecture, dubbed ESXi (the “i” for integrated) has all of the man-
agement services as part of the VMkernel (see Figure 14.9b). This provides a smaller
and much more secure package than before. Current versions are in the neighborhood

Figure 14.9  ESX and ESXi

(a) ESX

(b) ESXi

Hardware
monitoring

agents

VMware
management

agents

Infrastructure
agents

(NTP, Syslog)

CLI commands
for configuration

and support

VM support and
resource

management

VM VM

VMkernel

System
management

agents

CLI commands
for configuration

and support

Agentless
systems

management

Agentless
hardware

monitoring

VMware
management
framework

Common
information

model

Infrastructure
agents

(NTP, Syslog)

VM support and
resource

management

Local support consoles

VM VM

VMkernel

M14_STAL4290_09_GE_C14.indd 648 4/13/17 11:15 AM

14.7 / VMware ESXi   649

of about 100MB. This small size allows server vendors to deliver hardware with ESXi
already available on flash memory in the server. Configuration management, moni-
toring, and scripting are now all available through command line interface utilities.
Third-party agents are also run in the VMkernel after being certified and digitally
signed. This allows, for example, a server vendor who provides hardware monitoring,
to include an agent in the VMkernel that can seamlessly return hardware metrics
such as internal temperature or component statuses to either VMware management
tools or other management tools.

Virtual machines are hosted via the infrastructure services in the VMkernel.
When resources are requested by the virtual machines, the hypervisor fulfills those
requests, working through the appropriate device drivers. As described earlier, the
hypervisor coordinates all of the transactions between the multiple virtual machines
and the hardware resources on the physical server.

Though the examples discussed so far are very basic, VMware ESXi provides
advanced and sophisticated features for availability, scalability, security, manage-
ability, and performance. Additional capabilities are introduced with each release,
improving the capabilities of the platform. Some examples are as follows:

•	 Storage VMotion: Permits the relocation of the data files that compose a virtual
machine, while that virtual machine is in use.

•	 Fault Tolerance: Creates a lockstep copy of a virtual machine on a different
host. If the original host suffers a failure, the virtual machine’s connections
get shifted to the copy, without interrupting users or the application they are
using. This differs from High Availability, which would require a virtual machine
restart on another server.

•	 Site Recovery Manager: Uses various replication technologies to copy selected
virtual machines to a secondary site in the case of a data center disaster. The
secondary site can be stood up in a matter of minutes; virtual machines power-
on in a selected and tiered manner automatically to insure a smooth and accu-
rate transition.

•	 Storage and Network I/O Control: Allows an administrator to allocate net-
work bandwidth in a virtual network in a very granular manner. These policies
are activated when there is contention on the network and can guarantee that
specific virtual machines, groups of virtual machines that comprise a particular
application, or classes of data or storage traffic have the required priority and
bandwidth to operate as desired.

•	 Distributed Resource Scheduler (DRS): Intelligently places virtual machines
on hosts for startup and can automatically balance the workloads via VMotion
based on business policies and resource usage. An aspect of this, Distributed
Power Management (DPM), can power-off (and on) physical hosts as they are
needed. Storage DRS can actively migrate virtual machine files based on stor-
age capacity and I/O latency, again based on the business rules and resource
utilization.

These are just a few of the features that extend VMware’s ESXi solution past
being merely a hypervisor that can support virtual machines, into a platform for the
new data center and the foundation for cloud computing.

M14_STAL4290_09_GE_C14.indd 649 4/13/17 11:15 AM

650   Chapter 14 / Virtual Machines

	 14.8	Microsoft Hyper-V AND Xen VARIANTS

In the early 2000s, an effort based in Cambridge University led to the development
of the Xen, an open-source hypervisor. Over time, and as the need for virtualization
increased, many hypervisor variants have come out of the main Xen branch. Today,
in addition to the open-source hypervisor, there are a number of Xen-based com-
mercial hypervisor offerings from Citrix, Oracle, and others. Architected differently
than the VMware model, Xen requires a dedicated operating system or domain to
work with the hypervisor, similar to the VMware service console (see Figure 14.10).
This initial domain is known as domain zero (Dom0), runs the Xen tool stack, and
as the privileged area, has direct access to the hardware. Many versions of Linux
contain a Xen hypervisor that is capable of creating a virtual environment. Some of
these are CentOS, Debian, Fedora, Ubuntu, OracleVM, Red Hat (RHEL), SUSE,
and XenServer. Companies that use Xen-based virtualization solutions do so due to
the lower (or no) cost of the software, or due to their own in-house Linux expertise.

Guests on Xen are unprivileged domains, or sometimes user domains, referred
to as DomU. Dom0 provides access to network and storage resources to the guests
via BackEnd drivers that communicate with the FrontEnd drivers in DomU. Unless
there are pass-through devices configured (usually USB), all of the network and
storage I/O is handled through Dom0. Since Dom0 is itself an instance of Linux, if
something unexpected happens to it, all of the virtual machines it supports will be
affected. Standard operating system maintenance like patching also can potentially
affect the overall availability.

Like most open-source offerings, Xen does not contain many of the advanced
capabilities offered by VMware ESXi, though with each release, additional features
appear and existing features are enhanced.

Microsoft has had a number of virtualization technologies, including Virtual
Server, a Type 2 hypervisor offering that was acquired in 2005 and is still available
today at no cost. Microsoft Hyper-V, a Type 1 hypervisor, was first released in 2008
as part of the Windows Server 2008 Operating System release. Similar to the Xen
architecture, Hyper-V has a parent partition that serves as an administrative adjunct
to the Type 1 hypervisor (see Figure 14.11). Guest virtual machines are designated
as child partitions. The parent partition runs the Windows Server operating system
in addition to its functions, such as managing the hypervisor, the guest partitions, and

Figure 14.10  Xen

Dom0

drivers

DomU

KernelU

Xen Hypervisor

Hardware

Kernel0

DomU

KernelU

M14_STAL4290_09_GE_C14.indd 650 4/13/17 11:15 AM

14.9 / Java VM   651

the devices drivers. Similar to the FrontEnd and BackEnd drivers in Xen, the parent
partition in Hyper-V uses a Virtualization Service Provider (VSP) to provide device
services to the child partitions. The child partitions communicate with the VSPs using
a Virtualization Service Client (or Consumer) (VSC) for their I/O needs.

Microsoft Hyper-V has similar availability challenges to Xen due to the oper-
ating system needs in the parent partition, the resource contention an extra copy of
Windows requires on the server, and the single I/O conduit. From a feature stand-
point, Hyper-V is very robust, though not as widely used as ESXi since it is still
relatively new to the marketplace. As time passes and new functionality appears,
adoption will probably increase.

	 14.9	Java VM

Though the Java Virtual Machine (JVM) has the term virtual machine as part of its
name, its implementation and uses are different from the models we have covered.
Hypervisors support one or more virtual machines on a host. These virtual machines
are self-contained workloads, each supporting an operating system and applications,
and from their perspective, have access to a set of hardware devices that provide
compute, storage, and I/O resources. The goal of a Java Virtual Machine is to provide
a runtime space for a set of Java code to run on any operating system staged on
any hardware platform, without needing to make code changes to accommodate the
different operating systems or hardware. Both models are aimed at being platform
independent through the use of some degree of abstraction.

The JVM is described as being an abstract computing machine, consisting of
an instruction set, a pc (program counter) register, a stack to hold variables and
results, a heap for runtime data and garbage collection, and a method area for code
and constants. The JVM can support multiple threads and each thread has its own
register and stack areas, though the heap and method areas are shared among all of
the threads. When the JVM is instantiated, the runtime environment is started, the
memory structures are allocated and populated with the selected method (code)
and variables, and the program begins. The code run in the JVM is interpreted in
real time from the Java language into the appropriate binary code. If that code is
valid, and adheres to the expected standards, it will begin processing. If it is invalid,

Figure 14.11  Hyper-V

Parent partition

drivers

Child partition

Kernel

Microsoft Hyper-V

Hardware

Kernel

Child partition

Kernel

WMI

VSP VSC VSC

VM
workers

VMBus

M14_STAL4290_09_GE_C14.indd 651 4/13/17 11:15 AM

652   Chapter 14 / Virtual Machines

and the process fails, an error condition is raised and returned to the JVM and the
user.

Java and JVMs are used in a very wide variety of areas including Web appli-
cations, mobile devices, and smart devices from television set-top boxes to gaming
devices to Blu-ray players and other items that use smart cards. Java’s promise of
“Write Once, Run Anywhere” provides an agile and simple deployment model, allow-
ing applications to be developed independent of the execution platform.

  14.10	LINUX VSERVER VIRTUAL MACHINE ARCHITECTURE

Linux VServer is an open-source, fast, virtualized container approach to imple-
menting virtual machines on a Linux server [SOLT07, LIGN05]. Only a single copy
of the Linux kernel is involved. VServer consists of a relatively modest modifica-
tion to the kernel plus a small set of OS userland1 tools. The VServer Linux kernel
supports a number of separate virtual servers. The kernel manages all system
resources and tasks, including process scheduling, memory, disk space, and proces-
sor time.

Architecture

Each virtual server is isolated from the others using Linux kernel capabilities. This
provides security and makes it easy to set up multiple virtual machines on a sin-
gle platform. The isolation involves four elements: chroot, chcontext, chbind, and
capabilities.

The chroot command is a UNIX or Linux command to make the root direc-
tory (/) become something other than its default for the lifetime of the current pro-
cess. It can only be run by privileged users and is used to give a process (commonly
a network server such as FTP or HTTP) access to a restricted portion of the file
system. This command provides file system isolation. All commands executed by
the virtual server can only affect files that start with the defined root for that server.

The chcontext Linux utility allocates a new security context and executes com-
mands in that context. The usual or hosted security context is the context 0. This
context has the same privileges as the root user (UID 0): This context can see and
kill other tasks in the other contexts. Context number 1 is used to view other contexts
but cannot affect them. All other contexts provide complete isolation: Processes from
one context can neither see nor interact with processes from another context. This
provides the ability to run similar contexts on the same computer without any interac-
tion possible at the application level. Thus, each virtual server has its own execution
context that provides process isolation.

The chbind utility executes a command and locks the resulting process and
its children into using a specific IP address. Once called, all packets sent out by this
virtual server through the system’s network interface are assigned the sending IP
address derived from the argument given to chbind. This system call provides network

1 The term userland refers to all application software that runs in user space rather than kernel space. OS
userland usually refers to the various programs and libraries the operating system uses to interact with the
kernel: software that performs input/output, manipulates file system objects, etc.

M14_STAL4290_09_GE_C14.indd 652 4/13/17 11:15 AM

14.10 / LINUX VSERVER VIRTUAL MACHINE ARCHITECTURE   653

isolation: Each virtual server uses a separate and distinct IP address. Incoming traffic
intended for one virtual server cannot be accessed by other virtual servers.

Finally, each virtual server is assigned a set of capabilities. The concept of capa-
bilities, as used in Linux, refers to a partitioning of the privileges available to a root
user, such as the ability to read files or to trace processes owned by another user.
Thus, each virtual server can be assigned a limited subset of the root user’s privileges.
This provides root isolation. VServer can also set resource limits, such as limits to the
amount of virtual memory a process may use.

Figure 14.12 shows the general architecture of Linux VServer. VServer pro-
vides a shared, virtualized OS image, consisting of a root file system, and a shared
set of system libraries and kernel services. Each VM can be booted, shut down, and
rebooted independently. Figure 14.12 shows three groupings of software running on
the computer system. The hosting platform includes the shared OS image and a privi-
leged host VM, whose function is to monitor and manage the other VMs. The virtual
platform creates virtual machines and is the view of the system seen by the applica-
tions running on the individual VMs.

Process Scheduling

The Linux VServer virtual machine facility provides a way of controlling VM use of
processor time. VServer overlays a token bucket filter (TBF) on top of the standard
Linux schedule. The purpose of the TBF is to determine how much of the processor
execution time (single processor, multiprocessor, or multicore) is allocated to each VM.
If only the underlying Linux scheduler is used to globally schedule processes across all
VMs, then resource hunger processes in one VM crowd out processes in other VMs.

Figure 14.13 illustrates the TBF concept. For each VM, a bucket is defined with
a capacity of S tokens. Tokens are added to the bucket at a rate of R tokens during
every time interval of length T. When the bucket is full, additional incoming tokens
are simply discarded. When a process is executing on this VM, it consumes one token
for each timer clock tick. If the bucket empties, the process is put in a hold and cannot
be restarted until the bucket is refilled to a minimum threshold value of M tokens. At
that point, the process is rescheduled. A significant consequence of the TBF approach

Figure 14.12  Linux VServer Architecture

VM admin.
Remote admin.
Core services

Server
applications

Standard OS image

Server
applications

/proc

/hom
e

/usr

/dev

/proc

/hom
e

/usr

/dev

/proc

/hom
e

/usr

/dev

VMhost VM1 VMn

H
osting platform

V
irtual platform

M14_STAL4290_09_GE_C14.indd 653 4/13/17 11:15 AM

654   Chapter 14 / Virtual Machines

is that a VM may accumulate tokens during a period of quiescence, then later use the
tokens in a burst when required.

Adjusting the values of R and T allows for regulating the percentage of capac-
ity that a VM can claim. For a single processor, we can define capacity allocation as
follows:

R
T

= fraction of processor allocation

This equation denotes the fraction of a single processor in a system. Thus, for example,
if a system is multicore with four cores and we wish to provide one VM an average of
one dedicated processor, then we set R = 1 and T = 4. The overall system is limited
as follows. If there are N VMs, then:

a
N

i=1

Ri

Ti
… 1

The parameters S and M are set so as to penalize a VM after a certain amount
of burst time. The following parameters must be configured or allocated for a VM:
Following a burst time of B, the VM suffers a hold time of H. With these parameters,
it is possible to calculate the desired values of S and M as follows:

 M = W * H *
R
T

 S = W * B * a1 -
R
T
b

where W is the rate at which the schedule runs (makes decisions). For example, con-
sider a VM with a limit of 1/2 of processor time, and we wish to say that after using
the processor for 30 seconds, there will be a hold time of 5 seconds. The scheduler
runs at 1000 Hz. This requirement is met with the following values: M = 1,000 *
5 * 0.5 = 2500 tokens; S = 1000 * 30 * (1 - 0.5) = 15,000 tokens.

Figure 14.13  Linux VServer Token Bucket Scheme

Bucket size=
S tokens

Minimum
threshold =

S tokens

Token input rate =
 R /T tokens per second Tokens can accumulate

up to bucket size; excess
tokens discarded

Running process consumes
1 token/timer tick

Current bucket
occupancy

M14_STAL4290_09_GE_C14.indd 654 4/13/17 11:15 AM

14.12 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   655

  14.11	SUMMARY

Virtualization technology enables a single PC or server to simultaneously run mul-
tiple operating systems or multiple sessions of a single OS. In essence, the host oper-
ating system can support a number of virtual machines (VM), each of which has the
characteristics of a particular OS and, in some versions of virtualization, the charac-
teristics of a particular hardware platform.

A common virtual machine technology makes use of a virtual machine moni-
tor (VMM), or hypervisor, which is at a lower level than the VM and supports VMs.
There are two types of hypervisors, distinguished by whether there is another oper-
ating system between the hypervisor and the host. A Type 1 hypervisor executes
directly on the machine hardware, and a Type 2 hypervisor operates on top of the
host operating system.

A very different approach to implementing a VM environment is exemplified by
the Java VM. The goal of a Java VM is to provide a runtime space for a set of Java code
to run on any operating system staged on any hardware platform, without needing
to make code changes to accommodate the different operating systems or hardware.

  14.12	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

container
container virtualization
consolidation ratio
Docker
guest OS
hardware virtualization
hardware-assisted

virtualization
host OS

hypervisor
Java Virtual Machine

(JVM)
kernel control group
memory ballooning
memory overcommit
microservice
page sharing
paravirtualization

type-1 hypervisor
type-2 hypervisor
virtual appliance
virtualization container
virtualization
virtual machine (VM)
virtual machine monitor

(VMM)

Review Questions

	14.1.	 Briefly describe Type 1 and Type 2 virtualization.
	14.2.	 Briefly describe container virtualization.
	14.3.	 Explain the concept of ballooning.
	14.4.	 Give a brief description of Java VM.

Problems

	14.1.	 Techniques like memory overcommit and page sharing permit virtual machines to be
allocated more resources than are physically in a single virtualization host. Does this
allow the aggregate of the virtual machines to perform more real work than a physical
workload would be capable of on the same hardware?

M14_STAL4290_09_GE_C14.indd 655 4/13/17 11:15 AM

656   Chapter 14 / Virtual Machines

	14.2.	 Type 1 hypervisors operate directly on physical hardware without any intervening
operating system. Type 2 hypervisors run as an application installed on an existing
operating system. Type 1 hypervisors perform much better than Type 2 hypervisors
since there is no intervening layer to negotiate between themselves and the system
hardware, nor do they need to contend for resources with another controlling layer
of software. Why then are Type 2 hypervisors widely used? What are some of the use
cases?

	14.3.	 When virtualization first appeared in the x86 marketplace, many server vendors were
skeptical of the technology and were concerned that consolidation would impact the
sales of servers. Instead, server vendors found that they were selling larger, costlier
servers. Why did this happen?

	14.4.	 Providing additional bandwidth for virtualization servers initially involved additional
network interface cards (NICs) for more network connections. With the advent of
increasingly greater network backbone bandwidths (10Gbit/s, 40Gbit/s, and 100Gbit/s),
fewer NICs are necessary. What issues might result from these converged network con-
nections and how might they be resolved?

	14.5.	 Virtual machines are presented with storage in manners similar to physical machines
via TCP/IP, Fibre-Channel, or iSCSI connections. There are features in virtualization
that optimize memory and processor usage, and advanced features that can provide
more efficient use of I/O resources. What do you think might be available to provide
better use of storage resources in a virtualized environment?

M14_STAL4290_09_GE_C14.indd 656 4/13/17 11:15 AM

657

Operating System Security
15.1	 Intruders and Malicious Software

System Access Threats
Countermeasures

15.2	 Buffer Overflow
Buffer Overflow Attacks
Compile-Time Defenses
Runtime Defenses

15.3	 Access Control
File System Access Control
Access Control Policies

15.4	 Unix Access Control
Traditional UNIX File Access Control
Access Control Lists in UNIX

15.5	 Operating Systems Hardening
Operating System Installation: Initial Setup and Patching
Remove Unnecessary Services, Application, and Protocols
Configure Users, Groups, and Authentication
Configure Resource Controls
Install Additional Security Controls
Test the System Security

15.6	 Security Maintenance
Logging
Data Backup and Archive

15.7	 Windows Security
Access Control Scheme
Access Token
Security Descriptors

15.8	 Summary

15.9	 Key Terms, Review Questions, and Problems

Chapter

M15_STAL4290_09_GE_C15.indd 657 4/13/17 12:22 PM

658   Chapter 15 / Operating System Security

	 15.1	INTRUDERS AND MALICIOUS SOFTWARE

An OS associates a set of privileges with each process. These privileges dictate what
resources the process may access, including regions of memory, files, and privileged
system instructions. Typically, a process that executes on behalf of a user has the
privileges that the OS recognizes for that user. A system or utility process may have
privileges assigned at configuration time.

On a typical system, the highest level of privilege is referred to as administrator,
supervisor, or root access.1 Root access provides access to all the functions and ser-
vices of the operating system. With root access, a process has complete control of the
system and can add or change programs and files, monitor other processes, send and
receive network traffic, and alter privileges.

A key security issue in the design of any OS is to prevent, or at least detect,
attempts by a user or a piece of malicious software (malware) from gaining unau-
thorized privileges on the system and, in particular, from gaining root access. In this
section, we briefly summarize the threats and countermeasures related to this security
issue. Subsequent sections will examine some of the issues raised in this section in
more detail.

System Access Threats

System access threats fall into two general categories: intruders and malicious
software.

Intruders  One of the most common threats to security is an intruder (the other
is viruses), often referred to as a hacker or cracker. In an important early study of
intrusion, Anderson [ANDE80] identifies three classes of intruders:

•	 Masquerader: An individual who is not authorized to use the computer
and who penetrates a system’s access controls to exploit a legitimate user’s
account

1On UNIX systems, the administrator, or superuser, account is called root; hence the term root access.

Learning Objectives

After studying this chapter, you should be able to:
•	 Assess the key security issues that relate to operating systems.
•	 Understand the design issues for file system security.
•	 Distinguish among various types of intruder behavior patterns and under-

stand the types of intrusion techniques used to breach computer security.
•	 Compare and contrast two methods of access control.
•	 Understand how to defend against buffer overflow attacks.

M15_STAL4290_09_GE_C15.indd 658 4/13/17 12:22 PM

15.1 / INTRUDERS AND MALICIOUS SOFTWARE   659

•	 Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

•	 Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider; the misfeasor generally is an insider;
and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore the Internet and other net-
works and see what is out there. At the serious end are individuals who are attempt-
ing to read privileged data, perform unauthorized modifications to data, or disrupt
the system.

The objective of the intruder is to gain access to a system or to increase the
range of privileges accessible on a system. Most initial attacks use system or soft-
ware vulnerabilities that allow a user to execute code that opens a backdoor into
the system. Intruders can get access to a system by exploiting attacks such as buffer
overflows on a program that runs with certain privileges. We will introduce buffer
overflow attacks in Section 15.2.

Alternatively, the intruder attempts to acquire information that should have
been protected. In some cases, this information is in the form of a user password.
With knowledge of some other user’s password, an intruder can log in to a system
and exercise all the privileges accorded to the legitimate user.

Malicious Software  Perhaps the most sophisticated types of threats to computer
systems are presented by programs that exploit vulnerabilities in computing systems.
Such threats are referred to as malicious software, or malware. In this context, we are
concerned with threats to application programs as well as utility programs, such as
editors and compilers, and kernel-level programs.

Malicious software can be divided into two categories: those that need a host
program, and those that are independent. The former, referred to as parasitic, are
essentially fragments of programs that cannot exist independently of some actual
application program, utility, or system program. Viruses, logic bombs, and backdoors
are examples. The latter are self-contained programs that can be scheduled and run
by the operating system. Worms and bot programs are examples.

We can also differentiate between those software threats that do not repli-
cate and those that do. The former are programs or fragments of programs that
are activated by a trigger. Examples are logic bombs, backdoors, and bot programs.
The latter consists of either a program fragment or an independent program that,
when executed, may produce one or more copies of itself to be activated later on
the same system or some other system. Viruses and worms are examples.

Malicious software can be relatively harmless, or may perform one or more of
a number of harmful actions, including destroying files and data in main memory,
bypassing controls to gain privileged access, and providing a means for intruders to
bypass access controls.

M15_STAL4290_09_GE_C15.indd 659 4/13/17 12:22 PM

660   Chapter 15 / Operating System Security

Countermeasures

Intrusion Detection  RFC 4949 (Internet Security Glossary) defines intrusion
detection as follows: A security service that monitors and analyzes system events for
the purpose of finding, and providing real-time or near real-time warning of, attempts
to access system resources in an unauthorized manner.

Intrusion detection systems (IDSs) can be classified as follows:

•	 Host-based IDS: Monitors the characteristics of a single host and the events
occurring within that host for suspicious activity

•	 Network-based IDS: Monitors network traffic for particular network segments
or devices and analyzes network, transport, and application protocols to iden-
tify suspicious activity

An IDS comprises three logical components:

•	 Sensors: Sensors are responsible for collecting data. The input for a sensor
may be any part of a system that could contain evidence of an intrusion. Types
of input to a sensor include network packets, log files, and system call traces.
Sensors collect and forward this information to the analyzer.

•	 Analyzers: Analyzers receive input from one or more sensors or from other ana-
lyzers. The analyzer is responsible for determining if an intrusion has occurred.
The output of this component is an indication that an intrusion has occurred.
The output may include evidence supporting the conclusion that an intrusion
occurred. The analyzer may provide guidance about what actions to take as a
result of the intrusion.

•	 User interface: The user interface to an IDS enables a user to view output from
the system or control the behavior of the system. In some systems, the user
interface may equate to a manager, director, or console component.

Intrusion detection systems are typically designed to detect human intruder
behavior as well as malicious software behavior.

Authentication  In most computer security contexts, user authentication is the
fundamental building block and the primary line of defense. User authentication
is the basis for most types of access control and for user accountability. RFC 4949
defines user authentication as follows:

The process of verifying an identity claimed by or for a system entity. An
authentication process consists of two steps:

1.	 Identification step: Presenting an identifier to the security system (Identifiers
should be assigned carefully, because authenticated identities are the basis for
other security services, such as access control service.)

2.	 Verification step: Presenting or generating authentication information that cor-
roborates the binding between the entity and the identifier

For example, user Alice Toklas could have the user identifier ABTOKLAS. This
information needs to be stored on any server or computer system that Alice wishes
to use, and could be known to system administrators and other users. A typical item

M15_STAL4290_09_GE_C15.indd 660 4/13/17 12:22 PM

15.1 / INTRUDERS AND MALICIOUS SOFTWARE   661

of authentication information associated with this user ID is a password, which is
kept secret (known only to Alice and to the system). If no one is able to obtain or
guess Alice’s password, then the combination of Alice’s user ID and password enables
administrators to set up Alice’s access permissions and audit her activity. Because
Alice’s ID is not secret, system users can send her e-mail, but because her password
is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed
identity to the system; user authentication is the means of establishing the validity
of the claim.

There are four general means of authenticating a user’s identity, which can be
used alone or in combination:

1.	 Something the individual knows: Examples include a password, a personal iden-
tification number (PIN), or answers to a prearranged set of questions.

2.	 Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

3.	 Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

4.	 Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Further, there is a significant
administrative overhead for managing password and token information on systems
and securing such information on systems. With respect to biometric authenticators,
there are a variety of problems, including dealing with false positives and false nega-
tives, user acceptance, cost, and convenience.

Access Control  Access control implements a security policy that specifies who or
what (e.g., in the case of a process) may have access to each specific system resource
and the type of access that is permitted in each instance.

An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate a user seek-
ing access. Typically, the authentication function determines whether the user is per-
mitted to access the system at all. Then the access control function determines if the
specific requested access by this user is permitted. A security administrator maintains
an authorization database that specifies what type of access to which resources is
allowed for this user. The access control function consults this database to determine
whether to grant access. An auditing function monitors and keeps a record of user
accesses to system resources.

Firewalls  Firewalls can be an effective means of protecting a local system or
network of systems from network-based security threats while affording access to

M15_STAL4290_09_GE_C15.indd 661 4/13/17 12:22 PM

662   Chapter 15 / Operating System Security

the outside world via wide area networks and the Internet. Traditionally, a firewall is a
dedicated computer that interfaces with computers outside a network and has special
security precautions built into it in order to protect sensitive files on computers within
the network. It is used to service outside network, especially Internet connections and
dial-in lines. Personal firewalls implemented in hardware or software, and associated
with a single workstation or PC, are also common.

[BELL94] lists the following design goals for a firewall:

1.	 All traffic from inside to outside, and vice versa, must pass through the firewall.
This is achieved by physically blocking all access to the local network except
via the firewall.

2.	 Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies.

3.	 The firewall itself is immune to penetration. This implies the use of a hardened
system with a secured operating system. Trusted computer systems are suitable
for hosting a firewall and often required in government applications.

	 15.2	BUFFER OVERFLOW

Main memory and virtual memory are system resources subject to security threats
and for which security countermeasures need to be taken. The most obvious security
requirement is the prevention of unauthorized access to the memory contents of
processes. If a process has not declared a portion of its memory to be sharable, then
no other process should have access to the contents of that portion of memory. If a
process declares a portion of memory may be shared by other designated processes,
then the security service of the OS must ensure that only the designated processes
have access. The security threats and countermeasures discussed in the preceding
section are relevant to this type of memory protection.

In this section, we summarize another threat, which involves memory protection.

Buffer Overflow Attacks

Buffer overflow, also known as a buffer overrun, is defined in the NIST (National
Institute of Standards and Technology) Glossary of Key Information Security Terms
as follows:

Buffer overflow: A condition at an interface under which more input can be placed
into a buffer or data-holding area than the capacity allocated, overwriting other
information. Attackers exploit such a condition to crash a system or to insert spe-
cially crafted code that allows them to gain control of the system.

A buffer overflow can occur as a result of a programming error when a process
attempts to store data beyond the limits of a fixed-sized buffer and consequently

M15_STAL4290_09_GE_C15.indd 662 4/13/17 12:22 PM

15.2 / BUFFER OVERFLOW   663

overwrites adjacent memory locations. These locations could hold other program
variables or parameters or program control flow data such as return addresses and
pointers to previous stack frames. The buffer could be located on the stack, in the
heap, or in the data section of the process. The consequences of this error include cor-
ruption of data used by the program, unexpected transfer of control in the program,
possibly memory access violations, and very likely eventual program termination.
When done deliberately as part of an attack on a system, the transfer of control could
be to any code of the attacker’s choosing, resulting in the ability to execute arbitrary
code with the privileges of the attacked process. Buffer overflow attacks are one of
the most prevalent and dangerous types of security attacks.

To illustrate the basic operation of a common type of buffer overflow, known
as stack overflow, consider the C main function given in Figure 15.1a. This contains
three variables (valid, str1, and str2),2 whose values will typically be saved in
adjacent memory locations. Their order and location depends on the type of variable
(local or global), the language and compiler used, and the target machine architec-
ture. For this example, we assume they are saved in consecutive memory locations,
from highest to lowest, as shown in Figure 15.2.3 This is typically the case for local
variables in a C function on common processor architectures such as the Intel Pentium
family. The purpose of the code fragment is to call the function next_tag(str1)

2In this example, the flag variable is saved as an integer rather than a Boolean. This is done because it is
the classic C style and to avoid issues of word alignment in its storage. The buffers are deliberately small
to accentuate the buffer overflow issue being illustrated.
3Address and data values are specified in hexadecimal in this and related figures. Data values are also
shown in ASCII where appropriate.

Figure 15.1  Basic Buffer Overflow Example

int main(int argc, char *argv[]) {
    int valid = FALSE;
    char str1[8];
    char str2[8];
    next_tag(str1);
    gets(str2);
    if (strncmp(str1, str2, 8) == 0)
      valid = TRUE;
    printf(”buffer1: str1(%s), str2(%s), valid(%d) \n”, str1, str2, valid);

}

(b) Basic buffer overflow example runs

$ cc -g -o buffer1 buffer1.c
$./buffer1
START
buffer1: str1(START), str2(START), valid(1)
$./buffer1
EVILINPUTVALUE
buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)
$./buffer1
BADINPUTBADINPUT

buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

(a) Basic buffer overflow C code

M15_STAL4290_09_GE_C15.indd 663 4/13/17 12:22 PM

664   Chapter 15 / Operating System Security

to copy into str1 some expected tag value. Let’s assume this will be the string
START. It then reads the next line from the standard input for the program using the
C library gets() function, then compares the string read with the expected tag. If
the next line did indeed contain just the string START, this comparison would succeed
and the variable valid would be set to TRUE.4 This case is shown in the first of the
three example program runs in Figure 15.1b. Any other input tag would leave it with
the value FALSE. Such a code fragment might be used to parse some structured net-
work protocol interaction or formatted text file.

The problem with this code exists because the traditional C library gets()
function does not include any checking on the amount of data copied. It reads the
next line of text from the program’s standard input up until the first newline5

4In C, the logical values FALSE and TRUE are simply integers with the values 0 and 1 (or indeed any non-
zero value), respectively. Symbolic defines are often used to map these symbolic names to their underlying
value, as was done in this program.
5The newline (NL) or linefeed (LF) character is the standard end of line terminator for UNIX systems,
and hence for C, and is the character with the ASCII value 0x0a.

Figure 15.2  Basic Buffer Overflow Stack Values

Memory
Address

Before
gets(str2)

After
gets(str2)

Contains
Value of

.

bffffbf4 34fcffbf
4 . . .

34fcffbf
3 . . .

argv

bffffbf0 01000000
. . . .

01000000
. . . .

argc

bffffbec c6bd0340
. . . @

c6bd0340
. . . @

return addr

bffffbe8 08fcffbf
. . . .

08fcffbf
. . . .

old base ptr

bffffbe4 00000000
. . . .

01000000
. . . .

valid

bffffbe0 80640140
. d . @

00640140
. d . @

bffffbdc 54001540
T . . @

4e505554
N P U T

str1[4-7]

bffffbd8 53544152
S T A R

42414449
B A D I

str1[0-3]

bffffbd4 00850408
. . . .

4e505554
N P U T

str2[4-7]

bffffbd0 30561540
0 V . @

42414449
B A D I

str2[0-3]

.

M15_STAL4290_09_GE_C15.indd 664 4/13/17 12:22 PM

15.2 / BUFFER OVERFLOW   665

character occurs and copies it into the supplied buffer followed by the NULL termi-
nator used with C strings.6 If more than seven characters are present on the input
line, when read in they will (along with the terminating NULL character) require
more room than is available in the str2 buffer. Consequently, the extra characters
will overwrite the values of the adjacent variable, str1 in this case. For example, if
the input line contained EVILINPUTVALUE, the result will be that str1 will be
overwritten with the characters TVALUE, and str2 will use not only the eight char-
acters allocated to it but seven more from str1 as well. This can be seen in the second
example run in Figure 15.1b. The overflow has resulted in corruption of a variable
not directly used to save the input. Because these strings are not equal, valid also
retains the value FALSE. Further, if 16 or more characters were input, additional
memory locations would be overwritten.

The preceding example illustrates the basic behavior of a buffer overflow. At
its simplest, any unchecked copying of data into a buffer could result in corruption of
adjacent memory locations, which may be other variables, or possibly program con-
trol addresses and data. Even this simple example could be taken further. Knowing
the structure of the code processing it, an attacker could arrange for the overwritten
value to set the value in str1 equal to the value placed in str2, resulting in the
subsequent comparison succeeding. For example, the input line could be the string
BADINPUTBADINPUT. This results in the comparison succeeding, as shown in the
third of the three example program runs in Figure 15.1b and illustrated in Figure 15.2,
with the values of the local variables before and after the call to gets(). Note also
the terminating NULL for the input string was written to the memory location fol-
lowing str1. This means the flow of control in the program will continue as if the
expected tag was found, when in fact the tag read was something completely dif-
ferent. This will almost certainly result in program behavior that was not intended.
How serious this is depends very much on the logic in the attacked program. One
dangerous possibility occurs if instead of being a tag, the values in these buffers were
an expected and supplied password needed to access privileged features. If so, the
buffer overflow provides the attacker with a means of accessing these features with-
out actually knowing the correct password.

To exploit any type of buffer overflow, such as those we have illustrated here,
the attacker needs:

1.	 To identify a buffer overflow vulnerability in some program that can be trig-
gered using externally sourced data under the attackers control

2.	 To understand how that buffer will be stored in the processes memory, and
hence the potential for corrupting adjacent memory locations and potentially
altering the flow of execution of the program

Identifying vulnerable programs may be done by inspection of program source,
tracing the execution of programs as they process oversized input, or using tools such
as fuzzing, which involves the use of randomly generated input data, to automatically

6Strings in C are stored in an array of characters and terminated with the NULL character, which has the
ASCII value 0x00. Any remaining locations in the array are undefined, and typically contain whatever
value was previously saved in that area of memory. This can be clearly seen in the value in the variable
str2 in the “Before” column of Figure 15.2.

M15_STAL4290_09_GE_C15.indd 665 4/13/17 12:22 PM

666   Chapter 15 / Operating System Security

identify potentially vulnerable programs. What the attacker does with the result-
ing corruption of memory varies considerably, depending on what values are being
overwritten.

Compile-Time Defenses

Finding and exploiting a stack buffer overflow is not that difficult. The large number
of exploits over the previous couple of decades clearly illustrates this. There is conse-
quently a need to defend systems against such attacks by either preventing them or at
least detecting and aborting such attacks. Countermeasures can be broadly classified
into two categories:

1.	 Compile-time defenses, which aim to harden programs to resist attacks

2.	 Runtime defenses, which aim to detect and abort attacks in executing programs
programs

While suitable defenses have been known for a couple of decades, the very large
existing base of vulnerable software and systems hinders their deployment. Hence the
interest in runtime defenses, which can be deployed in operating systems and updates
and can provide some protection for existing vulnerable programs.

In this subsection, we look at compile-time defenses, then subsequently look at
runtime defenses. Compile-time defenses aim to prevent or detect buffer overflows
by instrumenting programs when they are compiled. The possibilities for doing this
range from choosing a high-level language that does not permit buffer overflows to
encouraging safe coding standards, using safe standard libraries, or including addi-
tional code to detect corruption of the stack frame.

Choice of Programming Language  One possibility is to write the program using
a modern high-level programming language, one that has a strong notion of variable
type and what constitutes permissible operations on them. Such languages are not
vulnerable to buffer overflow attacks, because their compilers include additional code
to enforce range checks automatically, thus removing the need for the programmer
to explicitly code them. The flexibility and safety provided by these languages does
come at a cost in resource use, both at compile time and also in additional code
that must execute at runtime to impose checks such as that on buffer limits. These
disadvantages are much less significant than they used to be, due to the rapid increase
in processor performance. Increasingly programs are being written in these languages
and hence should be immune to buffer overflows in their code (though if they use
existing system libraries or runtime execution environments written in less safe
languages, they may still be vulnerable). The distance from the underlying machine
language and architecture also means that access to some instructions and hardware
resources is lost. This limits their usefulness in writing code, such as device drivers,
that must interact with such resources. For these reasons, there is still likely to be at
least some code written in less safe languages such as C.

Safe Coding Techniques  If languages such as C are being used, programmers
need to be aware that their ability to manipulate pointer addresses and access
memory directly comes at a cost. C was designed as a systems programming language,

M15_STAL4290_09_GE_C15.indd 666 4/13/17 12:22 PM

15.2 / BUFFER OVERFLOW   667

running on systems that were vastly smaller and more constrained than we now use.
This meant that C’s designers placed much more emphasis on space efficiency and
performance considerations than on type safety. They assumed programmers would
exercise due care in writing code using these languages and take responsibility for
ensuring the safe use of all data structures and variables.

Unfortunately, as several decades of experience have shown, this has not been
the case. This may be seen in large legacy body of potentially unsafe code in the
UNIX and Linux operating systems and applications, some of which are potentially
vulnerable to buffer overflows.

In order to harden these systems, the programmer needs to inspect the code
and rewrite any unsafe coding constructs in a safe manner. Given the rapid uptake of
buffer overflow exploits, this process has begun in some cases. A good example is the
OpenBSD project, which produces a free, multiplatform 4.4BSD-based UNIX-like
operating system. Among other technology changes, programmers have undertaken
an extensive audit of the existing code base, including the operating system, standard
libraries, and common utilities. This has resulted in what is widely regarded as one of
the safest operating systems in widespread use. The OpenBSD project claims as of
mid-2006 that there has only been one remote hole discovered in the default install
in more than eight years. This is a clearly enviable record. Microsoft has also under-
taken a major project in reviewing its code base, partly in response to continuing bad
publicity over the number of vulnerabilities, including many buffer overflow issues,
that have been found in their operating systems and applications code.

Language Extensions and Use of Safe Libraries  Given the problems that
can occur in C with unsafe array and pointer references, there have been a number
of proposals to augment compilers to automatically insert range checks on such
references. While this is fairly easy for statically allocated arrays, handling dynamically
allocated memory is more problematic, because the size information is not available
at compile time. Handling this requires an extension to the semantics of a pointer
to include bounds information and the use of library routines to ensure that these
values are set correctly. Several such approaches are listed in [LHEE03]. However,
there is generally a performance penalty with the use of such techniques that may or
may not be acceptable. These techniques also require all programs and libraries that
require these safety features to be recompiled with the modified compiler. While this
can be feasible for a new release of an operating system and its associated utilities,
there will still likely be problems with third-party applications.

A common concern with C comes from the use of unsafe standard library rou-
tines, especially some of the string manipulation routines. One approach to improv-
ing the safety of systems has been to replace these with safer variants. This can
include the provision of new functions, such as strlcpy(), in the BSD family of
systems, including OpenBSD. Using these requires rewriting the source to conform
to the new safer semantics. Alternatively, it involves replacement of the standard
string library with a safer variant. Libsafe is a well-known example of this; it imple-
ments the standard semantics but includes additional checks to ensure that the copy
operations do not extend beyond the local variable space in the stack frame. So, while
Libsafe cannot prevent corruption of adjacent local variables, it can prevent any
modification of the old stack frame and return address values, and thus prevent the

M15_STAL4290_09_GE_C15.indd 667 4/13/17 12:22 PM

668   Chapter 15 / Operating System Security

classic stack buffer overflow types of attack we examined previously. This library
is implemented as a dynamic library, arranged to load before the existing standard
libraries, and can thus provide protection for existing programs without requiring
them to be recompiled, provided they dynamically access the standard library rou-
tines (as most programs do). The modified library code has been found to typically
be at least as efficient as the standard libraries, and thus its use is an easy way of
protecting existing programs against some forms of buffer overflow attacks.

Stack Protection Mechanisms  An effective method for protecting programs
against classic stack overflow attacks is to instrument the function entry and exit code to
set up and then check its stack frame for any evidence of corruption. If any modification
is found, the program is aborted rather than allowing the attack to proceed. There are
several approaches to providing this protection, which we discuss next.

Stackguard is one of the best-known protection mechanisms. It is a GCC (GNU
Compiler Collection) compiler extension that inserts additional function entry and exit
code. The added function entry code writes a canary7 value below the old frame pointer
address, before the allocation of space for local variables. The added function exit code
checks that the canary value has not changed before continuing with the usual function
exit operations of restoring the old frame pointer and transferring control back to the
return address. Any attempt at a classic stack buffer overflow would have to alter this
value in order to change the old frame pointer and return addresses and would thus
be detected, resulting in the program being aborted. For this defense to function suc-
cessfully, it is critical that the canary value be unpredictable and should be variable on
different systems. If this were not the case, the attacker would simply ensure the shell-
code included the correct canary value in the required location. Typically, a random
value is chosen as the canary value on process creation and saved as part of the pro-
cesses state. The code added to the function entry and exit then uses this value.

There are some issues with using this approach. First, it requires that all pro-
grams needing protection be recompiled. Second, because the structure of the stack
frame has changed, it can cause problems with programs, such as debuggers, which
analyze stack frames. However, the canary technique has been used to recompile an
entire Linux distribution and provide it with a high level of resistance to stack over-
flow attacks. Similar functionality is available for Windows programs by compiling
them using Microsoft’s /GS Visual C+ + compiler option.

Runtime Defenses

As has been noted, most of the compile-time approaches require recompilation of
existing programs. Hence there is interest in runtime defenses that can be deployed
as operating systems updates to provide some protection for existing vulnerable pro-
grams. These defenses involve changes to the memory management of the virtual
address space of processes. These changes act either to alter the properties of regions
of memory or to make predicting the location of targeted buffers sufficiently difficult
to thwart many types of attacks.

7Named after the miner’s canary used to detect poisonous air in a mine and thus warn the miners in time
for them to escape.

M15_STAL4290_09_GE_C15.indd 668 4/13/17 12:22 PM

15.2 / BUFFER OVERFLOW   669

Executable Address Space Protection  Many of the buffer overflow
attacks involve copying machine code into the targeted buffer then transferring
execution to it. A possible defense is to block the execution of code on the stack, on
the assumption that executable code should only be found elsewhere in the processes
address space.

To support this feature efficiently requires support from the processor’s mem-
ory management unit (MMU) to tag pages of virtual memory as being nonexecutable.
Some processors, such as the SPARC used by Solaris, have had support for this for
some time. Enabling its use in Solaris requires a simple kernel parameter change.
Other processors, such as the x86 family, have not had this support until recently, with
the relatively recent addition of the no-execute bit in its MMU. Extensions have been
made available to Linux, BSD, and other UNIX-style systems to support the use of
this feature. Some indeed are also capable of protecting the heap as well as the stack,
which also is the target of attacks. Support for enabling no-execute protection is also
included in recent Windows systems.

Making the stack (and heap) nonexecutable provides a high degree of protec-
tion against many types of buffer overflow attacks for existing programs; hence the
inclusion of this practice is standard in a number of recent operating systems releases.
However, one issue is support for programs that do need to place executable code on
the stack. This can occur, for example, in just-in-time compilers, such as is used in the
Java runtime system. Executable code on the stack is also used to implement nested
functions in C (a GCC extension) and also Linux signal handlers. Special provisions are
needed to support these requirements. Nonetheless, this is regarded as one of the best
methods for protecting existing programs and hardening systems against some attacks.

Address Space Randomization  Another runtime technique that can be used
to thwart attacks involves manipulation of the location of key data structures in
the address space of a process. In particular, recall that in order to implement the
classic stack overflow attack, the attacker needs to be able to predict the approximate
location of the targeted buffer. The attacker uses this predicted address to determine
a suitable return address to use in the attack to transfer control to the shellcode. One
technique to greatly increase the difficulty of this prediction is to change the address
at which the stack is located in a random manner for each process. The range of
addresses available on modern processors is large (32 bits), and most programs only
need a small fraction of that. Therefore, moving the stack memory region around by
a megabyte or so has minimal impact on most programs, but makes predicting the
targeted buffer’s address almost impossible.

Another target of attack is the location of standard library routines. In an
attempt to bypass protections such as nonexecutable stacks, some buffer overflow
variants exploit existing code in standard libraries. These are typically loaded at the
same address by the same program. To counter this form of attack, we can use a secu-
rity extension that randomizes the order of loading standard libraries by a program
and their virtual memory address locations. This makes the address of any specific
function sufficiently unpredictable as to render the chance of a given attack correctly
predicting its address very low.

The OpenBSD system includes versions of these extensions in its technological
support for a secure system.

M15_STAL4290_09_GE_C15.indd 669 4/13/17 12:22 PM

670   Chapter 15 / Operating System Security

Guard Pages  A final runtime technique that can be used places guard pages
between critical regions of memory in a processes address space. Again, this exploits
the fact that a process has much more virtual memory available than it typically needs.
Gaps are placed between the ranges of addresses used for each of the components
of the address space. These gaps, or guard pages, are flagged in the MMU as illegal
addresses, and any attempt to access them results in the process being aborted.
This can prevent buffer overflow attacks, typically of global data, which attempt to
overwrite adjacent regions in the processes address space.

A further extension places guard pages between stack frames or between dif-
ferent allocations on the heap. This can provide further protection against stack and
heap overflow attacks, but at cost in execution time supporting the large number of
page mappings necessary.

	 15.3	ACCESS CONTROL

Access control is a function exercised by the OS, by the file system, or at both levels.
The principles that have been typically applied are the same at both levels. In this
section, we begin by looking at access control specifically from the point of view of
file access control, then generalize the discussion to access control policies that apply
to a variety of system resources.

File System Access Control

Following successful logon, the user has been granted access to one or a set of hosts
and applications. This is generally not sufficient for a system that includes sensitive
data in its database. Through the user-access control procedure, a user can be identi-
fied to the system. Associated with each user, there can be a profile that specifies
permissible operations and file accesses. The operating system can then enforce rules
based on the user profile. The database management system, however, must control
access to specific records or even portions of records. For example, it may be permis-
sible for anyone in administration to obtain a list of company personnel, but only
selected individuals may have access to salary information. The issue is more than just
a matter of level of detail. Whereas the operating system may grant a user permission
to access a file or use an application, following which there are no further security
checks, the database management system must make a decision on each individual
access attempt. That decision will depend not only on the user’s identity but also on
the specific parts of the data being accessed and even on the information already
divulged to the user.

A general model of access control as exercised by a file or database manage-
ment system is that of an access matrix (see Figure 15.3a). The basic elements of the
model are as follows:

•	 Subject: An entity capable of accessing objects. Generally, the concept of sub-
ject equates with that of process. Any user or application actually gains access
to an object by means of a process that represents that user or application.

M15_STAL4290_09_GE_C15.indd 670 4/13/17 12:22 PM

15.3 / ACCESS CONTROL   671

•	 Object: Anything to which access is controlled. Examples include files, por-
tions of files, programs, segments of memory, and software objects (e.g., Java
objects).

•	 Access right: The way in which an object is accessed by a subject. Examples are
read, write, execute, and functions in software objects.

Figure 15.3  Example of Access Control Structures

Own
Read
Write

Read
Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSubjects

Objects

User C

File 2File 1

(a) Access matrix

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4

R

B

•

R
W

C

File 1User C

•

R

File 2

•

R
W

File 4

File 1User B

•

R W

File 2

• •

File 3 File 4
Own

R
W

BFile 2

•

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A

•

File 3

Own
R
W

AFile 3

•

W

B

Own
R
W

B

R

File 4

•

C

R

M15_STAL4290_09_GE_C15.indd 671 4/13/17 12:22 PM

672   Chapter 15 / Operating System Security

One dimension of the matrix consists of identified subjects that may attempt
data access. Typically, this list will consist of individual users or user groups, although
access could be controlled for terminals, hosts, or applications instead of or in addi-
tion to users. The other dimension lists the objects that may be accessed. At the
greatest level of detail, objects may be individual data fields. More aggregate group-
ings, such as records, files, or even the entire database, may also be objects in the
matrix. Each entry in the matrix indicates the access rights of that subject for that
object.

In practice, an access matrix is usually sparse and is implemented by decomposi-
tion in one of two ways. The matrix may be decomposed by columns, yielding access
control lists (see Figure 15.3b). Thus for each object, an access control list lists users and
their permitted access rights. The access control list may contain a default, or public,
entry. This allows users that are not explicitly listed as having special rights to have a
default set of rights. Elements of the list may include individual users as well as groups
of users.

Decomposition by rows yields capability tickets (see Figure 15.3c). A capability
ticket specifies authorized objects and operations for a user. Each user has a number
of tickets and may be authorized to loan or give them to others. Because tickets may
be dispersed around the system, they present a greater security problem than access
control lists. In particular, the ticket must be unforgeable. One way to accomplish this
is to have the operating system hold all tickets on behalf of users. These tickets would
have to be held in a region of memory inaccessible to users.

Network considerations for data-oriented access control parallel those for user-
oriented access control. If only certain users are permitted to access certain items of
data, then encryption may be needed to protect those items during transmission to
authorized users. Typically, data access control is decentralized, that is, controlled by
host-based database management systems. If a network database server exists on a
network, then data access control becomes a network function.

Access Control Policies

An access control policy dictates what types of access are permitted, under what
circumstances, and by whom. Access control policies are generally grouped into the
following categories:

•	 Discretionary access control (DAC): Controls access based on the identity of
the requestor and on access rules (authorizations) stating what requestors are
(or are not) allowed to do. This policy is termed discretionary because an entity
might have access rights that permit the entity, by its own volition, to enable
another entity to access some resource.

•	 Mandatory access control (MAC): Controls access based on comparing secu-
rity labels (which indicate how sensitive or critical system resources are) with
security clearances (which indicate system entities are eligible to access certain
resources). This policy is termed mandatory because an entity that has clearance
to access a resource may not, just by its own volition, enable another entity to
access that resource.

M15_STAL4290_09_GE_C15.indd 672 4/13/17 12:22 PM

15.3 / ACCESS CONTROL   673

•	 Role-based access control (RBAC): Controls access based on the roles that
users have within the system, and on rules stating what accesses are allowed to
users in given roles.

•	 Attribute-based access control (ABAC): Controls access based on attri-
butes of the user, the resource to be accesses, and current environmental
conditions.

DAC is the traditional method of implementing access control. This method
was introduced in the preceding discussion of file access control; we provide more
detail in this section. MAC is a concept that evolved out of requirements for
military information security and is beyond the scope of this book. Both RBAC
and ABAC have become increasingly popular. DAC and RBAC are discussed
subsequently.

These four policies are not mutually exclusive. An access control mechanism
can employ two or even all three of these policies to cover different classes of system
resources.

Discretionary Access Control  This section introduces a general model for DAC
developed by Lampson, Graham, and Denning [LAMP71, GRAH72, DENN71]. The
model assumes a set of subjects, a set of objects, and a set of rules that govern the
access of subjects to objects. Let us define the protection state of a system to be the set
of information, at a given point in time, that specifies the access rights for each subject
with respect to each object. We can identify three requirements: representing the
protection state, enforcing access rights, and allowing subjects to alter the protection
state in certain ways. The model addresses all three requirements, giving a general,
logical description of a DAC system.

To represent the protection state, we extend the universe of objects in the access
control matrix to include the following:

•	 Processes: Access rights include the ability to delete a process, stop (block), and
wake up a process.

•	 Devices: Access rights include the ability to read/write the device, to control its
operation (e.g., a disk seek), and to block/unblock the device for use.

•	 Memory locations or regions: Access rights include the ability to read/write
certain locations of regions of memory that are protected so the default is that
access is not allowed.

•	 Subjects: Access rights with respect to a subject have to do with the ability
to grant or delete access rights of that subject to other objects, as explained
subsequently.

Figure 15.4 is an example (compare to Figure 15.3a). For an access control
matrix A, each entry A[S, X] contains strings, called access attributes, that specify the
access rights of subject S to object X. For example, in Figure 15.4, S1 may read file F2,
because read appears in A[S1, F1].

From a logical or functional point of view, a separate access control module
is associated with each type of object (see Figure 15.4). The module evaluates each

M15_STAL4290_09_GE_C15.indd 673 4/13/17 12:22 PM

674   Chapter 15 / Operating System Security

request by a subject to access an object to determine if the access right exists. An
access attempt triggers the following steps:

1.	 A subject S0 issues a request of type a for object X.

2.	 The request causes the system (the operating system or an access control inter-
face module of some sort) to generate a message of the form (S0, a, X) to the
controller for X.

3.	 The controller interrogates the access matrix A to determine if a is in A[S0, X].
If so, the access is allowed; if not, the access is denied and a protection violation
occurs. The violation should trigger a warning and an appropriate action.

Figure 15.5 suggests that every access by a subject to an object is mediated by
the controller for that object, and that the controller’s decision is based on the cur-
rent contents of the matrix. In addition, certain subjects have the authority to make
specific changes to the access matrix. A request to modify the access matrix is treated
as an access to the matrix, with the individual entries in the matrix treated as objects.
Such accesses are mediated by an access matrix controller, which controls updates
to the matrix.

The model also includes a set of rules that govern modifications to the
access matrix, shown in Table 15.1. For this purpose, we introduce the access rights
owner and control and the concept of a copy flag, explained in the subsequent
paragraphs.

The first three rules deal with transferring, granting, and deleting access rights.
Suppose the entry a* exists in A[S0, X]. This means S0 has access right a to subject
X and, because of the presence of the copy flag, can transfer this right, with or with-
out copy flag, to another subject. Rule R1 expresses this capability. A subject would
transfer the access right without the copy flag if there were a concern that the new
subject would maliciously transfer the right to another subject that should not have
that access right. For example, S1 may place read or read* in any matrix entry in the
F1 column. Rule R2 states if S0 is designated as the owner of object X, then S0 can
grant an access right to that object for any other subject. Rule 2 states S0 can add
any access right to A[S, X] for any S, if S0 has owner access to X. Rule R3 permits S0

Figure 15.4  Extended Access Control Matrix

Control Wakeup Seek

Owner

OwnerWakeupRead
owner

Owner
control

Execute

Write Stop

Owner

Control

Control

Read *

Write *

* — Copy flag set

Seek *

S1

S2
Su

bj
ec

ts

Objects

Subjects Files Processes Disk drives

S3

S2S1 S3 F1 F2 P1 P2 D1 D2

M15_STAL4290_09_GE_C15.indd 674 4/13/17 12:22 PM

15.3 / ACCESS CONTROL   675

to delete any access right from any matrix entry in a row for which S0 controls the
subject, and for any matrix entry in a column for which S0 owns the object. Rule R4
permits a subject to read that portion of the matrix that it owns or controls.

The remaining rules in Table 15.1 govern the creation and deletion of subjects
and objects. Rule R5 states any subject can create a new object, which it owns, and
can then grant and delete access to the object. Under rule R6, the owner of an object
can destroy the object, resulting in the deletion of the corresponding column of the
access matrix. Rule R7 enables any subject to create a new subject; the creator owns
the new subject and the new subject has control access to itself. Rule R8 permits the
owner of a subject to delete the row and column (if there are subject columns) of the
access matrix designated by that subject.

Figure 15.5  An Organization of the Access Control Function

File
system

Memory
addressing
hardware

Process
manager

Terminal
& device
manager

Instruction
decoding
hardware

Access
matrix

monitor

Access
matrixWrite Read

Files

Segments
& pages

Processes

Terminal
& devices

Instructions

Delete β from Sp, Y (Sm, delete, β, Sp, Y)

(Sk, grant, α, Sn, X)Grant α to Sn, X

Wakeup P (Sj, wakeup, P)

Read F

Subjects Access control mechanisms Objects

(Si, read, F)

Sm

Sj

Si

Sk

System intervention

M15_STAL4290_09_GE_C15.indd 675 4/13/17 12:22 PM

676   Chapter 15 / Operating System Security

The set of rules in Table 15.1 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative
rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the transfer-
ring subject. The number of owners of an object or a subject could be limited to one
by not allowing the copy flag to accompany the owner right.

The ability of one subject to create another subject and to have owner access
right to that subject can be used to define a hierarchy of subjects. For example, in
Figure 15.4, S1 owns S2 and S3, so S2 and S3 are subordinate to S1. By the rules of Table
15.1, S1 can grant and delete to S2 access rights that S1 already has. Thus, a subject can
create another subject with a subset of its own access rights. This might be useful, for
example, if a subject is invoking an application that is not fully trusted, and does not
want that application to be able to transfer access rights to other subjects.

Role-Based Access Control  Traditional DAC systems define the access rights
of individual users and groups of users. In contrast, RBAC is based on the roles that
users assume in a system, rather than the user’s identity. Typically, RBAC models
define a role as a job function within an organization. RBAC systems assign access
rights to roles instead of individual users. In turn, users are assigned to different roles,
either statically or dynamically, according to their responsibilities.

RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued
a standard, Security Requirements for Cryptographic Modules (FIPS PUB 140-2,
May 25, 2001), that requires support for access control and administration through
roles.

Rule Command (by S0) Authorization Operation

R1
transfer ba*

a
r to S, X

=a*> in A[S0, X]
store ba*

a
r in A[S, X]

R2
grant ba*

a
r to S, X

‘owner’ in A[S0, X]
store ba*

a
r in A[S, X]

R3 delete a from S, X ‘control’ in A[S0, S]
     or
‘owner’ in A[S0, X]

delete a from A[S, X]

R4 w d read S, X ‘control’ in A[S0, S]
     or
‘owner’ in A[S0, X]

copy A[S, X] into w

R5 create object X None add column for X to A; store
‘owner’ in A[S0, X]

R6 destroy object X ‘owner’ in A[S0, X] delete column for X from A

R7 create subject S None add row for S to A; execute
create object S; store ‘control’
in A[S, S]

R8 destroy subject S ‘owner’ in A[S0, S] delete row for S from A;
execute destroy object S

Table 15.1  Access Control System Commands

M15_STAL4290_09_GE_C15.indd 676 4/13/17 12:22 PM

15.3 / ACCESS CONTROL   677

The relationship of users to roles is many to many, as is the relationship of roles
to resources, or system objects (see Figure 15.6). The set of users changes, in some
environments frequently, and the assignment of a user to one or more roles may also
be dynamic. The set of roles in the system in most environments is likely to be static,
with only occasional additions or deletions. Each role will have specific access rights
to one or more resources. The set of resources and the specific access rights associated
with a particular role are also likely to change infrequently.

We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 15.7. The upper matrix relates
individual users to roles. Typically, there are many more users than roles. Each matrix
entry is either blank or marked, the latter indicating that this user is assigned to this
role. Note a single user may be assigned multiple roles (more than one mark in a row),
and multiple users may be assigned to a single role (more than one mark in a column).
The lower matrix has the same structure as the DAC matrix, with roles as subjects.
Typically, there are few roles and many objects, or resources. In this matrix the entries
are the specific access rights enjoyed by the roles. Note a role can be treated as an
object, allowing the definition of role hierarchies.

RBAC lends itself to an effective implementation of the principle of least privi-
lege. That is, each role should contain the minimum set of access rights needed for
that role. A user is assigned to a role that enables him or her to perform only what
is required for that role. Multiple users assigned to the same role enjoy the same
minimal set of access rights.

Figure 15.6  Users, Roles, and Resources

Role 1

Users Roles Resources

Role 2

Role 3

M15_STAL4290_09_GE_C15.indd 677 4/13/17 12:22 PM

678   Chapter 15 / Operating System Security

	 15.4	UNIX ACCESS CONTROL

Traditional UNIX File Access Control

Most UNIX systems depend on, or at least are based on, the file access control scheme
introduced with the early versions of UNIX. Each UNIX user is assigned a unique
user identification number (user ID). A user is also a member of a primary group,
and possibly a number of other groups, each identified by a group ID. When a file is
created, it is designated as owned by a particular user and marked with that user’s
ID. It also belongs to a specific group, which initially is either its creator’s primary
group or the group of its parent directory if that directory has SetGID permission
set. Associated with each file is a set of 12 protection bits. The owner ID, group ID,
and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all other
users. These form a hierarchy of owner, group, and all others, with the highest relevant
set of permissions being used. Figure 15.8a shows an example in which the file owner

Figure 15.7  Access Control Matrix Representation of RBAC

Control Wakeup Seek

Owner

OwnerWakeupRead
owner

Owner
control

Execute

Write Stop

Owner

Control

Control

Read *

Write * Seek *

R1

R2

R
ol

es

Objects

Rn

R2R1 Rn

R2R1 Rn

F1 F1 P1 P2 D1 D2

U1

U2

U3

U4

U5

U6

Um

M15_STAL4290_09_GE_C15.indd 678 4/13/17 12:22 PM

15.4 / UNIX ACCESS CONTROL   679

has read and write access; all other members of the file’s group have read access, and
users outside the group have no access rights to the file. When applied to a directory,
the read and write bits grant the right to list and to create/rename/delete files in the
directory.8 The execute bit grants the right to search the directory for a component
of a filename.

The remaining three bits define special additional behavior for files or direc-
tories. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)
permissions. If these are set on an executable file, the operating system functions
as follows. When a user (with execute privileges for this file) executes the file, the
system temporarily allocates the rights of the user’s ID of the file creator or the file’s
group, respectively, to those of the user executing the file. These are known as the
“effective user ID” and “effective group ID” and are used in addition to the “real user
ID” and “real group ID” of the executing user when making access control decisions
for this program. This change is only effective while the program is being executed.
This feature enables the creation and use of privileged programs that may use files
normally inaccessible to other users. It enables users to access certain files in a con-
trolled fashion. Alternatively, when applied to a directory, the SetGID permission

8Note the permissions that apply to a directory are distinct from those that apply to any file or directory
it contains. The fact that a user has the right to write to the directory does not give the user the right to
write to a file in that directory. That is governed by the permissions of the specific file. The user would,
however, have the right to rename the file.

Figure 15.8  UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

user::rw-

group::r--

other::---

(b) Extended access control list

Masked
entries

rw- rw- ---

Owne
r c

las
s

Gro
up

 cl
as

s

Othe
r c

las
s

user: :rw-

user:joe:rw-

group::r--
mask::rw-

other::---

M15_STAL4290_09_GE_C15.indd 679 4/13/17 12:22 PM

680   Chapter 15 / Operating System Security

indicates that newly created files will inherit the group of this directory. The SetUID
permission is ignored.

The final permission bit is the “Sticky” bit. When set on a file, this originally
indicated that the system should retain the file contents in memory following execu-
tion. This is no longer used. When applied to a directory, though, it specifies that only
the owner of any file in the directory can rename, move, or delete that file. This is
useful for managing files in shared temporary directories.

One particular user ID is designated as superuser. The superuser is exempt from
the usual file access control constraints and has systemwide access. Any program that
is owned by, and SetUID to, the “superuser” potentially grants unrestricted access
to the system to any user executing that program. Hence, great care is needed when
writing such programs.

This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B and read access for file Y to users B and C.
We would need at least two user groups, and user B would need to belong to both
groups in order to access the two files. However, if there are a large number of dif-
ferent groupings of users requiring a range of access rights to different files, then a
very large number of groups may be needed to provide this. This rapidly becomes
unwieldy and difficult to manage, even if possible at all.9 One way to overcome this
problem is to use access control lists, which are provided in most modern UNIX
systems.

A final point to note is the traditional UNIX file access control scheme imple-
ments a simple protection domain structure. A domain is associated with the user,
and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control lists,
including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe the
FreeBSD approach, but other implementations have essentially the same features
and interface. The feature is referred to as extended access control list, while the
traditional UNIX approach is referred to as minimal access control list.

FreeBSD allows the administrator to assign a list of UNIX user IDs and
groups to a file by using the setfacl command. Any number of users and groups
can be associated with a file, each with three protection bits (read, write, execute),
offering a flexible mechanism for assigning access rights. A file need not have an
ACL but may be protected solely by the traditional UNIX file access mechanism.
FreeBSD files include an additional protection bit that indicates whether the file
has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 15.8b):

1.	 The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

9Most UNIX systems impose a limit on the maximum number of groups any user may belong to, as well
as to the total number of groups possible on the system.

M15_STAL4290_09_GE_C15.indd 680 4/13/17 12:22 PM

15.5 / OPERATING SYSTEMS HARDENING   681

2.	 The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role,
the group class entry functions as a mask.

3.	 Additional named users and named groups may be associated with the file, each
with a 3-bit permission field. The permissions listed for a named user or named
group are compared to the mask field. Any permission for the named user or
named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are performed.
Step 1 selects the ACL entry that most closely matches the requesting process. The
ACL entries are looked at in the following order: owner, named users, owning or
named groups, and others. Only a single entry determines access. Step 2 checks if the
matching entry contains sufficient permissions. A process can be a member in more
than one group; so more than one group entry can match. If any of these matching
group entries contain the requested permissions, one that contains the requested per-
missions is picked (the result is the same no matter which entry is picked). If none of
the matching group entries contains the requested permissions, access will be denied
no matter which entry is picked.

	 15.5	OPERATING SYSTEMS HARDENING

The first critical step in securing a system is to secure the base operating system
upon which all other applications and services rely. A good security foundation needs
a properly installed, patched, and configured operating system. Unfortunately, the
default configuration for many operating systems often maximizes ease of use and
functionality, rather than security. Further, since every organization has its own secu-
rity needs, the appropriate security profile, and hence configuration, will also differ.
What is required for a particular system should be identified during the planning
phase, as we have just discussed.

While the details of how to secure each specific operating system differ, the
broad approach is similar. Appropriate security configuration guides and checklists
exist for most common operating systems, and these should be consulted, though
always informed by the specific needs of each organization and their systems. In
some cases, automated tools may be available to further assist in securing the system
configuration.

[NIST08] suggests the following basic steps should be used to secure an operat-
ing system:

•	 Install and patch the operating system.

•	 Harden and configure the operating system to adequately address the identified
security needs of the system by:

•	 Removing unnecessary services, applications, and protocols.

•	 Configuring users, groups, and permissions.

•	 Configuring resource controls.

M15_STAL4290_09_GE_C15.indd 681 4/13/17 12:22 PM

682   Chapter 15 / Operating System Security

•	 Install and configure additional security controls, such as antivirus, host-based
firewalls, and intrusion detection systems (IDS), if needed.

•	 Test the security of the basic operating system to ensure that the steps taken
adequately address its security needs.

Operating System Installation: Initial Setup and Patching

System security begins with the installation of the operating system. As we have
already noted, a network-connected, unpatched system is vulnerable to exploit during
its installation or continued use. Hence it is important that the system not be exposed
while it is in this vulnerable state. Ideally new systems should be constructed on a
protected network. This may be a completely isolated network, with the operating
system image and all available patches transferred to it using removable media such
as DVDs or USB drives. Given the existence of malware that can propagate using
removable media, care is needed to ensure the media used here is not so infected.
Alternatively, a network with severely restricted access to the wider Internet may be
used. Ideally it should have no inbound access, and have outbound access only to the
key sites needed for the system installation and patching process. In either case, the
full installation and hardening process should occur before the system is deployed to
its intended, more accessible, and hence vulnerable, location.

The initial installation should comprise the minimum necessary for the desired
system, with additional software packages included only if they are required for the
function of the system. We explore the rationale for minimizing the number of pack-
ages on the system shortly.

The overall boot process must also be secured. This may require adjusting
options on, or specifying a password required for changes to, the BIOS code used
when the system initially boots. It may also require limiting which media from which
the system is normally permitted to boot. This is necessary to prevent an attacker
from changing the boot process to install a covert hypervisor, or to just boot a sys-
tem of their choice from external media in order to bypass the normal system access
controls on locally stored data. The use of a cryptographic file system may also be
used to address this threat, as we note later.

Care is also required with the selection and installation of any additional device
driver code, since this executes with full kernel-level privileges, but is often supplied
by a third party. The integrity and source of such driver code must be carefully vali-
dated given the high level of trust it has. A malicious driver can potentially bypass
many security controls to install malware. Given the continuing discovery of software
and other vulnerabilities for commonly used operating systems and applications, it
is critical that the system be kept as up-to-date as possible, with all critical security-
related patches installed. Nearly all commonly used systems now provide utilities
that can automatically download and install security updates. These tools should be
configured and used to minimize the amount of time a system is vulnerable to weak-
nesses for which patches are available.

Note on change-controlled systems, you should not run automatic updates,
because security patches can, on rare but significant occasions, introduce instability.
For systems on which availability and uptime are of paramount importance, therefore,

M15_STAL4290_09_GE_C15.indd 682 4/13/17 12:22 PM

15.5 / OPERATING SYSTEMS HARDENING   683

you should stage and validate all patches on test systems before deploying them in
production.

Remove Unnecessary Services, Application, and Protocols

Because any of the software running on a system may contain software vulnerabilities,
clearly if fewer software packages are available to run, then the risk is reduced. There
is clearly a balance between usability, providing all software that may be required
at some time, and security and a desire to limit the amount of software installed.
The range of services, applications, and protocols required will vary widely between
organizations, and indeed between systems within an organization. The system plan-
ning process should identify what is actually required for a given system, so a suitable
level of functionality is provided, while eliminating software that is not required to
improve security.

The default configuration for most distributed systems is set to maximize ease
of use and functionality, rather than security. When performing the initial installa-
tion, the supplied defaults should not be used, but rather the installation should be
customized so only the required packages are installed. If additional packages are
needed later, they can be installed when they are required. [NIST08] and many of
the security-hardening guides provide lists of services, applications, and protocols that
should not be installed if not required.

[NIST08] also states a strong preference for not installing unwanted software,
rather than installing then later removing or disabling it. They argue this preference
because they note that many uninstall scripts fail to completely remove all compo-
nents of a package. They also note that disabling a service means while it is not avail-
able as an initial point of attack, should an attacker succeed in gaining some access to
a system, then disabled software could be reenabled and used to further compromise
a system. It is better for security if unwanted software is not installed, and thus not
available for use at all.

Configure Users, Groups, and Authentication

Not all users with access to a system will have the same access to all data and resources
on that system. All modern operating systems implement access controls to data and
resources. Nearly all provide some form of discretionary access controls. Some sys-
tems may provide role-based or mandatory access control mechanisms as well.

The system planning process should consider the categories of users on the sys-
tem, the privileges they have, the types of information they can access, and how and
where they are defined and authenticated. Some users will have elevated privileges
to administer the system; others will be normal users, sharing appropriate access to
files and other data as required; and there may even be guest accounts with very lim-
ited access. The third of the four key DSD mitigation strategies is to restrict elevated
privileges to only those users that require them. Further, it is highly desirable that
such users only access elevated privileges when needed to perform some task that
requires them, and to otherwise access the system as a normal user. This improves
security by providing a smaller window of opportunity for an attacker to exploit the
actions of such privileged users. Some operating systems provide special tools or

M15_STAL4290_09_GE_C15.indd 683 4/13/17 12:22 PM

684   Chapter 15 / Operating System Security

access mechanisms to assist administrative users to elevate their privileges only when
necessary, and to appropriately log these actions.

One key decision is whether the users, the groups to which they belong, and
their authentication methods are specified locally on the system, or will use a cen-
tralized authentication server. Whichever is chosen, the appropriate details are now
configured on the system.

Also at this stage, any default accounts included as part of the system installa-
tion should be secured. Those which are not required should be either removed or
at least disabled. System accounts that manage services on the system should be set
so they cannot be used for interactive logins. And any passwords installed by default
should be changed to new values with appropriate security.

Any policy that applies to authentication credentials, and especially to password
security, is also configured. This includes details of which authentication methods
are accepted for different methods of account access. And it includes details of the
required length, complexity, and age allowed for passwords.

Configure Resource Controls

Once the users and their associated groups are defined, appropriate permissions can
be set on data and resources to match the specified policy. This may be to limit which
users can execute some programs, especially those that modify the system state, or
to limit which users can read or write data in certain directory trees. Many of the
security-hardening guides provide lists of recommended changes to the default access
configuration to improve security.

Install Additional Security Controls

Further security improvement may be possible by installing and configuring addi-
tional security tools such as antivirus software, host-based firewalls, IDS or IPS
software, or application white-listing. Some of these may be supplied as part of the
operating systems installation, but not configured and enabled by default. Others are
third-party products that are acquired and used.

Given the wide spread prevalence of malware, appropriate antivirus (which, as
noted, addresses a wide range of malware types) is a critical security component on
many systems. Antivirus products have traditionally been used on Windows systems,
since their high use made them a preferred target for attackers. However, the growth
in other platforms, particularly smart phones, has led to more malware being devel-
oped for them. Hence appropriate antivirus products should be considered for any
system as part of its security profile.

Host-based firewalls, IDS, and IPS software also may improve security by limiting
remote network access to services on the system. If remote access to a service is not
required, though some local access is, then such restrictions help secure such services
from remote exploit by an attacker. Firewalls are traditionally configured to limit access
by port or protocol, from some or all external systems. Some may also be configured to
allow access from or to specific programs on the systems, to further restrict the points
of attack, and to prevent an attacker from installing and accessing their own malware.
IDS and IPS software may include additional mechanisms such as traffic monitoring
or file integrity checking to identify and even respond to some types of attack.

M15_STAL4290_09_GE_C15.indd 684 4/13/17 12:22 PM

15.6 / SECURITY MAINTENANCE   685

Another additional control is to white-list applications. This limits the programs
that can execute on the system to just those in an explicit list. Such a tool can prevent
an attacker installing and running their own malware, and was the last of the four
key DSD mitigation strategies. While this will improve security, it functions best in
an environment with a predictable set of applications that users require. Any change
in software usage would require a change in the configuration, which may result in
increased IT support demands. Not all organizations or all systems will be sufficiently
predictable to suit this type of control.

Test the System Security

The final step in the process of initially securing the base operating system is security
testing. The goal is to ensure that the previous security configuration steps are cor-
rectly implemented and to identify any possible vulnerabilities that must be corrected
or managed.

Suitable checklists are included in many security-hardening guides. There are
also programs specifically designed to review a system to ensure that a system meets
the basic security requirements, and to scan for known vulnerabilities and poor con-
figuration practices. This should be done following the initial hardening of the system,
then repeated periodically as part of the security maintenance process.

	 15.6	SECURITY MAINTENANCE

Once the system is appropriately built, secured, and deployed, the process of main-
taining security is continuous. This results from the constantly changing environment,
the discovery of new vulnerabilities, and hence exposure to new threats. [NIST08] sug-
gests that this process of security maintenance includes the following additional steps:

•	 Monitoring and analyzing logging information

•	 Performing regular backups

•	 Recovering from security compromises

•	 Regularly testing system security

•	 Using appropriate software maintenance processes to patch and update all criti-
cal software, and to monitor and revise configuration as needed

We have already noted the need to configure automatic patching and
update where possible, or to have a process to manually test and install patches on
configuration-controlled systems, and that the system should be regularly tested using
checklist or automated tools where possible.

Logging

[NIST08] notes that “logging is a cornerstone of a sound security posture.” Logging
is a reactive control that can only inform you about bad things that have already
happened. But effective logging helps ensure that in the event of a system breach or
failure, system administrators can more quickly and accurately identify what hap-
pened, and thus most effectively focus their remediation and recovery efforts. The
key is to ensure you capture the correct data in the logs then appropriately monitor

M15_STAL4290_09_GE_C15.indd 685 4/13/17 12:22 PM

686   Chapter 15 / Operating System Security

and analyze this data. Logging information can be generated by the system, network,
and applications. The range of logging data acquired should be determined during the
system planning stage, as it depends on the security requirements and information
sensitivity of the server.

Logging can generate significant volumes of information. It is important that
sufficient space is allocated for them. A suitable automatic log rotation and archive
system should also be configured to assist in managing the overall size of the logging
information.

Manual analysis of logs is tedious and is not a reliable means of detecting
adverse events. Rather, some form of automated analysis is preferred, as it is more
likely to identify abnormal activity.

Data Backup and Archive

Performing regular backups of data on a system is another critical control that assists
with maintaining the integrity of the system and user data. There are many reasons
why data can be lost from a system, including hardware or software failures, or acci-
dental or deliberate corruption. There may also be legal or operational requirements
for the retention of data. Backup is the process of making copies of data at regular
intervals, allowing the recovery of lost or corrupted data over relatively short time
periods of a few hours to some weeks. Archive is the process of retaining copies of
data over extended periods of time, being months or years, in order to meet legal and
operational requirements to access past data. These processes are often linked and
managed together, although they do address distinct needs.

The needs and policy relating to backup and archive should be determined
during the system planning stage. Key decisions include whether the backup cop-
ies should be kept online or offline, and whether copies should be stored locally or
transported to a remote site. The trade-offs include ease of implementation and cost
verses greater security and robustness against different threats.

A good example of the consequences of poor choices here was seen in the
attack on an Australian hosting provider in early 2011. The attackers destroyed not
only the live copies of thousands of customer’s sites but also all of the online backup
copies. As a result, many customers who had not kept their own backup copies lost
all of their site content and data, with serious consequences for many of them, and
for the hosting provider as well. In other examples, many organizations who only
retained onsite backups have lost all their data as a result of fire or flooding in their
IT center. These risks must be appropriately evaluated.

	 15.7	WINDOWS SECURITY

A good example of the access control concepts we have been discussing is the
Windows access control facility, which uses object-oriented concepts to provide a
powerful and flexible access control capability.

Windows provides a uniform access control facility that applies to processes,
threads, files, semaphores, windows, and other objects. Access control is governed by
two entities: an access token associated with each process, and a security descriptor
associated with each object for which interprocess access is possible.

M15_STAL4290_09_GE_C15.indd 686 4/13/17 12:22 PM

15.7 / WINDOWS SECURITY   687

Access Control Scheme

When a user logs on to a Windows system, Windows uses a name/password scheme
to authenticate the user. If the logon is accepted, a process is created for the user and
an access token is associated with that process object. The access token, whose details
are described later, include a security ID (SID), which is the identifier by which this
user is known to the system for purposes of security. The token also contains SIDs
for the security groups to which the user belongs. If the initial user process spawns a
new process, the new process object inherits the same access token.

The access token serves two purposes:

1.	 It keeps all necessary security information together to speed up access valida-
tion. When any process associated with a user attempts access, the security
subsystem can make use of the token associated with that process to determine
the user’s access privileges.

2.	 It allows each process to modify its security characteristics in limited ways with-
out affecting other processes running on behalf of the user.

The chief significance of the second point has to do with privileges that may be
associated with a user. The access token indicates which privileges a user may have.
Generally, the token is initialized with each of these privileges in a disabled state.
Subsequently, if one of the user’s processes needs to perform a privileged operation,
the process may enable the appropriate privilege and attempt access. It would be
undesirable to share the same token among all of the user’s processes, because in that
case, enabling a privilege for one process enables it for all of them.

Associated with each object for which interprocess access is possible is a security
descriptor. The chief component of the security descriptor is an access control list that
specifies access rights for various users and user groups for this object. When a process
attempts to access this object, the SIDs in the process token are matched against the
access control list of the object to determine if access will be allowed or denied.

When an application opens a reference to a securable object, Windows verifies
that the object’s security descriptor grants the process the requested access. If the
check succeeds, Windows caches the resulting granted access rights.

An important aspect of Windows security is the concept of impersonation,
which simplifies the use of security in a client/server environment. If client and server
talk through an RPC connection, the server can temporarily assume the identity of
the client so that it can evaluate a request for access relative to that client’s rights.
After the access, the server reverts to its own identity.

Access Token

Figure 15.9a shows the general structure of an access token, which includes the fol-
lowing parameters:

•	 Security ID: Identifies a user uniquely across all of the machines on the net-
work. This generally corresponds to a user’s logon name. Special user SIDs were
added in Windows 7 for use by processes and services. These specially managed
SIDs are designed for secure management; they do not use the ordinary pass-
word policies human accounts do.

M15_STAL4290_09_GE_C15.indd 687 4/13/17 12:22 PM

688   Chapter 15 / Operating System Security

•	 Group SIDs: A list of the groups to which this user belongs. A group is simply a
set of user IDs that are identified as a group for purposes of access control. Each
group has a unique group SID. Access to an object can be defined on the basis
of group SIDs, individual SIDs, or a combination. There is also an SID which
reflects the process integrity level (low, medium, high, or system).

•	 Privileges: A list of security-sensitive system services that this user may call, for
example, CreateToken. Another example is the SetBackupPrivilege; users with
this privilege are allowed to use a backup tool to back up files they normally
would not be able to read.

•	 Default owner: If this process creates another object, this field specifies the
owner of the new object. Generally, the owner of a new object is the same as
the owner of the spawning process. However, a user may specify that the default
owner of any processes spawned by this process is a group SID to which this
user belongs.

•	 Default ACL: This is an initial list of protections applied to the objects that the
user creates. The user may subsequently alter the ACL for any object that it
owns or that one of its groups owns.

Security Descriptors

Figure 15.9b shows the general structure of a security descriptor, which includes the
following parameters:

•	 Flags: Define the type and contents of a security descriptor. They indicate
whether or not the SACL and DACL are present, whether or not they were
placed on the object by a defaulting mechanism, and whether the pointers in the
descriptor use absolute or relative addressing. Relative descriptors are required
for objects that are transmitted over a network, such as information transmitted
in an RPC.

Figure 15.9  Windows Security Structures

ACL headerSecurity ID (SID)

Group SIDs

Privileges

Default owner

Default ACL

ACE header

Flags

Owner

System access
control list

Discretionary
access

control list

Access mask

SID

ACE header

Access mask

SID

(c) Access control list(b) Security descriptor(a) Access token

•
•
•

M15_STAL4290_09_GE_C15.indd 688 4/13/17 12:22 PM

15.7 / WINDOWS SECURITY   689

•	 Owner: The owner of the object can generally perform any action on the secu-
rity descriptor. The owner can be an individual or a group SID. The owner has
the authority to change the contents of the DACL.

•	 System access control list (SACL): Specifies what kinds of operations on the
object should generate audit messages. An application must have the corre-
sponding privilege in its access token to read or write the SACL of any object.
This is to prevent unauthorized applications from reading SACLs (thereby
learning what not to do to avoid generating audits) or writing them (to gener-
ate many audits to cause an illicit operation to go unnoticed). The SACL also
specifies the object integrity level. Processes cannot modify an object unless the
process integrity level meets or exceeds the level on the object.

•	 Discretionary access control list (DACL): Determines which users and groups
can access this object for which operations. It consists of a list of access control
entries (ACEs).

When an object is created, the creating process can assign as owner its own SID
or any group SID in its access token. The creating process cannot assign an owner that
is not in the current access token. Subsequently, any process that has been granted the
right to change the owner of an object may do so, but again with the same restriction.
The reason for the restriction is to prevent a user from covering his or her tracks after
attempting some unauthorized action.

Let us look in more detail at the structure of access control lists, because these
are at the heart of the Windows access control facility (see Figure 15.9c). Each list
consists of an overall header and a variable number of access control entries. Each
entry specifies an individual or a group SID and an access mask that defines the
rights to be granted to this SID. When a process attempts to access an object, the
object manager in the Windows Executive reads the SID and group SIDs from the
access token along with the integrity level SID. If the access requested includes
modifying the object, the integrity level is checked against the object integrity level
in the SACL. If that test passes, the object manager then scans down the object’s
DACL. If a match is found—that is, if an ACE is found with an SID that matches
one of the SIDs from the access token—then the process can have the access rights
specified by the access mask in that ACE. This also may include denying access, in
which case the access request fails. The first matching ACE determines the result
of the access check.

Figure 15.10 shows the contents of the access mask. The least significant 16
bits specify access rights that apply to a particular type of object. For example, bit
0 for a file object is FILE_READ_DATA access and bit 0 for an event object is
EVENT_QUERY_STATE access.

The most significant 16 bits of the mask contain bits that apply to all types of
objects. Five of these are referred to as standard access types:

•	 Synchronize: Gives permission to synchronize execution with some event asso-
ciated with this object. In particular, this object can be used in a wait function.

•	 Write_owner: Allows a program to modify the owner of the object. This is useful
because the owner of an object can always change the protection on the object.
(The owner may not be denied Write DAC access.)

M15_STAL4290_09_GE_C15.indd 689 4/13/17 12:22 PM

690   Chapter 15 / Operating System Security

•	 Write_DAC: Allows the application to modify the DACL and hence the protec-
tion on this object

•	 Read_control: Allows the application to query the owner and DACL fields of
the security descriptor of this object

•	 Delete: Allows the application to delete this object

The high-order half of the access mask also contains the four generic access
types. These bits provide a convenient way to set specific access types in a number of
different object types. For example, suppose an application wishes to create several
types of objects and ensure that users have read access to the objects, even though
read has a somewhat different meaning for each object type. To protect each object
of each type without the generic access bits, the application would have to construct
a different ACE for each type of object and be careful to pass the correct ACE when
creating each object. It is more convenient to create a single ACE that expresses the
generic concept “allow read,” and simply apply this ACE to each object that is cre-
ated, and have the right thing happen. That is the purpose of the generic access bits,
which are as follows:

•	 Generic_all: Allows all access

•	 Generic_execute: Allows execution if executable

•	 Generic_write: Allows write access

•	 Generic_read: Allows read-only access

The generic bits also affect the standard access types. For example, for a file
object, the Generic_Read bit maps to the standard bits Read_Control and Syn-
chronize, and to the object-specific bits File_Read_Data, File_Read_Attributes, and
File_Read_EA. Placing an ACE on a file object that grants some SID Generic_
Read grants those five access rights as if they had been specified individually in
the access mask.

Figure 15.10  Access Mask

Delete
Read control

Write DAC
Write owner
Synchronize

Generic
access types

Standard
access types

Access system security
Maximum allowed

Generic all
Generic execute
Generic write
Generic read

Specific access types

M15_STAL4290_09_GE_C15.indd 690 4/13/17 12:22 PM

15.8 / SUMMARY   691

The remaining two bits in the access mask have special meanings. The Access_
System_Security bit allows modifying audit and alarm control for this object. How-
ever, not only must this bit be set in the ACE for an SID but the access token for the
process with that SID must have the corresponding privilege enabled.

Finally, the Maximum_Allowed bit is not really an access bit, but a bit that
modifies the algorithm for scanning the DACL for this SID. Normally, Windows will
scan through the DACL until it reaches an ACE that specifically grants (bit set) or
denies (bit not set) the access requested by the requesting process, or until it reaches
the end of the DACL; in the latter case, access is denied. The Maximum_Allowed bit
allows the object’s owner to define a set of access rights that is the maximum that
will be allowed to a given user. With this in mind, suppose an application does not
know all of the operations that it is going to be asked to perform on an object during
a session. There are three options for requesting access:

1.	 Attempt to open the object for all possible accesses. The disadvantage of this
approach is that access may be denied even though the application may have
all of the access rights actually required for this session.

2.	 Only open the object when a specific access is requested, and open a new han-
dle to the object for each different type of request. This is generally the pre-
ferred method because it will not unnecessarily deny access, nor will it allow
more access than necessary. In many cases the object itself does not need to
be referenced a second time, but the DuplicateHandle function can be used to
make a copy of the handle with a lower level of access.

3.	 Attempt to open the object for as much access as the object will allow this SID.
The advantage is that the client application will not be artificially denied access,
but the application may have more access than it needs. This latter situation may
mask bugs in the application.

An important feature of Windows security is applications can make use of the
Windows security framework for user-defined objects. For example, a database server
might create its own security descriptors and attach them to portions of a database.
In addition to normal read/write access constraints, the server could secure database-
specific operations, such as scrolling within a result set or performing a join. It would
be the server’s responsibility to define the meaning of special rights and perform
access checks. But the checks would occur in a standard context, using system-wide
user/group accounts and audit logs. The extensible security model should also prove
useful to implementers of non-Microsoft file systems.

	 15.8	SUMMARY

The scope of operating system security is broad. This chapter focuses on some of
the most important topics. The most prominent issue for OS security is countering
thread from intruders and malicious software. Intruders attempt to gain unauthorized
access to system resources, while malicious software is designed to penetrate system
defenses and become executable on target systems. Countermeasures to both types
of threat include intrusion detection systems, authentication protocols, access control
mechanisms, and firewalls.

M15_STAL4290_09_GE_C15.indd 691 4/13/17 12:22 PM

692   Chapter 15 / Operating System Security

One of the most common techniques for compromising OS security is the buffer
overflow attack. A condition at an interface under which more input can be placed
into a buffer or data-holding area than the capacity allocated, overwriting other infor-
mation. Attackers exploit such a condition to crash a system or to insert specially
crafted code that allows them to gain control of the system. System designers use a
variety of compile-time and runtime defenses to counter this type of attack.

Another important area of security defense is access control. Access control
measures include those that secure access to file system and to the OS user inter-
face. Traditional techniques for access control are referred to as discretionary access
control. A more flexible approach that has gained considerable support is role-based
access control, in which access depends not only on the identity of the user, but on
the specific role that user can assume for a specific task or set of tasks.

	 15.9	KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control
access control list (ACL)
access control policy
access matrix
address space randomization
authentication
buffer overrun
buffer overflow

capability ticket
discretionary access control

(DAC)
file system access control
firewall
guard page
intruder
intrusion detection

logging
malicious software
malware
role-based access control

(RBAC)
stack overflow

Review Questions

	15.1.	 What are typical access rights that may be granted or denied to a particular user for a
particular file?

	15.2.	 List and briefly define three classes of intruders.
	15.3.	 In general terms, what are four means of authenticating a user’s identity?
	15.4.	 Briefly describe the difference between DAC and RBAC.
	15.5.	 What types of programming languages are vulnerable to buffer overflows?
	15.6.	 What are the two broad categories of defenses against buffer overflows?
	15.7.	 List and briefly describe some of the defenses against buffer overflows that can be used

when compiling new programs.
	15.8.	 List and briefly describe some of the defenses against buffer overflows that can be

implemented when running existing, vulnerable programs.

Problems

	15.1.	 State some threats that result from a process running with administrator or root privi-
leges on a system.

	15.2.	 In the context of an IDS, we define a false positive to be an alarm generated by an IDS
in which the IDS alerts to a condition that is actually benign. A false negative occurs

M15_STAL4290_09_GE_C15.indd 692 4/13/17 12:22 PM

15.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   693

when an IDS fails to generate an alarm when an alert-worthy condition is in effect.
Using the following diagram, depict two curves that roughly indicate false positives
and false negatives, respectively.

Frequency
of alerts

Less specific
or looser

Conservativeness
of signatures

More specific
or stricter

	15.3.	 Rewrite the function shown in Figure 15.2a so it is no longer vulnerable to a stack buf-
fer overflow.

	15.4.	 For the DAC model discussed in Section 15.3, an alternative representation of the
protection state is a directed graph. Each subject and each object in the protection
state is represented by a node (a single node is used for an entity that is both subject
and object). A directed line from a subject to an object indicates an access right, and
the label on the link defines the access right.
a.	 Draw a directed graph that corresponds to the access matrix of Figure 15.3a.
b.	 Draw a directed graph that corresponds to the access matrix of Figure 15.4.
c.	 Is there a one-to-one correspondence between the directed graph representation

and the access matrix representation? Explain.
	15.5.	 Set user (SetUID) and set group (SetGID) programs and scripts are a powerful mecha-

nism provided by Unix to support “controlled invocation” to manage access to sensitive
resources. However, precisely because of this, it is a potential security hole, and bugs
in such programs have led to many compromises on Unix systems. Detail a command
you could use to locate all set user or group scripts and programs on a Unix system,
and how you might use this information.

	15.6.	 User “abram” owns a directory, “myDir,” containing an executable file called
“myScript.sh” that he shares with users belonging to the group “myGroup” and others.
User of “myGroup” may read and execute this file, but not delete it. They may not
add other files to the directory. Others may only execute anything in “myDir” and
“myScript.sh”. What would appropriate ownerships and permissions for both “myDir”
and “myScript.sh” look like? (Write answers in the form of “long listing” output.)

	15.7.	 The UNIX command ls can be used to view the ownerships and permissions of a file.
What will be the output of the command ls –l myStore | cut –d' '–f1 if
myStore is a file with protection mode 644(octal)? What command(s) will be used
to give write permission to the users of the same group and to remove all permissions
from others? What will be the output in this case?

	15.8.	 In the traditional UNIX file access model, UNIX systems provide a default setting for
newly created files and directories, which the owner may later change. The default is
typically full access for the owner combined with one of the following: no access for
group and other, read/execute access for group and none for other, or read/execute
access for both group and other. Briefly discuss the advantages and disadvantages of
each of these cases, including an example of a type of organization where each would
be appropriate.

M15_STAL4290_09_GE_C15.indd 693 4/13/17 12:22 PM

694   Chapter 15 / Operating System Security

	15.9.	 Consider user accounts on a system with a Web server configured to provide access
to user Web areas. In general, this scheme uses a standard directory name, such as
public_html, in a user’s home directory. This acts as the user’s Web area if it exists.
However, to allow the Web server to access the pages in this directory, it must have
at least search (execute) access to the user’s home directory, read/execute access to
the Web directory, and read access to any Web pages in it. Consider the interaction
of this requirement with the cases you discussed for the preceding problem. What
consequences does this requirement have? Note a Web server typically executes as
a special user and in a group that is not shared with most users on the system. Are
there some circumstances when running such a Web service is simply not appropriate?
Explain.

	15.10.	 Assume a system with N job positions. For job position i, the number of individual users
in that position is Ui and the number of permissions required for the job position is Pi.
a.	 For a traditional DAC scheme, how many relationships between users and permis-

sions must be defined?
b.	 For an RBAC scheme, how many relationships between users and permissions

must be defined?
	15.11.	 Why is logging important? What are its limitations as a security control? What are pros

and cons of remote logging?
	15.12.	 Consider an automated audit log analysis tool (e.g., swatch). Can you propose some

rules which could be used to distinguish “suspicious activities” from normal user behav-
ior on a system for some organization?

	15.13.	 What are the advantages and disadvantages of using a file integrity checking tool (e.g.,
tripwire). This is a program which notifies the administrator of any changes to files
on a regular basis? Consider issues such as which files you really only want to change
rarely, which files may change more often, and which may change often. Discuss how
this influences the configuration of the tool, especially as to which parts of the file
system are scanned, and how much work monitoring its responses imposes on the
administrator.

	15.14.	 Some have argued that Unix/Linux systems reuse a small number of security features
in many contexts across the system; while Windows systems provide a much larger
number of more specifically targeted security features used in the appropriate contexts.
This may be seen as a trade-off between simplicity verses lack of flexibility in the Unix/
Linux approach against a better targeted but more complex and harder to correctly
configure approach in Windows. Discuss this trade-off as it impacts on the security
of these respective systems, and the load placed on administrators in managing their
security.

M15_STAL4290_09_GE_C15.indd 694 4/13/17 12:22 PM

695

Cloud and IoT Operating
Systems

16.1	 Cloud Computing
Cloud Computing Elements
Cloud Service Models
Cloud Deployment Models
Cloud Computing Reference Architecture

16.2	 Cloud Operating Systems
Infrastructure as a Service
Requirements for Cloud Operating System
General Architecture of a Cloud Operating System
OpenStack

16.3	 The Internet of Things
Things on the Internet of Things
Evolution
Components of IoT-Enabled Devices
IoT and Cloud Context

16.4	 IoT Operating Systems
Constrained Devices
Requirements for an IoT OS
IoT OS Architecture
RIOT

16.5	 Key Terms and Review Questions

Chapter

M16_STAL4290_09_GE_C16.indd 695 4/13/17 11:20 AM

696   Chapter 16 / Cloud and IoT Operating Systems

The two most significant developments in computing in recent years are cloud com-
puting and the Internet of Things (IoT). In both cases, operating systems tailored to
the specific requirements of these environments are evolving. This chapter begins
with an overview of the concepts of cloud computing, followed by a discussion of
cloud operating systems. Next the chapter examines the concepts of IoT, and closes
with a discussion of IoT operating systems.

For further detail on the material on cloud computing and IoT in Sections 16.1
and 16.3, see [STAL16b].

	 16.1	CLOUD COMPUTING

There is an increasingly prominent trend in many organizations to move a substantial
portion or even all information technology (IT) operations to an Internet-connected
infrastructure known as enterprise cloud computing. This section provides an over-
view of cloud computing.

Cloud Computing Elements

NIST defines cloud computing, in NIST SP-800-145 (The NIST Definition of Cloud
Computing) as follows:

Learning Objectives

After studying this chapter, you should be able to:
•	 Present an overview of cloud computing concepts.
•	 List and define the principal cloud services.
•	 List and define the cloud deployment models.
•	 Explain the NIST cloud computing reference architecture.
•	 Describe the principal functions of a cloud operating system.
•	 Present an overview of OpenStack.
•	 Explain the scope of the Internet of Things.
•	 List and discuss the five principal components of IoT-enabled devices.
•	 Understand the relationship between cloud computing and IoT.
•	 Define constrained devices.
•	 Describe the principal functions of a cloud operating system.
•	 Present an overview of RIOT.

Cloud computing: A model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This
cloud model promotes availability and is composed of five essential characteristics,
three service models, and four deployment models.

M16_STAL4290_09_GE_C16.indd 696 4/13/17 11:20 AM

16.1 / CLOUD COMPUTING   697

The definition refers to various models and characteristics, whose relationship
is illustrated in Figure 16.1. The essential characteristics of cloud computing include
the following:

•	 Broad network access: Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, laptops, and tablets) as well as other tra-
ditional or cloud-based software services.

•	 Rapid elasticity: Cloud computing gives you the ability to expand and reduce
resources according to your specific service requirement. For example, you may
need a large number of server resources for the duration of a specific task. You
can then release these resources upon completion of the task.

•	 Measured service: Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported, provid-
ing transparency for both the provider and consumer of the utilized service.

•	 On-demand self-service: A cloud service consumer (CSC) can unilaterally
provision computing capabilities, such as server time and network storage, as
needed automatically without requiring human interaction with each service
provider. Because the service is on demand, the resources are not permanent
parts of your IT infrastructure.

Figure 16.1  Cloud Computing Elements

Broad
Network Access

Resource Pooling

Rapid
Elasticity

E
ss

en
tia

l
C

ha
ra

ct
er

is
tic

s
Se

rv
ic

e
M

od
el

s
D

ep
lo

ym
en

t
M

od
el

s

Measured
Service

On-Demand
Self-Service

Public Private Hybrid Community

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

M16_STAL4290_09_GE_C16.indd 697 4/13/17 11:20 AM

698   Chapter 16 / Cloud and IoT Operating Systems

•	 Resource pooling: The provider’s computing resources are pooled to serve
multiple CSCs using a multitenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer demand.
There is a degree of location independence, in that the CSC generally has no
control or knowledge of the exact location of the provided resources, but may
be able to specify location at a higher level of abstraction (e.g., country, state,
or datacenter). Examples of resources include storage, processing, memory,
network bandwidth, and virtual machines (VMs). Even private clouds tend to
pool resources between different parts of the same organization.

Cloud Service Models

NIST defines three service models, which can be viewed as nested service alterna-
tives: software as a service (SaaS), platform as a service (PaaS), and infrastructure
as a service (IaaS).

Software as a Service  SaaS provides service to customers in the form of software,
specifically application software, running on and accessible in the cloud. SaaS follows
the familiar model of Web services, in this case applied to cloud resources. SaaS enables
the customer to use the cloud provider’s applications running on the provider’s cloud
infrastructure. The applications are accessible from various client devices through
a simple interface, such as a Web browser. Instead of obtaining desktop and server
licenses for software products it uses, an enterprise obtains the same functions from
the cloud service. The use of SaaS avoids the complexity of software installation,
maintenance, upgrades, and patches. Examples of services at this level are Google
Gmail, Microsoft 365, Salesforce, Citrix GoToMeeting, and Cisco WebEx.

Common subscribers to SaaS are organizations that want to provide their
employees with access to typical office productivity software, such as document
management and email. Individuals also commonly use the SaaS model to acquire
cloud resources. Typically, subscribers use specific applications on demand. The cloud
provider also usually offers data-related features, such as automatic backup and data
sharing between subscribers.

Platform as a Service  A PaaS cloud provides service to customers in the form of
a platform on which the customer’s applications can run. PaaS enables the customer
to deploy onto the cloud infrastructure customer-created or acquired applications.
A PaaS cloud provides useful software building blocks, plus a number of development
tools, such as programming language tools, run-time environments, and other tools
that assist in deploying new applications. In effect, PaaS is an operating system in
the cloud. PaaS is useful for an organization that wants to develop new or tailored
applications while paying for the needed computing resources only as needed, and
only for as long as needed. AppEngine, Engine Yard, Heroku, Microsoft Azure, Force.
com, and Apache Stratos are examples of PaaS.

Infrastructure as a Service  With IaaS, the customer has access to the resources
of the underlying cloud infrastructure. The cloud service user does not manage or
control the resources of the underlying cloud infrastructure, but has control over
operating systems, deployed applications, and possibly limited control of select

M16_STAL4290_09_GE_C16.indd 698 4/13/17 11:20 AM

http://Force.com
http://Force.com

16.1 / CLOUD COMPUTING   699

networking components (e.g., host firewalls). IaaS provides virtual machines and
other virtualized hardware and operating systems. IaaS offers the customer processing,
storage, networks, and other fundamental computing resources so the customer is
able to deploy and run arbitrary software, which can include operating systems and
applications. IaaS enables customers to combine basic computing services, such as
number crunching and data storage, to build highly adaptable computer systems.

Typically, customers are able to self-provision this infrastructure, using a Web-
based graphical user interface that serves as an IT operations management console
for the overall environment. API access to the infrastructure may also be offered as
an option. Examples of IaaS are Amazon Elastic Compute Cloud (Amazon EC2),
Microsoft Windows Azure, Google Compute Engine (GCE), and Rackspace.

Figure 16.2 compares the functions implemented by the cloud service provider
for the three service models.

Cloud Deployment Models

There is an increasingly prominent trend in many organizations to move a substan-
tial portion or even all information technology (IT) operations to enterprise cloud
computing. The organization is faced with a range of choices as to cloud ownership
and management. Here, we look at the four most prominent deployment models for
cloud computing.

Public Cloud  A public cloud infrastructure is made available to the general public
or a large industry group, and is owned by an organization selling cloud services.

Figure 16.2  Separation of Responsibilities in Cloud Operation

Managed by customer

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

Traditional
IT - on

premises

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

IaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

PaaS

Networking

Storage

Servers

Virtualization

OS

Middleware

Runtime

Data

Applications

SaaS

Managed by cloud service provider

M16_STAL4290_09_GE_C16.indd 699 4/13/17 11:20 AM

700   Chapter 16 / Cloud and IoT Operating Systems

The cloud provider is responsible both for the cloud infrastructure and for the control
of data and operations within the cloud. A public cloud may be owned, managed, and
operated by a business, academic, or government organization, or some combination
of them. It exists on the premises of the cloud service provider.

In a public cloud model, all major components are outside the enterprise fire-
wall, located in a multitenant infrastructure. Applications and storage are made
available over the Internet via secured IP, and can be free or offered at a pay-per-
usage fee. This type of cloud supplies easy-to-use consumer-type services, such as:
Amazon and Google on-demand Web applications or capacity; Yahoo mail; and
Facebook or LinkedIn social media providing free storage for photographs. While
public clouds are inexpensive and scale to meet needs, they typically provide no or
lower SLAs and may not offer the guarantees against data loss or corruption found
with private or hybrid cloud offerings. The public cloud is appropriate for CSCs
and entities not requiring the same levels of service that are expected within the
firewall. Also, the public IaaS clouds do not necessarily provide for restrictions and
compliance with privacy laws, which remain the responsibility of the subscriber or
corporate end user. In many public clouds, the focus is on the CSC and small and
medium sized businesses where pay-per-use pricing is available, often equating to
pennies per gigabyte. Examples of services here might be picture and music sharing,
laptop backup, or file sharing.

The major advantage of the public cloud is cost. A subscribing organization only
pays for the services and resources it needs and can adjust these as needed. Further,
the subscriber has greatly reduced management overhead. The principal concern is
security. However, there are a number of public cloud providers that have demon-
strated strong security controls and, in fact, such providers may have more resources
and expertise to devote to security that would be available in a private cloud.

Private Cloud  A private cloud is implemented within the internal IT environment
of the organization. The organization may choose to manage the cloud in house or
contract the management function to a third party. Additionally, the cloud servers
and storage devices may exist on premise or off premise.

Private clouds can deliver IaaS internally to employees or business units through
an intranet or the Internet via a virtual private network (VPN), as well as software
(applications) or storage as services to its branch offices. In both cases, private clouds
are a way to leverage existing infrastructure, and deliver and chargeback for bundled
or complete services from the privacy of the organization’s network. Examples of
services delivered through the private cloud include database on demand, email on
demand, and storage on demand.

A key motivation for opting for a private cloud is security. A private cloud
infrastructure offers tighter controls over the geographic location of data storage
and other aspects of security. Other benefits include easy resource sharing and rapid
deployment to organizational entities.

Community Cloud  A community cloud shares characteristics of private and public
clouds. Like a private cloud, a community cloud has restricted access. Like a public
cloud, the cloud resources are shared among a number of independent organizations.
The organizations that share the community cloud have similar requirements and,

M16_STAL4290_09_GE_C16.indd 700 4/13/17 11:20 AM

16.1 / CLOUD COMPUTING   701

typically, a need to exchange data with each other. One example of an industry that
is employing the community cloud concept is the health care industry. A community
cloud can be implemented to comply with government privacy and other regulations.
The community participants can exchange data in a controlled fashion.

The cloud infrastructure may be managed by the participating organiza-
tions or a third party, and may exist on premise or off premise. In this deployment
model, the costs are spread over fewer users than a public cloud (but more than
a private cloud), so only some of the cost savings potential of cloud computing
are realized.

Hybrid Cloud  The hybrid cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but are bound
together by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between clouds). With a hybrid
cloud solution, sensitive information can be placed in a private area of the cloud, and
less sensitive data can take advantage of the benefits of the public cloud.

A hybrid public/private cloud solution can be particularly attractive for smaller
businesses. Many applications for which security concerns are less can be offloaded
at considerable cost savings without committing the organization to moving more
sensitive data and applications to the public cloud.

Table 16.1 lists some of the relative strengths and weaknesses of the four cloud
deployment models.

Cloud Computing Reference Architecture

NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes refer-
ence architecture, described as follows:

Private Community Public Hybrid

Scalability Limited Limited Very high Very high

Security Most secure option Very secure Moderately secure Very secure

Performance Very good Very good Low to medium Good

Reliability Very high Very high Medium Medium to high

Cost High Medium Low Medium

Table 16.1  Comparison of Cloud Deployment Models

The NIST cloud computing reference architecture focuses on the requirements
of “what” cloud services provide, not a “how to” design solution and implemen-
tation. The reference architecture is intended to facilitate the understanding of
the operational intricacies in cloud computing. It does not represent the system
architecture of a specific cloud computing system; instead it is a tool for describing,
discussing, and developing a system-specific architecture using a common frame-
work of reference.

M16_STAL4290_09_GE_C16.indd 701 4/13/17 11:20 AM

702   Chapter 16 / Cloud and IoT Operating Systems

NIST developed the reference architecture with the following objectives in
mind:

•	 To illustrate and understand the various cloud services in the context of an
overall cloud computing conceptual model

•	 To provide a technical reference for CSCs to understand, discuss, categorize,
and compare cloud services

•	 To facilitate the analysis of candidate standards for security, interoperability,
and portability and reference implementations.

The reference architecture, depicted in Figure 16.3, defines five major actors in
terms of the roles and responsibilities:

•	 Cloud service consumer (CSC): A person or organization that maintains a busi-
ness relationship with, and uses service from, cloud providers.

•	 Cloud service provider (CSP): A person, organization, or entity responsible for
making a service available to interested parties.

•	 Cloud auditor: A party that can conduct independent assessment of cloud ser-
vices, information system operations, performance, and security of the cloud
implementation.

•	 Cloud broker: An entity that manages the use, performance, and delivery of
cloud services, and negotiates relationships between CSPs and cloud consumers.

•	 Cloud carrier: An intermediary that provides connectivity and transport of
cloud services from CSPs to cloud consumers.

The roles of the cloud consumer and provider have already been discussed.
To summarize, a cloud service provider can provide one or more of the cloud services

Figure 16.3  NIST Cloud Computing Reference Architecture

Cloud
Consumer

Cloud
Auditor

Service
Intermediation

Service
Aggregation

Service
Arbitrage

Cloud
Broker

Cloud Provider

Security
Audit

Performance
Audit

Privacy
Impact Audit

SaaS

Service Layer

Service Orchestration Cloud
Service

Management

PaaS

Hardware

Physical Resource Layer

Facility

Resource Abstraction
and Control Layer

IaaS

Business
Support

Provisioning/
Configuration

Portability/
Interoperability

Se
cu

ri
ty

Pr
iv

ac
y

Cloud Carrier

M16_STAL4290_09_GE_C16.indd 702 4/13/17 11:20 AM

16.1 / CLOUD COMPUTING   703

to meet IT and business requirements of cloud service consumers. For each of the
three service models (SaaS, PaaS, IaaS), the CSP provides the storage and process-
ing facilities needed to support that service model, together with a cloud interface
for cloud service consumers. For SaaS, the CSP deploys, configures, maintains, and
updates the operation of the software applications on a cloud infrastructure so that
the services are provisioned at the expected service levels to cloud consumers. The
consumers of SaaS can be organizations that provide their members with access to
software applications, end users who directly use software applications, or software
application administrators who configure applications for end users.

For PaaS, the CSP manages the computing infrastructure for the platform and
runs the cloud software that provides the components of the platform, such as run-
time software execution stacks, databases, and other middleware components. Cloud
consumers of PaaS can employ the tools and execution resources provided by CSPs
to develop, test, deploy, and manage the applications hosted in a cloud environment.

For IaaS, the CSP acquires the physical computing resources underlying the
service, including the servers, networks, storage, and hosting infrastructure. The IaaS
CSC in turn uses these computing resources, such as a virtual machine, for their fun-
damental computing needs.

The cloud carrier is a networking facility that provides connectivity and trans-
port of cloud services between cloud consumers and CSPs. Typically, a CSP will set
up service level agreements (SLAs) with a cloud carrier to provide services consistent
with the level of SLAs offered to cloud consumers, and may require the cloud carrier
to provide dedicated and secure connections between cloud consumers and CSPs.

A cloud broker is useful when cloud services are too complex for a cloud con-
sumer to easily manage. A cloud broker can offer three areas of support:

•	 Service intermediation: These are value-added services, such as identity man-
agement, performance reporting, and enhanced security.

•	 Service aggregation: The broker combines multiple cloud services to meet con-
sumer needs not specifically addressed by a single CSP, or to optimize perfor-
mance or minimize cost.

•	 Service arbitrage: This is similar to service aggregation except that the services
being aggregated are not fixed. Service arbitrage means a broker has the flex-
ibility to choose services from multiple agencies. The cloud broker, for example,
can use a credit-scoring service to measure and select an agency with the best
score.

A cloud auditor can evaluate the services provided by a CSP in terms of security
controls, privacy impact, performance, and so on. The auditor is an independent entity
that can assure that the CSP conforms to a set of standards.

Figure 16.4 illustrates the interactions between the actors. A cloud consumer
may request cloud services from a cloud provider directly or via a cloud broker. A
cloud auditor conducts independent audits and may contact the others to collect
necessary information. This figure shows that cloud networking issues involve three
separate types of networks. For a cloud producer, the network architecture is that of
a typical large datacenter, which consists of racks of high-performance servers and
storage devices, interconnected with high-speed top-of-rack Ethernet switches. The

M16_STAL4290_09_GE_C16.indd 703 4/13/17 11:20 AM

704   Chapter 16 / Cloud and IoT Operating Systems

concerns in this context focus on virtual machine placement and movement, load
balancing, and availability issues. The enterprise network is likely to have a quite
different architecture, typically including a number of LANs, servers, workstations,
PCs, and mobile devices, with a broad range of network performance, security, and
management issues. The concern of both producer and consumer with respect to the
cloud carrier, which is shared with many users, is the ability to create virtual networks,
with appropriate SLA and security guarantees.

	 16.2	CLOUD OPERATING SYSTEMS

The term cloud operating system refers to a distributed operating system that is
designed to run in the cloud service provider’s datacenter and is used to manage
high-performance servers, network, and storage resources and provide those services
to cloud service users. In essence, the cloud OS is the software that implements IaaS.

It is important to note the distinction between a cloud OS and PaaS. As dis-
cussed in Section 16.1, PaaS is a platform for executing customer applications. PaaS
enables the customer to deploy onto the cloud infrastructure customer-created or
acquired applications. It provides useful software building blocks, plus a number of
development tools, such as programming language tools, run-time environments, and
other tools that assist in deploying new applications. In effect, PaaS is a user-visible
operating system in the cloud. In contrast, a cloud OS is distinct from the operating
system run by the cloud service user on cloud virtual machines. Because the provider
provides an IaaS, the user’s OS runs on the cloud infrastructure. The cloud OS man-
ages the provision of these services and may provide some tools to the user, but is
otherwise transparent to the cloud service user.

Figure 16.4  Interactions Between Actors in Cloud Computing

Cloud Consumer

Cloud Broker

Cloud Auditor

Cloud Producer

Enterprise
Network

Cloud
Carrier

DataCenter
Network

M16_STAL4290_09_GE_C16.indd 704 4/13/17 11:20 AM

16.2 / CLOUD OPERATING SYSTEMS   705

This section begins with a look in more detail at the IaaS model, then examines
the characteristics of a cloud OS suitable for implementing IaaS. Finally, we look at
the most important open-source cloud OS, OpenStack.

Infrastructure as a Service

IaaS represents the infrastructure layer composed mostly of virtualized environments
providing computing, storage, and network resources. Hypervisors run a collection
of virtual machines on real IT resources and provide virtualized versions of these
resources to cloud service users. The users are free to install any OS and application
environment they want on these virtualized resources. The provider is responsible for
enabling access to the virtualized resources, provisioning the quantity of resources
needed, and managing the resources. The CSC does not manage or control the under-
lying cloud infrastructure but has control over operating systems, storage, deployed
applications, and possibly limited control of select networking components (e.g., host
firewalls).

Note IaaS is not simply another name for a virtualized environment. Although
virtualization is a key enabling technology for cloud computing, it is only when the
basic environment is extended to incorporate advanced management tools (for
moving virtual machines, for monitoring and managing availability, recovery, lifecycle
management, self service, chargeback, etc.) that a virtualized environment becomes
capable of satisfying the essential IaaS characteristics.

Figure 16.5 illustrates the principal features of IaaS as seen by the CSC. Three
interactions, which are shown as numbered lines with double arrowheads in the figure
are important.

Figure 16.5  IaaS Conceptual Framework

Cloud Service
Provider (CSP)

Cloud Service
Consumers (CSPs)

Computing resource pool

Network resource pool

Storage resource pool

1

2

3

Portal

M16_STAL4290_09_GE_C16.indd 705 4/13/17 11:20 AM

706   Chapter 16 / Cloud and IoT Operating Systems

The first interaction is between the CSC and a CSP portal to provide consumer
access to the cloud resources with appropriate security mechanisms. It encompasses
the following actions:

1.	 CSC accesses the IaaS service with appropriate security mechanisms and que-
ries the CSP portal to retrieve the list of supported functions (e.g., infrastructure
templates) related to the infrastructure.

2.	 CSC selects the appropriate infrastructure template from the query results and
requests the CSP to create an infrastructure based on the selection.

3.	 CSC manages and monitors the created infrastructure during its lifecycle. This
includes, but is not limited to:

—assign: start IaaS by allocating to the service the available resources as identi-
fied by configuration (e.g., create, initiate, start, enable, and power-on)
—modify: change the amount of resource being in-use according to the demand
(e.g., update, add, enable, and disable)
—release: close the IaaS service by making available the resource being in-use
by the service (e.g., delete, shutdown, disable, and power-off).

The second interaction includes the following actions:

1.	 The CSC has selected the template or configured a specific VM and/or physi-
cal host.

2.	 The CSC has selected the storage resources (such as block, file, and object stor-
age) then attached them via their computing capabilities or used them directly.

3.	 The CSC has selected the network connectivity services, such as the IP address,
VLAN, firewall and load balance, then applied them to the related computing
and/or storage capabilities.

4.	 The CSC confirmed the service-level agreements (SLAs) and charge model
with selected computing, storage and network connectivity services provided
by the CSP.

Once the CSP grants access and configures the resources for the CSC, the third
interaction proceeds as follows:

1.	 The CSC manages and monitors computing, storage, and network capabilities
with arbitrary applications.

2.	 The CSP configures, deploys, and maintains hypervisors and storage resources.

3.	 The CSP establishes, configures, delivers, and maintains network connectivity
to the CSC.

4.	 The CSP provides security infrastructure to the CSC.

Requirements for Cloud Operating System

A cloud OS must manage and provides CSCs with access to an IaaS environment. A
useful way to define the requirements for a cloud OS is to look at the functions that
must be supported for IaaS. ITU-T Recommendation Y.3513 (Cloud computing—
Functional requirements of Infrastructure as a Service, August 2014) lists the functional

M16_STAL4290_09_GE_C16.indd 706 4/13/17 11:20 AM

16.2 / CLOUD OPERATING SYSTEMS   707

requirements for the CSP to provide an IaaS, and these provide a useful summary of
the scope of the cloud OS (see Table 16.2).

General Architecture of a Cloud Operating System

A central feature of a cloud OS is that it exploits virtualization technology to pro-
vide compute, storage, and network resources via an IaaS environment. Figure 16.6
illustrates the concepts involved at a conceptual level. We examine each of the major
elements of this figure in turn.

Virtualization  Virtual machine technology, as discussed in Chapter 14, enables
migration of dedicated application, network, and storage servers to commercial off-
the-shelf (COTS) servers. In traditional networks of servers and storage devices,
all devices are deployed on private platforms. All elements are enclosed boxes, and
hardware cannot be shared. Each device requires additional hardware for increased
capacity, but this hardware is idle when the system is running below capacity. With
virtualization, however, compute, storage, and network elements are independent
applications that are flexibly deployed on a unified platform comprising standard
servers, storage devices, and switches. In this way, software and hardware are
decoupled, and capacity for each application is increased or decreased by adding or
reducing virtual resources.

In a cloud environment, the hardware resources are standard servers, network-
attached storage, and switches (generally Ethernet switches). Hypervisors executing
on these hardware devices provide the support for developing virtual machines that
deliver virtual computing, storage, and network resources.

Scope Requirements

General —Provide IaaS functions, such as a composition of processing, storage, and network-
ing resources with service logic, specific SLAs, and charging model.
—Provides status information about the infrastructure in response to CSC queries.
—Provide template to the CSC, related to instantiation of infrastructure, which
allows to provision processing, storage, and networking resources that could be
implemented based on the configuration.

Computing service —Provide VMs based on template or on configuration specified by CSC.
—Provide CSC with operations handling mechanisms, including, create, delete, start,
shutdown, suspend, restore, hibernate, and wakeup.
—Provide VM with following functions: migration from one host to another; scaling,
including configuration changes (e.g., processor, memory, bandwidth increased or
decreased) and component changes (VM added or removed); snapshot; clone; and
backup.

Storage service —Provide storage functions, such as block level storage, file level storage, and
object-based storage.
—Provide with operations handling mechanisms, such as create, attach, detach,
query, and delete a volume of storage at either block level or file-system level, write,
read, and delete data for a given storage.
—Provide following functions: storage migration; snapshot; and backup.

Network service —Provide network functions, such as IP address, VLAN, virtual switch, load balance,
and firewall.

Table 16.2  CSP Functional Requirements for IaaS

M16_STAL4290_09_GE_C16.indd 707 4/13/17 11:20 AM

708   Chapter 16 / Cloud and IoT Operating Systems

The CSP maintains total control over the physical hardware and administrative
control over the hypervisor layer. The consumer may make requests to the cloud to cre-
ate and manage new VMs, but these requests are honored only if they conform to the
provider’s policies over resource assignment. Through the hypervisor, the provider will
typically provide interfaces to networking features (such as virtual network switches)
that consumers may use to configure custom virtual networks within the provider’s
infrastructure. The consumer will typically maintain complete control over the opera-
tion of the guest operating system in each VM, and all software layers above it.

Figure 16.6  Cloud Operating System Concept

Standard
high-volume

servers

Standard
high-volume

storage

Standard
high-volume

Ethernet switches

Virtual
computing

Database and
Object Storage

Virtual
storage

Virtual
network

Hypervisor

Appllications

Cloud
OS

Physical
Infrastructure

Management and
Orchestration

API & GUI

M16_STAL4290_09_GE_C16.indd 708 4/13/17 11:21 AM

16.2 / CLOUD OPERATING SYSTEMS   709

Virtual Computing  The virtual computing component of the cloud OS controls
virtual machines within the IaaS cloud computing environment. The OS views each
VM as a compute instance, whose principal elements include the following:

•	 CPU/memory: A COTS processor, with main memory, that executes the code
of the VM.

•	 Internal storage: Nonvolatile storage housed in the same physical structure as
the processor, such as flash memory.

•	 Accelerator: Accelerator functions for security, networking, and packet pro-
cessing may also be included. These virtual accelerator functions correspond
to accelerator hardware associated with the physical server.

•	 External storage with storage controller: Access to secondary memory devices.
These are memory devices attached to a physical server, in contrast to network
attached storage (NAS).

The virtual computing component also includes software for interacting with
other components of the cloud OS and with the API and GUI interfaces to applica-
tions and users.

Virtual Storage  The virtual storage component of the cloud OS provides data
storage services for the cloud infrastructure. This component includes the following
services:

•	 Stores cloud management information, including virtual machine and virtual
network definitions.

•	 Provides working space to applications and workloads running in the cloud
environment.

•	 Provides storage-related mechanisms, including workload migration, automated
backups, integrated version control, and optimized application-specific storage
mechanisms.

For the CSC, this component provides block storage, often with additional func-
tionality and implemented as a collection of virtual disk drives within a hypervisor.
This component must isolate the stored data of the different CSC workloads.

Storage comes in the following topologies:

•	 Direct Attached Storage (DAS): While typically associated with internal server
hard drives, a better way of thinking about DAS is that it is captive to the server
to which it is attached.

•	 Storage Area Network (SAN): A SAN is a dedicated network that provides
access to various types of storage devices including tape libraries, optical
jukeboxes, and disk arrays. To servers and other devices in the network, a
SAN’s storage devices look like locally attached devices. A disk block-based
storage technology, SAN is probably the most pervasive form of storage for
very large datacenters and has been a de facto staple as it relates to database
intensive applications. These applications require shareable storage, large band-
width, and support for the distances from rack to rack within the datacenter.

M16_STAL4290_09_GE_C16.indd 709 4/13/17 11:21 AM

710   Chapter 16 / Cloud and IoT Operating Systems

•	 Network Attached Storage (NAS): NAS systems are networked appliances that
contain one or more hard drives that can be shared with multiple, heterogeneous
computers. Their specialized role within networks is to store and serve files.
NAS disk drives typically support built-in data protection mechanisms including
redundant storage containers or redundant arrays of independent disks (RAID).
NAS enables file serving responsibilities to be separated from other servers on
the network and typically provide faster data access than traditional file servers.

Figure 16.7 illustrates the distinction between SAN and NAS. A CSP will typi-
cally implement a SAN within the cloud infrastructure and may also make use of
NAS. The cloud OS should be able to accommodate both topologies and provide
transparent access to the CSC, who need not know the internal storage topological
structure of the cloud.

Figure 16.7  SAN and NAS in a Cloud Infrastructure

CSC
workstations

CSP Application
servers

(a) Configuration with network attached storage (NAS)

CSP file/storage
NAS servers
(with disks)

Access network
(e.g., Internet)

CSP
infrastructure

network

CSC
workstations

CSP application/
file servers

Ultra-high speed
switch or switch

network

SAN storage subsystems

(b) Configuration with storage area network (SAN)

Access network
(e.g., Internet)

CSP
infrastructure

network

M16_STAL4290_09_GE_C16.indd 710 4/13/17 11:21 AM

16.2 / CLOUD OPERATING SYSTEMS   711

Virtual Network  The virtual network component of the cloud OS provides
networking services for the cloud infrastructure. It enables connectivity among
the computer, storage, and other elements of the infrastructure as well as with the
broader environment outside of the cloud. This component also provides CSCs with
the ability to create virtual networks among VMs and network appliances.

In addition to basic connectivity services, the virtual network component may
include the following services and functions:

•	 An infrastructure addressing scheme (there may well be more than one scheme)
with address allocation and management.

•	 A routing process that can relate infrastructure addresses to routes through the
infrastructure network topology.

•	 A bandwidth allocation process, including priority and quality of service (QoS)
features.

•	 Support network functions such virtual LAN (VLAN), load balancing, and
firewalls.

Data Structure Management  A cloud OS provides not only raw storage
capability but services for accessing data in a structured fashion. The three common
structures supported by the cloud OS and the IaaS are block, file, and object.

With block storage, data are stored on hard disk as fixed-size blocks. Each
block is a contiguous sequence of bytes. SANs provide block storage access and
it is also used with DAS. Block storage lends itself to snapshot capabilities and to
resiliency schemes such as mirroring. Typically, SAN controllers will utilize a copy-
on-write mechanism to keep the local copy and the mirror volume synchronously
mirrored.

File-based storage systems are typically synonymous with NAS and consist of
a storage array, some type of controller and operating system, and one to several
networked-storage protocols. The most widely deployed protocol for large-scale vir-
tualization environments is Network File System (NFS). The data are stored on hard
disk as files in a directory structure. These devices have their own processors and
OS and are accessed using a standard protocol over a TCP/IP network. Common
protocols include:

•	 NFS (Network File System): NFS is common in Unix- and Linux-based networks.

•	 SMB (Server Message Block) or CIFS (Common Internet File System): SMB
(or CIFS) is commonly used in Windows-based networks.

•	 HTTP (Hypertext Transfer Protocol): HTTP is the protocol you most com-
monly use when using a Web browser.

NAS appliances are relatively easy to deploy, and client access is straightforward
using the common protocols. Servers and the NAS appliances are all connected over
a shared TCP/IP network, and the data stored on NAS appliances can be accessed
by virtually any server, regardless of the server’s OS.

One of the advantages of file-based storage is the ability to treat a file as a block
device or disk drive. Files can be easily appended to in order to create larger virtual
drives. And files can be easily replicated to other locations. One of the disadvantages

M16_STAL4290_09_GE_C16.indd 711 4/13/17 11:21 AM

712   Chapter 16 / Cloud and IoT Operating Systems

of working with file-based storage is the difficulty of rapidly cloning an existing vir-
tual disk image into a new image. Also, a NAS-based storage system is typically
slower than DAS or SAN.

In contrast to file-based storage, object storage uses a flat address space instead
of the hierarchical, directory-based scheme [MESN03, TAUR12]. Each object con-
sists of a container that stores both the data and also metadata describing the data,
such as date, size, and format. Each object is assigned a unique object ID and can be
addressed directly using that ID. The object ID is stored in a database or application
and is used to reference objects in one or more containers. Object storage is widely
used in cloud systems.

The data in an object-based storage system is typically accessed using HTTP
using a Web browser or directly through an API. The flat address space in an object-
based storage system enables simplicity and massive scalability, but the data in these
systems typically can’t be modified. One of the key advantages of object storage is the
ability to directly couple unique methods or security implementations with the actual
data as opposed to having such capabilities come from an adjacent system or service.

Figure 16.8 contrasts block, file, and object storage.

Management and Orchestration  The management and orchestration (MANO)
component of a cloud OS has as its primary function the control of the IaaS
environment. NIST defines this function as the composition of system components to
support the cloud provider activities in arrangement, coordination, and management
of computing resources in order to provide cloud services to cloud consumers
(US Government Cloud Computing Technology Roadmap Volume I. SP 500-293,
October 2014).

Figure 16.8  Block, File, and Object Storage

1 2 3

4 5 6

7 8 9

Traditional SAN Traditional NAS
(layered over block store)

Object Store

Block Protocols
(iSCI/FC)

File Protocols
(NFS/SMB)

File and Folders

Objects

Object Protocols
(APIs)

Block Store

1 2 3

4 5 6

7 8 9

Block Store

1 2 3

4 5 6

7 8 9

Object Store

M16_STAL4290_09_GE_C16.indd 712 4/13/17 11:21 AM

16.2 / CLOUD OPERATING SYSTEMS   713

MANO encompasses the following functions and services:

•	 Orchestration: Responsible for installing and configuring new network services
(NS); NS lifecycle management; global resource management; and validation
and authorization of resource requests.

•	 VM manager: Oversees lifecycle management of VM instances.

•	 Infrastructure manager: Controls and manages the interaction of a VM with
computing, storage, and network resources under its authority, as well as their
virtualization.

OpenStack

OpenStack is an open-source software project of the OpenStack Foundation that
aims to produce an open-source cloud operating system [ROSA14, SEFR12]. The
principal objective is to enable creating and managing huge groups of virtual private
servers in a cloud computing environment. OpenStack is embedded, to one degree
or another, into datacenter infrastructure and cloud computing products offered by
Cisco, IBM, Hewlett-Packard, and other vendors. It provides multitenant IaaS, and
aims to meets the needs of public and private clouds regardless of size, by being
simple to implement and massively scalable.

The OpenStack OS consists of a number of independent modules, each of
which has a project name and a functional name. The modular structure is easy to
scale out and provides a commonly used set of core services. Typically the compo-
nents are configured together to provide a comprehensive IaaS capability. However,
the modular design is such that the components are generally capable of being used
independently.

To understand OpenStack it is useful to distinguish three types of storage that
are part of the OpenStack environment:

•	 Network block storage: This type of storage makes data persistent by mount-
ing one or more network block storage devices. It represents an allocation of
persistent, readable, and writable block storage that could be utilized as the root
disk for a VM instance, or as secondary storage that could be attached and/or
detached from a VM instance.

•	 Object storage: Object storage is the persistent storage of objects on a network.
From the object storage viewpoints, the objects are arbitrary, unstructured data.
The storage objects are generally write-once, read-many. This is reliable storage
with redundant copies. Access control lists determine visibility for the owner
and authorized users.

•	 Virtual machine image storage: VM images are disk images that can be booted
on a VM by a hypervisor. It can be a single image that contains the boot loader,
kernel and operating system, or the boot loader and kernel can be separated.
This type of storage allows for custom kernels and resizable images.

Figure 16.9, from [CALL15], illustrates the OpenStack conceptual architecture,
with the interaction among the principal software components. Table 16.3 defines the
functional interaction; the leftmost column indicates the source of an action, while the

M16_STAL4290_09_GE_C16.indd 713 4/13/17 11:21 AM

Glance
(image)

Horizon
(dashboard)

Nova
(compute)

Swift
(object
storage)

Cinder
(block
storage)

Neutron
(network)

Glance
(image)

sends images
to

stores disk
files

stores blocks
on

Horizon
(dashboard)

provides UI provides UI provides UI provides UI provides UI

Nova
(compute)

receives
images from

stores
volumes on

Swift
(object storage)

supplies disk
files

provides
volumes for

Cinder
(block storage)

provides
volumes
for

Neutron
(network)

Keystone
(identity)

authenticates
with

authenticates
with

authenticates
with

authenticates
with

authenticates
with

authenticates
with

Heat
(orchestration)

orchestrates orchestrates orchestrates orchestrates orchestrates orchestrates

Trove
(database)

provides
instances to

Ceilometer monitors monitors monitors monitors monitors monitors

VM retrieves
image files

Table 16.3  OpenStack Functional Interactions

(Continued)

Figure 16.9  OpenStack High Level Architecture

Dashboard
(Horizon)

Orchestration
(Heat)

Identity
(Keystone)

Ceilometer
(metering)

Network
(Neutron)

Block
Storage
(Cinder)

Compute
(Nova)

Image
(Glance)

Object
Storage
(Swift)

714

M16_STAL4290_09_GE_C16.indd 714 4/13/17 11:21 AM

16.2 / CLOUD OPERATING SYSTEMS   715

topmost row indicates the destination of an action. These components can be roughly
divided into five functional groups:

•	 Computing: Compute (Nova), Image (Glance)

•	 Networking: Network (Neutron)

•	 Storing: Object Storage (Swift), Block Storage (Cinder)

•	 Shared Services: Security (Keystone), Dashboard (Keystone), Metering (Ceil-
ometer), Orchestration (Heat)

•	 Other Optional Services: Discussed subsequently.

We now examine each of the components listed in the first four bullet items,
then briefly discuss other components.

Compute (Nova)  Nova is the management software that controls virtual
machines within the IaaS cloud computing platform. It manages the lifecycle
of compute instances in an OpenStack environment. Responsibilities include
spawning, scheduling, and decommissioning of machines on demand. Thus,

Keystone
(identity)

Heat
(orchestration)

Trove
(database) ceilometer VM

Glance
(image)

authenticates
with

supplies
image files

Horizon
(dashboard)

authenticates
with

provides UI provides UI provides UI provides UI

Nova
(compute)

authenticates
with

receives
instances from

launches
volume

Swift
(object
storage)

authenticates
with

Cinder
(block
storage)

authenticates
with

Neutron
(network)

authenticates
with

provides
network
connectivity

Keystone
(identity)

authenticates with authenticates
with

authenticates
with

authenticates
with

Heat
(orchestration)

authenticates
with

orchestrates orchestrates

Trove
(database)

authenticates
with

Ceilometer authenticates
with

monitors monitors

VM authenticates
with

Table 16.3  OpenStack Functional Interactions (continued)

M16_STAL4290_09_GE_C16.indd 715 4/13/17 11:21 AM

716   Chapter 16 / Cloud and IoT Operating Systems

Nova enables enterprises and service providers to offer on-demand computing
resources, by provisioning and managing large networks of virtual machines. Nova
is similar in scope to Amazon Elastic Compute Cloud (EC2). Nova is capable of
interacting with various open-source and commercial hypervisors. Nova does not
include any virtualization software; rather, it defines drivers that interact with
underlying virtualization mechanisms that run on the host operating system, and
it provides functionality over a Web API. Thus, Nova enables the management
of large networks of virtual machines and supports redundant and scalable
architectures. It includes instances management for servers, networks, and access
control. Nova requires no prerequisite hardware and is completely independent
of the hypervisor.

Nova consists of five main components (see Figure 16.10):

•	 API server: This is the external interface to the Dashboard for users and
applications.

•	 Message queue: Nova components exchange info through the queue (actions)
and database (information) to carry out API requests. The message queue
implements the mechanism for dispatching the exchanged instructions to facili-
tate communication.

•	 Compute controller: Handles the lifecycle of virtual machine instances, it is
responsible for creating and manipulating virtual servers. It interacts with
Glance.

Figure 16.10  Nova Logical Architecture

Image
Store

Glance
database

Nova
database

Volume
database

Dashboard

nova-api

nova-compute

Nova
message
queue

swift-api
nova-

schedule

glance-api

glance-
registry

M16_STAL4290_09_GE_C16.indd 716 4/13/17 11:21 AM

16.2 / CLOUD OPERATING SYSTEMS   717

•	 Database: Stores most of the build-time and run-time state for a cloud infra-
structure. This includes the instance types that are available for use, instances
in use, networks available and projects.

•	 Scheduler: Takes virtual machine instance requests and determines where (on
which compute server host) they should be executed.

Note several components interact with Swift. Swift manages the creation, attach-
ing and detaching of volumes to compute instances.

Image (Glance)  Glance is a lookup and retrieval system for virtual machine
(VM) disk images. It provides services for discovering, registering, and retrieving
virtual images through an API. It also provides an SQL-style interface for queries for
information on the images hosted on various storage systems. OpenStack Compute
makes use of this during instance provisioning.

Network (Neutron)  Neutron is an OpenStack project designed to provide
network connectivity as a service between interface devices managed by other
OpenStack services (e.g., NOVA). A Neutron server provides a Web server that
exposes the Neutron API and passes all Web service calls to the Neutron plugin
for processing. In essence, Neutron provides a consistent set of network services for
use by other elements, such as virtual machines, systems management modules, and
other networks. Users interact with networking functions via the Dashboard GUI;
other management systems and networks interact with networking services using
Neutron’s API.

Currently Neutron implements Layer 2 virtual LANs (VLANs) and IP-based
(Layer 3) routers. There are also extensions to support firewalls, load balancers, and
IPSec virtual private networks (VPNs).

Three key benefits of using Neutron are the following [PARK13]:

•	 By using a consistent approach to networking for multiple types of virtual
machines, Neutron helps providers operate efficiently in heterogeneous envi-
ronments, which is frequently the requirement in service provider systems.

•	 By supplying a consistent set of APIs for plugging in a variety of physical net-
work underlays, providers gain flexibility in altering the design of their underly-
ing physical network while keeping the cloud service logically intact.

•	 Orchestration and system management suppliers, as well as providers’ own
technical teams, can use the Neutron API to integrate management of the net-
work for the cloud with multiple higher-level service management tasks. This
offers a range of opportunities, including service-level agreement monitoring,
as well as integration into automation platforms like catalogs and portals for
dynamic management of customer clouds.

Object Storage (Swift)  Swift is a distributed object store that creates a redundant
and scalable storage space of up to multiple petabytes of data. Object storage does
not present a traditional file system, but rather a distributed storage system for static
data such as virtual machine images, photo storage, email storage, backups, and
archives. It can be used by Cinder components to back up VM volumes.

M16_STAL4290_09_GE_C16.indd 717 4/13/17 11:21 AM

718   Chapter 16 / Cloud and IoT Operating Systems

Block Storage (Cinder)  Cinder provides persistent block storage (or volumes)
to guest virtual machines. Cinder can use Swift to back up the VM’s volumes. Cinder
also interacts with Nova, providing volumes for its instances, allowing through its API
the manipulation of volumes, volume types, and volume snapshots.

Identity (Keystone)  Keystone provides the shared security services essential for
a functioning cloud computing infrastructure. It provides main services:

•	 Identity: This is user information authentication. This information defines a
user’s role and permissions within a project, and is the basis for a role-based
access control (RBAC) mechanism.

•	 Token: After a username/password log on, a token is assigned and used for
access control. OpenStack services retain tokens and use them to query Key-
stone during operations.

•	 Service catalog: OpenStack service endpoints are registered with Keystone to
create a service catalog. A client for a service connects to Keystone, and deter-
mines an endpoint to call based on the returned catalog.

•	 Policies: This service enforces different user access levels.

Figure 16.11 illustrates the way in which Keystone interacts with other Open-
Stack components to launch a new virtual machine.

Figure 16.11  Launching a Virtual Machine

Nova
Scheduler

Nova
Scheduler

Swift
proxy

Swift
worker

4. Schedule
VM

5. Receive
 launch VM

message

6. Request
image 8. Look up

image

9. Return
location &
metadata

10
. R

eq
ue

st
 im

ag
e

13
. G

et
im

ag
e

11. Find service,
check credentials,
request image

7. Find service, check credentials,
request image

12. Get
image

3. Launch
VM

14. Launch VM

1. Launch VM

2. Find service,

check credentials,

launch VM

Client

Nova
compute

Nova
message
queue

Keystone

Glance
API

Glance
registry

M16_STAL4290_09_GE_C16.indd 718 4/13/17 11:21 AM

16.2 / CLOUD OPERATING SYSTEMS   719

Dashboard (Horizon)  The dashboard is the Web user interface for cloud
infrastructure management. It provides administrators and users a graphical interface
to access, provision, and automate cloud-based resources. The extensible design
makes it easy to plug in and expose third-party products and services, such as billing,
monitoring, and additional management tools. It interacts with the APIs of all the
other software components. For example, Horizon enables a user or application to
launch an instance, assign IP addresses, and configure access controls.

Monitor (Ceilometer)  Ceilometer provides a configurable collection of
functions for metering data, such as processor and storage usage and network traffic.
This is a unique point of contact for billing, benchmarking, scalability, and statistical
purposes.

Orchestration (Heat)  Heat orchestrates multiple cloud applications. The
objective is to create a human- and machine-accessible service for managing the
entire lifecycle of infrastructure and applications within OpenStack clouds. It
implements an orchestration engine to launch multiple composite cloud applications
based on templates in the form of text files that can be treated like code. Heat is
compatible with Amazon Cloudformation, which is becoming a de facto standard.

Other Optional Services  As the OpenStack project evolves, new components
are being developed by various OpenStack members. As of this writing, the following
components are available or in development:

•	 Database (Trove): Trove is a database-as-a-service that provisions relational
and nonrelational database engines. By default, Trove uses MySQL as its rela-
tional database management system, enabling the other services to store con-
figurations and management information.

•	 Messaging service (Zaqar): Zaqar is a multitenant cloud messaging service for
Web and mobile developers. The service features an API that developers can
use to send messages between various components of their SaaS and mobile
applications, by using a variety of communication patterns. Underlying this
API is an efficient messaging engine designed with scalability and security
in mind.

•	 Key management (Barbican): Barbican provides an API for the secure storage,
provisioning, and management of secret values such as passwords, encryption
keys, and X.509 Certificates.

•	 Governance (Congress): Congress provides policy as a service across any collec-
tion of cloud services in order to offer governance and compliance for dynamic
infrastructures.

•	 Elastic map reduce (Sahara): Sahara aims to provide users with simple
means to provision Hadoop clusters by specifying several parameters such
as Hadoop version, cluster topology, and nodes hardware details. After a
user fills all the parameters, Sahara deploys the cluster. Sahara also provides
means to scale an already provisioned cluster by adding and removing worker
nodes on demand.

M16_STAL4290_09_GE_C16.indd 719 4/13/17 11:21 AM

720   Chapter 16 / Cloud and IoT Operating Systems

•	 Shared Filesystems (Manila): Manila provides coordinated access to shared or
distributed file systems. While the primary consumption of file shares is across
OpenStack Compute instances, the service is also intended to be accessible as
an independent capability.

•	 Containers (Magnum): Magnum provides an API service for making container
orchestration engines such as Docker and Kubernetes available as resources in
OpenStack.

•	 Bare-metal provisioning (Ironic): Ironic provisions bare-metal machines instead
of virtual machines, forked from the Nova baremetal driver. It is best thought
of as a bare-metal hypervisor API and a set of plugins that interact with the
bare-metal hypervisors.

•	 DNS service (Designate): Designate provides DNS services for OpenStack
users, including an API for domain/record management.

•	 Application catalog (Murano): Murano introduces an application catalog to
OpenStack, enabling application developers, and cloud administrators to pub-
lish various cloud-ready applications in a browsable categorized catalog.

These modular components are easily configured to enable an IaaS cloud ser-
vice provider to tailor a cloud OS to its particular mission.

	 16.3	THE INTERNET OF THINGS

The Internet of Things is the latest development in the long and continuing revolu-
tion of computing and communications. Its size, ubiquity, and influence on everyday
lives, business, and government dwarf any technical advance that has gone before.
This section provides a brief overview of the Internet of Things, which is dealt with
in greater detail later in the book.

Things on the Internet of Things

The Internet of Things (IoT) is a term that refers to the expanding interconnec-
tion of smart devices, ranging from appliances to tiny sensors. A dominant theme
is the embedding of short-range mobile transceivers into a wide array of gadgets
and everyday items, enabling new forms of communication between people and
things, and between things themselves. The Internet now supports the interconnec-
tion of billions of industrial and personal objects, usually through cloud systems.
The objects deliver sensor information, act on their environment, and in some
cases modify themselves, to create overall management of a larger system, like a
factory or city.

The IoT is primarily driven by deeply embedded devices. These devices are low-
bandwidth, low-repetition data capture, and low-bandwidth data-usage appliances
that communicate with each other and provide data via user interfaces. Embedded
appliances, such as high-resolution video security cameras, video VoIP phones, and a
handful of others, require high-bandwidth streaming capabilities. Yet countless prod-
ucts simply require packets of data to be intermittently delivered.

M16_STAL4290_09_GE_C16.indd 720 4/13/17 11:21 AM

16.3 / THE INTERNET OF THINGS   721

Evolution

With reference to the end systems supported, the Internet has gone through roughly
four generations of deployment culminating in the IoT:

1.	 Information technology (IT): PCs, servers, routers, firewalls, and so on, bought
as IT devices by enterprise IT people, primarily using wired connectivity.

2.	 Operational technology (OT): Machines/appliances with embedded IT built
by non-IT companies, such as medical machinery, SCADA (supervisory con-
trol and data acquisition), process control, and kiosks, bought as appliances by
enterprise OT people, primarily using wired connectivity.

3.	 Personal technology: Smartphones, tablets, and eBook readers bought as IT
devices by consumers (employees) exclusively using wireless connectivity and
often multiple forms of wireless connectivity.

4.	 Sensor/actuator technology: Single-purpose devices bought by consumers, IT,
and OT people exclusively using wireless connectivity, generally of a single
form, as part of larger systems.

It is the fourth generation that is usually thought of as the IoT, and which is
marked by the use of billions of embedded devices.

Components of IoT-Enabled Devices

The key components of an IoT-enabled device are the following:

•	 Sensor: A sensor measures some parameter of a physical, chemical, or bio-
logical entity and delivers an electronic signal proportional to the observed
characteristic, either in the form of an analog voltage level or a digital signal.
In both cases, the sensor output is typically input to a microcontroller or other
management element.

•	 Actuator: An actuator receives an electronic signal from a controller and
responds by interacting with its environment to produce an effect on some
parameter of a physical, chemical, or biological entity.

•	 Microcontroller: The “smart” in a smart device is provided by a deeply embed-
ded microcontroller.

•	 Transceiver: A transceiver contains the electronics needed to transmit and
receive data. Most IoT devices contain a wireless transceiver, capable of com-
munication using Wi-Fi, ZigBee, or some other wireless scheme.

•	 Radio-Frequency Identification (RFID): (RFID) technology, which uses radio
waves to identify items, is increasingly becoming an enabling technology for
IoT. The main elements of an RFID system are tags and readers. RFID tags
are small programmable devices used for object, animal, and human tracking.
They come in a variety of shapes, sizes, functionalities, and costs. RFID readers
acquire and sometimes rewrite information stored on RFID tags that come
within operating range (a few inches up to several feet). Readers are usually
connected to a computer system that records and formats the acquired informa-
tion for further uses.

M16_STAL4290_09_GE_C16.indd 721 4/13/17 11:21 AM

722   Chapter 16 / Cloud and IoT Operating Systems

IoT and Cloud Context

To better understand the function of an IoT, it is useful to view it in the context of a
complete enterprise network that includes third-party networking and cloud com-
puting elements. Figure 16.12 provides an overview illustration.

Edge

At the edge of a typical enterprise network is a network of IoT-enabled devices,
consisting of sensors and perhaps actuators. These devices may communicate with
one another. For example, a cluster of sensors may all transmit their data to one
sensor that aggregates the data to be collected by a higher-level entity. At this
level also there may also be a number of gateways. A gateway interconnects the
IoT-enabled devices with the higher-level communication networks. It performs
the necessary translation between the protocols used in the communication net-
works and those used by devices. It may also perform a basic data aggregation
function.

Figure 16.12  The IoT/Cloud Context

Datacenter/
cloud
Ethernet
Transactional
response time

Core network
IP/MPLS, security
QoS/QoE driven
response time

Fog network
3G/4G/LTE/Wi-Fi
Distributed intelligence
Real-time response time

Smart things network
Bluetooth, WiFi, wired
millisecond response time

Network management Applications

Millions
of devices

Tens of
thousands
of devices

Thousands
of devices

Hundreds
of devices

M16_STAL4290_09_GE_C16.indd 722 4/13/17 11:21 AM

16.3 / THE INTERNET OF THINGS   723

Fog

In many IoT deployments, massive amounts of data may be generated by a distrib-
uted network of sensors. For example, offshore oil fields and refineries can generate
a terabyte of data per day. An airplane can create multiple terabytes of data per
hour. Rather than store all of that data permanently (or at least for a long period) in
central storage accessible to IoT applications, it is often desirable to do as much data
processing close to the sensors as possible. Thus, the purpose of what is sometimes
referred to as the edge computing level is to convert network data flows into infor-
mation that is suitable for storage and higher-level processing. Processing elements
at these level may deal with high volumes of data and perform data transformation
operations, resulting in the storage of much lower volumes of data. The following are
examples of fog computing operations:

•	 Evaluation: Evaluating data for criteria as to whether it should be processed
at a higher level.

•	 Formatting: Reformatting data for consistent higher-level processing.

•	 Expanding/decoding: Handling cryptic data with additional context (such as
the origin).

•	 Distillation/reduction: Reducing and/or summarizing data to minimize the
impact of data and traffic on the network and higher-level processing systems.

•	 Assessment: Determining whether data represents a threshold or alert; this
could include redirecting data to additional destinations.

Generally, fog computing devices they are deployed physically near the edge
of the IoT network; that is, near the sensors and other data-generating devices. Thus,
some of the basic processing of large volumes of generated data is offloaded and
outsourced from IoT application software located at the center.

Fog computing and fog services are expected to be a distinguishing character-
istic of the IoT. Fog computing represents an opposite trend in modern networking
from cloud computing. With cloud computing, massive, centralized storage and pro-
cessing resources are made available to distributed customers over cloud networking
facilities to a relatively small number of users. With fog computing, massive numbers
of individual smart objects are interconnected with fog networking facilities that
provide processing and storage resources close to the edge devices in an IoT. Fog
computing addresses the challenges raised by the activity of thousands or millions of
smart devices, including security, privacy, network capacity constraints, and latency
requirements. The term fog computing is inspired by the fact that fog tends to hover
low to the ground, whereas clouds are high in the sky.

Core

The core network, also referred to as a backbone network, connects geographically
dispersed fog networks as well as providing access to other networks that are not part
of the enterprise network. Typically, the core network will use very high-performance
routers, high-capacity transmission lines, and multiple interconnected routers for
increased redundancy and capacity. The core network may also connect to high-
performance, high-capacity servers such as large database servers and private cloud

M16_STAL4290_09_GE_C16.indd 723 4/13/17 11:21 AM

724   Chapter 16 / Cloud and IoT Operating Systems

facilities. Some of the core routers may be purely internal, providing redundancy and
additional capacity without serving as edge routers.

Cloud

The cloud network provides storage and processing capabilities for the massive
amounts of aggregated data that originate in IoT-enabled devices at the edge. Cloud
servers also host the applications that interact with and manage the IoT devices and
that analyze the IoT-generated data.

Table 16.4 compares cloud and fog computing.

	 16.4	IoT OPERATING SYSTEMS

IoT devices are embedded devices, and so have an embedded OS. However, the vast
majority of IoT devices have very limited resources including limited RAM and
ROM, low-power requirements, no memory management unit, and limited processor
performance. Thus, while some embedded OSs, such as TinyOS, are appropriate for
IoT devices, many are simply too big and require too many resources to be used. In
this section, we first define the types of devices that are usually considered as targets
for an IoT OS, then examine the characteristics of an embedded OS suitable for such
devices, and finally look at a popular open-source IoT OS, RIOT.

Constrained Devices

Increasingly, the term constrained device is used to refer to the vast majority of IoT
devices. In an IoT, a constrained device is a device with limited volatile and nonvola-
tile memory, limited processing power, and a low-data-rate transceiver. Many devices

Cloud Fog

Location of processing/storage
resources

Center Edge

Latency High Low

Access Fixed or wireless Mainly wireless

Support for mobility Not applicable Yes

Control Centralized/hierarchical (full
control)

Distributed/hierarchical (partial
control)

Service access Through core At the edge/on handheld device

Availability 99.99% Highly volatile/highly redundant

Number of users/devices Tens/hundreds of millions Tens of billions

Main content generator Human Devices/sensors

Content generation Central location Anywhere

Content consumption End device Anywhere

Software virtual infrastructure Central enterprise servers User devices

Table 16.4  Comparison of Cloud and Fog Features

M16_STAL4290_09_GE_C16.indd 724 4/13/17 11:21 AM

16.4 / IoT OPERATING SYSTEMS   725

in the IoT, particularly the smaller, more numerous devices, are resource constrained.
As pointed out in [SEGH12], technology improvements following Moore’s law con-
tinue to make embedded devices cheaper, smaller, and more energy efficient but not
necessarily more powerful. Typical embedded IoT devices are equipped with 8- or
16-bit microcontrollers that possess very little RAM and storage capacities. Resource-
constrained devices are often equipped with an IEEE 802.15.4 radio, which enables
low-power low-data-rate wireless personal area networks (WPANs) with data rates
of 20–250 kbps and frame sizes of up to 127 octets.

RFC 7228 (Terminology for Constrained-Node Networks) [BORM14] defines
three classes of constrained devices (see Table 16.5):

•	 Class 0: These are very constrained devices, typically sensors, called motes, or
smart dust. Motes can be implanted or scattered over a region to collect data
and pass it on from one to another to some central collection point. For exam-
ple, a farmer, vineyard owner, or ecologist could equip motes with sensors that
detect temperature, humidity, etc., making each mote a mini weather station.
Scattered throughout a field, vineyard or forest, these motes would allow the
tracking of microclimates. Class 0 devices generally cannot be secured or man-
aged comprehensively in the traditional sense. They will most likely be pre-
configured (and will be reconfigured rarely, if at all) with a very small data set.

•	 Class 1: These are quite constrained in code space and processing capabilities,
such that they cannot easily talk to other Internet nodes employing a full proto-
col stack. However, they are capable enough to use a protocol stack specifically
designed for constrained nodes (such as the Constrained Application Protocol
(CoAP)) and participate in meaningful conversations without the help of a
gateway node.

•	 Class 2: These are less constrained and fundamentally capable of supporting
most of the same protocol stacks as used on notebooks or servers. However,
they are still very constrained compared to high-end IoT devices. Thus, they
require lightweight and energy-efficient protocols and low transmission traffic.

Class 0 devices are so constrained that a conventional OS is not practical. These
devices have a very limited, specialized function or set of functions that can be pro-
grammed directly onto the hardware. Class 1 and Class 2 devices are typically less
specialized. An OS, with its kernel functions and support libraries, allow software
developers to develop applications that make use of OS functionality and can be
executed on a variety of devices. However, many embedded operating systems, such
as mClinux, consume too many resources and too much power to be usable for these
constrained devices. Instead, an OS designed specifically for constrained devices is
needed. Such an OS is typically referred to as an IoT OS.

Class Data Size (RAM) Code Size (flash, ROM)

Class 0 6 6 10 kB 6 6 100 kB

Class 1 ∼10 kB ∼100 kB

Class 2 ∼50 kB ∼250 kB

Table 16.5  Classes of Constrained Devices

M16_STAL4290_09_GE_C16.indd 725 4/13/17 11:21 AM

726   Chapter 16 / Cloud and IoT Operating Systems

Requirements for an IoT OS

[HAHM15] lists the following as characteristics required of an IoT OS:

•	 Small memory footprint: Table 16.5 indicates the memory size limitations for
constrained devices. This amount of memory is many orders of magnitude
smaller than in smartphones, tablets, and a variety of larger embedded devices.
Examples of the implications of this requirement are the need for libraries opti-
mized in terms of both size and performance, and space-efficient data structures.

•	 Support for heterogeneous hardware: For the largest systems, such as servers,
PCs, and laptops, the Intel x86 processor architecture dominates. For smaller
systems, such as smartphones and a number of classes of IoT devices, the ARM
architecture dominates. But constrained devices are based on various micro-
controller architectures and families, especially 8-bit and 16-bit processors. A
wide variety of communications technologies are also deployed on constrained
devices.

•	 Network connectivity: Network connectivity is essential for data collection,
development of distributed IoT applications, and remote system maintenance.
A wide variety of communications techniques and protocols are used for low-
power, minimal resource devices, including:

—IEEE 802.15.4 [low-rate wireless personal area network (WPAN)]
—Bluetooth Low Energy (BLE)
—6LoWPAN (IPv6 over Low-power Wireless Personal Area Networks)
—CoAP (Constrained Application Protocol)
—RPL (Routing Protocol for Low power and Lossy Networks)

•	 Energy efficiency: For any embedded device, and especially constrained devices,
energy efficiency is of paramount importance. In a number of cases, IoT devices
are required to work for years with a single battery charge [MIN02]. Chip man-
ufacturers are addressing this requirement by making the processor as energy
efficient as possible (e.g., [SHAH15]). In addition, a number of wireless trans-
mission schemes have been developed that are designed to minimize power
consumption [FREN16]. But there is also an important role to be played by
the OS. [HAHM15] suggests that the key requirements for IoT OSs for the
IoT are (i) provide energy saving options to upper layers, and (ii) make use of
these functions itself as much as possible, for example by using techniques such
as radio duty cycling, or by minimizing the number of periodic tasks that need
to be executed.

•	 Real-time capabilities: A wide range of IoT devices require support for real-
time operation [STAN14]. These include the following:

—real-time sensor data streams: for example, most sensornet applications
(such as surveillance) tend to be time-sensitive in nature where packets must
be relayed and forwarded on a timely basis; real-time guarantee is a necessary
requirement for such applications [DONG10]
—2-way control on a wide scale: cars (and aircraft) talking to each other and
controlling each other to avoid collisions, humans exchanging data automatically

M16_STAL4290_09_GE_C16.indd 726 4/13/17 11:21 AM

16.4 / IoT OPERATING SYSTEMS   727

when they meet and this possibly affecting their next actions, and physiological
data uploaded to doctors in real time with real-time feedback from the doctor
—real-time response to security events

Thus, the IoT OS must be able to fulfill timely execution requirements
and be designed to guarantee worst-case execution times and worst-case inter-
rupt latencies.

•	 Security: IoT devices are numerous, often deployed in unsecured locations, have
limited processing and memory resources to support sophisticated security pro-
tocols and mechanisms, and usually communicate wirelessly, increasing their
vulnerability. Accordingly, IoT security is both a high priority and difficult to
achieve [STAL16b]. ITU-T Recommendation Y-2060 (Overview of the Internet
of things, June, 2–12) lists the following security capabilities desired in an IoT
device:

—at the application layer: authorization, authentication, application data con-
fidentiality and integrity protection, privacy protection, security audit, and
anti virus
—at the network layer: authorization, authentication, use data and signaling
data confidentiality, and signaling integrity protection
—at the device layer: authentication, authorization, device integrity validation,
access control, data confidentiality, and integrity protection

Thus, an IoT OS needs to proved the necessary security mechanisms
within the resource constraints of the device, and provide mechanisms for soft-
ware updates on already-deployed IoT devices.

IoT OS Architecture

There are a number of both embedded OSs that might be considered suitable for
constrained IoT devices; [HAHM15] provides a useful survey. Two other surveys that
focus on wireless sensor networks (sensornets) are [DONG10] and [SARA11]. While
these systems differ from one another in many ways, the general structure shown in
Figure 16.13 captures the key elements of a typical IoT OS. The main components are:

•	 System and support libraries: A streamlined set of libraries includes a shell,
logging, and cryptographic functions.

•	 Device drivers and logical file system: Modular set of streamlined device driv-
ers and file system support that can be minimally configured for a particular
device and applications.

•	 Low-power network stack: There are differing requirements for network con-
nectivity for various constrained IoT devices. For many sensor networks, the IoT
devices require only limited communication capability that allows the sensor to
communicate data to another sensor or a gateway that will pass the data along.
In other cases, IoT devices (even constrained IoT devices) must seamlessly inte-
grate with the Internet and communicate end-to-end with other machines on
the Internet. Thus, the IoT OS needs to provide the ability to configure a net-
work stack that supports protocols specifically designed for low-power require-
ments, but that also includes support up to the Internet Protocol level [PETE15].

M16_STAL4290_09_GE_C16.indd 727 4/13/17 11:21 AM

728   Chapter 16 / Cloud and IoT Operating Systems

•	 Kernel: Typically the kernel provides a scheduler, a model for tasks, mutual
exclusion, and other forms of synchronization, and timers.

•	 Hardware abstraction layer (HAL): The HAL is software that presents a con-
sistent API to the upper layers and maps upper-layer operations onto a specific
hardware platform. Thus, the HAL is different for each hardware platform.
Common interfaces that could be supported include:

—General Purpose Input/Output (GPIO): a generic pin that can be designated
as input or output by the user at run time; useful when there is a scarcity of pin
positions.
—Universal Asynchronous Receiver/Transmitter (UART): an asynchronous
serial digital data link.
—Serial Peripheral Interface (SPI): a synchronous serial digital data link.

—— Inter-Integrated Circuit (I2C): a serial computer bus typically used for
attaching lower-speed peripheral ICs to processors and microcontrollers in
short-distance, intra-board communication.

RIOT

As was mentioned, not all embedded OSs are suitable for constrained IoT devices. For
example, of the two OSs examined in Chapter 13, mClinux requires too much mem-
ory, whereas TinyOS is suitable. In this section, we examine RIOT, an open-source

Figure 16.13  Typical Structure for IoT OS

Hardware Abstraction Layer
(e.g., GPIO, UART, SPI, I2C)

Kernel
(scheduler, task mgr, locks, etc.)

System and Support Libraries

Low-Power Network Stack
(e.g, 802.15, BLE,

6LoWPAN, IPv6, CoAP, RPL)

Device Driver/
logical file

system

Hardware

Applications

M16_STAL4290_09_GE_C16.indd 728 4/13/17 11:21 AM

16.4 / IoT OPERATING SYSTEMS   729

OS designed specifically for constrained IoT devices [BACC13]. Table 16.6 compares
mClinux, TinyOS, and RIOT.

Figure 16.14 illustrates the structure of RIOT.

RIOT Kernel  RIOT uses a microkernel design structure, which means the kernel,
referred to in RIOT as the core module, contains only the absolute features, such
as scheduling, inter process communication (IPC), synchronization, and interrupt
request (IRQ) handling. All other OS functions, including device drivers and system
libraries run as threads. Because of this use of threads, applications and other parts
of the system run in their own context, multiple of these contexts can run at the same
time, and IPC provides a safe, synchronized way for communicating between them,
with defined priorities.

MClinux TinyOS RIOT

Minimum RAM 6 32 MB 6 1 kB ∼1.5 kB

Minimum ROM 6 2 MB 6 4 kB ∼5 kB

C Support ✓ ✗ ✓

C+ + Support ✓ ✗ ✓

Multithreading ✓ ✓

Microcontrollers without MMU ✓ ✓ ✓

Modularity ✗ ✓

Real time ✗ ✓

✓ = full support
 = partial support

✗ = no support

Table 16.6  Comparison of mClinux, TinyOS, and RIOT

Figure 16.14  RIOT Structure

core (kernel) drivers

pkg sys

hardware-specific
peripheral drivers

cpu boards

Application Level

Hardware Level

H
ar

dw
ar

e-
in

de
pe

nd
en

t
L

ev
el

H
ar

dw
ar

e-
ab

st
ra

ct
io

n
L

ev
el

sys/net

M16_STAL4290_09_GE_C16.indd 729 4/13/17 11:21 AM

730   Chapter 16 / Cloud and IoT Operating Systems

The advantage of the microkernel approach is that it is easy to configure a sys-
tem with only the minimum software necessary for the applications on a particular
IoT device.

The modules in the kernel are:

•	 IRQ Handling: Provides an API to control interrupt processing.

•	 Kernel utilities: Utilities and data structures used by the kernel.

•	 Mailboxes: Mailbox implementation.

•	 Messaging/IPC: Messaging API for interprocess communication.

•	 Power management: The kernel’s power management interface.

•	 Scheduler: The RIOT scheduler.

•	 Startup and configuration: Configuration data and startup code for the kernel.

•	 Synchronization: Mutex for thread synchronization.

•	 Threading: Support for multithreading.

One notable feature of RIOT is, in contrast to many other OSs, RIOT uses a
tickless scheduler. When there are no pending tasks, RIOT will switch to the idle
thread. The idle thread is to determine the deepest possible sleep mode, depending
on the peripheral devices in use. The result is that the scheduler maximizes the time
spent in sleep mode, which minimizes the energy consumption of the system. Only
interrupts (external or kernel-generated) wake up the system from idle state. In addi-
tion, all kernel functions are kept as small as possible, which allows the kernel to run
even on systems with a very low clock speed. The scheduler is designed to minimize
the occurrences of thread switching to reduce overhead. This strategy is appropriate
for IoT devices that do not have user interaction.

Other Hardware-Independent Modules  The sys library includes data
structures (e.g., bloom, color), crypto libraries (e.g., hashes, AES), high-level APIs
(e.g., Posix implementations), memory management (e.g., malloc), the RIOT shell,
and other commonly used system library modules.

The sys/net sub-directory includes all the networking related software. This
includes the network protocol stack, network APIs, and software related to specific
network types.

The pkg library provides support for a number of external libraries (e.g., Open-
WSN, microcoap). RIOT ships with a custom Makefile for each supported library,
which downloads the library and optionally applies a number of patches to make it
work with RIOT.

Hardware Abstraction Layer  The RIOT HAL consists of three sets of
software. For each supported processor, the CPU directory contains a sub-directory
with the name of the processor. These directories then contain all processor-specific
configurations, such as implementations of power management, interrupt handling
and vectors, startup code, clock initialization code, and thread handling (e.g., context
switching) code.

M16_STAL4290_09_GE_C16.indd 730 4/13/17 11:21 AM

16.5 / KEY TERMS AND REVIEW QUESTIONS   731

The platform dependent code is split into two logic elements: processors and
boards. While maintaining a strict 1-to-n relationship, a board has exactly one proces-
sor, while a processor can be part of n boards. The processor part contains all generic,
processor-specific code.

The board part contains the specific configuration for the processor it contains.
This configuration mainly includes the peripheral configuration and pin-mapping,
the configuration of on-board devices, and the processor’s clock configuration. On
top of the source and header files needed for each board, the board’s directory
additionally may include some script and configuration files needed for interfacing
with the board.

The hardware-specific peripheral drivers directory provides an API to the logi-
cal device driver software and is configured for the specific peripherals of the host
system. The main goal of the separation of drivers from drivers/peripherals is to allow
the writing of portable hardware-accessing code, which is one of the key aspects of
RIOT. The drivers directory contains code for actual hardware drivers, such as sen-
sors, radios. The drivers/peripherals directory contains the headers and some shared
code for RIOT’s hardware abstraction, which provides a unified API abstracting the
I/O interfaces of microcontrollers, such as UART, I2C, and SPI. The idea is that driv-
ers (or applications) can be written once against the API provided by drivers/periph,
and then run unmodified on all microcontrollers that provide an implementation for
the needed interface.

	 16.5	KEY TERMS AND REVIEW QUESTIONS

Key Terms

actuators
backbone network
block storage
cloud
cloud auditor
cloud broker
cloud carrier
cloud computing
cloud service consumer (CSC)
cloud service provider (CSP)
community cloud
Constrained Application

Protocol (CoAP)
constrained device

direct attached storage
(DAS)

file-based storage
file storage
gateways
hybrid cloud
infrastructure as a service

(IaaS)
Internet of Things (IoT)
microcontroller
network attached storage

(NAS)
object storage
OpenStack

platform as a service (PaaS)
private cloud
public cloud
radio-frequency identification

(RFID)
sensors
service models
software as a service

(SaaS)
storage area network

(SAN)
transceiver

Review Questions

	 16.1	 Define cloud computing.
	 16.2	 List and briefly define three cloud service models.

M16_STAL4290_09_GE_C16.indd 731 4/13/17 11:21 AM

732   Chapter 16 / Cloud and IoT Operating Systems

	 16.3	 What is the cloud computing reference architecture?
	 16.4	 List and briefly define the key components of a cloud operating system.
	 16.5	 What is the relationship between a cloud OS and IaaS?
	 16.6	 What is OpenStack?
	 16.7	 Define the Internet of Things.
	 16.8	 List and briefly define the principal components of an IoT-enabled thing.
	 16.9	 What requirements should an IoT OS satisfy?
	16.10	 What is RIOT?

M16_STAL4290_09_GE_C16.indd 732 4/13/17 11:21 AM

A-1

Appendix A
Topics in Concurrency

A.1	 Race Conditions and Semaphores
Problem Statement
First Attempt
Second Attempt
Third Attempt
Fourth Attempt
A Good Attempt

A.2	 A Barbershop Problem
An Unfair Barbershop
A Fair Barbershop

A.3	 Problems

Z01_STAL4290_09_GE_APPA.indd 1 4/13/17 11:22 AM

A-2   APPENDIX A / Topics in Concurrency

	 A.1	 RACE CONDITIONS AND SEMAPHORES

Although the definition of a race condition provided in Section 5.1 seems straight-
forward, experience has shown that students usually have difficulty pinpointing race
conditions in their programs. The purpose of this section, which is based on
[CARR01],1 is to step through a series of examples using semaphores that should
help clarify the topic of race conditions.

Problem Statement

Assume there are two processes, A and B, each of which consists of a number of
concurrent threads. Each thread includes an infinite loop in which a message is
exchanged with a thread in the other process. Each message consists of an integer
placed in a shared global buffer. There are two requirements:

1.	 After a thread A1 of process A makes a message available to some thread B1
in B, A1 can only proceed after it receives a message from B1. Similarly, after
B1 makes a message available to A1, it can only proceed after it receives a
message from A1.

2.	 Once a thread A1 makes a message available, it must make sure that no other
thread in A overwrites the global buffer before the message is retrieved by a
thread in B.

In the remainder of this section, we show four attempts to implement this
scheme using semaphores, each of which can result in a race condition. Finally, we
show a correct solution.

First Attempt

Consider this approach:

semaphore a = 0, b = 0;

 int buf_a, buf_b;

thread_A(...)

{

   int var_a;

   ...

   while (true) {

    . . .

     var a =...;

     semSignal(b);

     semWait(a);

     buf_a = var_a;

     var_a = buf_b;

     . . .;

   }

}

thread_B(...)

{

   int var_b;

   ...

   while (true) {

     . . .

     var_b =...;

     semSignal(a);

     semWait(b);

     buf_b = var_b;

     var_b = buf_a;

     . . .;

   }

}

1I am grateful to Professor Ching-Kuang Shene of Michigan Technological University for permission to
use this example.

Z01_STAL4290_09_GE_APPA.indd 2 4/13/17 11:22 AM

A.1 / RACE CONDITIONS AND SEMAPHORES   A-3

This is a simple handshaking protocol. When a thread A1 in A is ready to
exchange messages, it sends a signal to a thread in B then waits for a thread B1 in B
to be ready. Once a signal comes back from B1, which A perceives by performing
semWait(a), then A1 assumes that B1 is ready and performs the exchange. B1
behaves similarly, and the exchange happens regardless of which thread is ready first.

This attempt can lead to race conditions. For example, consider the following
sequence, with time going vertically down the table:

Thread A1 Thread B1

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

buf_a = var_a

var_a = buf_b

buf_b = var_b

In the preceding sequence, A1 reaches semWait(a) and is blocked. B1 reaches
semWait(b) and is not blocked, but is switched out before it can update its buf_b.
Meanwhile, A1 executes and reads from buf_b before it has the intended value. At
this point, buf_b may have a value provided previously by another thread or pro-
vided by B1 in a previous exchange. This is a race condition.

A subtler race condition can be seen if two threads in A and B are active. Con-
sider the following sequence:

Thread A1 Thread A2 Thread B1 Thread B2

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

semSignal(b)

semWait(a)

buf_b = var_b1

semSignal(a)

buf_a = var_a1

buf_a = var_a2

In this sequence, threads A1 and B1 attempt to exchange messages and go
through the proper semaphore signaling instructions. However, immediately after
the two semWait signals occur (in threads A1 and B1), thread A2 runs and executes
semSignal(b) and semWait(a), which causes thread B2 to execute
semSignal(a) to release A2 from semWait(a). At this point, either A1 or A2
could update buf_a next, and we have a race condition. By changing the sequence
of execution among the threads, we can readily find other race conditions.

Z01_STAL4290_09_GE_APPA.indd 3 4/13/17 11:22 AM

A-4   APPENDIX A / Topics in Concurrency

Lesson Learned: When a variable is shared by multiple threads, race conditions
are likely to occur unless proper mutual exclusion protection is used.

Second Attempt

For this attempt, we use a semaphore to protect the shared variable. The purpose is
to ensure that access to buf_a and buf_b is mutually exclusive. The program is as
follows:

semaphore a = 0, b = 0; mutex = 1;

int buf_a, buf_b;
thread_A(...)

{

   int var_a;

   . . .

   while (true) {

     . . .

     var_a =...;

     semSignal(b);

     semWait(a);

       semWait(mutex);

         buf_a = var_a;

       semSignal(mutex);

     semSignal(b);

     semWait(a);

       semWait(mutex);

         var_a = buf_b;

       semSignal(mutex);

     . . .;

   }

}

thread_B(...)

{

   int var_b;

   . . .

   while (true) {

     . . .

     var_b =...;

     semSignal(a);

     semWait(b);

       semWait(mutex);

         buf_b = var_b;

       semSignal(mutex);

     semSignal(a);

     semWait(b);

       semWait(mutex);

         var_b = buf_a;

       semSignal(mutex);

     . . .;

   }

}

Before a thread can exchange a message, it follows the same handshaking pro-
tocol as in the first attempt. The semaphore mutex protects buf_a and buf_b in an
attempt to assure that update precedes reading. But the protection is not adequate.
Once both threads complete the first handshaking stage, the values of semaphores a
and b are both 1. There are three possibilities that could occur:

1.	 Two threads, say A1 and B1, complete the first handshaking and continue with
the second stage of the exchange.

2.	 Another pair of threads starts the first stage.

3.	 One of the current pair will continue and exchange a message with a newcomer
in the other pair.

Z01_STAL4290_09_GE_APPA.indd 4 4/13/17 11:22 AM

A.1 / RACE CONDITIONS AND SEMAPHORES   A-5

All of these possibilities can lead to race conditions. As an example of a race
condition based on the third possibility, consider the following sequence:

Thread A1 Thread A2 Thread B1

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

buf_a = var_a1

buf_b = var_b1

semSignal(b)

semWait(a)

semSignal(a)

semWait(b)

buf_a = var_a2

In this example, after A1 and B1 go through the first handshake, they both update
the corresponding global buffers. Then A2 initiates the first handshaking stage. Follow-
ing this, B1 initiates the second handshaking stage. At this point, A2 updates buf_a
before B1 can retrieve the value placed in buf_a by A1. This is a race condition.

Lesson Learned: Protecting a single variable may be insufficient if the use of that
variable is part of a long execution sequence. Protect the whole execution sequence.

Third Attempt

For this attempt, we want to expand the critical section to include the entire message
exchange (two threads each update one of two buffers and read from the other buf-
fer). A single semaphore is insufficient because this could lead to deadlock, with each
side waiting on the other. The program is as follows:

semaphore aready = 1, adone = 0, bready = 1 bdone = 0;

int buf_a, buf_b;

thread_A(...)

{

   int var_a;

   ...

   while (true) {

     . . .

     var_a =...;

     semWait(aready);

       buf_a = var_a;

       semSignal(adone);

       semWait(bdone);

       var_a = buf_b;

     semSignal(aready);

     . . .;

   }

}

thread_B(...)

{

   int var_b;

   ...

   while (true) {

     . . .

     var_b =...;

     semWait(bready);

       buf_b = var_b;

       semSignal(bdone);

       semWait(adone);

       var_b = buf_a;

     semSignal(bready);

     . . .;

   }

}

Z01_STAL4290_09_GE_APPA.indd 5 4/13/17 11:22 AM

A-6   APPENDIX A / Topics in Concurrency

The semaphore aready is intended to insure that no other thread in A can
update buf_a while one thread from A enters its critical section. The semaphore
adone is intended to insure that no thread from B will attempt to read buf_a until
buf_a has been updated. The same considerations apply to bready and bdone.
However, this scheme does not prevent race conditions. Consider the following
sequence:

Thread A1 Thread B1

buf_a = var_a

semSignal(adone)

semWait(bdone)

buf_b = var_b

semSignal(bdone)

semWait(adone)

var_a = buf_b;

semSignal(aready)

...loop back...

semWait(aready)

buf_a = var_a

var_b = buf_a

In this sequence, both A1 and B1 enter their critical sections, deposit their mes-
sages, and reach the second wait. Then A1 copies the message from B1 and leaves its
critical section. At this point, A1 could loop back in its program, generate a new
message, and deposit it in buf_a, as shown in the preceding execution sequence.
Another possibility is that at this same point, another thread of A could generate a
message and put it in buf_a. In either case, a message is lost and a race condition
occurs.

Lesson Learned: If we have a number of cooperating thread groups, mutual
exclusion guaranteed for one group may not prevent interference from threads
in other groups. Further, if a critical section is repeatedly entered by one thread,
then the timing of the cooperation between threads must be managed
properly.

Fourth Attempt

The third attempt fails to force a thread to remain in its critical section until the other
thread retrieves the message. Here is an attempt to achieve this objective:

Z01_STAL4290_09_GE_APPA.indd 6 4/13/17 11:22 AM

A.1 / RACE CONDITIONS AND SEMAPHORES   A-7

semaphore aready = 1, adone = 0, bready = 1 bdone = 0;

int buf_a, buf_b;

thread_A(...)

{

   int var_a;

   ...

   while (true) {

     . . .

     var_a =...;

     semWait(bready);

       buf_a = var_a;

       semSignal(adone);

       semWait(bdone);

       var_a = buf_b;

     semSignal(aready);

     . . .;

   }

}

thread_B(...)
{

   int var_b;

   ...

   while (true) {

     . . .

     var_b =...;

     semWait(aready);

       buf_b = var_b;

       semSignal(bdone);

       semWait(adone);

       var_b = buf_a;

     semSignal(bready);

     . . .;

   }

}

In this case, the first thread in A to enter its critical section decrements bready
to 0. No subsequent thread from A can attempt a message exchange until a thread
from B completes the message exchange and increments bready to 1. This approach
too can lead to race conditions, such as in the following sequence:

Thread A1 Thread A2 Thread B1

semWait(bready)

buf_a = var_a1

semSignal(adone)

semWait(aready)

buf_b = var_b1

semSignal(bdone)

semWait(adone)

var_b = buf_a

semSignal(bready)

semWait(bready)

. . .
semWait(bdone)

var_a2 = buf_b

In this sequence, threads A1 and B1 enter corresponding critical sections in
order to exchange messages. Thread B1 retrieves its message and signals bready.
This enables another thread from A, A2, to enter its critical section. If A2 is faster
than A1, then A2 may retrieve the message that was intended for A1.

Z01_STAL4290_09_GE_APPA.indd 7 4/13/17 11:22 AM

A-8   APPENDIX A / Topics in Concurrency

Lesson Learned: If the semaphore for mutual exclusion is not released by its
owner, race conditions can occur. In this fourth attempt, a semaphore is locked by a
thread in A and then unlocked by a thread in B. This is risky programming practice.

A Good Attempt

The reader may notice the problem in this section is a variation of the bounded-buffer
problem and can be approached in a manner similar to the discussion in Section 5.4.
The most straightforward approach is to use two buffers, one for B-to-A messages
and one for A-to-B messages. The size of each buffer needs to be one. To see the
reason for this, consider that there is no ordering assumption for releasing threads
from a synchronization primitive. If a buffer has more than one slot, then we cannot
guarantee that the messages will be properly matched. For example, B1 could receive
a message from A1 then send a message to A1. But if the buffer has multiple slots,
another thread in A may retrieve the message from the slot intended for A1.

Using the same basic approach as was used in Section 5.4, we can develop the
following program:

semaphore notFull_A = 1, notFull_B = 1;

semaphore notEmpty_A = 0, notEmpty_B = 0;

int buf_a, buf_b;

thread A(...)

{

   int var_a;

   ...

   while (true) {

     . . .

     var_a =...;

     semWait(notFull_A);

       buf_a = var_a;

       semSignal(notEmpty_A);

     semWait(notEmpty_B);

       var_a = buf_b;

       semSignal(notFull_B);

     . . .;

   }

}

thread_B(...)

{

   int var_b;

   ...

   while (true) {

     . . .

     var_b =...;

     semWait(notFull_B);

       buf_b = var_b;

       semSignal(notEmpty_B);

     semWait(notEmpty_A);

       var_b = buf_a;

       semSignal(notFull_A);

     . . .;

   }

}

To verify that this solution works, we need to address three issues:

1.	 The message exchange section is mutually exclusive within the thread group.
Because the initial value of notFull_A is 1, only one thread in A can pass
through semWait(notFull_A) until the exchange is complete as signaled by
a thread in B that executes semSignal(notFull_A). A similar reasoning
applies to threads in B. Thus, this condition is satisfied.

2.	 Once two threads enter their critical sections, they exchange messages without
interference from any other threads. No other thread in A can enter its critical

Z01_STAL4290_09_GE_APPA.indd 8 4/13/17 11:22 AM

A.2 / A BARBERSHOP PROBLEM   A-9

section until the thread in B is completely done with the exchange, and no other
thread in B can enter its critical section until the thread in A is completely done
with the exchange. Thus, this condition is satisfied.

3.	 After one thread exits its critical section, no thread in the same group can rush
in and ruin the existing message. This condition is satisfied because a one-slot
buffer is used in each direction. Once a thread in A has executed
semWait(notFull_A) and entered its critical section, no other thread in A
can update buf_a until the corresponding thread in B has retrieved the value
in buf_a and issued a semSignal(notFull_A).

Lesson Learned: It is well to review the solutions to well-known problems,
because a correct solution to the problem at hand may be a variation of a solution to
a known problem.

	 A.2	 A BARBERSHOP PROBLEM

As another example of the use of semaphores to implement concurrency, we consider
a simple barbershop problem.2 This example is instructive because the problems
encountered when attempting to provide tailored access to barbershop resources are
similar to those encountered in a real operating system.

Our barbershop has three chairs, three barbers, and a waiting area that can accom-
modate four customers on a sofa and that has standing room for additional customers
(see Figure A.1). Fire codes limit the total number of customers in the shop to 20. In
this example, we assume the barbershop will eventually process 50 customers.

2I am indebted to Professor Ralph Hilzer of California State University at Chico for supplying this treat-
ment of the problem.

Figure A.1  The Barbershop

Sofa

Standing
room
area

Entrance

Exit

Barber chairs

Cashier

Z01_STAL4290_09_GE_APPA.indd 9 4/13/17 11:22 AM

A-10   APPENDIX A / Topics in Concurrency

A customer will not enter the shop if it is filled to capacity with other customers.
Once inside, the customer takes a seat on the sofa or stands if the sofa is filled. When
a barber is free, the customer that has been on the sofa the longest is served and, if
there are any standing customers, the one that has been in the shop the longest takes
a seat on the sofa. When a customer’s haircut is finished, any barber can accept pay-
ment, but because there is only one cash register, payment is accepted for one
customer at a time. The barbers divide their time among cutting hair, accepting
payment, and sleeping in their chair waiting for a customer.

An Unfair Barbershop

Figure A.2 shows an implementation using semaphores; the three procedures are
listed side-by-side to conserve space. We assume all semaphore queues are handled
with a first-in-first-out policy.

The main body of the program activates 50 customers, 3 barbers, and the cashier
process. We now consider the purpose and positioning of the various synchronization
operators:

•	 Shop and sofa capacity: The capacity of the shop and the capacity of the sofa
are governed by the semaphores max_capacity and sofa, respectively.
Every time a customer attempts to enter the shop, the max_capacity sema-
phore is decremented by 1; every time a customer leaves, the semaphore is
incremented. If a customer finds the shop full, then that customer's process is
blocked on max_capacity by the semWait function. Similarly, the sem-
Wait and semSignal operations surround the actions of sitting on and getting
up from the sofa.

•	 Barber chair capacity: There are three barber chairs, and care must be taken
that they are used properly. The semaphore barber_chair assures that no
more than three customers attempt to obtain service at a time, trying to avoid
the undignified occurrence of one customer sitting on the lap of another. A
customer will not get up from the sofa until at least one chair is free
[semWait(barber_chair)], and each barber signals when a customer has
left that barber’s chair [semSignal(barber_chair)]. Fair access to the bar-
ber chairs is guaranteed by the semaphore queue organization: The first cus-
tomer to be blocked is the first one allowed into an available chair. Note that,
in the customer procedure, if semWait(barber_chair) occurred after
semSignal(sofa), each customer would only briefly sit on the sofa then
stand in line at the barber chairs, creating congestion and leaving the barbers
with little elbow room.

•	 Ensuring customers are in barber chair: The semaphore cust_ready provides
a wakeup signal for a sleeping barber, indicating that a customer has just taken
a chair. Without this semaphore, a barber would never sleep but would begin
cutting hair as soon as a customer left the chair; if no new customer had grabbed
the seat, the barber would be cutting air.

•	 Holding customers in barber chair: Once seated, a customer remains in the
chair until the barber gives the signal that the haircut is complete, using the
semaphore finished.

Z01_STAL4290_09_GE_APPA.indd 10 4/13/17 11:22 AM

A.2 / A BARBERSHOP PROBLEM   A-11

•	 Limiting one customer to a barber chair: The semaphore barber_chair
is intended to limit the number of customers in barber chairs to three. How-
ever, by itself, barber_chair does not succeed in doing this. A customer
that fails to get the processor immediately after his barber executes
semSignal(finished) (i.e., one who falls into a trance or stops to chat with
a neighbor) may still be in the chair when the next customer is given the go
ahead to be seated. The semaphore leave_b_chair is intended to correct this
problem by restraining the barber from inviting a new customer into the chair
until the lingering one has announced his departure from it. In the problems at
the end of this chapter, we will find that even this precaution fails to stop the
mettlesome customer lap sittings.

•	 Paying and receiving: Naturally, we want to be careful when dealing with money.
The cashier wants to be assured that each customer pays before leaving the
shop, and the customer wants verification that payment was received (a receipt).
This is accomplished, in effect, by a face-to-face transfer of the money. Each

Figure A.2  An Unfair Barbershop

/* program barbershop1 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3;
semaphore coord = 3;
semaphore �cust_ready = 0, finished = 0, leave_b_chair = 0, payment= 0,

receipt = 0;

void customer ()
{
   semWait(max_capacity);
   enter_shop();
   semWait(sofa);
   sit_on_sofa();
   semWait(barber_chair);
   get_up_from_sofa();
   semSignal(sofa);
   sit_in_barber_chair();
   semSignal(cust_ready);
   semWait(finished);
   leave_barber_chair();
   semSignal(leave_b_chair);
   pay();
   semSignal(payment);
   semWait(receipt);
   exit_shop();
   semSignal(max_capacity)
}

void barber()
{
   while (true)
   {
     semWait(cust_ready);
     semWait(coord);
     cut_hair();
     semSignal(coord);
     semSignal(finished);
     semWait(leave_b_chair);
     semSignal(barber_chair);
   }
}

void cashier()
{
   while (true)
   {  semWait(payment);
     semWait(coord);
     accept_pay();
     semSignal(coord);
     semSignal(receipt);
   }
}

void main()
{
   parbegin (�customer, . . . 50 times, . . . customer, barber, barber,

barber, cashier);
}

Z01_STAL4290_09_GE_APPA.indd 11 4/13/17 11:22 AM

A-12   APPENDIX A / Topics in Concurrency

customer, upon arising from a barber chair, pays, alerts the cashier that money
has been passed over [semSignal(payment)], then waits for a receipt
[semWait(receipt)]. The cashier process repeatedly takes payments: It
waits for a payment to be signaled, accepts the money, then signals acceptance
of the money. Several programming errors need to be avoided here. If
semSignal(payment) occurred just before the action pay, then a customer
could be interrupted after signaling; this would leave the cashier free to accept
payment even though none had been offered. An even more serious error
would be to reverse the positions of the semSignal(payment) and
semWait(receipt) lines. This would lead to deadlock because that would
cause all customers and the cashier to block at their respective semWait
operators.

•	 Coordinating barber and cashier functions: To save money, this barbershop
does not employ a separate cashier. Each barber is required to perform that
task when not cutting hair. The semaphore coord ensures that barbers perform
only one task at a time.

Table A.1 summarizes the use of each of the semaphores in the program.
The cashier process could be eliminated by merging the payment function into

the barber procedure. Each barber would sequentially cut hair and then accept
pay. However, with a single cash register, it is necessary to limit access to the
accept pay function to one barber at a time. This could be done by treating that
function as a critical section and guarding it with a semaphore.

Semaphore Wait Operation Signal Operation

max_capacity Customer waits for space to enter shop. Exiting customer signals customer waiting
to enter.

sofa Customer waits for seat on sofa. Customer leaving sofa signals customer
waiting for sofa.

barber_chair Customer waits for empty barber chair. Barber signals when that barber’s chair is
empty.

cust_ready Barber waits until a customer is in the
chair.

Customer signals barber that customer is
in the chair.

finished Customer waits until his haircut is
complete.

Barber signals when cutting hair of this
customer is done.

leave_b_chair Barber waits until customer gets up from
the chair.

Customer signals barber when customer
gets up from chair.

payment Cashier waits for a customer to pay. Customer signals cashier that he has paid.

receipt Customer waits for a receipt for payment. Cashier signals that payment has been
accepted.

coord Wait for a barber resource to be free to
perform either the hair cutting or cashier-
ing function.

Signal that a barber resource is free.

Table A.1  Purpose of Semaphores in Figure A.2

Z01_STAL4290_09_GE_APPA.indd 12 4/13/17 11:22 AM

A.2 / A BARBERSHOP PROBLEM   A-13

Figure A.3  A Fair Barbershop

/* program barbershop2 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3, coord = 3;
semaphore mutex1 = 1, mutex2 = 1;
semaphore cust_ready = 0, leave_b_chair = 0, payment = 0, receipt = 0;
semaphore finished [50] = {0};
int count;

void customer()
{
   int custnr;
   semWait(max_capacity);
   enter_shop();
   semWait(mutex1);
   custnr = count;
   count++;
   semSignal(mutex1);
   semWait(sofa);
   sit_on_sofa();
   semWait(barber_chair);
   get_up_from_sofa();
   semSignal(sofa);
   sit_in_barber_chair();
   semWait(mutex2);
   enqueue1(custnr);
   semSignal(cust_ready);
   semSignal(mutex2);
   semWait(finished[custnr]);
   leave_barber_chair();
   semSignal(leave_b_chair);
   pay();
   semSignal(payment);
   semWait(receipt);
   exit_shop();
   semSignal(max_capacity)
}

void barber()
{
   int b_cust;
   while (true)
   {
     semWait(cust_ready);
     semWait(mutex2);
     dequeue1(b_cust);
     semSignal(mutex2);
     semWait(coord);
     cut_hair();
     semSignal(coord);
     semSignal(finished[b_cust]);
     semWait(leave_b_chair);
     semSignal(barber_chair);
   }
}

void cashier()
{
   while (true)
   {
     semWait(payment);
     semWait(coord);
     accept_pay();
     semSignal(coord);
     semSignal(receipt);
   }
}

void main()
{  count := 0;
   parbegin (�customer, . . . 50 times, . . . customer, barber, barber,

barber, cashier);
}

A Fair Barbershop

Figure A.2 is a good effort, but some difficulties remain. One problem is solved in the
remainder of this section; others are left as exercises for the reader (see Problem A.3).

There is a timing problem in Figure A.2 that could lead to unfair treatment of
customers. Suppose three customers are currently seated in the three barber chairs.
In that case, the customers would most likely be blocked on semWait(finished),
and due to the queue organization, they would be released in the order they entered
the barber chair. However, what if one of the barbers is very fast or one of the cus-
tomers is quite bald? Releasing the first customer to enter the chair could result in a
situation where one customer is summarily ejected from his seat and forced to pay

Z01_STAL4290_09_GE_APPA.indd 13 4/13/17 11:22 AM

A-14   APPENDIX A / Topics in Concurrency

full price for a partial haircut while another is restrained from leaving his chair even
though his haircut is complete.

The problem is solved with more semaphores, as shown in Figure A.3. We assign
a unique customer number to each customer; this is equivalent to having each cus-
tomer take a number upon entering the shop. The semaphore mutex1 protects access
to the global variable count so each customer receives a unique number. The sema-
phore finished is redefined to be an array of 50 semaphores. Once a customer is
seated in a barber chair, he executes semWait(finished[custnr]) to wait on
his own unique semaphore; when the barber is finished with that customer, the barber
executes semSignal(finished[b_cust]) to release the correct customer.

It remains to say how a customer’s number is known to the barber. A customer
places his number on the queue enqueue1 just prior to signaling the barber
with the semaphore cust_ready. When a barber is ready to cut hair, dequeue1
(b_cust) removes the top customer number from queue1 and places it in the
barber’s local variable b_cust.

	 A.3	 PROBLEMS

	 A.1.	 Answer the following questions relating to the fair barbershop (see Figure A.3):
a.	 Does the code require that the barber who finishes a customer’s haircut collect that

customer’s payment?
b.	 Do barbers always use the same barber chair?

	 A.2.	 A number of problems remain with the fair barbershop of Figure A.3. Modify the
program to correct the following problems.
a.	 The cashier may accept pay from one customer and release another if two or more

are waiting to pay. Fortunately, once a customer presents payment, there is no way
for him to un-present it, so in the end, the right amount of money ends up in the
cash register. Nevertheless, it is desirable to release the right customer as soon as
his payment is taken.

b.	 The semaphore leave_b_chair supposedly prevents multiple access to a single
barber chair. Unfortunately, this semaphore does not succeed in all cases. For exam-
ple, suppose all three barbers have finished cutting hair and are blocked at
semWait(leave_b_chair). Two of the customers are in an interrupted state
just prior to leave barber chair. The third customer leaves his chair and
executes semSignal (leave_b_chair). Which barber is released? Because
the leave_b_chair queue is first-in-first-out, the first barber that was blocked
is released. Is that the barber that was cutting the signaling customer’s hair? Maybe,
but maybe not. If not, then a new customer will come along and sit on the lap of a
customer that was just about to get up.

c.	 The program requires a customer first sits on the sofa even if a barber chair is
empty. Granted, this is a rather minor problem, and fixing it makes code that is
already a bit messy even messier. Nevertheless, give it a try.

Z01_STAL4290_09_GE_APPA.indd 14 4/13/17 11:22 AM

B-1

Appendix B
Programming and Operating

System Projects
B.1	 Semaphore Projects

B.2	 File Systems Project

B.3	 OS/161

B.4	 Simulations

B.5	 Programming Projects
Textbook-Defined Projects
Additional Major Programming Projects
Small Programming Projects

B.6	 Research Projects

B.7	 Reading/Report Assignments

B.8	 Writing Assignments

B.9	 Discussion Topics

B.10	 BACI

Z02_STAL4290_09_GE_APPB.indd 1 4/13/17 11:23 AM

B-2   APPENDIX B / Programming and Operating System Projects

Many instructors believe that implementation or research projects are crucial to the
clear understanding of operating system concepts. Without projects, it may be difficult
for students to grasp some of the basic OS abstractions and interactions among com-
ponents; a good example of a concept that many students find difficult to master is
that of semaphores. Projects reinforce the concepts introduced in this book, give the
student a greater appreciation of how the different pieces of an OS fit together, and
can motivate students and give them confidence that they are capable of not only
understanding but also implementing the details of an OS.

In this text, I have tried to present the concepts of OS internals as clearly as
possible and have provided numerous homework problems to reinforce those con-
cepts. Many instructors will wish to supplement this material with projects. This
appendix provides some guidance in that regard and describes support material avail-
able in the Instructor’s Resource Center (IRC) for this book accessible from Pearson
for instructors. The support material covers ten types of projects and other student
exercises:

•	 Semaphore projects

•	 File systems project

•	 OS/161 projects

•	 Simulation projects

•	 Programming projects

•	 Research projects

•	 Reading/report assignments

•	 Writing assignments

•	 Discussion topics

•	 BACI

	 B.1	 SEMAPHORE PROJECTS

The ability to manage concurrency using semaphores is one of the most important
topics of an operating systems or systems programming course, but it can be very
difficult to teach. Concurrency problems, such as race conditions and deadlocks, are
abstract concepts that can be difficult for a student to visualize. They can arise in
many different situations from file locking to network communication. Not only is
the material particularly difficult for students, but the complexity of the topic makes
it difficult to develop projects which engage students and are appropriate for a single
semester course. This problem is further complicated by the fact that concurrency
problems which seem similar to students often have subtle differences that require
very different approaches to their solution.

This IRC provides a set of hands-on activities which use an open-source train
simulation game, OpenTTD, to visually represent concurrency problems. Each activ-
ity introduces one application of semaphores and allows the students to interact with
the system by placing “real” semaphores along a train track carefully constructed to
simulate a computing problem (such as a race condition).

Z02_STAL4290_09_GE_APPB.indd 2 4/13/17 11:23 AM

B.3 / OS/161   B-3

These project assignments were developed by Professor Robert Marmorstein
of Longwood University.

	 B.2	 FILE SYSTEMS PROJECT

Understanding file system implementation is another challenge for OS students. To
support this goal, the IRC includes project in which, step-by-step, the student imple-
ments a simple file system in C+ + . This project assignment was developed by Profes-
sor Robert Marmorstein of Longwood University.

	 B.3	 OS/161

The Instructor’s Resource Center (IRC) for this book provides support for using
OS/161 as an active learning component.

OS/161 is an educational operating system developed at Harvard University
[HOLL02]. It aims to strike a balance between giving students experience in working
on a real operating system, and potentially overwhelming students with the complex-
ity that exists in a fully fledged operating system, such as Linux. Compared to most
deployed operating systems, OS/161 is quite small (approximately 20,000 lines of
code and comments), and therefore it is much easier to develop an understanding of
the entire code base.

The source code distribution contains a full operating system source tree,
including the kernel, libraries, various utilities (ls, cat,...), and some test programs.
OS/161 boots on the simulated machine in the same manner as a real system might
boot on real hardware.

System/161 simulates a “real” machine to run OS/161 on. The machine features a
MIPS R2000/R3000 CPU including an MMU, but no floating-point unit or cache. It
also features simplified hardware devices hooked up to the system bus. These devices
are much simpler than real hardware, and thus make it feasible for students to get their
hands dirty without having to deal with the typical level of complexity of physical hard-
ware. Using a simulator has several advantages: Unlike other software students write,
buggy OS software may result in completely locking up the machine, making it difficult
to debug and requiring a reboot. A simulator enables debuggers to access the machine
below the software architecture level as if debugging was built into the CPU. In some
senses, the simulator is similar to an in-circuit emulator (ICE) that you might find in
industry, only it is implemented in software. The other major advantage is the speed of
reboots. Rebooting real hardware takes minutes, and hence the development cycle can
be frustratingly slow on real hardware. System/161 boots OS/161 in mere seconds.

The OS/161 and System/161 simulators can be hosted on a variety of platforms,
including Unix, Linux, Mac OS X, and Cygwin (the free Unix environment for
Windows).

The IRC includes the following:

•	 Package for instructor’s Web server: A set of html and pdf files that can be eas-
ily uploaded to the instructor’s site for the OS course, which provides all the

Z02_STAL4290_09_GE_APPB.indd 3 4/13/17 11:23 AM

B-4   APPENDIX B / Programming and Operating System Projects

online resources for OS/161 and S/161 access, user’s guides for students, assign-
ments, and other useful material.

•	 Getting started for instructors: This guide lists all of the files that make up the
website for the course and instructions on how to set up the website.

•	 Getting started for students: This guide explains to students step-by-step how
to download and install OS/161 and S/161 on their PC.

•	 Background material for students: This consists of two documents that provide
an overview of the architecture of S/161 and the internals of OS/161. These
overviews are intended to be sufficient so that the student is not overwhelmed
with figuring out what these systems are.

•	 Student exercises: A set of exercises that cover some of the key aspects of OS
internals, including support for system calls, threading, synchronization, locks
and condition variables, scheduling, virtual memory, files systems, and security.

The IRC OS/161 package was prepared by Andrew Peterson and other col-
leagues and students at the University of Toronto.

	 B.4	 SIMULATIONS

The IRC provides support for assigning projects based on a set of simulations devel-
oped at the University of Texas, San Antonio. Table B.1 lists the simulations by chap-
ter. The simulators are all written in Java and can be run either locally as a Java
application or online through a browser.

The IRC includes the following:

1.	 A brief overview of the simulations available.

2.	 How to port them to the local environment.

3.	 Specific assignments to give to students, telling them specifically what they are
to do and what results are expected. For each simulation, this section provides
one or two original assignments that the instructor can assign to students.

These simulation assignments were developed by Adam Critchley (University
of Texas at San Antonio).

	 B.5	 PROGRAMMING PROJECTS

Three sets of programming projects are provided.

Textbook-Defined Projects

Two major programming projects, one to build a shell, or command line interpreter,
and one to build a process dispatcher, are described in the online portion of the text-
book. The projects can be assigned after Chapter 3 and after Chapter 9, respectively.
The IRC provides further information and step-by-step exercises for developing the
programs.

Z02_STAL4290_09_GE_APPB.indd 4 4/13/17 11:23 AM

B.5 / PROGRAMMING PROJECTS   B-5

These projects were developed by Ian G. Graham of Griffith University,
Australia.

Additional Major Programming Projects

A set of programming assignments, called machine problems (MPs), are available
that are based on the Posix Programming Interface. The first of these assignments is
a crash course in C, to enable the student to develop sufficient proficiency in C to be
able to do the remaining assignments. The set consists of nine machine problems with
different difficulty degrees. It may be advisable to assign each project to a team of
two students.

Each MP includes not only a statement of the problem but a number of C files
that are used in each assignment, step-by-step instructions, and a set of questions for
each assignment that the student must answer that indicate a full understanding of
each project. The scope of the assignments includes:

1.	 Create a program to run in a shell environment using basic I/O and string
manipulation functions.

2.	 Explore and extend a simple Unix shell interpreter.

3.	 Modify faulty code that utilizes threads.

4.	 Implement a multithreaded application using thread synchronization
primitives.

Chapter 5 – Concurrency: Mutual Exclusion and Synchronization

Producer-consumer Allows the user to experiment with a bounded buffer synchronization problem in
the context of a single producer and a single consumer

UNIX Fork-pipe Simulates a program consisting of pipe, dup2, close, fork, read,
write, and print instructions

Chapter 6 – Concurrency: Deadlock and Starvation

Starving philosophers Simulates the dining philosophers problem

Chapter 8 – Virtual Memory

Address translation Used for exploring aspects of address translation. It supports 1- and 2-level page
tables and a translation lookaside buffer

Chapter 9 – Uniprocessor Scheduling

Process scheduling Allows users to experiment with various process scheduling algorithms on a collec-
tion of processes and to compare such statistics as throughput and waiting time

Chapter 11 – I/O Management and Disk Scheduling

Disk head scheduling Supports the standard scheduling algorithms such as FCFS, SSTF, SCAN, LOOK,
C-SCAN, and C-LOOK as well as double buffered versions of these

Chapter 12 – File Management

Concurrent I/O Simulates a program consisting of open, close, read, write, fork,
wait, pthread_create, pthread_detach, and pthread_join
instructions

Table B.1  OS Simulations by Chapter

Z02_STAL4290_09_GE_APPB.indd 5 4/13/17 11:23 AM

B-6   APPENDIX B / Programming and Operating System Projects

5.	 Write a user-mode thread scheduler.

6.	 Simulate a time-sharing system by using signals and timers.

7.	 A six-week project aimed at creating a simple yet functional networked file
system. Covers I/O and file system concepts, memory management, and net-
working primitives.

The IRC provides specific instructions for setting up the appropriate support
files on the instructor’s website of local server.

These project assignments were developed at the University of Illinois at
Urbana-Champaign, Department of Computer Science and adapted by Matt Sparks
(University of Illinois at Urbana-Champaign) for use with this textbook.

Small Programming Projects

The instructor can also assign a number of small programming projects described in
the IRC. The projects can be programmed by the students on any available computer
and in any appropriate language: They are platform and language independent.

These small projects have certain advantages over the larger projects. Larger
projects usually give students more of a sense of achievement, but students with less
ability or fewer organizational skills can be left behind. Larger projects usually elicit
more overall effort from the best students. Smaller projects can have a higher con-
cepts-to-code ratio, and because more of them can be assigned, the opportunity exists
to address a variety of different areas. Accordingly, the IRC contains a series of small
projects, each intended to be completed in a week or so, which can be very satisfying
to both student and teacher. These projects were developed at Worcester Polytechnic
Institute by Stephen Taylor, who has used and refined the projects in the course of
teaching operating systems a dozen times.

	 B.6	 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve a
literature search as well as a Web search of vendor products, research lab activities,
and standardization efforts. Projects could be assigned to teams or, for smaller proj-
ects, to individuals. In any case, it is best to require some sort of project proposal early
in the term, giving the instructor time to evaluate the proposal for appropriate topic
and appropriate level of effort. Student handouts for research projects should include:

•	 A format for the proposal.

•	 A format for the final report.

•	 A schedule with intermediate and final deadlines.

•	 A list of possible project topics.

The students can select one of the listed topics or devise their own comparable
project. The IRC includes a list of possible research topics developed by Professor
Tan N. Nguyen of George Mason University, and suggests the coverage to be provided
in the proposal and final report.

Z02_STAL4290_09_GE_APPB.indd 6 4/13/17 11:23 AM

B.10 / BACI   B-7

	 B.7	 READING/REPORT ASSIGNMENTS

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers to be assigned, organized by chapter. A
PDF copy of each of the papers is available at box.com/OS8e. The IRC also includes
a suggested assignment wording.

	 B.8	 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process in
a technical discipline such as OS internals. Adherents of the Writing Across the Cur-
riculum (WAC) movement (http://wac.colostate.edu/) report substantial benefits of
writing assignments in facilitating learning. Writing assignments lead to more detailed
and complete thinking about a particular topic. In addition, writing assignments help
to overcome the tendency of students to pursue a subject with a minimum of personal
engagement, just learning facts and problem-solving techniques without obtaining a
deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find this is an important part of their approach
to teaching the material. I would greatly appreciate any feedback on this area, and
any suggestions for additional writing assignments.

	 B.9	 DISCUSSION TOPICS

One way to provide a collaborative experience is discussion topics, a number of which
are included in the IRC. Each topic relates to material in the book. The instructor can
set it up so students can discuss a topic either in a class setting, an online chat room,
or a message board. Again, I would greatly appreciate any feedback on this area, and
any suggestions for additional discussion topics.

	 B.10	BACI

In addition to all of the support provided at the IRC, the Ben-Ari Concurrent Inter-
preter (BACI) is a publicly available package that instructors may wish to use. BACI
simulates concurrent process execution and supports binary and counting sema-
phores and monitors. BACI is accompanied by a number of project assignments to
be used to reinforce concurrency concepts.

Appendix O provides a more detailed introduction to BACI, with information
about how to obtain the system and the assignments.

Z02_STAL4290_09_GE_APPB.indd 7 4/13/17 11:23 AM

http://wac.colostate.edu
http://box.com/OS8e

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

R-1

Abbreviations

ACM	  Association for Computing Machinery
IBM	  International Business Machines Corporation
IEEE	  Institute of Electrical and Electronics Engineers

References

AGAR89	 Agarwal, A. Analysis of Cache Performance for Operating Systems and
Multiprogramming. Norwell, MA: Kluwer Academic Publishers, 1989.

ANDE80	 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort
Washington, PA: James P. Anderson Co., April 1980.

ANDE89	 Anderson, T.; Lazowska, E.; and Levy, H. “The Performance Implications of
Thread Management Alternatives for Shared-Memory Multiprocessors.”
IEEE Transactions on Computers, December 1989.

ANDE04	 Anderson, T.; Bershad, B.; Lazowska, E.; and Levy, H. “Thread Management
for Shared-Memory Multiprocessors.” In [TUCK04].

ANDE05	 Anderson, E. μClibc. Slide Presentation, Codepoet Consulting, January 26,
2005. http://www.codepoet-consulting.com/

ARDE80	 Arden, B., ed. What Can Be Automated? The Computer Science and Engineer
ing Research Study, National Science Foundation, 1980.

ATLA89	 Atlas, A., and Blundon, B. “Time to Reach for It All.” UNIX Review, January
1989.

BACH86	 Bach, M. The Design of the UNIX Operating System. Englewood Cliffs, NJ:
Prentice Hall, 1986.

BACO03	 Bacon, J., and Harris, T. Operating Systems: Concurrent and Distributed
Software Design. Reading, MA: Addison-Wesley, 2003.

BAER80	 Baer, J. Computer Systems Architecture. Rockville, MD: Computer Science
Press, 1980.

BACC13	 Baccelli, E.; Hahm, O.; Wahlisch, M.; Gunes, M.; and Schmidt, T. “RIOT OS:
Towards an OS for the Internet of Things.” Proceedings of IEEE INFOCOM,
Demo/Poster for the 32nd IEEE International Conference on Computer
Communications, Turin, Italy, April 2013.

BARK89	 Barkley, R., and Lee, T. “A Lazy Buddy System Bounded by Two Coalescing
Delays per Class.” Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, December 1989.

BAYS77	 Bays, C. “A Comparison of Next-Fit, First-Fit, and Best-Fit.” Communications
of the ACM, March 1977.

BELA66	 Belady, L. “A Study of Replacement Algorithms for a Virtual Storage
Computer.” IBM Systems Journal, No. 2, 1966.

BLAC90	 Black, D. “Scheduling Support for Concurrency and Parallelism in the Mach
Operating System.” Computer, May 1990.

BOLO89	 Bolosky, W.; Fitzgerald, R.; and Scott, M. “Simple but Effective Techniques for
NUMA Memory Management.” Proceedings, Twelfth ACM Symposium on
Operating Systems Principles, December 1989.

Z03_STAL4290_09_GE_REF.indd 1 4/13/17 11:23 AM

http://www.codepoet-consulting.com

R-2   References

BONW94	 Bonwick, J. “The Slab Allocator: An Object-Caching Kernel Memory
Allocator.” Proceedings, USENIX Summer Technical Conference, 1994.

BORG90	 Borg, A.; Kessler, R.; and Wall, D. “Generation and Analysis of Very Long
Address Traces.” Proceedings of the 17th Annual International Symposium on
Computer Architecture, May 1990.

BORM14	 Bormann, C.; Ersue, M.; and Keranen, A. Terminology for Constrained-Node
Networks. RFC 7228, May 2014.

BRIA99	 Briand, L., and Roy, D. Meeting Deadlines in Hard Real-Time Systems: The
Rate Monotonic Approach. Los Alamitos, CA: IEEE Computer Society
Press, 1999.

BREN89	 Brent, R. “Efficient Implementation of the First-Fit Strategy for Dynamic
Storage Allocation.” ACM Transactions on Programming Languages and
Systems, July 1989.

BRIN01	 Brinch Hansen, P., ed. Classic Operating Systems: From Batch Processing to
Distributed Systems. New York, NY: Springer-Verlag, 2001.

BUON01	 Buonadonna, P.; Hill, J.; and Culler, D. “Active Message Communication
for Tiny Networked Sensors.” Proceedings, IEEE INFOCOM 2001,
April 2001.

BUTT99	 Buttazzo, G., Sensini, F. “Optimal Deadline Assignment for Scheduling Soft
Aperiodic Tasks in Hard Real-Time Environments.” IEEE Transactions on
Computers, October 1999.

CALL15	 Callaway, B., and Esker, R. “OpenStack Deployment and Operations Guide.”
NetApp White Paper, May 2015.

CARR84	 Carr, R. Virtual Memory Management. Ann Arbor, MI: UMI Research Press,
1984.

CARR89	 Carriero, N., and Gelernter, D. “How to Write Parallel Programs: A Guide for
the Perplexed.” ACM Computing Surveys, September 1989.

CARR01	 Carr, S.; Mayo, J.; and Shene, C. “Race Conditions: A Case Study.” Journal of
Computing in Colleges, October 2001.

CARR05	 Carrier, B. File System Forensic Analysis. Upper Saddle River, NJ: Addison-
Wesley, 2005.

CHEN92	 Chen, J.; Borg, A.; and Jouppi, N. “A Simulation-Based Study of TLB
Performance.” Proceedings, 19th Annual International Symposium on Computer
Architecture, May 1992.

CHOI05	 Choi, H., and Yun, H. “Context Switching and IPC Performance Comparison
between μClinux and Linux on the ARM9 Based Processor.” Proceedings,
Samsung Conference, 2005.

CHU72	 Chu, W., and Opderbeck, H. “The Page Fault Frequency Replacement
Algorithm.” Proceedings, Fall Joint Computer Conference, 1972.

CLAR85	 Clark, D., and Emer, J. “Performance of the VAX-11/780 Translation Buffer:
Simulation and Measurement.” ACM Transactions on Computer Systems,
February 1985.

CLAR13	 Clark, L. “Intro to Embedded Linux Part 1: Defining Android vs. Embedded
Linux.” Libby Clark Blog, Linux.com, March 6, 2013.

COFF71	 Coffman, E.; Elphick, M.; and Shoshani, A. “System Deadlocks.” Computing
Surveys, June 1971.

COME79	 Comer, D. “The Ubiquitous B-Tree.” Computing Surveys, June 1979.

Z03_STAL4290_09_GE_REF.indd 2 4/13/17 11:23 AM

http://Linux.com

References   R-3

CONW63	 Conway, M. “Design of a Separable Transition-Diagram Compiler.”
Communications of the ACM, July 1963.

CORB62	 Corbato, F.; Merwin-Daggett, M.; and Daley, R. “An Experimental Time-
Sharing System.” Proceedings of the 1962 Spring Joint Computer Conference,
1962. Reprinted in [BRIN01].

CORB68	 Corbato, F. “A Paging Experiment with the Multics System.” MIT Project MAC
Report MAC-M-384, May 1968.

CORB07	 Corbet, J. “The SLUB Allocator.” April 2007. http://lwn.net/Articles/229984/
CORM09	 Cormen, T., et al. Introduction to Algorithms. Cambridge, MA: MIT Press,

2009.
COX89	 Cox, A., and Fowler, R. “The Implementation of a Coherent Memory

Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM.”
Proceedings, Twelfth ACM Symposium on Operating Systems Principles,
December 1989.

DALE68	 Daley, R., and Dennis, R. “Virtual Memory, Processes, and Sharing in
MULTICS.” Communications of the ACM, May 1968.

DASG91	 Dasgupta, P., et al. “The Clouds Distributed Operating System.” IEEE
Computer, November 1991.

DENN68	 Denning, P. “The Working Set Model for Program Behavior.” Communications
of the ACM, May 1968.

DENN70	 Denning, P. “Virtual Memory.” Computing Surveys, September 1970.
DENN71	 Denning, P. “Third Generation Computer Systems.” ACM Computing Surveys,

December 1971.
DENN80a	 Denning, P.; Buzen, J.; Dennis, J.; Gaines, R.; Hansen, P.; Lynch, W.; and

Organick, E. “Operating Systems.” In [ARDE80].
DENN80b	 Denning, P. “Working Sets Past and Present.” IEEE Transactions on Software

Engineering, January 1980.
DIJK65	 Dijkstra, E. Cooperating Sequential Processes. Technological University,

Eindhoven, The Netherlands, 1965. Reprinted [LAPL96] and in [BRIN01].
DIJK71	 Dijkstra, E. “Hierarchical Ordering of Sequential Processes.” Acta informatica,

Volume 1, Number 2, 1971. Reprinted in [BRIN01].
DONG10	 Dong, W., et al. “Providing OS Support for Wireless Sensor Networks:

Challenges and Approaches.” IEEE Communications Surveys & Tutorials,
Fourth Quarter, 2010.

DOWN16	 Downey, A. The Little Book of Semaphores Version 2.2.1. 2016. www.greenteapress
.com/semaphores/

DUBE98	 Dube, R. A Comparison of the Memory Management Sub-Systems in
FreeBSD and Linux. Technical Report CS-TR-3929, University of Maryland,
September 25, 1998.

EISC07	 Eischen, C. “RAID 6 Covers More Bases.” Network World, April 9, 2007.
EMCR15	 EmCraft Systems. “What Is the Minimal Footprint of μClinux?” EmCraft

Documentation, May 19, 2015. http://www.emcraft.com/stm32f429discovery/
what-is-minimal-footprint

ETUT16	 eTutorials.org. Embedded Linux Systems. 2016. http://etutorials.org/Linux+
systems/embedded+linux+systems/

FEIT90a	 Feitelson, D., and Rudolph, L. “Distributed Hierarchical Control for Parallel
Processing.” Computer, May 1990.

Z03_STAL4290_09_GE_REF.indd 3 4/13/17 11:23 AM

http://lwn.net/Articles/229984
http://www.greenteapress.com/semaphores
http://www.emcraft.com/stm32f429discovery/what-is-minimal-footprint
http://etutorials.org/Linux+systems/embedded+linux+systems
http://www.greenteapress.com/semaphores
http://www.emcraft.com/stm32f429discovery/what-is-minimal-footprint
http://etutorials.org/Linux+systems/embedded+linux+systems/
http://eTutorials.org

R-4   References

FEIT90b	 Feitelson, D., and Rudolph, L. “Mapping and Scheduling in a Shared Parallel
Environment Using Distributed Hierarchical Control.” Proceedings, 1990
International Conference on Parallel Processing, August 1990.

FERR83	 Ferrari, D., and Yih, Y. “VSWS: The Variable-Interval Sampled Working Set
Policy.” IEEE Transactions on Software Engineering, May 1983.

FINK88	 Finkel, R. An Operating Systems Vade Mecum, Second edition. Englewood
Cliffs, NJ: Prentice Hall, 1988.

FOST91	 Foster, I. “Automatic Generation of Self-Scheduling Programs.” IEEE
Transactions on Parallel and Distributed Systems, January 1991.

FRAN97	 Franz, M. “Dynamic Linking of Software Components.” Computer, March
1997.

FREN16	 Frenzel, L. “12 Wireless Options for IoT/M2M: Diversity or Dilemma?”
Electronic Design, June 2016.

GANA98	 Ganapathy, N., and Schimmel, C. “General Purpose Operating System Support
for Multiple Page Sizes.” Proceedings, USENIX Symposium, 1998.

GAY03	 Gay, D., et al. “The nesC Language: A Holistic Approach to Networked
Embedded Systems.” Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, 2003.

GEHR87	 Gehringer, E.; Siewiorek, D.; and Segall, Z. Parallel Processing: The Cm*
Experience. Bedford, MA: Digital Press, 1987.

GING90	 Gingras, A. “Dining Philosophers Revisited.” ACM SIGCSE Bulletin,
September 1990.

GOLD89	 Goldman, P. “Mac VM Revealed.” Byte, November 1989.
GOYE99	 Goyeneche, J., and Souse, E. “Loadable Kernel Modules.” IEEE Software,

January/February 1999.
GRAH72	 Graham, G., and Denning, P. “Protection—Principles and Practice.” Proceedings,

AFIPS Spring Joint Computer Conference, 1972.
GROS86	 Grosshans, D. File Systems: Design and Implementation. Englewood Cliffs, NJ:

Prentice Hall, 1986.
GUPT78	 Gupta, R., and Franklin, M. “Working Set and Page Fault Frequency

Replacement Algorithms: A Performance Comparison.” IEEE Transactions
on Computers, August 1978.

HAHM15	 Hahm, O.; Baccelli, E.; Petersen, H.; and Tsiftes, N. “Operating Systems for
Low-End Devices in the Internet of Things: A Survey.” IEEE Internet of Things
Journal, December 2015.

HALD91	 Haldar, S., and Subramanian, D. “Fairness in Processor Scheduling in Time
Sharing Systems.” Operating Systems Review, January 1991.

HAND98	 Handy, J. The Cache Memory Book, Second edition. San Diego, CA: Academic
Press, 1998.

HARR06	 Harris, W. “Multi-Core in the Source Engine.” bit-tech.net technical paper,
November 2, 2006. bit-tech.net/gaming/2006/11/02/Multi_core_in_the_Source_
Engin/1

HENR84	 Henry, G. “The UNIX System: The Fair Share Scheduler.” AT&T Bell
Laboratories Technical Journal, October 1984.

HERL90	 Herlihy, M. “A Methodology for Implementing Highly Concurrent Data
Structures.” Proceedings of the Second ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming, March 1990.

Z03_STAL4290_09_GE_REF.indd 4 4/13/17 11:23 AM

References   R-5

HILL00	 Hill, J., et al. “System Architecture Directions for Networked Sensors.”
Proceedings, Architectural Support for Programming Languages and Operating
Systems, 2000.

HOAR74	 Hoare, C. “Monitors: An Operating System Structuring Concept.”
Communications of the ACM, October 1974.

HOLL02	 Holland, D.; Lim, A.; and Seltzer, M. “A New Instructional Operating System.”
Proceedings of SIGCSE 2002, 2002.

HOLT72	 Holt, R. “Some Deadlock Properties of Computer Systems.” Computing
Surveys, September 1972.

HOWA73	 Howard, J. “Mixed Solutions for the Deadlock Problem.” Communications of
the ACM, July 1973.

HUCK83	 Huck, T. Comparative Analysis of Computer Architectures. Stanford University
Technical Report Number 83-243, May 1983.

HUCK93	 Huck, J., and Hays, J. “Architectural Support for Translation Table Manage
ment in Large Address Space Machines.” Proceedings of the 20th Annual
International Symposium on Computer Architecture, May 1993.

HYMA66	 Hyman, H. “Comments on a Problem in Concurrent Programming Control.”
Communications of the ACM, January 1966.

ISLO80	 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.” Computer,
September 1980.

IYER01	 Iyer, S., and Druschel, P. “Anticipatory Scheduling: A Disk Scheduling
Framework to Overcome Deceptive Idleness in Synchronous I/O.” Proceedings,
18th ACM Symposium on Operating Systems Principles, October 2001.

JACK10	 Jackson, J. “Multicore Requires OS Rework, Windows Architect Advises.”
Network World, March 19 2010.

JOHN92	 Johnson, T., and Davis, T. “Space Efficient Parallel Buddy Memory
Management.” Proceedings, Fourth International Conference on Computers
and Information, May 1992.

JONE80	 Jones, A., and Schwarz, P. “Experience Using Multiprocessor Systems—A
Status Report.” Computing Surveys, June 1980.

JONE97	 Jones, M. “What Really Happened on Mars?” http://research.microsoft.
com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html, 1997.

KATZ89	 Katz, R.; Gibson, G.; and Patterson, D. “Disk System Architecture for High
Performance Computing.” Proceedings of the IEEE, December 1989.

KAY88	 Kay, J., and Lauder, P. “A Fair Share Scheduler.” Communications of the ACM,
January 1988.

KERN16	 Kerner, S. “ Inside the Box: Can Containers Simplify Networking?” Network
Evolution, February 2016.

KESS92	 Kessler, R., and Hill, M. “Page Placement Algorithms for Large Real-Indexed
Caches.” ACM Transactions on Computer Systems, November 1992.

KHAL93	 Khalidi, Y.; Talluri, M.; Williams, D.; and Nelson, M. “Virtual Memory Support
for Multiple Page Sizes.” Proceedings, Fourth Workshop on Workstation
Operating Systems, October 1993.

KHUS12	 Khusainov, V. “Practical Advice on Running μClinux on Cortex-M3/M4.”
Electronic Design, September 17, 2012.

KILB62	 Kilburn, T.; Edwards, D.; Lanigan, M.; and Sumner, F. “One-Level Storage
System.” IRE Transactions, April 1962.

Z03_STAL4290_09_GE_REF.indd 5 4/13/17 11:23 AM

http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

R-6   References

KLEI95	 Kleiman, S., Eykholt, J. “Interrupts as Threads.” Operating System Review,
April 1995.

KLEI96	 Kleiman, S.; Shah, D.; and Smallders, B. Programming with Threads. Upper
Saddle River, NJ: Prentice Hall, 1996.

KNUT71	 Knuth, D. “An Experimental Study of FORTRAN Programs.” Software
Practice and Experience, Vol. 1, 1971.

KNUT97	 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Reading, MA: Addison-Wesley, 1997.

KNUT98	 Knuth, D. The Art of Computer Programming, Volume 3: Sorting and Searching.
Reading, MA: Addison-Wesley, 1998.

LAMP71	 Lampson, B. “Protection.” Proceedings, Fifth Princeton Symposium on
Information Sciences and Systems, March 1971; Reprinted in Operating Systems
Review, January 1974.

LAMP74	 Lamport, L. “A New Solution to Dijkstra’s Concurrent Programming
Problem.” Communications of the ACM, August 1974.

LAMP80	 Lampson, B., and Redell D. “Experience with Processes and Monitors in
Mesa.” Communications of the ACM, February 1980.

LAMP91	 Lamport, L. “The Mutual Exclusion Problem Has Been Solved.”
Communications of the ACM, January 1991.

LAPL96	 Laplante, P., ed. Great Papers in Computer Science. New York, NY: IEEE Press,
1996.

LARO92	 LaRowe, R.; Holliday, M.; and Ellis, C. “An Analysis of Dynamic Page Place
ment in a NUMA Multiprocessor.” Proceedings, 1992 ACM SIGMETRICS
and Performance ‘92, June 1992.

LEBL87	 LeBlanc, T., and Mellor-Crummey, J. “Debugging Parallel Programs with
Instant Replay.” IEEE Transactions on Computers, April 1987.

LEON07	 Leonard, T. “Dragged Kicking and Screaming: Source Multicore.” Proceedings,
Game Developers Conference 2007, March 2007.

LERO76	 Leroudier, J., and Potier, D. “Principles of Optimality for Multiprogramming.”
Proceedings, International Symposium on Computer Performance Modeling,
Measurement, and Evaluation, March 1976.

LETW88	 Letwin, G. Inside OS/2. Redmond, WA: Microsoft Press, 1988.
LEUT90	 Leutenegger, S., and Vernon, M. “The Performance of Multiprogrammed

Multiprocessor Scheduling Policies.” Proceedings, Conference on Measurement
and Modeling of Computer Systems, May 1990.

LEVI12	 Levis, P. “Experiences from a Decade of TinyOS Development.” 10th USENIX
Symposium on Operating Systems Design and Implementation, 2012.

LEVI16	 Levin, J. “GCD Internals.” Mac OS X and iOS Internals: To the Apple’s Core.
newosxbook.com, 2016.

LEWI96	 Lewis, B., and Berg, D. Threads Primer. Upper Saddle River, NJ: Prentice Hall,
1996.

LHEE03	 Lhee, K., and Chapin, S., “Buffer Overflow and Format String Overflow
Vulnerabilities.” Software: Practice and Experience, Volume 33, 2003.

LIGN05	 Ligneris, B. “Virtualization of Linux Based Computers : The Linux-VServer
Project.” Proceedings of the 19th International Symposium on High Performance
Computing Systems and Applications, 2005.

Z03_STAL4290_09_GE_REF.indd 6 4/13/17 11:23 AM

http://newosxbook.com

References   R-7

LIU73	 Liu, C., and Layland, J. “Scheduling Algorithms for Multiprogramming in a
Hard Real-time Environment.” Journal of the ACM, January 1973.

LOVE04	 Love, R. “I/O Schedulers.” Linux Journal, February 2004.
MACK05	 Mackall, M. “Slob: Introduce the SLOB Allocator.” November 2005. http://

lwn.net/Articles/157944/
MAEK87	 Maekawa, M.; Oldehoeft, A.; and Oldehoeft, R. Operating Systems: Advanced

Concepts. Menlo Park, CA: Benjamin Cummings, 1987.
MAJU88	 Majumdar, S.; Eager, D.; and Bunt, R. “Scheduling in Multiprogrammed

Parallel Systems.” Proceedings, Conference on Measurement and Modeling of
Computer Systems, May 1988.

MARW06	 Marwedel, P. Embedded System Design. Dordrecht, The Netherlands: Springer,
2006.

MCCU04	 McCullough, D. “μClinux for Linux Programmers.” Linux Journal, July 2004.
MCDO06	 McDougall, R., and Laudon, J. “Multi-Core Microprocessors Are Here.” ;login:,

October 2006.
MCDO07	 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris

Kernel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
MCKU15	 McKusick, M.; Neville-Neil, J.; and Watson, R. The Design and Implementation of

the FreeBSD Operating System. Upper Saddle River, NJ: Addison-Wesley, 2015.
MENA07	 Menage, P. “Adding Generic Process Containers to the Linux Kernel.” Linux

Symposium, June 2007.
MESN03	 Mesnier, M.; Ganger, G.; and Riedel, E. “Object-Based Storage.” IEEE

Communications Magazine. August 2003.
MIN02	 Min, R., et al. “Energy-Centric Enabling Technologies for Wireless Wensor

Networks.” IEEE wireless communications, vol. 9, no. 4, 2002.
MORG92	 Morgan, K. “The RTOS Difference.” Byte, August 1992.
MORR16	 Morra, J. “Google Rolls Out New Version of Android Operating System.”

Electronic Design, August 24, 2016.
MOSB02	 Mosberger, D., and Eranian, S. IA-64 Linux Kernel: Design and Implementation.

Upper Saddle River, NJ: Prentice Hall, 2002.
MS96	 Microsoft Corp. Microsoft Windows NT Workstation Resource Kit. Redmond,

WA: Microsoft Press, 1996.
NELS91	 Nelson, G. Systems Programming with Modula-3. Englewood Cliffs, NJ:

Prentice Hall, 1991.
NIST08	 National Institute of Standards and Technology. Guide to General Server

Security. Special Publication 800-124, July 2008.
OUST85	 Ousterhout, J., et al. “A Trace-Drive Analysis of the UNIX 4.2 BSD File System.”

Proceedings, Tenth ACM Symposium on Operating System Principles, 1985.
PABL09	 Pabla, C. “Completely Fair Scheduler.” Linux Journal, August 2009.
PARK13	 Parker-Johnson, P. “Getting to Know OpenStack Neutron: Open Networking

in Cloud Services.” TechTarget article, December 13, 2013. http://searchtelecom.
techtarget.com/tip/Getting-to-know-OpenStack-Neutron-Open-networking-
in-cloud-services

PATT82	 Patterson, D., and Sequin, C. “A VLSI RISC.” Computer, September 1982.
PATT85	 Patterson, D. “Reduced Instruction Set Computers.” Communications of the

ACM, January 1985.

Z03_STAL4290_09_GE_REF.indd 7 4/13/17 11:23 AM

http://lwn.net/Articles/157944
http://lwn.net/Articles/157944
http://searchtelecom.techtarget.com/tip/Getting-to-know-OpenStack-Neutron-Open-networking-in-cloud-services
http://searchtelecom.techtarget.com/tip/Getting-to-know-OpenStack-Neutron-Open-networking-in-cloud-services
http://searchtelecom.techtarget.com/tip/Getting-to-know-OpenStack-Neutron-Open-networking-in-cloud-services

R-8   References

PATT88	 Patterson, D.; Gibson, G.; and Katz, R. “A Case for Redundant Arrays of
Inexpensive Disks (RAID).” Proceedings, ACM SIGMOD Conference of
Management of Data, June 1988.

PAZZ92	 Pazzini, M., and Navaux, P. “TRIX, A Multiprocessor Transputer-Based
Operating System.” Parallel Computing and Transputer Applications, edited by
M.Valero et al., Barcelona, Spain: IOS Press/CIMNE, 1992.

PEIR99	 Peir, J.; Hsu, W.; and Smith, A. “Functional Implementation Techniques for
CPU Cache Memories.” IEEE Transactions on Computers, February 1999.

PETE15	 Petersen, H., et al. “Old Wine in New Skins? Revisiting the Software Architec
ture for IP Network Stacks on Constrained IoT Devices.” ACM MobiSys Work
shop on IoT Challenges in Mobile and Industrial Systems (IoTSys), May 2015.

PIZZ89	 Pizzarello, A. “Memory Management for a Large Operating System.”
Proceedings, International Conference on Measurement and Modeling of
Computer Systems, May 1989.

PETE77	 Peterson, J., and Norman, T. “Buddy Systems.” Communications of the ACM,
June 1977.

PETE81	 Peterson, G. “Myths about the Mutual Exclusion Problem.” Information
Processing Letters, June 1981.

PRZY88	 Przybylski, S.; Horowitz, M.; and Hennessy, J. “Performance Trade-offs in
Cache Design.” Proceedings, Fifteenth Annual International Symposium on
Computer Architecture, June 1988.

RAMA94	 Ramamritham, K., and Stankovic, J. “Scheduling Algorithms and Operating
Systems Support for Real-Time Systems.” Proceedings of the IEEE, January
1994.

RASH88	 Rashid, R., et al. “Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures.” IEEE Transactions on
Computers, August 1988.

RAYN86	 Raynal, M. Algorithms for Mutual Exclusion. Cambridge, MA: MIT Press, 1986.
REIM06	 Reimer, J. “Valve Goes Multicore.” Ars Technica, November 5, 2006. arstechnica

.com/articles/paedia/cpu/valve-multicore.ars
RITC74	 Ritchie, D., and Thompson, K. “The UNIX Time-Sharing System.”

Communications of the ACM, July 1974.
RITC78	 Ritchie, D. “UNIX Time-Sharing System: A Retrospective.” The Bell System

Technical Journal, July–August 1978.
RITC84	 Ritchie, D. “The Evolution of the UNIX Time-Sharing System.” AT&T Bell

Labs Technical Journal, October 1984.
ROBE03	 Roberson, J. “ULE: A Modern Scheduler for FreeBSD.” Proceedings of

BSDCon ‘03, September 2003.
ROBI90	 Robinson, J., and Devarakonda, M. “Data Cache Management Using

Frequency-Based Replacement.” Proceedings, Conference on Measurement
and Modeling of Computer Systems, May 1990.

ROME04	 Romer, K., and Mattern, F. “The Design Space of Wireless Sensor Networks.”
IEEE Wireless Communications, December 2004.

ROSA14	 Rosado, T., and Bernardino, J. “An Overview of OpenStack Architecture.”
ACM IDEAS ‘14, July 2014.

RUSS11	 Russinovich, M.; Solomon, D.; and Ionescu, A. Windows Internals: Covering
Windows 7 and Windows Server 2008 R2. Redmond, WA: Microsoft Press, 2011.

Z03_STAL4290_09_GE_REF.indd 8 4/13/17 11:23 AM

http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars
http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars

References   R-9

SARA11	 Saraswat, L., and Yadav, P. “A Comparative Analysis of Wireless Sensor
Network Operating Systems.” The 5th National Conference; INDIACom, 2011.

SATY81	 Satyanarayanan, M. and Bhandarkar, D. “Design Trade-Offs in VAX-11
Translation Buffer Organization.” Computer, December 1981.

SAUE81	 Sauer, C., and Chandy, K. Computer Systems Performance Modeling. Englewood
Cliffs, NJ: Prentice Hall, 1981.

SEFR12	 Serfaoui, O.; Aissaoui, M.; and Eleuldj, M. “OpenStack: Toward an Open-
Source Solution for Cloud Computing.” International Journal of Computer
Applications, October 2012.

SEGH12	 Seghal, A., et al. “Management of Resource Constrained Devices in the
Internet of Things.” IEEE Communications Magazine, December 2012.

SHA91	 Sha, L.; Klein, M.; and Goodenough, J. “Rate Monotonic Analysis for Real-
Time Systems.” in [TILB91].

SHA94	 Sha, L.; Rajkumar, R.; and Sathaye, S. “Generalized Rate-Monotonic Scheduling
Theory: A Framework for Developing Real-Time Systems.” Proceedings of the
IEEE, January 1994.

SHAH15	 Shah, A. “Smart Devices Could Get a Big Battery Boost from ARM’s New
Chip Design.” PC World, June 1, 2015.

SHEN02	 Shene, C. “Multithreaded Programming Can Strengthen an Operating Systems
Course.” Computer Science Education Journal, December 2002.

SHOR75	 Shore, J. “On the External Storage Fragmentation Produced by First-Fit and
Best-Fit Allocation Strategies.” Communications of the ACM, August, 1975.

SHUB90	 Shub, C. “ACM Forum: Comment on a Self-Assessment Procedure on
Operating Systems.” Communications of the ACM, September 1990.

SHUB03	 Shub, C. “A Unified Treatment of Deadlock.” Journal of Computing in Small
Colleges, October 2003. Available through the ACM Digital Library.

SILB04	 Silberschatz, A.; Galvin, P.; and Gagne, G. Operating System Concepts with
Java. Reading, MA: Addison-Wesley, 2004.

SIRA09	 Siracusa, J. “Grand Central Dispatch.” Ars Technica Review, 2009. http://
arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12

SMIT82	 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1982.
SMIT85	 Smith, A. “Disk Cache—Miss Ratio Analysis and Design Considerations.”

ACM Transactions on Computer Systems, August 1985.
SOLT07	 Soltesz, S., et al. “Container-Based Operating System Virtualization: A Scal

able High-Performance Alternative to Hypervisors.” Proceedings of the
EuroSys 2007 2nd EuroSys Conference, Operating Systems Review, June 2007.

STAL16a	 Stallings, W. Computer Organization and Architecture, 10th ed. Upper Saddle
River, NJ: Pearson, 2016.

STAL16b	 Stallings, W. Foundations of Modern Networking: SDN, NFV, QoE, IoT and
Cloud. Upper Saddle River, NJ: Pearson, 2016.

STAN14	 Stankovic, J. “Research Directions for the Internet of Things.” Internet of
Things Journal, Volume 1, Number 1, 2014.

STEE95	 Steensgarrd, B., and Jul, E. “Object and Native Code Mobility among
Heterogeneous Computers.” Proceedings, 15th ACM Symposium on Operating
Systems Principles, December 1995.

STRE83	 Strecker, W. “Transient Behavior of Cache Memories.” ACM Transactions on
Computer Systems, November 1983.

Z03_STAL4290_09_GE_REF.indd 9 4/13/17 11:23 AM

http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12
http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12

R-10   References

TAKA01	 Takada, H. “Real-Time Operating System for Embedded Systems.” In Imai, M.
and Yoshida, N. eds. Asia South-Pacific Design Automation Conference, 2001.

TALL92	 Talluri, M.; Kong, S.; Hill, M.; and Patterson, D. “Tradeoffs in Supporting Two
Page Sizes.” Proceedings of the 19th Annual International Symposium on
Computer Architecture, May 1992.

TAMI83	 Tamir, Y., and Sequin, C. “Strategies for Managing the Register File in RISC.”
IEEE Transactions on Computers, November 1983.

TANE78	 Tanenbaum, A. “Implications of Structured Programming for Machine
Architecture.” Communications of the ACM, March 1978.

TAUR12	 Tauro, C.; Ganesan, N.; and Kumar, A. “A Study of Benefits in Object Based
Storage Systems.” International Journal of Computer Applications, March 2012.

TEVA87	 Tevanian, A., et al. “Mach Threads and the UNIX Kernel: The Battle for
Control.” Proceedings, Summer 1987 USENIX Conference, June 1987.

TILB91	 Tilborg, A., and Koob, G. eds. Foundations of Real-Time Computing: Scheduling
and Resource Management. Boston: Kluwer Academic Publishers, 1991.

TIME02	 TimeSys Corp. “Priority Inversion: Why You Care and What to Do about It.”
TimeSys White Paper, 2002. https://linuxlink.timesys.com/docs/priority_inversion

TUCK89	 Tucker, A., and Gupta, A. “Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors.” Proceedings, Twelfth
ACM Symposium on Operating Systems Principles, December 1989.

TUCK04	 Tucker, A. ed. Computer Science Handbook, Second Edition. Boca Raton, FL:
CRC Press, 2004.

VAHA96	 Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ:
Prentice Hall, 1996.

WARD80	 Ward, S. “TRIX: A Network-Oriented Operating System.” Proceedings,
COMPCON ‘80, 1980.

WARR91	 Warren, C. “Rate Monotonic Scheduling.” IEEE Micro, June 1991.
WEIZ81	 Weizer, N. “A History of Operating Systems.” Datamation, January 1981.
WEND89	 Wendorf, J.; Wendorf, R.; and Tokuda, H. “Scheduling Operating System

Processing on Small-Scale Microprocessors.” Proceedings, 22nd Annual Hawaii
International Conference on System Science, January 1989.

WIED87	 Wiederhold, G. File Organization for Database Design. New York, NY:
McGraw-Hill, 1987.

WOOD86	 Woodside, C. “Controllability of Computer Performance Tradeoffs Obtained
Using Controlled-Share Queue Schedulers.” IEEE Transactions on Software
Engineering, October 1986.

WOOD89	 Woodbury, P. et al. “Shared Memory Multiprocessors: The Right Approach to
Parallel Processing.” Proceedings, COMPCON Spring ‘89, March 1989.

ZAHO90	 Zahorjan, J., and McCann, C. “Processor Scheduling in Shared Memory
Multiprocessors.” Proceedings, Conference on Measurement and Modeling of
Computer Systems, May 1990.

ZHUR12	 Zhuravlev, S., et al. “Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors.” ACM Computing Surveys, November
2012.

Z03_STAL4290_09_GE_REF.indd 10 4/13/17 11:23 AM

https://linuxlink.timesys.com/docs/priority_inversion

CL-1

Chapter 2:  p. 102 Figure adapted from Russinovich, M.; Solomon, D.; and Ionescu, A.
Windows Internals: Covering Windows 7 and Windows Server 2008 R2. Redmond, WA:
Microsoft Press, 2011; p. 116 Figure adapted from Mosberger, David, Eranian, Stephane,
IA-64 Linux Kernel: Design and Implementation, 1st Ed., (c) 2002. Reprinted and
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River,
NJ 07458;

Chapter 3:  p. 167 Figure adapted from Bach, Maurice J., Design of the UNIX Operating
System, 1st Ed., (c) 1986.

Chapter 4:  p. 182 Figure adapted from Kleiman, Steve; Shah, Devang; Smaalders, Bart,
Programming with Threads, 1st Ed., ©1996; p. 163 Figure adapted from McDougall, R.,
and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture, 2nd Ed.,
©2007. Reprinted and Electronically reproduced by permission of Pearson Education, Inc.,
Upper Saddle River, New Jersey; p. 198 Figure adapted from Russinovich, M.; Solomon,
D.; and Ionescu, A. Windows Internals: Covering Windows 7 and Windows Server 2008
R2. Redmond, WA: Microsoft Press, 2011; p. 203 Figure adapted from McDougall, R.,
and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris Kernel Architecture, 2nd Ed.,
©2007. Reprinted and Electronically reproduced by permission of Pearson Education, Inc.,
Upper Saddle River, New Jersey; p. 204 Figure adapted from Lewis, Bil; Berg, Daniel J.,
Threads Primer: A Guide To Multithreaded Programming, 1st Ed., © 1996. Reprinted and
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River,
New Jersey;

Chapter 5:  p. 250 Figure adapted from Bacon, J., and Harris, T. Operating Systems:
Concurrent and Distributed Software Design. Reading, MA: Addison-Wesley, 2003;
p. 276 Box adapted from Conway, M. “Design of a Separable Transition-Diagram
Compiler.” Communications of the ACM, July 1963; p. 287 Problem adapted from John
Trono, St. Michael's College, Vermont.

Chapter 6:  p. 294 Figure adapted from Bacon, Jean; Harris, Tim, Operating Systems:
Concurrent and Distributed Software Design, 1st Ed., (c) 2003. Reprinted and
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River,
NJ 07458;

Chapter 8:  p. 402 Figure adapted from Denning, p. “Virtual Memory.” Computing Surveys,
September 1970. AND Denning, p. “Working Sets Past and Present.” IEEE Transactions
on Software Engineering, January 1980; p. 403 Figure adapted from Maekawa, Mamoru;
Oldehoeft, Arthur; Oldehoeft, Rodney, Operating Systems: Advanced Concepts, 1st Ed.,
(c) 1987. Reprinted and Electronically reproduced by permission of Pearson Education, Inc.,
Upper Saddle River, NJ 07458;

Credits

Z04_STAL4290_09_GE_CRED.indd 1 5/2/17 6:18 PM

CL-2   Credits

Chapter 9:  p. 437 Example adapted from Finkel, R. An Operating Systems Vade
Mecum. Englewood Cliffs, NJ: Prentice Hall, 1988;

Chapter 12:  p. 593 List adapted from Russinovich, M.; Solomon, D.; and Ionescu,
A. Windows Internals: Covering Windows 7 and Windows Server 2008 R2.
Redmond, WA: Microsoft Press, 2011;

Chapter 13:  p. 617 List adapted from Hill, J., et al. “System Architecture Directions
for Networked Sensors.” Proceedings, Architectural Support for Programming
Languages and Operating Systems. 2000;

Chapter 16:  p. 714 Figure adapted based on Figures 2.1 from Callaway, B., and
Esker, R. “OpenStack Deployment and Operations Guide.” NetApp White Paper,
May 2015. https://community.netapp.com/fukiw75442/attachments/fukiw75442/
virtualization-and-cloud-articles-and-resources/450/1/openstack-deployment-ops-
guide.pdf.

Appendix B:  p. B-2 Section adapted from Professor Robert Marmorstein,
Longwood University; p. B-3 adapted from Professor Robert Marmorstein,
Longwood University; p. B-4 Section adapted from Adam Critchley, Univer-
sity of Texas, San Antonio; p. B-4 Section adapted from Ian G. Graham, Griffith
University, Australia; p. B-5 Section was developed at the University of Illinois
at Urbana-Champaign, Department of Computer Science and adapted by Matt
Sparks (University of Illinois at Urbana-Champaign); p. B-6 Section adapted
from Steven Taylor, Worcester Polytechnic Institute; p. B-6 Section adapted
from Professor Tan N. Nguyen, George Mason University (The IRC includes a
suggested format for the proposal and final report as well as a list of possible
research topics)

Z04_STAL4290_09_GE_CRED.indd 2 5/2/17 6:18 PM

https://community.netapp.com/fukiw75442/attachments/fukiw75442/virtualization-and-cloud-articles-and-resources/450/1/openstack-deployment-ops-guide.pdf
https://community.netapp.com/fukiw75442/attachments/fukiw75442/virtualization-and-cloud-articles-and-resources/450/1/openstack-deployment-ops-guide.pdf
https://community.netapp.com/fukiw75442/attachments/fukiw75442/virtualization-and-cloud-articles-and-resources/450/1/openstack-deployment-ops-guide.pdf

I-1

A
Absolute loading, 364–365
Access

efficiency, 65
matrix, 670
methods for file systems, 555
rights for file sharing, 569–570
security scheme, 687
time, 518
token, 687–688

Access control, 661, 670–678
categories of, 672–673
commands, 676
discretionary, 672, 673–676
file systems, 670–672
function of, 675
lists, 680–681
mandatory, 672
matrix of, 670
policies, 672–678
protection and, 87
role-based, 673, 676–678
structures of, 671
UNIX systems, 678–681

Access control lists, 680–681
discretionary, 689
system, 689
UNIX systems, 680–681

Access control policy, 672
Access matrix, 671
Accounting information, 132
Accumulator (AC), 34
Activity manager, Android, 119
Address binding, 365
Address translation

for paging system, 376, 377
in segmentation, 387, 388

Addresses. See also Address translation;
Virtual addresses

executable, space protection, 669
logical, 353, 355
physical, 353

Index

real, 371
registers, 31, 32
space, 207, 371
space randomization, 669

Addressing, 89
direct, 266
indirect, 266
indirect process communication, 266
Linux virtual memory, 414
many-to-one relationship, 266
message passing, 266
one-to-many relationship, 266
one-to-one relationship, 266
requirements of, 341
translation of, 357
virtual memory, 414

Advanced local procedure call (ALPC)
facility, 35

Alignment check, 155
All users class, 570
Amazon Elastic Compute Cloud (Amazon

EC2), 699, 716
AMD64, 417
Amdahl’s law, 190
Analyzers for intrusion detection, 660
Android

activities, 126, 211
activity state, 213–214
applications, 214
architecture, 119–121
file management, 594–595
framework, 119–121
interprocess communication, 330–331
killing an application, 214
and Linux, 614–615
memory management, 419–420
power management, 126
process, 211–215
runtime, 120
services, 211
system libraries, 120–128
threads, 211–215

Z05_STAL4290_09_GE_IDX.indd 1 4/13/17 11:26 AM

I-2   Index

B
Backbone network, 723
Background work, 180
Backup, 686
Balancing resources, 431
Ballooning, 645
Banker’s algorithm, 302
Barbershop problem, A–37–42
Bare-metal provisioning

(Ironic), 720
Basic buffer overflow, 663
Basic file systems, 551–552
Basic input/output supervisor, 555
Basic spinlocks, 318–319
Batch systems

multiprogrammed, 77–80
simple, 74–77

Bell Labs, 108
Berkeley Software Distribution

(BSD), 109
Best fit strategy, 349, 573
_bh, 319
Binary semaphores, 244, 246,

247, 320
Bit tables, 577–578
Bitmap operations, Linux

atomic, 316–317
Block device drivers, 118
Block diagram, 58, 510
Block operation, 181
Block Storage (Cinder),

711, 717
Blocked process, 144–145
Blocked state, 142, 166–167
Blocked/suspended process, 146
Blocked/waiting process

state, 139
Blocking, 265

fixed, 570
permanent, 290
record, 570–572

Block-oriented device, 514
Blocks, 50, 215, 573

boot, 584
data, 585
defined, 215
dispatched, 215

Anticipatory input/output scheduler,
542–543

Aperiodic tasks, 474, 480
API, 699, 716
Appending access rights, 569
Application binary interface (ABI), 71
Application catalog (Murano), 720
Application processors, 602
Application programming interface

(API), 71
Architecture

client/server model, 104–105
file management systems, 554–555
Linux VServer, 653
microkernel, 92
Microsoft Windows, 101–104
UNIX systems, 109

Archive, 686
Assignment of processes to processors,

463–464
Associative lookup for page table, 382
Associative mapping, 380
Asynchronous input/output, Windows,

545–546
Asynchronous procedure call

(APC), 545
Asynchronous processing, 180–181
Atomic bitmap operations, 317, 318
Atomic integer operations, 317
Atomic operations, 225, 316–318
AT&T, 109
Attribute definition table, 592
Authentication, 660–661

computer security, 660–661
steps of, 660
of user’s identification,

660, 661
verification step of, 660

Authenticity of information, 90
Automatic allocation, 87
Automatic management, 87
Auxiliary carry flag, 155
Availability of information, 90
Available state, 417
Avoidance approaches for operating

systems, 296
Awareness, degrees of, 236

Z05_STAL4290_09_GE_IDX.indd 2 4/13/17 11:26 AM

Index   I-3

Cache memory, 49–53, 533. See also Disk
cache

block size, 52
blocks, 50
cache size, 52
categories of, 52
design of, 51–52
main memory and, 50–51
mapping function, 52
motivation, 49
principles of, 50–51
read operation of, 51–52
replacement algorithm, 52
slots, 50
write policy, 52

Cache operation, 382
Cache size, 52, 398
Canary value, 668
Capability tickets, 672
Carry flag, 155
Central processing unit (CPU), 30
Chain pointer, 378–379
Chained allocation, 575–576
Chained free portions, 578
Changing protection access

rights, 569
Character device drivers, Linux, 118
Character queue, UNIX SVR 32, 540
Chbind, 652
Chcontext, 652
Child process, 138
Chip, 602
Chip multiprocessor, 30–58
Chroot, 652
Circular buffer, 516–517
Circular SCAN (C-SCAN) policy, 524
Circular wait process, deadlock prevention

using, 298–300
Clandestine user, 659
Classes

all users, 570
availability, 96
of interrupts, 35
kernel (99-60), 493
objects, 106
priority, 494–495, 498
real time (159-100), 493

function of, 215
process control, 132–133
scheduled, 215
size of, 51

Boot block, 584
Boot loader, 607
Bottom half code, 318
Bottom-half kernel threads, 494
Bounded-buffer monitor code, 261
Bounded-buffer producer/consumer

problem, 258, 260
Broad network access, 697
Broadcase receivers, Android, 212
B-trees, 561–564

characteristics of, 562
definition of, 562
nodes into, insertion of, 564
properties of, 562
rules for, 563

Buddy system, 351–352
algorithms of, 351
example of, 352
tree representation of, 353

Buffer cache, 588–589
UNIX system, 537–538

Buffer overflow, 662–670
attacks, 662–666
basic, example of, 663
examples, 663
runtime defenses, 668–670
stack values, 664

Buffer overflow attacks, 662–666
compile-time defenses, 666–668
dealing with, 666–670
defending against, 666
run-time defenses, 668–670

Buffer overrun. See Buffer overflow
Buffer registers

input/output buffer register (I/OBR), 31
memory buffer register (MBR), 31–32

Buffering, 397–398, 514–517
Busy waiting technique, 243

C
C implementation of UNIX systems, 108
Cache levels, 52
Cache manager, 103, 544, 593

Z05_STAL4290_09_GE_IDX.indd 3 4/13/17 11:26 AM

I-4   Index

Cloud service models
Infrastructure as a Service (IaaS),

698–699
NIST, 698
Platform as a Service (PaaS), 698
Software as a Service (SaaS), 698

Cloud service provider (CSP), 702, 703
Cloud vs. fog features, 724
Clouds, 190
Cluster bit map, 591
Clusters, 461, 590

multiprocessor system, 461
sizes of, 591

Coarse parallelism, 462–463
Coarse threading, 193
Codecs, 32
Commands, TinyOS, 619
Commercial operating systems, 608
Committed state, 418–419
Communication

cooperation among processes by, 239–240
devices, 507
indirect process, 266, 267
interprocess, 264
lines, 539, 540

Community cloud, 700–701
Compaction of memory, 349
compare&swap instruction, 242–243
Compatible Time-Sharing

System (CTSS), 81
Competition, 236
Compile-time defenses, 666–668

language extensions, safe libraries and,
667–668

programming language choices, 666
safe coding techniques, 666–667
stacking protection mechanisms, 668

Completely Fair Queuing input/output
scheduler, 543

Completely Fair Scheduler (CFS), 491–492
Completion deadline, 480
Compute (Nova), 715–717
Computer systems. See also Operating

systems (OS)
basic elements of, 30–32
cache memory, 49–53
direct memory access, 53–54

Classes (continued)
real-time priority, 498
specific user, 570
time-shared (50-0), 493
user groups, 570
variable priority, 498

Cleaning policy, 405
Client-server model, 104–105
Clock algorithm, 396–397, 410, 415
Clock interrupt, 160
Clock page, 410
Clock replacement policy, 394–395
Cloned () process, 208
Closing files, 552
Cloud auditor, 702, 703
Cloud broker, 702, 703

areas of support, 703
Cloud carrier, 702, 703
Cloud computing

cloud deployment models, 699–701
cloud operating systems, 704–720
cloud service models, 698–699
definition, 696
elements, 696–698
interactions between actors, 704
reference architecture, 701–704

Cloud computing elements, 696–698
models and characteristics, 697

Cloud context and IoT
cloud, 724
core, 723–724
edge, 722
fog, 723

Cloud deployment models, comparison, 701
community cloud, 700–701
hybrid cloud, 701
private cloud, 700
public cloud infrastructure, 699–700

Cloud operating systems, 704–720
definition, 704
general architecture of, 707–713
Infrastructure as a Service (IaaS),

705–706
OpenStack, 713–720
requirements for, 706–707

Cloud service consumer (CSC), 697, 698,
700, 702, 703

Z05_STAL4290_09_GE_IDX.indd 4 4/13/17 11:26 AM

Index   I-5

file system, 639–640
kernel control groups, 636
microservices, 641

Containers (Magnum), 720
Content providers, Android, 119, 211–212
Context data, 132
Contiguous allocation, 574–575
Control, 33

bits, 155, 378
complexity of, 507
load, 406–407
mode, 157
objects, Windows, 107
operating system, structures of, 149–150
process, 157–162
scheduling and, 512
status registers and, 153, 154
user, 475

Control bits, 155, 378
Control mode, 158
Control objects, Windows, 107
Cooperation, 237
Cores, 32, 57
Coroutines, 313
Countermeasures, intruders

access control, 661
authentication, 660–661
firewalls, 661–662
intrusion detection, 660

Counting (general) semaphores, 246, 320
Create file operation, 566
Creation of files, 552
Critical resource, 237
Critical sections, 225, 328–329
CSC. See Cloud service consumer (CSC)
C-SCAN (circular SCAN) policy, 524
csignal (c), 261
Currency mechanisms, 244
cwait (c), 258

D
Dashboard (Horizon), 719
Data

block, 585
Context, 132
directory, 594
integrity, 90

instruction execution, 32–35
interrupts, 35–45
memory hierarchy, 46–49
microprocessor, 32, 54–58
overview of, 29–67
top-level components of, 31

Computer-aided design (CAD), 63
Concurrency, 289–331, A–29–42

barbershop problem, A–37–42
contexts of, 224–225
deadlock, 289–331
Dekker’s algorithm, 226–231
dining philosophers problem, 309–313
example of, 233–235
Linux kernel, mechanisms of, 315–323
message passing, 263–270
monitors, 257–263
mutual exclusion, 226–232
operating systems, concerns of, 235–236
Peterson’s algorithm, 231–232
principles of, 232–240
process interaction, 236–240
race conditions of, 235
readers/writers problems, 270–274
semaphores, 244–257, A–37–42
Solaris thread synchronization, primitives

of, 324–326
terms related to, 225
UNIX, mechanisms of, 313–315
Windows 7, mechanisms of, 326–329

Concurrent process, simultaneous, 98
Concurrent threads, simultaneous, 98
Condition codes, 155
Condition variables, 258, 326, 329

monitors, 257
Confidentiality, of information, 90
Configurability, 605
Configuration manager, Windows, 103
Consolidation ratio, 630
Constrained Application Protocol

(CoAP), 725
Constrained device, 724–725
Consumable resources, deadlock and,

295–296
Container virtualization, 635–642

concepts, 636–639
Docker, 641–642

Z05_STAL4290_09_GE_IDX.indd 5 4/13/17 11:26 AM

I-6   Index

Dedicated processor assignment, 470–471
Dedicated resources, 623
Deeply embedded systems, 604–605
Default ACL, 688
Default owner, 688
Degrees of awareness, 236
Delay variable, 412
Delete access, 690
Delete file operation, 566
Deletion access rights, 569
Deletion of files, 552
Demand cleaning policy, 405
Demand paging, 390
Dentry object, Linux, 586, 588
Design issues

with deadline scheduling, 480
of disk cache, 533–536
for embedded operating systems, 605–606
of input/output, 511–513
with multiprocessor scheduling, 463–465

Determinism, 475
Device drivers, 102, 554
Device input/output, 512
Device list, 537
Die, 57
Differential responsiveness, 90
Digital Signal Processors (DSPs), 32
Dining philosophers problem, 309–313

dining arrangement, for philosophers, 310
monitors, solutions using, 310–313
semaphores, solutions using, 310

Direct addressing, 266
Direct Attached Storage (DAS), 709
Direct (hashed) file, 561
Direct lookup for page table, 382
Direct memory access (DMA)

block diagram, 510
configurations for, alternative, 511
input/output operations, techniques for,

509–511
Direction flag, 155
Directories

attributes, 592
cache, 594
file, 581
management, 512–513
system, 594

Data (continued)
memory, external fragmentation of, 349
processing, 33
rate, 507
semaphores and, 250
set of, 132
SIMD techniques, 32
table entry, page frame, 409–410
transfer capacity, RAID level 0 for high, 529

Data structure management, 711–712
Database, 553
Database (Trove), 719
DDR2 (double data rate) memory

controller, 57
Deadline scheduler, 540–542
Deadline scheduling, 479–483

design issues, 480
real-time scheduling, 479–483
for tasks, 479–483

Deadlines, 431
Deadlock avoidance, 296, 300–306

logic of, 305
process initiation denial, 301–302
resource allocation denial, 302–306
restrictions of, 306

Deadlock detection, 296, 306–308
algorithm of, 306–307
recovery, 307–308

Deadlock prevention, 296, 299–300
circular wait condition, 300
hold and wait condition, 299–300
mutual exclusion, 299
no preemption condition, 297–298, 300

Deadlocks, 85, 225
conditions for, 297–299
consumable resources, 295–296
errors in process, 85
example of, 292
execution paths of, 293
illustration of, 291
integrated strategy for, 308
no, example of, 294
principles of, 290–299
resource allocation graphs, 296–297
reusable resources, 294–295

Decision mode, 434
Dedicated processor, 602

Z05_STAL4290_09_GE_IDX.indd 6 4/13/17 11:26 AM

Index   I-7

Docker registry, 642
Downtime, 95
Driver input/output queue, 537
Dynamic allocation, 572–573
Dynamic best effort scheduling, 479
Dynamic biometrics, 661
Dynamic link libraries (DLLs), 104, 368–369
Dynamic linker, 368–369
Dynamic linking, Linux, 114, 368–369
Dynamic partitioning for memory, 348–351

effect of, 348
placement algorithm, 349–350
replacement algorithm, 350–351

Dynamic planning-based
scheduling, 476, 479

Dynamic run-time loading, 366–367
Dynamic scheduling, 472

E
Efficiency, 90, 511
EFLAGS register, Pentium, 155–156
Elastic map reduce (Sahara), 719
Elevator scheduler, 540
Embedded operating systems, 599–625

advantages, 612
Android, 614–615
application processors vs. dedicated pro-

cessors, 602
boot loader, 607
characteristics of, 605–609
commercial operating systems, adapting

to existing, 608
compilation, 608
deeply embedded systems, 604–605
definition of, 600
degree of user interaction, 611
design issues for, 605–606
development approaches, 608
elements of, 601
file system, 611–612
host and target environments, 606–608
kernel size, 609–610
memory size, 610
microcontrollers, 603–604
microprocessors, 602–603
networkability, 611
organization of, 601

tree, Android, 594
UNIX, 584

Disabled interrupts, 44–45
Disabled/disabling, 241
Discretionary access control (DAC), 672,

673–676
Discretionary access control

list (DACL), 689
Disk allocation tables, 576
Disk block descriptors, 409
Disk cache, 61, 533–536

design issues of, 533–535
performance issues of, 535–536

Disk drives, 539
Disk duplexing, 546
Disk performance parameters, 517–520

rotational delay, 518
seek time, 518
timing comparison, 519–520

Disk scheduling
algorithms for, 521, 522
anticipatory input/output scheduler,

542–543
Completely Fair Queuing input/output

scheduler, 543
deadline scheduler, 540–542
disk performance parameters, 517–520
elevator scheduler, 540
input/output management and, 505–547
NOOP scheduler, 543
policies for, 520–524

Disk storage, 590–592
Dispatch queues, 493
Dispatched blocks, 215
Dispatcher objects, 107, 327–328
Dispatcher program, 133
Distributed multiprocessor system, 461
Distributed operating systems, 94
Distributed processing, 224
DMA. See Direct memory access (DMA)
DNS service (Designate), 720
Docker client, 641
Docker engine, 642
Docker host, 642
Docker hub, 642
Docker image, 641
Docker machine, 642

Z05_STAL4290_09_GE_IDX.indd 7 4/13/17 11:26 AM

I-8   Index

Fault tolerance, 95–97
concepts, 95–96
faults, 96–97
OS mechanisms, 96, 97

Faulting processing, 407
Faults, 118

permanent, 96
spatial (partial) redundancy, 96–97
temporal redundancy, 97
temporary, 96

Feedback, 443–445
Feedback scheduling, 444
Fetch policy, 390–391
Fetch stage, 33–34
Fetches, 32
Fiber, 195
Field, input/output files, 552
File allocation, 572–579

dynamic allocation vs. preallocation,
572–573

methods of, 574–576
portion size, 573–574
UNIX, 583–584

File allocation table (FAT), 572
File directories, 564–568

contents of, 564–565
elements of, 565
naming, 567–568
structure of, 566–567
tree-structured, 567, 568
working, 568

File management systems, 550–596
Android, 594–595
architecture of, 554–555
elements of, 551
file sharing, 569–570
functions of, 555–557
Linux virtual file system (VFS),

585–589
objectives of, 554
overview of, 551–557
record blocking, 570–572
requirements of, minimal, 554
secondary storage management,

572–580
security. See File system security
UNIX, 580–585

Embedded (continued)
purpose-built, 608–609
requirements/constraints of, 601
root file system, 607
time constraints, 610
TinyOS, 615–625

Emerald system, 190
Encapsulation, 106
Encryption, volume, 546
Enforcing priorities, 431
Enterprise Edition (J2EE platform), 193
Environmental subsystems, Windows, 104
Errors in process, causes of, 84

deadlocks, 85
mutual exclusion, failed, 84–85
program operation, nondeterminate, 85
synchronization, improper, 84

Event flags, 244
Event object, Windows, 328, 545
Events, TinyOS, 620
Exchange instruction, 243
Executable address space protection, 669
Executable program, 85
Executables (EXEs), 104
Execution

access rights, 569
context (process state), 85
modules of, 101
of object-oriented design, 106
paths of deadlock, 293
of process, 177
process control, modes of, 157–162
of Solaris threads, 204–205
speed of, 181
stack, 179
state, 206

Executive stage, 34–35
Exit process state, 140
Exponential averaging, 440, 442
External fragmentation of memory

data, 349

F
Fail-soft operation, 476
Fairness, 90, 431
Fair-share scheduling, 450–452
Fatal region, 293

Z05_STAL4290_09_GE_IDX.indd 8 4/13/17 11:26 AM

Index   I-9

properties of, 551–552
reading, 552
regular, 580
sequential. See Sequential files
sharing, 238–239, 342, 551, 569–570
special, 581
structure, 552–553, 590–592
symbolic links, 581, 590
tables, 149, 572, 591
tree-structured, 567, 568
UNIX, 580–585
UNIX FreeBSD, structure of, 582
writing, 552

Fine-grained parallelism, 463
Fine-grained threading, 193
Finish operation, 181
Finite circular buffer, for producer/

consumer problem, 255
Firewall, 661–662
First fit strategy, 349, 573
First-come-first-served (FCFS), 435–437,

455, 468
First-in-first-out (FIFO) policy, 247,

394, 520
Five-state process model, 138–143

states of, 139
transitions of, 141–142

Fixed allocation
local page, 396
local scope, 400
replacement policy, 399

Fixed blocking, 570
Fixed function units, 32
Fixed partitioning for memory, 344–347

partition size, 344–345
placement algorithm, 345–347

Flags, 688
Flexibility of input/output devices, 605
Foreground work, 180
FORTRAN programs, 62
Four page replacement algorithm, behavior

of, 393
Frame, 340, 355, 356

locking, 392
Free block list, 578–579
Free frame, 355
Free list, 537

File object, Linux, 545, 586, 588
File organization/access, 557–561

criteria for, 557
direct file, 561
hash file, 561
indexed file, 560–561
indexed sequential file, 559–560
pile, 558–559
sequential file, 559
types of, common, 557, 558

File system
container, 639–640

File system security
access control lists, 672
access control structures, 671
capability tickets, 672

File systems, 207, 513, 551–552
drivers, 544
isolation, 652

File tables, 149
allocation table (FAT), 572
volume master, 591

File-based storage, 711
Files, 551

allocation. See File allocation
closing, 552
creation of, 552
deletion of, 552
direct, 561
directories. See File directories
field, input/output, 552
indexed, 560–561
indexed sequential, 559–560
links, 581
log, 591
long-term existence of, 551
management. See File management

systems
MFT 30, 591
naming, 567–568
object, Linux, 545, 586, 588
opening, 552
operations performed on, 552
ordinary, 580
organization/access. See File organization/

access
pile, 558–559

Z05_STAL4290_09_GE_IDX.indd 9 4/13/17 11:26 AM

I-10   Index

Group, SIDs, 688
Guard pages, 670

H
Hamming code, 530
Handspread, 411
Hard affinity process, 499
Hard links, 590
Hard real-time task, 474
Hardware

device drivers, 545
interrupt processing, 41–42
RAID, 546
relocation, 354
simple batch systems, 77
virtual memory (paging), 367–369,

371–388
Hardware abstraction layer (HAL), 101
Hardware virtualization, 628
Hash table, 538
Hashed file, 561
Hexadecimal digit, 34
Highest response ratio next (HRRN), 443
High-level language (HLL), 71
Hit ratio (H), 46
Hold and wait process, deadlock prevention

using, 299–300
Host-based IDS, 660
Hosting platform, 653
Human readable devices, 506
Hybrid cloud, 701
Hybrid public/private cloud, 701
Hybrid threading, 193–194
Hypervisor, 631–635

and container, 638
functions, 632
hardware-assisted virtualization, 635
paravirtualization, 634–635
type-1, 632–633
type-2, 633–634
virtual appliance, 635

I
IBM personal computer (PC), 81, 113
Identification flag, 155
Identification step of authentication, 660
Identifiers, 132, 206

Free Software Foundation (FSF), 113
Free space management, 576–579

bit tables, 577–578
chained free portions, 578
free block list, 578–579
indexing, 578

FREE state, 205
Frequency-based replacement, 534
FSCAN policy, 524
Functionally specialized multiprocessor

system, 461
Functions

access control, 675
blocks, 215
file management systems, 555–557
kernel (nucleus), 158
linking, 367
loading, 364
MAC OS Grand Central Dispatch

(GCD), 217
mapping, 52, 53
Microsoft Windows input/output, 544–545
operating systems (OS), 69–73
processor, 31
resource management in OS, scheduling

and, 92
selection, 433
support, 157
threads, 181–183
wait, 326–327

Fuzzing, 665

G
Gang scheduling, 469–470
Gateways, 722
GCC (GNU Compiler Collection), 668
General message format, 267
General semaphores, 246
Generic_all access bits, 690
Glance, 717
Global replacement policy, 399
Global scope, 400
Google Compute Engine (GCE), 699
Governance (Congress), 719
Grand Central Dispatch (GCD), 99–100
Granularity, 461–463
Graphical Processing Units (GPUs), 32

Z05_STAL4290_09_GE_IDX.indd 10 4/13/17 11:26 AM

Index   I-11

field files, 552
file system, logical, 512, 555
function, organization of, 508–511
interrupt, 160, 508
Linux, 540–544
logical structure of, 512–513
management, 157
manager, 103, 544, 592
model of, 513
modules, 31, 32
NOOP scheduler, 543
organization of, 508–511
performing, techniques for, 508
physical, 555
processor, 32, 508
program/programmed, 36, 53–54, 508
RAID, 524–533
scheduling, 426
status information, 132
supervisor, basic, 555
tables, 149
UNIX SVR 4 input/output, 537–540
virtual machine, 645–647
Windows, 544–546

Input/output buffer register (I/OBR), 32
Input/output (I/O) buffering, 514–517

circular buffer, 516–517
double buffer, 516
single buffer, 514–516
utility of, 517

Input/output (I/O) devices
data rates of, 507
flexibility of, 605
types of, 506–508

Instantiation of objects, 106
Instruction cycle, 33, 37–40
Instruction execution, 32–35. See also Direct

memory access (DMA)
categories of, 33
characteristics of, 34
executive stage of, 33
fetch stage of, 33
partial program execution, 34–35
steps of, 33

Instruction register (IR), 33
Instruction set architecture (ISA), 71
Instructor’s Resource Center (IRC), B–31–32

Identity (Keystone), 718
Idle user, 494
If statements, 262
Image (Glance), 717
In-circuit emulator (ICE), B–31
Incremental growth, 56
Independence, and conditional probability,

41–43
Independent parallelism, 462
Index register, 85
Indexed allocation, 576
Indexed files, 560–561
Indexed sequential files, 559–560
Indexing, 578
Indirect addressing, 266
Indirect process communication, 266–267
Individual processors, 464–465
Infinite buffer for producer/consumer

problem, 251, 252, 254
Information, 89–90, 206
Information technology (IT), 721
Infrastructure as a Service (IaaS), 698–699,

705–706
conceptual framework, 705
CSP functional requirements for, 707

Inheritance, 106
Inode object, 586, 587–588
Inodes, UNIX, 581–583

elements of, 581–583
FreeBSD, structure of, 583

Input/output (I/O)
address register (I/OAR), 31
address registers, 31
anticipatory scheduler, 542–543
asynchronous, Windows, 545–546
basic, 544–545
channel, 509
Completely Fair Queuing input/output

scheduler, 543
completion ports, 545
design issues with, 511–513
devices. See Input/output (I/O) devices
direct memory access, 509–511
disk cache, 533–536
disk scheduling, 505–547
driver queues, 537
evolution of, 508–509

Z05_STAL4290_09_GE_IDX.indd 11 4/13/17 11:26 AM

I-12   Index

and instruction cycle, 37–41
multiple, 43–45
program flow of control with/without, 36–37
request, 37
Solaris threads, 205–206
stage, 38
WRITE call, 36–37
WRITE instruction, 37

Intruders, 658–659
Intrusion, 660
Intrusion detection

sensors for, 660
Intrusion detection systems (IDS), 660

analyzers, 660
host-based, 660
network-based, 660
user interface, 660

Inverted page tables, 377–379
I/O. See Input/output (I/O)
IOPL (I/O privilege level), 155
IoT. See Internet of Things (IoT)
IoT-enabled devices, 721
_irq, 318
_irqsave, 318

J
Jacketing, 187
Java 2 Platform, 192
Java Application Server, 192
Java Virtual Machine (JVM), 651–652
Java VM, 651–652
Job control language (JCL), 76
Job, serial processing, 74
Joint progress diagram, 291–292
Journaling, 590

K
Kernel memory allocation

Linux, 416–417
Solaris, 407, 411–413
UNIX, 407, 411–413

Kernel-level threads (KLT), 187–188
Kernels, 72

compilation, 607, 608
control groups, 636
control objects, 107
functions of, 158

Integer operations, atomic, 317
Integrated circuit, 602
Integrated strategy for deadlock, 308
Intel Core i7, 57, 58
Interactive scoring, 496–497
Interactive threads, 496
Interfaces

application binary, 71
native system, 104
resource, 623–625
TinyOS resource, 623–625
of typical operating systems, 71
user, in intrusion detection systems, 660
user/computer, 70–71

Internal fragmentation, 373, 383
Internal registers of processor, 31–32
Internal resources, 309
Internet of Things (IoT)

and cloud context, 722–724
evolution, 721
key components, 721–722
operating systems, 724–731

architecture, 727–728
constrained devices, 724–725
requirements, 726–727
RIOT, 728–731

things on, 720
transceivers, 720

Internet-connected infrastructure, 696
Interprocess communication (IPC),

101, 207, 264
Interrupt processing, 41–43

hardware events of, sequence of, 41–42
memory for, changes in, 42–43
operations of, 42
registers for, changes in, 42–43
simple, 41

Interrupt service routine (ISR), 45
Interrupt-driven input/output, 508
Interruptible state, 208
Interrupts, 35–45, 77, 160. See also specific

types of
classes of, 35
direct use of, 606
disabled/disabling, 44–45
enable flag, 155
handler, 39

Z05_STAL4290_09_GE_IDX.indd 12 4/13/17 11:26 AM

Index   I-13

history of, 113
input/output, 540–544
loadable modules, 114, 368
mClinux , 612–614, 615
memory barrier operations, 322
modular structure of, 114–116
page cache, 543–544
scheduling. See Linux scheduling
semaphores, 321
spinlocks, 319
tasks, 206–208
threads, 208–209
virtual machine process scheduling,

653–654
VServer, architecture, 652–654

Linux kernels
concurrency mechanisms, 315–313
memory allocation, 416

Linux scheduling, 489–492
non-real-time scheduling, 490–492
real-time scheduling, 489–490

Linux virtual file system (VFS), 585–589
context of, 585
dentry object, 588
file object, 588
inode object, 587–588
object types in, 586
superblock object, 587

Linux virtual memory, 414–417
page allocation, 415
page replacement algorithm, 415
virtual memory addressing, 414

Linux VServer
applications running on, 653
architecture of, 652–653
chbind, 652
chcontext, 652
chroot, 652
file system isolation, 652
hosting platform, 653
network isolation, 652, 653
process isolation, 652
root isolation, 653
token bucket filter (TBF), 653–654
virtual machine architecture, 652–654
virtual platform, 653
virtual servers, 652, 653

input/output manager, 544
Linux. See Linux kernels
memory allocation. See Kernel memory

allocation
microkernels, 92
Microsoft Windows, 102
mode, 77, 157
modules, 114, 607
monolithic, 92
nonprocess, 163–164
RIOT structure, 729–730
UNIX systems, 109

Key field for sequential files, 559
Key management (Barbican), 719
Knowledge access rights, 569

L
Language extensions, 667–668
Largest process, 407
Last process activated, 407
Last-in-first-out (LIFO) implementation,

151, 153
Lazy buddy system algorithm, 412–413
Least frequently used policy (LFU), 415, 534
Least recently used (LRU) policy, 392–393,

533–534
Lightweight processes (LPW), 202, 203. See

also Threads
Lines of memory, 50
Linkage editor, 368
Linking, 367–369

dynamic linker, 368–369
function of, 367
linkage editor, 368

Links, 207
Links file, 581
Linux, 113–118, 413–417, 613. See also Linux

virtual file system (VFS); Linux
VServer

2.4, 490
2.6, 491
and Android, 121, 122–123
character device drivers, 118
dentry object, 586, 588
dynamic linking, 114, 368–369
embedded, 611–612
file object, 545, 586, 588

Z05_STAL4290_09_GE_IDX.indd 13 4/13/17 11:26 AM

I-14   Index

functions of, 217
purpose of, 215

Mac OS X, 99
Mach 3.0, 112
Machine readable devices, 506
Mailboxes, 244
Main memory, 30, 32, 49–50, 309
Main memory cache, 61
Malicious software, 659
Management and orchestration (MANO),

712–713
Mandatory access control (MAC), 672
Many-to-many relationships, 189–190
Many-to-one relationships, 266–267
Mapping function, cache

memory, 52, 53
Marshalling, 331
Masquerader, 658
Master file table (MFT), 591
Matrix of access control, 673
mClibc, 614, 615
mClinux , 612–614, 615
Mean time to failure (MTTF), 95
Medium-grained parallelism, 463
Medium-term scheduling, 426, 429
Memory

auxiliary, 49
cache, 49–53, 533
compaction of, 349
dynamic partitioning for, 348–351
fault, 160–161
for interrupt processing, changes in,

42–43
layout for resident monitor, 75
Linux virtual, 414–416
main, 31, 49–50, 309
physical, 118
processor, 32
protection, 77
real, 373
secondary, 49
shared, 314
tables, 149–150
two-level, 61–67
virtual, 51, 87–88, 118, 370–420

Memory address register (MAR), 31
Memory buffer register (MBR), 31–32

List directory operation, 566
Livelocks, 225
Load control, 406–407
Load sharing, 467–469
Loadable modules, Linux, 114, 368

absolute, 364–365
characteristics of, 114
kernel modules, 114, 115
module table, elements of, 115

Loading, 364–367
absolute, 364–365
addressing binding, 365
approaches to, 364
dynamic run-time, 366–367
function of, 363
modules, 364
relocatable, 365–366

Load-time dynamic linking, 368
Local replacement policy, 399
Local scope, 401–405
Locality of references, 48, 62–64, 373–374

principle of, 374
spatial, 63
temporal, 63

Location manager, Android, 120
Lock-free synchronization, 329
Log file, NTFS, 591
Log file service, 592
Logging, 685–686
Logic bomb, 659
Logical address, 353, 355
Logical input/output file system,

512–513, 555
Logical organization, 343
Long-term existence of files, 551
Long-term scheduling, 426, 427–429
Long-term storage, 87
Loosely coupled multiprocessor system, 461
Loosely coupled service, 461
Lotus Domino, 192
Lowest-priority process, 407

M
MAC OS Grand Central Dispatch (GCD),

215–217
blocks, 215
codes for, 216

Z05_STAL4290_09_GE_IDX.indd 14 4/13/17 11:26 AM

Index   I-15

for interprocess communication, design
characteristics of, 264

message format, 267–268
mutual exclusion, 268–270
nonblocking, 265
producer/consumer problem using,

solution to bounded-buffer, 269
queuing discipline, 268
synchronization, 264–265

Messages, 314. See also Mailboxes
format, 267–268
mutual exclusion, 268–270

Messaging service (Zaqar), 719
MFT2 files, 591
Microcontrollers, 603–604
Micro-electromechanical

sensors (MEMS), 616
Microkernels, 92
Microprocessor

cores, 32
Digital Signal Processors (DSPs), 32
evolution of, 32
Graphical Processing Units (GPUs), 32
multicore computer (chip

multiprocessor), 57–58
and multicore organization, 54–57
sockets, 32
symmetric (SMP), 55–57
System on a Chip (SoC), 32
techniques, 32

Microprocessors, 602–603
Microservices, 641
Microsoft

DOS, 101
Xenix System V, 110

Microsoft Windows. See also Microsoft
Windows 7; Microsoft Windows 8

architecture of, 101–104
asynchronous input/output, 545–546
client-server model, 104–105
input/output, 544–546
kernel-mode components of, 101–104
memory management, 417–419
object-oriented design, 106
scheduling, 498–500
symmetric multiprocessing (SMP),

threads for, 105

Memory hierarchy, 46–49
auxiliary memory, 49
hit ratio, 46
levels of, 46–48
locality of reference, 48
secondary memory, 49
in software, 49
two-level memory, 46–47, 93

Memory management, 80, 157, 339–369
Android, 419
buffer overflow, 662–666
definition of, 340
formats for, typical, 375
Linux, 413–417
memory partitioning, 344–354
in OS, 87–89
paging, 355–358
read address, 88
requirements of, 340–344
security issues, 662–670
segmentation, 358–359
Solaris, 407–413
storage management responsibilities of, 87
UNIX, 407–413
UNIX SVR4, parameters of, 408–409
virtual address, 88
virtual machine, 644–645
virtual memory, 87–88
Windows, 417–419

Memory management unit (MMU), 669
Memory partitioning, 344–354

buddy system, 351–352
dynamic partitioning, 348–351
fixed partitioning, 344–347
relocation, 352–354

Mesa
resident, 79
security reference, 103
with signal, 257–261
simple batch systems, 74–77
structure of, 258

Mesa monitors, 261
Message passing, 263–270

addressing, 266–267
blocking, 265
distributed, 692–694
implementation of, 265

Z05_STAL4290_09_GE_IDX.indd 15 4/13/17 11:26 AM

I-16   Index

Monitors, 75, 257–263
alternate model of, with notify and

broadcast, 261–263
bounded-buffer producer/consumer

problem, 256
characteristics of, 257
concurrency, 257–263
condition variables, 258
dining philosophers problem, solutions

using, 310–312
Monolithic kernel, 92
Motherboard, 602
Motivation, 49, 203
MS-DOS, 101
Multicore computer

DDR3 (double data rate) memory
controller, 57

elements of, 603
Intel Core i7, example of, 57–58
multicore computer (chip

multiprocessor), 57–58
multithreading of, 190–195
operating systems, 98–100
QuickPath Interconnect (QPI), 57–58
software on, 190–195
support, 495–497
Valve game software, application

example, 193–194
Multicore organization, 57–58
Multics, 83
Multiinstance applications, 193
Multilevel feedback, 444
Multiple applications, 224
Multiple interrupts, 43–45

approaches to, 44–45
control with, transfer of, 44
disable interrupt, 44–45
interrupt service routine (ISR), 45
time sequence of, 45

Multiprocess applications, 192
Multiprocessing, 92–93, 224
Multiprocessor operating

system, 98–100
Multiprocessor scheduling, 461–474,

499–500
design issues, 463–465
granularity, 461–463

Microsoft Windows 7
concurrency mechanisms of,

326–329
synchronization objects, 327

Microsoft Windows 8
characteristics of, 197
object-oriented design of, 198–199
subsystems of, support for, 201
thread objects, 198–199

Microsoft Windows Azure, 699
MIPS, 384
Misfeasor, 659
Modern operating systems (OS)

development leading to, 92–94
distributed operating system, 94
microkernel architecture, 92
monolithic kernel, 92
multiprocessing, 92–93
multiprogramming, 93
multithreading, 93
object-oriented design, 94
process, 93
symmetric multiprocessing

(SMP), 93
Modes, 77

control, 157
decision, 62
kernel, 77, 158
nonpreemptive, 434
preemptive, 434
switching, 161–162
system, 158
user, 77, 158

Modular program structure, 181
Modular programming, 87
Modular structure of Linux,

114–115
Modules. See also specific types of;

of execution, 101
input/output, 31, 32
kernel, 114
loadable, Linux, 368
rendering, 193–194
stackable, 114
table, elements of, 115

Monitor (Ceilometer), 719
Monitor point of view, 75

Z05_STAL4290_09_GE_IDX.indd 16 4/13/17 11:26 AM

Index   I-17

Network (Neutron), 717
Network Attached Storage (NAS), 710
Network File System (NFS), 711
Networkability, 611
Network-based IDS, 660
Networks

device drivers, 118
drivers, 544
isolation, 652, 653
protocols, 117

Neutron, 717
New process state, 141
New Technology File System (NTFS)

cluster sizes, 591
components of, 593
directory attributes, types of, 592
disk storage, concepts of, 590
file structure, 590–592
hard links, 590
journaling, 590
large files, support for, 589
partition sizes, 591
recoverability, 592–593
symbolic links, 590
volume, 590–592

*next, 115
Next-fit, 349
NIST Cloud Computing Reference

Architecture, 701–702
No access rights, 569
No deadlock, 294
No preemption deadlock prevention,

297–300
Nodes into B-trees, insertion

of, 564
No-execute bit, 669
Nonblocking, 265
Nonpreemptive mode, 434
Nonprocess kernel, 163–164
Non-real-time scheduling, 490–492

disadvantages of, 490
Nonuniform memory access

(NUMA), 391
NOOP scheduler, 543
Normalized response time, 447, 448
Notification manager, Android,

126, 120

process scheduling, 465–466
thread scheduling, 467–472

Multiprocessor system, 461
Multiprogrammed batch systems

example of, 87
memory management, 87–89
multiprogramming (multitasking), 77–80
program execution attributes of,

sample, 79
on resource utilization, effects of, 79
system utilization of, 78
time-sharing systems, differentiating

between, 81
uniprogramming, 78, 79
utilization histograms, 80

Multiprogramming, 80, 224
processors, 464–465

Multiprogramming levels, 406–407
Multitasking. See Multiprogramming
Multithreading, 92, 93, 178–181

of multicore computer, 190–195
native applications, 192
process models, 179
on uniprocessor, 183
Windows, 200

Mutex, 244, 247, 327. See also Mutual
exclusion

Mutex object, 328
Mutual exclusion, 226–232, 297, 299

failed, 84–85
illustration of, 238
interrupt disabling, 241
requirements for, 240
semaphores, 249
software approaches, 226–232
special machine instructions, 241–244
using messages, 268

N
*name, 115
Named pipes, 581
Naming files, 567–568
National Institute of Standards and

Technology (NIST), 662, 676
Native system interfaces (NT API), 104
Nearest fit strategy, 573
Nested task flag, 155

Z05_STAL4290_09_GE_IDX.indd 17 4/13/17 11:26 AM

I-18   Index

OpenStack
functional interactions, 714–715
high level architecture, 714
network block storage, 713
object storage, 713
virtual machine image storage,

713–714
OpenVZ file scheme, 640
Operating systems (OS). See also Modern

operating systems (OS)
achievements of, major, 83–91
aspects of, 69–73
avoidance approaches for, 296
central themes of, 224
commercial, 608
concurrency, concerns of, 235–236
development of, 83–84
distributed, 94
embedded. See Embedded operating

systems
evolution of, 73–83
functions, 69–73, 72–73
information in, protection and

security of, 89–90
interfaces of, typical, 71
Linux. See Linux
Mac OS X, 112
memory management in, 87–89
Microsoft. See Microsoft Windows
modern, development leading

to, 92–94
multiprocessor/multicore, 98–100
objectives/functions of, 69–73
organization of, 101–108
overview of, 68–127
process-based, 165–166
processes, 83–87, 163–166
real-time, 475–477, 605
resource management in, 72–73, 90–91
services provided by, 70
structure, 224
symmetric multiprocessor, considerations

of, 93
TinyOS. See TinyOS
UNIX. See UNIX systems
as user/computer interface, 70–71
virtual machines (VM), 627–655

Notify and broadcast, 261–263
Nova logical architecture, 715–717
N-step-SCAN policy, 524
NTFS. See New Technology File System

(NTFS)
Nucleus. See Kernels
Null Fork, 187
num_syms, 115

O
Object Storage (Swift), 712, 717
Object-oriented design, 106

categories of, 107
concepts of, 106–108
Executive of, 107
kernel control objects, 107
Security Descriptor (SD) of, 107
Windows, 198–199

Objects
access rights, 671
classes, 106
control, Windows, 108
dentry, Linux, 586, 588
dispatcher, 107, 327–328
event, Windows, 328, 545
file, Linux, 545, 586, 588
inode, 586, 587–588
instance, 106
instantiation of, 106
kernel control, 107
manager, 103
mutex, 327
owner of, 689
semaphore, 328
superblock, 587
thread, 198–199
timer, 328
types, 586

On-demand self-service, 697
One-to-many relationships,

189–190
One-to-one relationship,

266–267
ONPROC state, 204
Opcode, 34
Opening files, 552
Open-source Tomcat, 192

Z05_STAL4290_09_GE_IDX.indd 18 4/13/17 11:26 AM

Index   I-19

behavior, 383
buffering, 397–398
cache, Linux, 543–544
characteristics of, 373
demand, 390
directory, 414
fault, 379–380
fault frequency (PFF), 404
frame data table entry, 408
logical addresses, 357
middle directory, 414
numbers, 378
prepaging, 390
replacement algorithm, 408, 415
segmentation and, combining, 387–388
sharing, 644
simple, 373
size, 383–385
system, 408–411
table entry, 408–409
translation lookaside buffer (TLB),

379–382
virtual memory, 373, 374–375
Windows, 417–419

Parallelism, 99–100, 462–463
coarse, 462–463
fine-grained, 463
independent, 462
medium-grained, 463
synchronization, 462
very coarse-grained, 462–463

Parasitic, 659
Paravirtualization, 634–635
Parcel, 331
Parent process, 138
Parity flag, 155
Partial program execution, 34–35
Partition/partitioning

boot sector, 591
dynamic, 348–351
fixed, 344–347
memory, 344–354
size, 344–345, 591

Password, 661
Pathname, 567
Pentium EFLAGS Register bits, 155
PeopleSoft, 192

Operating systems (OS) control
file tables, 149
input/output tables, 149
memory tables, 149
process tables, 150
structures of, 149–150

Operating systems (OS) software
cleaning policy, 405
cloud, 704–720

definition, 704
general architecture of, 707–713
Infrastructure as a Service (IaaS),
705–706
OpenStack, 713–720
requirements for, 706–707

fetch policy, 390–391
IoT, 724–731

architecture, 727–728
constrained devices, 724–725
requirements, 726–727
RIOT, 728–731

load control, 406–407
placement policy, 391
policies for, 390
replacement policy, 391–398
resident set management, 398–405
virtual memory, 388–407

Operational technology (OT), 721
Optimal (OPT) replacement policy, 392
Oracle, 192
Orchestration (Heat), 719
Ordinary file, 580
Overall normalized response time, 447
Overcommit, memory, 645
Overflow flag, 155
Owner of object, 689

P
Package manager, Android, 119
Page tables, 355, 414

direct vs. associative lookup for, 380
inverted, 377–379
structure of, 376–377
two-level hierarchical, 377

Page/paging, 355–358
address translation in system for, 376, 378
allocation, 415

Z05_STAL4290_09_GE_IDX.indd 19 4/13/17 11:26 AM

I-20   Index

level, 132
policy, 520–522
priority queuing, 432
process, 498–499
queuing, 432
thread, 498–499
use of, 432–433

Priority inversion, 486–489
priority ceiling, 488
priority inheritance, 487–488
unbounded, 486

Private cloud model, 700
Privileged instructions, batch systems, 77
Privileges, 688
Problem statement, A–30
Procedure call, asynchronous, 545
Process(es),

for addressing, requirements of, 341
affinity, 495, 497
attributes of, 152–157
characteristics of, 177
components of, 85
concept of, 83–87, 131, 177
creation of, 137–138, 159
definition of, 83, 131–133
description of, 148–157
dispatching, 465
elements of, 132
errors in, causes of, 84
execution of, mechanisms for

interrupting, 160
identification, 152–153
identifier, 378
image, 151, 168–169
implementation of, 86
initiation denial, deadlock avoidance

strategy, 301–302
input/output, 33
isolation, 87
with largest remaining execution

window, 407
location of, 151–152
management of, 87–89
memory, 33
of operating systems (OS), 83–87,

163–166
priorities, 498–499

Performance
disk cache, issues of, 535–536
of software on multicore computer,

190–195
Performance comparison, 445–450

queuing analysis, 445–448
simulation modeling, 448–450

Periodic tasks, 474, 480
Permanent blocking, 290
Personal identification number (PIN), 661
Personal technology, 721
per-thread static storage, 179
Physical address, 353
Physical input/output, 555
Physical memory, Linux, 118
Physical organization, 343–344, 513
Pile files, 558–559
Pipes, UNIX, 313
Placement algorithm for memory, 345–347
Placement policy, 390, 391
Plain spinlocks, 318
Platform as a Service (PaaS), 698
Plug-and-play manager, Windows, 103
Poisson arrival rate, 446
Polymorphism, 106
Portion, 572, 573
Portion size, 573–574
POSIX, 104, 208
Power manager

Android, 126
Windows, 103

PowerPC, 377
Preallocation, 572–573
Predictability, 431
Preempted process, 141
Preemptive mode, 434
Preemptive smallest number

of threads first, 468
Prepaging, 391
Printed circuit board (PCB), 602
Printer interrupt service routine (ISR), 45
Printers, 539
Priorities, 480

ceiling, 488
classes, 494–495, 498
enforcing, 431
inheritance, 487–488

Z05_STAL4290_09_GE_IDX.indd 20 4/13/17 11:26 AM

Index   I-21

UNIX System V Release 4 (SVR4),
166–168

Process-based operating systems, 165–166
Processors, 30

internal registers of, 32
point of view, 75
scheduling, types of, 426–429
specific context, 207
state information, 152–153, 154
unit (CPU), 31, see also specific types of

functions
utilization, 431

Process-thread manager, Windows, 103
Producer/consumer problem

bounded-buffer, 256, 260
semaphores, 250–256

Producer/consumer problem bounded-
buffer, 260

Program code, 132
Program counter (PC), 33, 42, 132
Program execution attributes, 79
Program flow of control with/without

interrupts, 36–37
Program operation, 85
Program status word (PSW), 41, 154
Programmed input/output, 508
Programming language, 666
Project MAC, 81
Protection, 342

access control and, 87
sharing and, 388

Pthread libraries, 208
Public cloud infrastructure, 699–700
Pull mechanism, 497
Purpose-built embedded operating systems,

608–609
Push mechanism, 497

Q
Quality of service (QoS), 711
Queues

character, UNIX SVR 32, 539
dispatch, 493
driver input/output, 537
process, 272
single-server, formulas for, 446
structure, 495–496

process control blocks and, 132–133,
156–157

processing time, 480
processor affinity, 198
queues, 272
scheduling, 434, 465–466
security issues, 658–662
with smallest resident set, 407
spawning, 138
state transitions, 427
suspension, 407
switching, 160–162
synchronization, 462
table entry, 169
tables, 150
termination of, 138
threads and, 87, 177–183, 188, 202
traces of, 133–135
UNIX SVR4 process management,

166–171
Process control, 157–162

execution, modes of, 157–159
information, 152–153, 154, 156
operating system, structures of, 149–150
process attributes, 152–157
process creation, 159
process location, 151–152
process switching, 160–162
structures of, 151–157
UNIX System V Release 4 (SVR4),

170–171
Process control blocks, 132–133

elements of, 152–153
role of, 156–157
simplified, 133

Process interaction, 236–240
awareness, 236
communication, 239–240
resources, 238
sharing, 238–239

Process operation latencies (ms), 187
Process state, 85, 133–148

changing of, 162
five-state model, 138–143
suspended processes, 143–147
two-state process model, 136–137
ULT, relationship with, 185

Z05_STAL4290_09_GE_IDX.indd 21 4/13/17 11:26 AM

I-22   Index

Ready time, 480
Ready/suspend : ready process, 146
Ready/suspend process, 145
Real address, 88, 371
Real memory, 373
Real time

class (159-100), 493
operating systems, 475–477, 605
priority classes, 498
user, 495

Real-time scheduling, 460–500
algorithms for, 477
deadline scheduling, 479–483
history of, 474
Linux, 489–490
and multiprocessor, 460–500
priority inversion, 486–489
rate monotonic scheduling, 482–486
real-time operating systems,

characteristics of, 475–477
types of, 479

Receive primitive, 265
Record blocking, 570–572

fixed blocking, 571
methods of, 570–571
variable-length spanned, 570
variable-length unspanned, 571

Records, 552
Recoverability, 589, 592–593
Recovery, 307–308
Redundant arrays of independent disks

(RAID), 710
refcnt, 115
Reference architecture, cloud computing

cloud service consumers, 703
cloud service provider, 702
NIST, 701

Registers
address, 31
context, 168
control and status, 153, 154
index, 85
input/output address, 51
instruction, 32–33
internal, of processor, 31–32
for interrupt processing, changes in,

41–43

Queuing
diagram for scheduling, 429
discipline, 268
priority, 432

Queuing analysis, 445–448
QuickPath Interconnect (QPI), 57–58

R
Race conditions, 235, A–30–37

problem statement, A–30
Rackspace, 699
Radio-Frequency Identification

(RFID), 721
RAID (redundant array of independent

disks), 524–533
characteristics of, 525
for high data transfer capacity, 529
for high input/output request rate, 529
level 0, 528–529
level 1, 529–530
level 2, 530
level 3, 531
level 4, 531–532
level 5, 532
level 6, 532–533
proposal for, 525
software, 546

Random scheduling, 520
Rate monotonic scheduling,

482–486
Reactive operation, embedded

systems, 605
Read operation, 51–52
Read_control access, 690
Readers/writers

lock, 325–326
mechanisms, 270–274
priorities of, 271–272
process queues, state of, 272
semaphores, 321
spinlocks, 319–320
using semaphores, solution

to, 273
Reading access rights, 569
Reading files, 552
Ready process state, 144
Ready state, 139, 200

Z05_STAL4290_09_GE_IDX.indd 22 4/13/17 11:26 AM

Index   I-23

requirements, 480
utilization, 79

Resources, allocation of
denial, 302–306
graphs, 296–297

Resources, management of, 90–91
Android, 119
elements of, major, 90
factors of, 90
functional description of, 91
round-robin, 91

Resource-specific interface, 624
Response time, 431

normalized, 447, 448
overall normalized, 447

Responsiveness, 475
Resume flag, 155
Reusable resources, deadlock and, 294–295
RIOT structure, 728–729

hardware abstraction layer, 730–731
hardware-independent modules, 730
Kernel, 729–730
microcontrollers, 731

Role-based access control (RBAC), 673,
676–678

Rotational delay, 518
Rotational positional sensing (RPS), 518
Round-robin techniques, 91, 138,

437–439
Running process state, 132, 142, 200,

204, 207
Run-time, Android, 121–124
Run-time defenses, 668–670

address space randomization, 669
executable address space

protection, 669
guard pages, 670

Run-time dynamic linking, 368–369

S
Safe coding techniques, 666–667
Safe libraries, 667–668
Safe states, resource allocation,

302–304
Saved thread context, 179
Scaling, 93
SCAN policy, 523–524

memory address, 31
memory buffer, 31–32
Pentium EFLAGS, 154–155

Regular file, 580
Relative address, 353
Reliability, 95, 99, 476, 580
Relocatable loading, 365–366
Relocation, 341–342, 352–354
Remote procedure call (RPC), 182
Rendering module, 194
Replacement algorithms, 52, 53, 350–351,

391–398
clock page, 410
clock policy, 394–395
first-in-first-out (FIFO) policy, 394
fixed-allocation, local page, 396
four page, behavior of, 393
least recently used (LRU) policy, 393
optimal policy, 392

Replacement, frequency-based, 534
Replacement policies, 390, 392–398. See also

specific types of
algorithms for, basic, 392–397
and cache size, 398
concepts of, 392
frame locking, 392
page buffering, 397–398

Replacement scope, 399–400
Reserved state, 417–418
Resident monitor, 75
Resident set, 372

size, 398–399
Resident set management, 390, 398–405

fixed allocation, local scope, 399
replacement scope, 399–400
resident set size, 398–399
variable allocation, 399–405

Resource pooling, 698
Resources

balancing, 431
competition among processes for,

237–238
configure interface, 624
interface, 624
manager, 72, 119
ownership, 177. See also Process(es).
requested interface, 624

Z05_STAL4290_09_GE_IDX.indd 23 4/13/17 11:26 AM

I-24   Index

highest ratio next, 443
round robin, 437–439
shortest process next, 440–441
shortest remaining time, 441–443

S.count value, 250
Search operation, 566
Secondary memory, 49
Secondary storage management, 572–580

file allocation, 572–576
free space management, 576–579
reliability, 580
volumes, 579

Sector, 590
Security Descriptor (SD), 107

discretionary access control list (DACL),
689

flags, 688
owner, 689
system access control list (SACL), 689

Security ID (SID), 687
Security maintenance, 685–686

backup and archive, 686
logging, 685–686
Windows security, 686–691

Security, operating system, 657–692
access control, 672–678
additional controls, 684–685
authentication, 660–661
buffer overflow attacks, 662–666
configuration, 683–684
countermeasures for, 660–662
installation, 682–683
intrusion detection, 660
maintenance, 685–686
memory management, 662–666
New Technology File System (NTFS), 589
of process, 658–662
system access threats, 658–659
testing, 685

Security reference monitor, 103
Security Requirements for Cryptographic

Modules, 676
Seek time, 518, 519
Segment pointers, 340, 358–359, 388
Segmentation, 358–359

address translation in, 386, 387
advantages of, 385

Scanrate, 411
Scheduled blocks, 215
Scheduler, 116
Scheduling, 98, 177

control and, 512
criteria for, 431
deadline, 479–483
disk, 505–547
dynamic, 467, 472
dynamic best effort, 479
dynamic planning-based, 479
feedback, 444
gang, 467
input/output, 426
levels of, 428
Linux, 489–492
long-term, 426, 427–429
medium-term, 426, 429
multiprocessor and multicore scheduling,

461–474
non-real-time, 490–492
process, 434, 465–466
and process state transitions, 427
processor, types of, 426–430
queuing diagram for, 429
random, 520
rate monotonic, 482–486
real-time, 460–500
short-term, 426, 430
static priority-driven preemptive, 477
static table-driven, 477
thread, 467–472
types of, 426
uniprocessor, 425–455
UNIX FreeBSD, 494–497
UNIX SVR 32, 492–494
UNIX, traditional, 452–454
Windows, 498–500

Scheduling algorithms, 430–452
fair-share scheduling, 450–452
performance comparison, 445–450
priorities, use of, 432–433
scheduling policies, alternative, 433–445
short-term scheduling criteria, 430–432

Scheduling policies, 433–445
feedback, 443–445
first-come-first-served (FCFS), 435–437

Z05_STAL4290_09_GE_IDX.indd 24 4/13/17 11:26 AM

Index   I-25

Setup time, 74
Shadow copies, volume, 546
Shared data protected, 250
Shared Filesystems (Manila), 720
Shared memory multiprocessor, 314
Shared resources, 623
Sharing files, 238–239, 342
Shortest process next (SPN) scheduling,

440–441
Shortest remaining time (SRT) scheduling,

441–443
Shortest-service-time-first (SSTF) policy,

523
Short-term scheduling, 426, 430–432
Siebel CRM (Customer Relationship

Manager), 192
Sign flag, 155
Signaling/signals, 84, 315

event object, 545
file object, 545
monitors with, 257–261

Signal-Wait, 188
Simple batch systems, 74–77

hardware features of, 77
job control language (JCL), 76
kernel mode, 77
monitor, 77
points of view of, 75
user mode, 77

Simple interrupt processing, 41
Simple paging, 373
Simple segmentation, 373
Simulation modeling for scheduling,

448–450
Simulation result, 449
Simultaneous access for file sharing, 570
Simultaneous concurrent process, 98
Simultaneous concurrent threads, 98
Single buffer, 514–516
Single-Instruction Multiple Data (SIMD)

techniques, 32
Single-server queues, 446
Single-threaded process models, 179
Single-user multiprocessing system, 180–181
Slab allocation, 416
Slim read-writer locks, 329
Slots of memory, 50

characteristics of, 373
implications of, 385
organization of, 386–387
paging and, combining, 387–388
segments, protection relationship

between, 388
simple, 373
virtual memory, 373, 385

Selection function, 433
Semaphores, 244–257, 310–313, 314–315,

320–321, 325, A–30–37
binary, 246, 247, 320
counting, 247, 252, 320
currency mechanisms, common, 244
definition of, consequences of, 245–246
dining philosophers problem, solutions

using, 311–312
first-in-first-out (FIFO) process, 247
general, 246
implementation of, 256
Linux, 321
mechanism of, example of, 248
mutex, 247
mutual exclusion, 249
object, Windows, 327
producer/consumer problem, 250–256
readers/writers, 271–273
reader-writer, 321
s.count, value of, 250
shared data protected by, process

accessing, 250
strong, 247
as variable, operations of, 245
weak, 247

Sensor/actuator technology, 721
Sensors for intrusion detection, 660
Sequential files, 559

indexed, 559–560
key field for, 559
processing of, 553

Sequential search, 559
Serial processing, 74
Server Message Block (SMB), 711
Service(s)

processes, Windows, 104
Service-level agreements (SLAs), 706
Set of data, 132

Z05_STAL4290_09_GE_IDX.indd 25 4/13/17 11:26 AM

I-26   Index

Starvation, 238, 272
States, 302. See also specific states

available, 417
blocked, 141–142
blocked/waiting process, 140
committed, 418
execution, 206
exit process, 140
interruptible, 208
new process, 140
ONPROC, 204
process, 86, 133–148
of processes, 87, 133–145
ready, 139, 200
ready process, 144
reserved, 417
running process, 132, 139, 201, 204, 207
safe, resource allocation, 302–303
SLEEP, 205
spawn, 181
standby, 200–201
stopped, 205, 208
system operational, 95
terminated, 201
thread, 181–183
thread execution, 179
transition, 201
uninterruptible, 208
unsafe, 302
waiting, 200

Static biometrics, 661
Static priority-driven preemptive

scheduling, 477, 479
Static table-driven scheduling, 477, 479
Storage Area Network (SAN), 709, 710
Storage management, 87

access control, protection and, 87
automatic allocation/management, 87
long-term storage, 93, 87
modular programming, support of, 87
process isolation, 87

Streamlined protection mechanisms,
605–606

Stream-oriented device, 514
Stripe, 528
Strong semaphores, 247
Structured applications, 224

Smallest number of threads first, 468
Sockets, 32
Soft affinity policy, 202, 499
Soft real-time task, 474
Software

malicious, 658, 659–662
memory hierarchy in, 49
RAID, 546
Valve game, 193–195

Software approaches, mutual exclusion,
226–232

Software as a Service (SaaS), 698
Solaris

11, 112
memory management, 407–413
process structure of, 203
three-level thread structure of, 203

Solaris, thread primitives, 324–326
of threads, 183

Solaris threads
SMP management of, 202–206
states of, 204–205
synchronization primitives, 324–326

Spanned blocking, variable-length, 570
SPARC, 669
Spatial locality, 63
Spawn state, 181
Special file, 581
Special machine instructions, 241–244

compare&swap instruction, 242–243
disadvantages of, 243–244
exchange instruction, 243
properties of, 243–244

Special system processes, Windows, 104
Specific user class, 570
Spin waiting, 243
Spinlocks, 244, 318–320

basic, 318–319
Linux, 319
plain, 318
reader-writer, 319–320

SQLite, 595
Stack overflow, 663
Stackable modules, Linux, 114
Stacking protection mechanisms, 668
Standby state, 200
Starting deadline, 480

Z05_STAL4290_09_GE_IDX.indd 26 4/13/17 11:26 AM

Index   I-27

calls, Linux, 116
files, 591
ISA, 71
mode, 158
response time, 84
utilization of, 74

System access control list (SACL), 689
System directory, 594
System libraries, Android

bionic LibC, 121
browser engine, 121
media framework, 121
openGL, 121
SQL database, 121
surface manager, 121

System on a Chip (SoC), 32
System operational states, 95
System oriented, other criteria, 431
System oriented, performance related

criteria, 431
System-level context, 168

T
Tape drives, 539
Tasks, 618, 619

aperiodic, 474
deadline scheduling for, 479–483
hard real-time, 474
Linux, 206–208
periodic, 474
soft real-time, 474

Telephony manager, Android, 119
Temporal locality, 63
Terminals, 539
Termination of process states, 201
Thrashing, load control, 374
Thread scheduling, 467–472

approaches to, 467
dedicated processor assignment,

470–471
dynamic scheduling, 472
gang scheduling, 467
load sharing, 467–469

Thread states, 181–183
of Microsoft Windows 36,

200–201
of Solaris, 204–205

Structured programming (SAL), 62
Subject access rights, 671
Subtask structure, 480
Sun Microsystems, 110
SunOS, 110
Superblock object, 587
Superblocks, 585
Supervisor call, 161
Support functions, 158
Suspended processes states, 143–147

characteristics of, 147
purposes of, 148
states of, 144–145
swapping, 143–147
transitions of, 145, 146–147

Swap, 242
Swappable space, 308
Swapping process states, 143–147
Swap-use table entry, 408–409
Switching process, 160–162
Symbolic links file, 581, 590
Symmetric multiprocessor (SMP), 55–57, 93

advantages of, 55–56
availability, 55
characteristics of, 55
definition of, 55
incremental growth, 93
multicore support and, 495–497
organization of, 55–56
OS considerations of, 98–99
scaling, 93
threads for, 105

*syms, 115
Synchronization, 84, 94, 264–265

design characteristics of, 264
granularity, 461–463
improper, 84
lock-free, 329
message passing, 263–264, 264–265
processes, 462

Synchronized access, 689
Synchronous input/output, Windows,

545–546
System(s)

access control list (SACL), 689
access threats, 658–659
bus, 31

Z05_STAL4290_09_GE_IDX.indd 27 4/13/17 11:26 AM

I-28   Index

batch multiprogramming, differentiating
between, 81

Compatible Time-Sharing System
(CTSS), 81

memory requirements of, 82
time sharing, 82–83
time slicing, 81

Time-sharing user, 495
Timeslices/timeslicing, 82–83, 160
Timing comparison, 519–520
TinyOS, 615–625

components of, 618–620
configurations for, examples of, 621–623
goals of, 617–618
resource interface, 623–625
scheduler, 621
wireless sensor networks, 616–617

Token, 661
Token bucket filter (TBF), 653–654
Top-half kernel threads, 494
Torvalds, Linus, 113
Trace of process, 135
Transfer time, 518
Transition of process state, 201
Translation lookaside buffer (TLB), 379–383

cache operation and, 382
operation of, 381

Trap flag, 155
Traps, 118
Tree representation of buddy system, 353
Tree-structured file directory, 567, 568
TRIX, 189
Turnaround time (TAT), 431, 434, 449
Two-handed clock algorithm, 410
Two-level hierarchical page table, 377
Two-level memory

characteristics of, 61–67
locality, 62–64
operation of, 62
performance of, 46–47, 64–67

Two-priority categories, 446
Two-state process model, 136–137

U
U area, 169–170
Unblock state, 181
Unbounded priority inversion, 486

Threading granularity options, 193
Threads, 87, 176–217. See also specific

types of
Android, 211–215
benefits of, 180
bottom-half kernel, 494
execution state, 179
functionality of, 181–183
interactive, 496
kernel-level (KLT), 187–188, 202
Linux process and, management of,

206–210
MAC OS Grand Central Dispatch

(GCD), 215–217
management of, 206–210
many-to-many relationships of, 189–190
migration, 497
multithreaded process models, 179
multithreading, 178–181, 190–195
objects, 198–199
one-to-many relationships of, 189–190
operations associated with change in, 181
pool, 195
priorities, 498–499
process operation latencies (ms), 187
processes and, 177–183, 188, 202
processor affinity, 198
remote procedure call (RPC) using, 182
single-threaded process models, 179
in single-user multiprocessing system,

180–181
for SMP, 105–106
Solaris, and SMP management, 202–206
states of, 181–183
synchronization, 183
top-half kernel, 494
types of, 183–190
user-level (ULT), 183–188, 202
Windows 36, 195

Three-level thread structure, Solaris, 203
Throughput, 431
Tightly coupled multiprocessor system, 461
Time, creation of, 207
Timeliness, 561
Timers, batch systems, 77, 207
Time-shared (59-0) class, 493
Time-sharing systems, 81–83

Z05_STAL4290_09_GE_IDX.indd 28 4/13/17 11:26 AM

Index   I-29

input/output, structure of, 537
kernel, 109
license for, 109
memory management, 407–413
modern, 110–112
process structure of, 203
scheduling, traditional, 452–454
signals of, 315
System III, 109
System V, 109
traditional, 109–110
traditional, file access control,

678–680
Version 34, 109
Version 35, 109
volume structure, 584–585

Unmarshalling, 331
Unsafe state, resource allocation,

302, 304
Unspanned blocking, variable-length,

571–572
Update directory operation, 566
Updating access rights, 569
User applications, Windows, 104
User control, 475–476
User groups class, 570
User identification (ID), 678
User interfaces, 70–71
User ISA, 71
User mode, 104, 158
User-level context, 168
User-level threads (ULT), 183–187

advantages of, 186–187
and KLT, combined with, 187–188
occurrences of, 184, 186
process states, relationship with, 185

User-mode processes, 104
environmental subsystems, 104
execution within, 164–165
service processes, 104
special system processes, 104
user applications, 104
in virtual memory, 156

User-mode scheduling (UMS), 196
User-oriented, other criteria, 431
User-oriented, performance related

criteria, 431

Unbuffered input/output, 539
Uninterruptible state, 208
Uniprocessor

multithreading on, 183
scheduling, 425–455

Uniprogramming systems, 80
University of California at Berkeley, 525
UNIX BSD (Berkeley Software

Distribution), 109
UNIX FreeBSD, 112

files, structure of, 582
inodes, structure of, 582
scheduling, 494–497

UNIX System V Release 4
process control of, 170–171
process description of, 168–170
process image of, 168
process management, 166–171
process states of, 166–168
process table entry of, 169
scheduling, 493
U area, 169–170
unbuffered input/output, 539

UNIX System V Release 4 (SVR4), 110–111
buffer cache, 537–538
character queue, 539
devices, types of, 539–540
dispatch queues, 493
input/output, 537–540
parameters of, 408–409

UNIX systems, 108–110, 580–585. See also
specific systems

access control lists, 678–681
architecture of, 109
Berkeley Software Distribution (BSD),

111–112
buffer cache, organization of, 538
C implementation of, 108
concurrency mechanisms of, 313–315
description of, general, 109–110
devices, types of, 539–540
directories, 584
file access control, 678–680
file allocation, 583–584
files, 580–581
history of, 108–109
inodes, 581–583

Z05_STAL4290_09_GE_IDX.indd 29 4/13/17 11:26 AM

I-30   Index

monitor, 629
rapid deployment, 630
versatility, 630
VMware ESXi, 647–649

Virtual memory, 61, 87–88, 370–420
addressing, 89, 413–414
concepts of, 88
hardware/control structures of, 371–388
locality and, 373–374
management, 63–417
manager, 103, 593
operating system software, 388–407
paging, 373, 374–385
protection, sharing and, 388
segmentation, 385–387
terminology of, 371
user-mode processes in, 156

Virtual network, 711
Virtual platform, 653
Virtual private networks (VPNs), 700, 717
Virtual runtime, 491
Virtual servers, 652, 653
Virtual storage

SAN and NAS, 710–711
storage services, 709
topologies of, 709–710

Virtualization, 628
container virtualization, 635–642
hardware-assisted virtualization, 635
paravirtualization, 634–635

Virtualized resources, 623
Volume, 579, 590–592

layout, 591–592
master file table, 592
shadow copies, 546
structure, UNIX, 584–585

VPNs. See Virtual private networks (VPNs)

W
Wait functions, Windows, 326–327
Waitable timer object, Window, 327, 328
Waiting state, 201
Waiting time, 449
Weak semaphores, 247
Weblogic, 192
Websphere, 192
While loops, 262

User’s identity authentication, 661
User-visible registers, 153
Utilization histograms, 80

V
Valve game software, 193–195
Variable, operations of, 245
Variable priority classes, 498
Variable-allocation replacement policy, 399

global scope, 400–401
local scope, 401–405

Variable-interval sampled working set
(VSWS) policy, 404–405

Variable-length spanned, 570
Variable-length unspanned, 571
VAX/VMS, 109
Verification step of authentication, 660
Very coarse-grained parallelism, 462–463
View system, Android, 120
Virtual 8086 mode, 155
Virtual addresses

map, 417
memory management, 88
space, 179, 371

Virtual computing, 709
Virtual interrupt flag, 155
Virtual interrupt pending, 155
Virtual LANs (VLANs), 717
Virtual machine technology, 707–708
Virtual machines (VM)

aggregating, 630
availability, 630
concepts of, 628–631
consolidation, 630
container virtualization, 635–642
devices emulation and access control, 632
dynamics, 630
execution management, 632
Hyper V, 650–651
hypervisors, 631–635
input and output management, 645–647
Java VM, 651–652
legacy hardware, 630
lifecycle management, 632
Linux VServer architecture, 652–654
management, 630
memory management, 644–645

Z05_STAL4290_09_GE_IDX.indd 30 4/13/17 11:26 AM

Index   I-31

WRITE call, 36–37, 40
WRITE instruction, 37
Write policy, cache memory, 52, 53
Write_DAC access, 690
Write_owner access, 689

X
XMPP, Android, 120

Z
ZF (zero flag), 155
Zombie state, 205, 208
Zombies, 167, 208

Win 60, 104
Window manager, Android, 119
Windowing/graphics system, 103
Windows security, 686–691

access control scheme, 687
access mask, 690
access token, 687–688
security descriptors, 688–691

Wireless personal area networks (WPANs),
725, 726

Wireless sensor networks (WSN), 616–617
Working directories, 568
Working set strategy, 401

Z05_STAL4290_09_GE_IDX.indd 31 4/13/17 11:26 AM

This page intentionally left blank

A01_STAL4290_09_GE_FM.indd 1 5/19/17 9:06 PM

17-1

Network Protocols
17.1	 The Need for a Protocol Architecture

17.2	 The Tcp/Ip Protocol Architecture
TCP/IP Layers
TCP and UDP
IP and IPv6
Operation of TCP/IP
TCP/IP Applications

17.3	 Sockets
The Socket
Socket Interface Calls

17.4	 Linux Networking
Sending Data
Receiving Data

17.5	 Summary

17.6	 Key Terms, Review Questions, and Problems

APPENDIX 17A	 The Trivial File Transfer Protocol
Introduction to TFTP
TFTP Packets
Overview of a Transfer
Errors and Delays
Syntax, Semantics, and Timing

Chapter

M17_STAL4290_09_GE_C17.indd 1 4/18/17 7:12 AM

17-2   Chapter 17 / Network Protocols

With the increasing availability of inexpensive yet powerful personal computers and
servers, there has been an increasing trend toward distributed data processing (DDP),
in which processors, data, and other aspects of a data processing system may be dis-
persed within an organization. A DDP system involves a partitioning of the comput-
ing function and may also involve a distributed organization of databases, device
control, and interaction (network) control.

In many organizations, there is heavy reliance on personal computers coupled
with servers. Personal computers are used to support a variety of user-friendly applica-
tions, such as word processing, spreadsheet, and presentation graphics. The servers
house the corporate database plus sophisticated database management and information
systems software. Linkages are needed among the personal computers and between
each personal computer and the server. Various approaches are in common use, ranging
from treating the personal computer as a simple terminal to implementing a high degree
of integration between personal computer applications and the server database.

These application trends have been supported by the evolution of distributed
capabilities in the operating system and supporting utilities. A spectrum of distributed
capabilities has been explored:

•	 Communications architecture: This is software that supports a group of net-
worked computers. It provides support for distributed applications, such as
electronic mail, file transfer, and remote terminal access. However, each com-
puter retains a distinct identity to the user and to the applications, which must
communicate with other computers by explicit reference. Each computer has
its own separate operating system, and a heterogeneous mix of computers and
operating systems is possible, as long as all machines support the same com-
munications architecture. The most widely used communications architecture
is the TCP/IP protocol suite, examined in this chapter.

•	 Network operating system: This is a configuration in which there is a network
of application machines, usually single-user workstations and one or more
“server” machines. The server machines provide networkwide services or appli-
cations, such as file storage and printer management. Each computer has its
own private operating system. The network operating system is simply an
adjunct to the local operating system that allows application machines to inter-
act with server machines. The user is aware that there are multiple independent
computers and must deal with them explicitly. Typically, a common communica-
tions architecture is used to support these network applications.

Learning Objectives

After studying this chapter, you should be able to:
•	 Explain the motivation for organizing communication functions into a

layered protocol architecture.
•	 Describe the TCP/IP protocol architecture.
•	 Understand the purpose of the Sockets facility and how to use it.
•	 Describe the networking features in Linux.
•	 Understand how TFTP works.

M17_STAL4290_09_GE_C17.indd 2 4/18/17 7:12 AM

17.1 / THE NEED FOR A PROTOCOL ARCHITECTURE   17-3

•	 Distributed operating system: A common operating system shared by a network
of computers. It looks to its users like an ordinary centralized operating system
but provides the user with transparent access to the resources of a number of
machines. A distributed operating system may rely on a communications archi-
tecture for basic communications functions; more commonly, a stripped-down
set of communications functions is incorporated into the operating system to
provide efficiency.

The technology of the communications architecture is well-developed and is
supported by all vendors. Network operating systems are a more recent phenomena,
but a number of commercial products exist. The leading edge of research and devel-
opment for distributed systems is in the area of distributed operating systems.
Although some commercial systems have been introduced, fully functional distrib-
uted operating systems are still at the experimental stage.

In this chapter and the next, we will provide a survey of distributed processing
capabilities. This chapter focuses on the underlying network protocol software.

  17.1	 THE NEED FOR A PROTOCOL ARCHITECTURE

When computers, terminals, and/or other data processing devices exchange data, the
procedures involved can be quite complex. Consider, for example, the transfer of a
file between two computers. There must be a data path between the two computers,
either directly or via a communication network. But more is needed. Typical tasks to
be performed include the following:

1.	 The source system must either activate the direct data communication path or
inform the communication network of the identity of the desired destination
system.

2.	 The source system must ascertain that the destination system is prepared to
receive data.

3.	 The file transfer application on the source system must ascertain that the file
management program on the destination system is prepared to accept and store
the file for this particular user.

4.	 If the file formats or data representations used on the two systems are incom-
patible, one or the other system must perform a format translation function.

The exchange of information between computers for the purpose of coopera-
tive action is generally referred to as computer communications. Similarly, when two
or more computers are interconnected via a communication network, the set of com-
puter stations is referred to as a computer network. Because a similar level of coop-
eration is required between a terminal and a computer, these terms are often used
when some of the communicating entities are terminals.

In discussing computer communications and computer networks, two concepts
are paramount:

•	 Protocols

•	 Computer communications architecture, or protocol architecture

M17_STAL4290_09_GE_C17.indd 3 4/18/17 7:12 AM

17-4   Chapter 17 / Network Protocols

A protocol is used for communication between entities in different systems. The
terms entity and system are used in a very general sense. Examples of entities are user
application programs, file transfer packages, database management systems, elec-
tronic mail facilities, and terminals. Examples of systems are computers, terminals,
and remote sensors. Note in some cases the entity and the system in which it resides
are coextensive (e.g., terminals). In general, an entity is anything capable of sending
or receiving information, and a system is a physically distinct object that contains one
or more entities. For two entities to communicate successfully, they must “speak the
same language.” What is communicated, how it is communicated, and when it is com-
municated must conform to mutually agreed conventions between the entities
involved. The conventions are referred to as a protocol, which may be defined as a
set of rules governing the exchange of data between two entities. The key elements
of a protocol are as follows:

•	 Syntax: Includes such things as data format and signal levels

•	 Semantics: Includes control information for coordination and error handling

•	 Timing: Includes speed matching and sequencing

Appendix 17A provides a specific example of a protocol, the Internet standard
Trivial File Transfer Protocol (TFTP).

Having introduced the concept of a protocol, we can now introduce the con-
cept of a protocol architecture. It is clear there must be a high degree of coopera-
tion between the two computer systems. Instead of implementing the logic for this
as a single module, the task is broken up into subtasks, each of which is imple-
mented separately. As an example, Figure 17.1 suggests the way in which a file
transfer facility could be implemented. Three modules are used. Tasks 3 and 4 in
the preceding list could be performed by a file transfer module. The two modules
on the two systems exchange files and commands. However, rather than requiring
the file transfer module to deal with the details of actually transferring data and
commands, the file transfer modules each rely on a communications service mod-
ule. This module is responsible for making sure the file transfer commands and

Figure 17.1  A Simplified Architecture for File Transfer

Network
interface logic

Network
interface logic

Communications-related messages

Files and file transfer commands

Computer YComputer X

Network access
module

Communications
service module

File transfer
application

Network access
module

Communications
service module

File transfer
application

Communications
network

M17_STAL4290_09_GE_C17.indd 4 4/18/17 7:12 AM

17.2 / THE TCP/IP PROTOCOL ARCHITECTURE   17-5

data are reliably exchanged between systems. The manner in which a communica-
tions service module functions will be explored subsequently. Among other things,
this module would perform task 2. Finally, the nature of the exchange between the
two communications service modules is independent of the nature of the network
that interconnects them. Therefore, rather than building details of the network
interface into the communications service module, it makes sense to have a third
module, a network access module, that performs task 1 by interacting with the
network.

To summarize, the file transfer module contains all the logic that is unique to
the file transfer application, such as transmitting passwords, file commands, and file
records. These files and commands must be transmitted reliably. However, the same
sorts of reliability requirements are relevant to a variety of applications (e.g., elec-
tronic mail, document transfer). Therefore, these requirements are met by a separate
communications service module that can be used by a variety of applications. The
communications service module is concerned with assuring that the two computer
systems are active and ready for data transfer, and for keeping track of the data that
are being exchanged to assure delivery. However, these tasks are independent of the
type of network that is being used. Therefore, the logic for actually dealing with the
network is put into a separate network access module. If the network to be used is
changed, only the network access module is affected.

Thus, instead of a single module for performing communications, there is a
structured set of modules that implements the communications function. That struc-
ture is referred to as a protocol architecture. An analogy might be useful at this point.
Suppose an executive in office X wishes to send a document to an executive in office
Y. The executive in X prepares the document and perhaps attaches a note. This cor-
responds to the actions of the file transfer application in Figure 17.1. Then the execu-
tive in X hands the document to a secretary or administrative assistant (AA). The
AA in X puts the document in an envelope and puts Y’s address and X’s return
address on the outside. Perhaps the envelope is also marked “confidential.” The AA’s
actions correspond to the communications service module in Figure 17.1. The AA in
X then gives the package to the shipping department. Someone in the shipping
department decides how to send the package: mail, UPS, or express courier. The
shipping department attaches the appropriate postage or shipping documents to the
package and ships it out. The shipping department corresponds to the network
access module of Figure 17.1. When the package arrives at Y, a similar layered set of
actions occurs. The shipping department at Y receives the package and delivers it to
the appropriate AA or secretary based on the name on the package. The AA opens
the package and hands the enclosed document to the executive to whom it is
addressed.

  17.2	 THE TCP/IP PROTOCOL ARCHITECTURE

The TCP/IP protocol architecture is a result of protocol research and development
conducted on the experimental packet-switched network, ARPANET, funded by the
Defense Advanced Research Projects Agency (DARPA), and is generally referred
to as the TCP/IP protocol suite. This protocol suite consists of a large collection of

M17_STAL4290_09_GE_C17.indd 5 4/18/17 7:12 AM

17-6   Chapter 17 / Network Protocols

protocols that have been issued as Internet standards by the Internet Activities Board
(IAB). Appendix L provides a discussion of Internet standards.

TCP/IP Layers

In general terms, computer communications can be said to involve three agents: appli-
cations, computers, and networks. Examples of applications include file transfer and
electronic mail. The applications with which we are concerned here are distributed
applications that involve the exchange of data between two computer systems. These
applications and others execute on computers that can often support multiple simul-
taneous applications. Computers are connected to networks, and the data to be
exchanged are transferred by the network from one computer to another. Thus,
the transfer of data from one application to another involves first getting the data to
the computer in which the application resides, then getting the data to the intended
application within the computer.

There is no official TCP/IP protocol model. However, based on the protocol
standards that have been developed, we can organize the communication task for
TCP/IP into five relatively independent layers, from bottom to top:

•	 Physical layer

•	 Network access layer

•	 Internet layer

•	 Host-to-host, or transport layer

•	 Application layer

The physical layer covers the physical interface between a data transmission
device (e.g., workstation, computer) and a transmission medium or network. This
layer is concerned with specifying the characteristics of the transmission medium, the
nature of the signals, the data rate, and related matters.

The network access layer is concerned with the exchange of data between an
end system (server, workstation, etc.) and the network to which it is attached. The
sending computer must provide the network with the address of the destination com-
puter, so the network may route the data to the appropriate destination. The sending
computer may wish to invoke certain services, such as priority, that might be provided
by the network. The specific software used at this layer depends on the type of net-
work to be used; different standards have been developed for circuit switching, packet
switching (e.g., frame relay), LANs (e.g., Ethernet), and others. Thus, it makes sense
to separate those functions having to do with network access into a separate layer.
By doing this, the remainder of the communications software, above the network
access layer, need not be concerned about the specifics of the network to be used.
The same higher-layer software should function properly regardless of the particular
network to which the computer is attached.

The network access layer is concerned with access to and routing data across a
network for two end systems attached to the same network. In those cases where two
devices are attached to different networks, procedures are needed to allow data to
traverse multiple interconnected networks. This is the function of the Internet layer.
The Internet Protocol (IP) is used at this layer to provide the routing function across
multiple networks. This protocol is implemented not only in the end systems but also

M17_STAL4290_09_GE_C17.indd 6 4/18/17 7:12 AM

17.2 / THE TCP/IP PROTOCOL ARCHITECTURE   17-7

in routers. A router is a processor that connects two networks and whose primary
function is to relay data from one network to the other on a route from the source to
the destination end system.

Regardless of the nature of the applications that are exchanging data, there is
usually a requirement that data be exchanged reliably. That is, we would like to be
assured that all the data arrive at the destination application, and that the data arrive
in the same order in which they were sent. As we shall see, the mechanisms for provid-
ing reliability are essentially independent of the nature of the applications. Thus, it
makes sense to collect those mechanisms in a common layer shared by all applications;
this is referred to as the host-to-host layer, or transport layer. The Transmission Control
Protocol (TCP) is the most commonly used protocol to provide this functionality.

Finally, the application layer contains the logic needed to support the various
user applications. For each different type of application, such as file transfer, a sepa-
rate module is needed that is peculiar to that application.

TCP and UDP

For most applications running as part of the TCP/IP protocol architecture, the trans-
port layer protocol is TCP. TCP provides a reliable connection for the transfer of data
between applications. A connection is simply a temporary logical association between
two entities in different systems. For the duration of the connection, each entity keeps
track of segments coming and going to the other entity, in order to regulate the flow
of segments and to recover from lost or damaged segments.

Figure 17.2a shows the header format for TCP, which is a minimum of 20 octets,
or 160 bits. The Source Port and Destination Port fields identify the applications at

Figure 17.2  TCP and UDP Headers

Source Port Destination Port

Checksum Urgent Pointer

Sequence Number

Acknowledgement Number

Options + Padding

Reserved Flags Window
Header
length

0Bit: 4 8 16 31

20
 o

ct
et

s

Source Port Destination Port

Segment Length Checksum

0Bit: 16 31

8
oc

te
ts

(a) TCP Header

(b) UDP Header

M17_STAL4290_09_GE_C17.indd 7 4/18/17 7:12 AM

17-8   Chapter 17 / Network Protocols

the source and destination systems that are using this connection. The Sequence
Number, Acknowledgment Number, and Window fields provide flow control and
error control. The checksum is a 16-bit code based on the contents of the segment
used to detect errors in the TCP segment.

In addition to TCP, there is one other transport-level protocol that is in common
use as part of the TCP/IP protocol suite: the User Datagram Protocol (UDP). UDP
does not guarantee delivery, preservation of sequence, or protection against duplica-
tion. UDP enables a process to send messages to other processes with a minimum of
protocol mechanism. Some transaction-oriented applications make use of UDP; one
example is SNMP (Simple Network Management Protocol), the standard network
management protocol for TCP/IP networks. Because it is connectionless, UDP has
very little to do. Essentially, it adds a port addressing capability to IP. This is best seen
by examining the UDP header, shown in Figure 17.2b.

IP and IPv6

For decades, the keystone of the TCP/IP protocol architecture has been
IP. Figure 17.3a shows the IP header format, which is a minimum of 20 octets, or 160
bits. The header, together with the segment from the transport layer, forms an IP-
level block referred to as an IP datagram or an IP packet. The header includes 32-bit
source and destination addresses. The Header Checksum field is used to detect
errors in the header to avoid misdelivery. The Protocol field indicates whether TCP,
UDP, or some other higher-layer protocol is using IP. The ID, Flags, and Fragment
Offset fields are used in the fragmentation and reassembly process, in which a single
IP datagram is divided into multiple IP datagrams on transmission then reassembled
at the destination.

In 1995, the Internet Engineering Task Force (IETF), which develops protocol
standards for the Internet, issued a specification for a next-generation IP, known
then as IPng. This specification was turned into a standard in 1996 known as IPv6.
IPv6 provides a number of functional enhancements over the existing IP, designed
to accommodate the higher speeds of today’s networks and the mix of data streams,
including graphic and video, which are becoming more prevalent. But the driving
force behind the development of the new protocol was the need for more addresses.
The current IP uses a 32-bit address to specify a source or destination. With the
explosive growth of the Internet and of private networks attached to the Internet,
this address length became insufficient to accommodate all the systems needing
addresses. As Figure 17.3b shows, IPv6 includes 128-bit source and destination
address fields.

Ultimately, all installations using TCP/IP are expected to migrate from the cur-
rent IP to IPv6, but this process will take many years, if not decades.

Operation of TCP/IP

Figure 17.4 indicates how these protocols are configured for communications. Some
sort of network access protocol, such as the Ethernet logic, is used to connect a com-
puter to a network. This protocol enables the host to send data across the network to
another host or, in the case of a host on another network, to a router. IP is imple-
mented in all end systems and routers. It acts as a relay to move a block of data from

M17_STAL4290_09_GE_C17.indd 8 4/18/17 7:12 AM

17.2 / THE TCP/IP PROTOCOL ARCHITECTURE   17-9

one host, through one or more routers, to another host. TCP is implemented only in
the end systems; it keeps track of the blocks of data being transferred to assure that
all are delivered reliably to the appropriate application.

For successful communication, every entity in the overall system must have a
unique address. In fact, two levels of addressing are needed. Each host on a network
must have a unique global Internet address; this allows the data to be delivered to

Figure 17.3  IP Headers

(a) IPv4 Header

(b) IPv6 Header

Version DS ECNIHL Total Length

Identification Flags Fragment O�set

Time to Live Protocol Header Checksum

Options + Padding

Source Address

Destination Address

0Bit: 4 8 16 19 31
20

 o
ct

et
s

14

Version DS

DS = Di�erentiated services field
ECN = Explicit congestion notification field

Note: The 8-bit DS/ECN fields were formerly
known as the Type of Service field in the IPv4
header and the Tra�c Class field in the IPv6
header.

ECN Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

0Bit: 4 10 12 16 24 31

40
 o

ct
et

s

M17_STAL4290_09_GE_C17.indd 9 4/18/17 7:12 AM

17-10   Chapter 17 / Network Protocols

the proper host. This address is used by IP for routing and delivery. Each application
within a host must have an address that is unique within the host; this allows the host-
to-host protocol (TCP) to deliver data to the proper process. These latter addresses
are known as ports.

Let us trace a simple operation. Suppose a process, associated with port 3 at
host A, wishes to send a message to another process, associated with port 2 at host B.
The process at A hands the message down to TCP with instructions to send it to host
B, port 2. TCP hands the message down to IP with instructions to send it to host B.
Note IP need not be told the identity of the destination port. All it needs to know is
that the data are intended for host B. Next, IP hands the message down to the net-
work access layer (e.g., Ethernet logic) with instructions to send it to router J (the
first hop on the way to B).

To control this operation, control information as well as user data must be
transmitted, as suggested in Figure 17.5. Let us say that the sending process generates
a block of data and passes this to TCP. TCP may break this block into smaller pieces
to make it more manageable. To each of these pieces, TCP appends control informa-
tion known as the TCP header (see Figure 17.2a), forming a TCP segment. The con-
trol information is to be used by the peer TCP protocol entity at host B.

Next, TCP hands each segment over to IP, with instructions to transmit it to B.
These segments must be transmitted across one or more networks and relayed

Figure 17.4  TCP/IP Concepts

Router J

TCP

IP

Physical Physical

IP

NAP 1 NAP 2

Physical Physical

Network Access
Protocol #1

Host A

App X
App Y

TCP

IP

Network Access
Protocol #2

Host B

App Y
App X

Network 1 Network 2

Global Internet
address

1 2 2 4 63

Subnetwork attachment
point address

Logical connection
(e.g., virtual circuit)

Logical connection
(TCP connection)

Port

M17_STAL4290_09_GE_C17.indd 10 4/18/17 7:12 AM

17.2 / THE TCP/IP PROTOCOL ARCHITECTURE   17-11

through one or more intermediate routers. This operation, too, requires the use of
control information. Thus IP appends a header of control information (see Fig-
ure 17.3) to each segment to form an IP datagram. An example of an item stored in
the IP header is the destination host address (in this example, B).

Finally, each IP datagram is presented to the network access layer for transmis-
sion across the first network in its journey to the destination. The network access
layer appends its own header, creating a packet, or frame. The packet is transmitted
across the network to router J. The packet header contains the information that the
network needs in order to transfer the data across the network. Examples of items
that may be contained in this header include:

•	 Destination network address: The network must know to which attached device
the packet is to be delivered, in this case router J.

•	 Facilities requests: The network access protocol might request the use of certain
network facilities, such as priority.

At router J, the packet header is stripped off and the IP header examined. On
the basis of the destination address information in the IP header, the IP module in
the router directs the datagram across network 2 to B. To do this, the datagram is
again augmented with a network access header.

When the data are received at B, the reverse process occurs. At each layer, the
corresponding header is removed, and the remainder is passed on to the next higher
layer, until the original user data are delivered to the destination process.

TCP/IP Applications

A number of applications have been standardized to operate on top of TCP. We men-
tion three of the most common here.

The Simple Mail Transfer Protocol (SMTP) provides a basic electronic mail
facility. It provides a mechanism for transferring messages among separate hosts.
Features of SMTP include mailing lists, return receipts, and forwarding. The SMTP
protocol does not specify the way in which messages are to be created; some local

Figure 17.5  Protocol Data Units (PDUs) in the TCP/IP Architecture

User data

TCP
header

IP
header

Network
header

Application
byte stream

TCP
segment

IP
datagram

Network-level
packet

M17_STAL4290_09_GE_C17.indd 11 4/18/17 7:12 AM

17-12   Chapter 17 / Network Protocols

editing or native electronic mail facility is required. Once a message is created, SMTP
accepts the message and makes use of TCP to send it to an SMTP module on another
host. The target SMTP module will make use of a local electronic mail package to
store the incoming message in a user’s mailbox.

The File Transfer Protocol (FTP) is used to send files from one system to
another under user command. Both text and binary files are accommodated, and the
protocol provides features for controlling user access. When a user wishes to engage
in file transfer, FTP sets up a TCP connection to the target system for the exchange
of control messages. This connection allows user ID and password to be transmitted
and allows the user to specify the file and file actions desired. Once a file transfer is
approved, a second TCP connection is set up for the data transfer. The file is trans-
ferred over the data connection, without the overhead of any headers or control
information at the application level. When the transfer is complete, the control con-
nection is used to signal the completion and to accept new file transfer commands.

SSH (Secure Shell) provides a secure remote logon capability, which enables a
user at a terminal or personal computer to log on to a remote computer and function
as if directly connected to that computer. SSH also supports file transfer between the
local host and a remote server. SSH enables the user and the remote server to authen-
ticate each other; it also encrypts all traffic in both directions. SSH traffic is carried
on a TCP connection.

  17.3	 SOCKETS1

The concept of sockets and sockets programming was developed in the 1980s in the
UNIX environment as the Berkeley Sockets Interface. In essence, a socket enables
communication between a client and server process and may be either connection
oriented or connectionless. A socket can be considered an endpoint in a communica-
tion. A client socket in one computer uses an address to call a server socket on
another computer. Once the appropriate sockets are engaged, the two computers can
exchange data.

Typically, computers with server sockets keep a TCP or UDP port open, ready
for unscheduled incoming calls. The client typically determines the socket identifica-
tion of the desired server by finding it in a Domain Name System (DNS) database.
Once a connection is made, the server switches the dialogue to a different port
number to free up the main port number for additional incoming calls.

Internet applications, such as TELNET and remote login (rlogin), make use of
sockets, with the details hidden from the user. However, sockets can be constructed
from within a program (in a language such as C or Java), enabling the programmer
to easily support networking functions and applications. The sockets programming
mechanism includes sufficient semantics to permit unrelated processes on different
hosts to communicate.

The Berkeley Sockets Interface is the de facto standard application program-
ming interface (API) for developing networking applications, spanning a wide range

1This section provides a Sockets overview. Appendix M contains a more detailed treatment.

M17_STAL4290_09_GE_C17.indd 12 4/18/17 7:12 AM

17.3 / SOCKETS   17-13

of operating systems. Windows Sockets (WinSock) is based on the Berkeley specifica-
tion. The sockets API provide generic access to interprocess communications services.
Thus, the sockets capability is ideally suited for students to learn the principles of
protocols and distributed applications by hands-on program development.

The Socket

Recall that each TCP and UDP header includes source port and destination port
fields (see Figure 17.2). These port values identify the respective users (applications)
of the two TCP entities. Also, each IPv4 and IPv6 header includes source address and
destination address fields (see Figure 17.3); these IP addresses identify the respective
host systems. The concatenation of a port value and an IP address forms a socket,
which is unique throughout the Internet. Thus, in Figure 17.4, the combination of the
IP address for host B and the port number for application X uniquely identifies the
socket location of application X in host B. As the figure indicates, an application may
have multiple socket addresses, one for each port into the application.

The socket is used to define an API, which is a generic communication inter-
face for writing programs that use TCP or UDP. In practice, when used as an API,
a socket is identified by the triple (protocol, local address, and local process). The
local address is an IP address and the local process is a port number. Because port
numbers are unique within a system, the port number implies the protocol (TCP
or UDP). However, for clarity and ease of implementation, sockets used for an
API include the protocol as well as the IP address and port number in defining a
unique socket.

Corresponding to the two protocols, the Sockets API recognizes two types of
sockets: stream sockets and datagram sockets. Stream sockets make use of TCP, which
provides a connection-oriented reliable data transfer. Therefore, with stream sockets,
all blocks of data sent between a pair of sockets are guaranteed for delivery and
arrive in the order in which they were sent. Datagram sockets make use of UDP,
which does not provide the connection-oriented features of TCP. Therefore, with
datagram sockets, delivery is not guaranteed, nor is order necessarily preserved.

There is a third type of socket provided by the Sockets API: raw sockets.
Raw sockets allow direct access to lower-layer protocols, such as IP.

Socket Interface Calls

This subsection summarizes the key system calls.

Socket Setup  The first step in using Sockets is to create a new socket using the
socket() command. This command includes three parameters, the protocol family
is always PF_INET, for the TCP/IP protocol suite. Type specifies whether this is a
stream or datagram socket, and protocol specifies either TCP or UDP. The reason
that both type and protocol need to be specified is to allow additional transport-level
protocols to be included in a future implementation. Thus, there might be more than
one datagram-style transport protocol, or more than one connection-oriented
transport protocol. The socket() command returns an integer result that identifies
this socket; it is similar to a UNIX file descriptor. The exact socket data structure
depends on the implementation. It includes the source port and IP address and, if a

M17_STAL4290_09_GE_C17.indd 13 4/18/17 7:12 AM

17-14   Chapter 17 / Network Protocols

connection is open or pending, the destination port and IP address and various
options and parameters associated with the connection.

After a socket is created, it must have an address to which to listen. The bind()
function binds a socket to a socket address. The address has the structure

struct sockaddr_in {
   short int sin_family;          // Address family (TCP/IP)
   unsigned short int sin_port;//   Port number
   struct in_addr sin_addr;      //   Internet address
   unsigned char sin_zero[8];         // �
};

Socket Connection  For a stream socket, once the socket is created, a connection
must be set up to a remote socket. One side functions as a client and requests a
connection to the other side, which acts as a server.

The server side of a connection setup requires two steps. First, a server application
issues a listen(), indicating the given socket is ready to accept incoming connections.
The parameter backlog is the number of connections allowed on the incoming queue.
Each incoming connection is placed in this queue until a matching accept() is issued
by the server side. Next, the accept() call is used to remove one request from the
queue. If the queue is empty, the accept() blocks the process until a connection
request arrives. If there is a waiting call, then accept() returns a new file descriptor
for the connection. This creates a new socket, which has the IP address and port number
of the remote party, the IP address of this system, and a new port number. The reason
that a new socket with a new port number is assigned is that this enables the local
application to continue to listen for more requests. As a result, an application may have
multiple connections active at any time, each with a different local port number. This
new port number is returned across the TCP connection to the requesting system.

A client application issues a connect() that specifies both a local socket and the
address of a remote socket. If the connection attempt is unsuccessful connect()
returns the value -1. If the attempt is successful, connect() returns a 0 and fills in the
file descriptor parameter to include the IP address and port number of the local and
foreign sockets. Recall that the remote port number may differ from that specified in the
foreignAddress parameter because the port number is changed on the remote host.

Once a connection is set up, getpeername() can be used to find out who is
on the other end of the connected stream socket. The function returns a value in the
sockfd parameter.

Socket Communication  For stream communication, the functions send() and
recv() are used to send or receive data over the connection identified by the
sockfd parameter. In the send() call, the *msg parameter points to the block of
data to be sent, and the len parameter specifies the number of bytes to be sent.
The flags parameter contains control flags, typically set to 0. The send() call
returns the number of bytes sent, which may be less than the number specified in
the len parameter. In the recv() call, the *buf parameter points to the buffer for
storing incoming data, with an upper limit on the number of bytes set by the len
parameter.

Same size as struct
sockaddr

M17_STAL4290_09_GE_C17.indd 14 4/18/17 7:12 AM

17.3 / SOCKETS   17-15

At any time, either side can close the connection with the close() call, which
prevents further sends and receives. The shutdown() call allows the caller to ter-
minate sending or receiving or both.

Figure 17.6 shows the interaction of the clients and server sides in setting up,
using, and terminating a connection.

For datagram communication, the functions sendto() and recvfrom() are
used. The sendto() call includes all the parameters of the send() call plus a specifica-
tion of the destination address (IP address and port). Similarly, the recvfrom() call
includes an address parameter, which is filled in when data are received.

Figure 17.6  Socket System Calls for Connection-Oriented Protocol

socket()

bind()

listen()

accept()

blocks until
connection from client

accept() creates a new socket to
serve the new client request

socket()

connect()

send()receive()

process request

connection
establishment

Open communication
endpoint

Open communication
endpoint

Set up connection
to server

Send/receive data

Send/receive data

Shutdown

Register well-known
address with system

Establish client’s connection;
request queue size

Accept first client connection
request on the queue

data (request)

data (reply)

Server Client

send()

close()

receive()

close()

M17_STAL4290_09_GE_C17.indd 15 4/18/17 7:12 AM

17-16   Chapter 17 / Network Protocols

  17.4	 LINUX NETWORKING

Linux supports a variety of networking architectures, in particular TCP/IP by means
of Berkeley Sockets. Figure 17.7 shows the overall structure of Linux support for
TCP/IP. User-level processes interact with networking devices by means of system
calls to the Sockets interface. The Sockets module in turn interacts with a software
package in the kernel that handles transport-layer (TCP and UDP) and IP protocol
operations. This software package exchanges data with the device driver for the net-
work interface card.

Linux implements sockets as special files. Recall from Chapter 12 that, in UNIX
systems, a special file is one that contains no data but provides a mechanism to map

Figure 17.7  Linux Kernel Components for TCP/IP Processing

Socket
level

network interface controller

User
process

hardware

user level

kernel

network device driver

IP
processing

Lower-level
packet reception

Deferred
packet reception

device (hardware) interrupt

netif_rx()

softirq
[net_rx_action()]

ip_rcv()

udp_rcv()

data_ready()

wake_up_interruptible()

tcp_rcv()

data_ready()
tcp_sendmsg()

ip_build_xmit() ip_build_xmit()

dev_queue_xmit()

output command

udp_sendmsg()

socket system call

TCP
processing

UDP
processing

M17_STAL4290_09_GE_C17.indd 16 4/18/17 7:12 AM

17.4 / LINUX NETWORKING   17-17

physical devices to file names. For every new socket, the Linux kernel creates a new
inode in the sockfs special file system.

Figure 17.7 depicts the relationships among various kernel modules involved in
sending and receiving TCP/IP-based data blocks. The remainder of this section looks
at the sending and receiving facilities.

Sending Data

A user process uses the sockets calls described in Section 17.3 to create new sockets,
set up connections to remote sockets, and send and receive data. To send data, the
user process writes data to the socket with the following file system call:

write(sockfd, mesg, mesglen)

where mesglen is the length of the mesg buffer in bytes.
This call triggers the write method of the file object associated with the

sockfd file descriptor. The file descriptor indicates whether this is a socket set up
for TCP or UDP. The kernel allocates the appropriate data structures and invokes the
appropriate sockets-level function to pass data to either a TCP module or a UDP
module. The corresponding functions are tcp_sendmsg() and udp_sendmsg(),
respectively. The transport-layer module allocates a data structure of the TCP or UPD
header and performs ip_build_xmit() to invoke the IP-layer processing module.
This module builds an IP datagram for transmission and places it in a transmission
buffer for this socket. The IP-layer module then performs dev_queue_xmit() to
queue the socket buffer for later transmission via the network device driver. When it
is available, the network device driver will transmit buffered packets.

Receiving Data

Data reception is an unpredictable event and so involves the use of interrupts and
deferrable functions. When an IP datagram arrives, the network interface controller
issues a hardware interrupt to the corresponding network device driver. The interrupt
triggers an interrupt service routine that handles the interrupt as part of the network
device driver module. The driver allocates a kernel buffer for the incoming data block
and transfers the data from the device controller to the buffer. The driver then performs
netif_rx() to invoke a lower-level packet reception routine. In essence, the netif_
rx() function places the incoming data block in a queue then issues a soft interrupt
request (softirq) so the queued data will eventually be processed. The action to be
performed when the softirq is processed is the net_rx_action() function.

Once a softirq has been queued, processing of this packet is halted until the
kernel executes the softirq function, which is equivalent to saying until the kernel
responds to this soft interrupt request and executes the function (in this case, net_
rx_action()) associated with this soft interrupt. There are three places in the ker-
nel, where the kernel checks to see if any softirqs are pending: when a hardware
interrupt has been processed, when an application-level process invokes a system call,
and when a new process is scheduled for execution.

When the net_rx_action() function is performed, it retrieves the queued
packet and passes it on to the IP packet handler by means of an ip_rcv call. The IP
packet handler processes the IP header then uses tcp_rcv or udp_rcv to invoke the
transport-layer processing module. The transport-layer module processes the

M17_STAL4290_09_GE_C17.indd 17 4/18/17 7:12 AM

17-18   Chapter 17 / Network Protocols

transport-layer header and passes the data to the user through the sockets interface by
means of a wake_up_interruptible() call, which awakens the receiving
process.

  17.5	 SUMMARY

The communication functionality required for distributed applications is quite com-
plex. This functionality is generally implemented as a structured set of modules. The
modules are arranged in a vertical, layered fashion, with each layer providing a par-
ticular portion of the needed functionality and relying on the next lower layer for
more primitive functions. Such a structure is referred to as a protocol architecture.

One motivation for the use of this type of structure is that it eases the task of
design and implementation. It is standard practice for any large software package to
break up the functions into modules that can be designed and implemented sepa-
rately. After each module is designed and implemented, it can be tested. Then the
modules can be combined and tested together. This motivation has led computer
vendors to develop proprietary layered-protocol architectures. An example of this is
the Systems Network Architecture (SNA) of IBM.

A layered architecture can also be used to construct a standardized set of com-
munication protocols. In this case, the advantages of modular design remain. But, in
addition, a layered architecture is particularly well-suited to the development of
standards. Standards can be developed simultaneously for protocols at each layer of the
architecture. This breaks down the work to make it more manageable and speeds up
the standards-development process. The TCP/IP protocol architecture is the standard
architecture used for this purpose. This architecture contains five layers. Each layer
provides a portion of the total communications function required for distributed appli-
cations. Standards have been developed for each layer. Development work continues,
particularly at the top (application) layer, where new distributed applications are still
being defined.

  17.6	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

application layer
application programming

interface (API)
datagram communication
datagram socket
File Transfer Protocol (FTP)
Internet Protocol (IP)
IP addresses
IP datagram
physical layer
port

protocol
protocol architecture
raw socket
router
semantics
Simple Mail Transfer Protocol

(SMTP)
socket
SSH (secure shell)
stream communication
stream socket

syntax
network access layer
TCP segment
TELNET
timing
Transmission Control Protocol

(TCP)
transport layer
User Datagram Protocol

(UDP)

M17_STAL4290_09_GE_C17.indd 18 4/18/17 7:12 AM

17.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   17-19

Review Questions

	 17.1.	 What is the major function of the network access layer?
	 17.2.	 What tasks are performed by the transport layer?
	 17.3.	 What is a protocol?
	 17.4.	 What is a protocol architecture?
	 17.5.	 What is TCP/IP?
	 17.6.	 What is the purpose of the Sockets interface?

Problems
	 17.1.	 For this problem, first consider the case where you wish to order pizza for a party of

guests. The layer models in Figure 17.8 can be used to describe the ordering and deliv-
ery of a pizza. The guest effectively places the order with the cook. The host commu-
nicates this order to the clerk, who places the order with the cook. The phone system
provides the physical means for the order to be transported from host to clerk. The
cook gives the pizza to the clerk with the order form (acting as a “header” to the pizza).
The clerk boxes the pizza with the delivery address, and the delivery van encloses all
of the orders to be delivered. The road provides the physical path for the delivery.
a.	 The French and Chinese prime ministers need to come to an agreement by tele-

phone, but neither speaks the other’s language. Further, neither has on hand a
translator that can translate to the language of the other. However, both prime
ministers have English translators on their staffs. Draw a diagram similar to
Figure 17.8 to depict the situation, and describe the interaction at each layer.

b.	 Now suppose the Chinese prime minister’s translator can translate only into Japanese
and the French prime minister has a German translator available. A translator
between German and Japanese is available in Germany. Draw a new diagram that
reflects this arrangement, and describe the hypothetical phone conversation.

Figure 17.8  Architecture for Problem 17.1

Telephone Line

Guests

Host

Telephone

Pizza Cook

Order C
lerk

Telephone

Road

Guests

Host

Delivery Van

Pizza Cook

Order C
lerk

Delivery Van

M17_STAL4290_09_GE_C17.indd 19 4/18/17 7:12 AM

17-20   Chapter 17 / Network Protocols

	 17.2.	 List the major disadvantages of the layered approach to protocols.
	 17.3.	 A TCP segment consisting of 1,500 bits of data and 160 bits of header is sent to the IP

layer, which appends another 160 bits of header. This is then transmitted through two
networks, each of which uses a 24-bit packet header. The destination network has a
maximum packet size of 800 bits. How many bits, including headers, are delivered to
the network layer protocol at the destination?

	 17.4.	 Why does the TCP header have a header length field while the UDP header does not?
	 17.5.	 The previous version of the TFTP specification, RFC 783, included the following

statement:
All packets other than those used for termination are acknowledged individually unless
a timeout occurs.

The new specification revises this to say
All packets other than duplicate ACKs and those used for termination are acknowledged
unless a timeout occurs.

The change was made to fix a problem referred to as the “Sorcerer’s Apprentice.”
Deduce and explain the problem.

	 17.6.	 What is the limiting factor in the time required to transfer a file using TFTP?
	 17.7.	 A user on a UNIX host wants to transfer a 4,000-byte text file to a Microsoft Windows

host. In order to do this, he transfers the file by means of TFTP, using the netascii
transfer mode. Even though the transfer was reported as being performed successfully,
the Windows host reports the resulting file size is 4,050 bytes, rather than the original
4,000 bytes. Does this difference in the file sizes imply an error in the data transfer?
Why or why not?

	 17.8.	 The TFTP specification (RFC 1350) states that the transfer identifiers (TIDs) chosen
for a connection should be randomly chosen, so the probability that the same number
is chosen twice in immediate succession is very low. What would be the problem of
using the same TIDs twice in immediate succession?

	 17.9.	 In to retransmit lost packets, TFTP must keep a copy of the data it sends. How many
packets of data must TFTP keep at a time to implement this retransmission mechanism?

	17.10.	 TFTP, like most protocols, will never send an error packet in response to an error
packet it receives. Why?

	17.11.	 We have seen that in order to deal with lost packets, TFTP implements a time-out-and-
retransmit scheme, by setting a retransmission timer when it transmits a packet to the
remote host. Most TFTP implementations set this timer to a fixed value of about five
seconds. Discuss the advantages and the disadvantages of using a fixed value for
the retransmission timer.

	17.12.	 TFTP’s time-out-and-retransmission scheme implies that all data packets will eventu-
ally be received by the destination host. Will these data also be received uncorrupted?
Why or why not?

	17.13.	 This chapter mentions the use of Frame Relay as a specific protocol or system used to
connect to a wide area network. Each organization will have a certain collection of services
available (like Frame Relay) but this is dependent upon provider provisioning, cost and
customer premises equipment. What are some of the services available to you in your area?

	17.14.	 Wireshark is a free packet sniffer that allows you to capture traffic on a local area
network. It can be used on a variety of operating systems and is available at www
.ethereal.com. You must also install the WinPcap packet capture driver, which can be
obtained from www.wireshark.org/.

		 After starting a capture from Wireshark, start a TCP-based application like TELNET,
FTP, or HTTP (Web browser). Can you determine the following from your capture?
a.	 Source and destination layer 2 addresses (MAC).
b.	 Source and destination layer 3 addresses (IP).
c.	 Source and destination layer 4 addresses (port numbers).

M17_STAL4290_09_GE_C17.indd 20 4/18/17 7:12 AM

http://www.wireshark.org
http://www.ethereal.com
http://www.ethereal.com

APPENDIX 17A / THE TRIVIAL FILE TRANSFER PROTOCOL   17-21

	17.15.	 Packet capture software or sniffers can be powerful management and security tools.
By using the filtering capability that is built in, you can trace traffic based on several
different criteria and eliminate everything else. Use the filtering capability built into
Ethereal to do the following;
a.	 Capture only traffic coming from your computer’s MAC address.
b.	 Capture only traffic coming from your computer’s IP address.
c.	 Capture only UDP-based transmissions.

APPENDIX 17A  THE TRIVIAL FILE TRANSFER PROTOCOL

This appendix provides an overview of the Internet standard Trivial File Transfer Pro-
tocol (TFTP), defined in RFC 1350. Our purpose is to give the reader some flavor for
the elements of a protocol. TFTP is simple enough to provide a concise example but
includes most of the significant elements found in other, more complex, protocols.

Introduction to TFTP

TFTP is far simpler than the Internet standard File Transfer Protocol (FTP). There
are no provisions for access control or user identification, so TFTP is only suitable
for public access file directories. Because of its simplicity, TFTP is easily and com-
pactly implemented. For example, some diskless devices use TFTP to download their
firmware at boot time.

TFTP runs on top of UDP. The TFTP entity that initiates the transfer does so
by sending a read or write request in a UDP segment with a destination port of 69 to
the target system. This port is recognized by the target UDP module as the identifier
of the TFTP module. For the duration of the transfer, each side uses a transfer identi-
fier (TID) as its port number.

TFTP Packets

TFTP entities exchange commands, responses, and file data in the form of packets, each
of which is carried in the body of a UDP segment. TFTP supports five types of packets
(see Figure 17.9); the first two bytes contain an opcode that identifies the packet type:

•	 RRQ: The read request packet requests permission to transfer a file from the
other system. The packet includes a file name, which is a sequence of ASCII2
bytes terminated by a zero byte. The zero byte is the means by which the receiv-
ing TFTP entity knows when the file name is terminated. The packet also
includes a mode field, which indicates whether the data file is to be interpreted
as a string of ASCII bytes (netascii mode) or as raw 8-bit bytes (octet mode) of
data. In netascii mode, the file is transferred as lines of characters, each termi-
nated by a carriage return, line feed. Each system must translate between its
own format for character files and the TFTP format.

2ASCII is the American Standard Code for Information Interchange, a standard of the American National
Standards Institute. It designates a unique 7-bit pattern for each letter, with an eighth bit used for parity.
ASCII is equivalent to the International Reference Alphabet (IRA), defined in ITU-T Recommendation
T.50. See Appendix N for a discussion.

M17_STAL4290_09_GE_C17.indd 21 4/18/17 7:12 AM

17-22   Chapter 17 / Network Protocols

•	 WRQ: The write request packet requests permission to transfer a file to the
other system.

•	 Data: The block numbers on data packets begin with one and increase by one
for each new block of data. This convention enables the program to use a single
number to discriminate between new packets and duplicates. The data field is
from 0 to 512 bytes long. If it is 512 bytes long, the block is not the last block of
data; if it is from 0 to 511 bytes long, it signals the end of the transfer.

•	 ACK: This packet is used to acknowledge receipt of a data packet or a WRQ
packet. An ACK of a data packet contains the block number of the data packet
being acknowledged. An ACK of a WRQ contains a block number of zero.

•	 Error: An error packet can be the acknowledgment of any other type of packet.
The error code is an integer indicating the nature of the error (see Table 17.1).
The error message is intended for human consumption and should be in ASCII.
Like all other strings, it is terminated with a zero byte.

All packets other than duplicate ACKs (explained subsequently) and those
used for termination are to be acknowledged. Any packet can be acknowledged by
an error packet. If there are no errors, then the following conventions apply. A WRQ
or a data packet is acknowledged by an ACK packet. When an RRQ is sent, the other
side responds (in the absence of error) by beginning to transfer the file; thus, the first
data block serves as an acknowledgment of the RRQ packet. Unless a file transfer is
complete, each ACK packet from one side is followed by a data packet from the other,
so the data packet functions as an acknowledgment. An error packet can be acknowl-
edged by any other kind of packet, depending on the circumstance.

Figure 17.9  TFTP Packet Formats

2 bytes

Opcode

RRQ and
WRQ packets

Filename Mode0 0

1 byte 1 byten bytes n bytes

2 bytes 2 bytes

Opcode

Data packet

Block
Number Data

0 to 512 bytes

2 bytes 2 bytes n bytes

Opcode ErrMsg

Error packet

Error
Code 0

1 byte

2 bytes 2 bytes

Opcode

ACK packet

Block
Number

M17_STAL4290_09_GE_C17.indd 22 4/18/17 7:12 AM

Figure 17.10 shows a TFTP data packet in context. When such a packet is
handed down to UDP, UDP adds a header to form a UDP segment. This is then
passed to IP, which adds an IP header to form an IP datagram.

Figure 17.10  A TFTP Packet in Context

Version
= 4

IHL
= 5

DS Total Length

Identification Flags Fragment O�set

Time to Live Protocol = 6 Header Checksum

Source Address

Destination Address

Source Port Destination Port = 69

TFTP Data

ECN

Segment Length Checksum

IP
header

UDP
header

TFTP
header

Opcode Block Number

T
FT

P
Pa

ck
et

U
D

P
Se

gm
en

t

IP
 D

at
ag

ra
m

Value Meaning

0 Not defined, see error message (if any)

1 File not found

2 Access violation

3 Disk full or allocation exceeded

4 Illegal TFTP operation

5 Unknown transfer ID

6 File already exists

7 No such user

Table 17.1  TFTP Error Codes

APPENDIX 17A / THE TRIVIAL FILE TRANSFER PROTOCOL   17-23

M17_STAL4290_09_GE_C17.indd 23 4/18/17 7:12 AM

17-24   Chapter 17 / Network Protocols

Overview of a Transfer

The example illustrated in Figure 17.11 is of a simple file transfer operation from A
to B. No errors occur and the details of the option specification are not explored.

The operation begins when the TFTP module in system A sends a WRQ to the
TFTP module in system B. The WRQ packet is carried as the body of a UDP seg-
ment. The WRQ includes the name of the file (in this case, XXX) and a mode of
octet, or raw data. In the UDP header, the destination port number is 69, which
alerts the receiving UDP entity that this message is intended for the TFTP applica-
tion. The source port number is a TID selected by A, in this case 1511. System B is
prepared to accept the file and so responds with an ACK with a block number of 0.
In the UDP header, the destination port is 1511, which enables the UDP entity at
A to route the incoming packet to the TFTP module, which can match this TID with

Figure 17.11  Example TFTP Operation

WRQ (file = XXX, mode = octet, src = 1511, dst = 69)

DATA(Block# = 1, src = 1511, dst = 1660)

ACK(Block# = 0, src = 1660, dst = 1511)

ACK(Block# = 1, src = 1660, dst = 1511)

DATA(Block# = n, src = 1511, dst = 1660)

ACK(Block# = n, src = 1660, dst = 1511)

A B

T
im

e

M17_STAL4290_09_GE_C17.indd 24 4/18/17 7:12 AM

the TID in the WRQ. The source port is a TID selected by B for this file transfer, in
this case 1660.

Following this initial exchange, the file transfer proceeds. The transfer consists
of one or more data packets from A, each of which is acknowledged by B. The final
data packet contains less than 512 bytes of data, which signals the end of the
transfer.

Errors and Delays

If TFTP operates over a network or the Internet (as opposed to a direct data link),
it is possible for packets to be lost. Because TFTP operates over UDP, which does
not provide a reliable delivery service, there needs to be some mechanism in TFTP
to deal with lost packets. TFTP uses the common technique of a time-out mechanism.
Suppose A sends a packet to B that requires an acknowledgment (i.e., any packet
other than duplicate ACKs and those used for termination). When A has transmitted
the packet, it starts a timer. If the timer expires before the acknowledgment is
received from B, A retransmits the same packet. If in fact the original packet was lost,
then the retransmission will be the first copy of this packet received by B. If the origi-
nal packet was not lost but the acknowledgment from B was lost, then B will receive
two copies of the same packet from A and simply acknowledges both copies. Because
of the use of block numbers, this causes no confusion. The only exception to this rule
is for duplicate ACK packets. The second ACK is ignored.

Syntax, Semantics, and Timing

In Section 17.1, it was mentioned that the key features of a protocol can be classified
as syntax, semantics, and timing. These categories are easily seen in TFTP. The formats
of the various TFTP packets determine the syntax of the protocol. The semantics of
the protocol are shown in the definitions of each of the packet types and the error
codes. Finally, the sequence in which packets are exchanged, the use of block num-
bers, and the use of timers are all aspects of the timing of TFTP.

APPENDIX 17A / THE TRIVIAL FILE TRANSFER PROTOCOL   17-25

M17_STAL4290_09_GE_C17.indd 25 4/18/17 7:12 AM

18-1

Distributed Processing,
Client/Server, and Clusters

18.1	 Client/Server Computing
What Is Client/Server Computing?
Client/Server Applications
Middleware

18.2	 Distributed Message Passing
Reliability versus Unreliability
Blocking versus Nonblocking

18.3	 Remote Procedure Calls
Parameter Passing
Parameter Representation
Client/Server Binding
Synchronous versus Asynchronous
Object-Oriented Mechanisms

18.4	 Clusters
Cluster Configurations
Operating System Design Issues
Cluster Computer Architecture
Clusters Compared to SMP

18.5	 Windows Cluster Server

18.6	 Beowulf and Linux Clusters
Beowulf Features
Beowulf Software

18.7	 Summary

18.8	 References

18.9	 Key Terms, Review Questions, and Problems

Chapter

M18_STAL4290_09_GE_C18.indd 1 4/18/17 7:13 AM

18-2   Chapter 18 / Distributed Processing, Client/Server, and Clusters

In this chapter, we begin with an examination of some of the key concepts in distrib-
uted software, including client/server architecture, message passing, and remote pro-
cedure calls. Then we examine the increasingly important cluster architecture.

Chapters 17 and 18 complete our discussion of distributed systems.

  18.1	 CLIENT/SERVER COMPUTING

The concept of client/server computing, and related concepts, has become increas-
ingly important in information technology systems. This section begins with a descrip-
tion of the general nature of client/server computing. This is followed by a discussion
of alternative ways of organizing the client/server functions. The issue of file cache
consistency, raised by the use of file servers, is then examined. Finally, this section
introduces the concept of middleware.

What Is Client/Server Computing?

As with other new waves in the computer field, client/server computing comes with
its own set of jargon words. Table 18.1 lists some of the terms that are commonly
found in descriptions of client/server products and applications.

Learning Objectives

After studying this chapter, you should be able to:
•	 Present a summary of the key aspects of client/server computing.
•	 Understand the principle design issues for distributed message passing.
•	 Understand the principle design issues for remote procedure calls.
•	 Understand the principle design issues for clusters.
•	 Describe the cluster mechanisms in Windows 7 and Beowulf.

Applications Programming Interface (API)
  A set of function and call programs that allow clients and servers to intercommunicate.

Client
  A networked information requester, usually a PC or workstation, that can query a database and/or other
information from a server.

Middleware
  A set of drivers, APIs, or other software that improves connectivity between a client application and a server.

Relational Database
  A database in which information access is limited to the selection of rows that satisfy all search criteria.

Server
  A computer, usually a high-powered workstation, a minicomputer, or a mainframe, that houses information
for manipulation by networked clients.

Structured Query Language (SQL)
  A language developed by IBM and standardized by ANSI for addressing, creating, updating, or querying
relational databases.

Table 18.1  Client/Server Terminology

M18_STAL4290_09_GE_C18.indd 2 4/18/17 7:13 AM

18.1 / CLIENT/SERVER COMPUTING   18-3

Figure 18.1 attempts to capture the essence of the client/server concept. As the
term suggests, a client/server environment is populated by clients and servers. The
client machines are generally single-user PCs or workstations that provide a user-
friendly interface to the end user. The client-based station generally presents the type
of graphical interface that is most comfortable to users, including the use of windows
and a mouse. Microsoft Windows and Macintosh OS provide examples of such inter-
faces. Client-based applications are tailored for ease of use and include such familiar
tools as the spreadsheet.

Each server in the client/server environment provides a set of shared services
to the clients. The most common type of server currently is the database server, usu-
ally controlling a relational database. The server enables many clients to share access
to the same database and enables the use of a high-performance computer system to
manage the database.

In addition to clients and servers, the third essential ingredient of the client/
server environment is the network. Client/server computing is typically distributed
computing. Users, applications, and resources are distributed in response to business
requirements and linked by a single LAN or WAN or by an internet of networks.

How does a client/server configuration differ from any other distributed pro-
cessing solution? There are a number of characteristics that stand out and together,
make client/server distinct from other types of distributed processing:

•	 There is a heavy reliance on bringing user-friendly applications to the user on
his or her system. This gives the user a great deal of control over the timing and
style of computer usage, and gives department-level managers the ability to be
responsive to their local needs.

•	 Although applications are dispersed, there is an emphasis on centralizing cor-
porate databases and many network management and utility functions. This

Figure 18.1  Generic Client/Server Environment

LAN or WAN
or Internet

Workstation
(client)

Server

M18_STAL4290_09_GE_C18.indd 3 4/18/17 7:13 AM

18-4   Chapter 18 / Distributed Processing, Client/Server, and Clusters

enables corporate management to maintain overall control of the total capital
investment in computing and information systems and to provide interoperabil-
ity so systems are tied together. At the same time, it relieves individual depart-
ments and divisions of much of the overhead of maintaining sophisticated
computer-based facilities, but enables them to choose just about any type of
machine and interface they need to access data and information.

•	 There is a commitment, both by user organizations and vendors, to open and
modular systems. This means that the user has more choice in selecting products
and in mixing equipment from a number of vendors.

•	 Networking is fundamental to the operation. Thus, network management and
network security have a high priority in organizing and operating information
systems.

Client/Server Applications

The key feature of a client/server architecture is the allocation of application-level
tasks between clients and servers. Figure 18.2 illustrates the general case. In both client
and server, of course, the basic software is an operating system running on the hard-
ware platform. The platforms and the operating systems of client and server may differ.
Indeed, there may be a number of different types of client platforms and operating
systems and a number of different types of server platforms in a single environment.
As long as a particular client and server share the same communications protocols and
support the same applications, these lower-level differences are irrelevant.

It is the communications software that enables client and server to interoperate.
The principal example of such software is TCP/IP. Of course, the point of all of this
support software (communications and operating system) is to provide a base for
distributed applications. Ideally, the actual functions performed by the application
can be split up between client and server in a way that optimizes the use of resources.
In some cases, depending on the application needs, the bulk of the applications

Figure 18.2  Generic Client/Server Architecture

Communications
software

Server
operating system

Hardware platform

Presentation services

Application logic
(client portion)

Communications
software

Client
operating system

Hardware platform

Client workstation

Application logic
(server portion)

Server

Request

Response

Protocol
interaction

M18_STAL4290_09_GE_C18.indd 4 4/18/17 7:13 AM

18.1 / CLIENT/SERVER COMPUTING   18-5

software executes at the server, while in other cases, most of the application logic is
located at the client.

An essential factor in the success of a client/server environment is the way in
which the user interacts with the system as a whole. Thus, the design of the user inter-
face on the client machine is critical. In most client/server systems, there is heavy
emphasis on providing a graphical user interface (GUI) that is easy to use, easy to
learn, yet powerful and flexible. Thus, we can think of a presentation services module
in the client workstation that is responsible for providing a user-friendly interface to
the distributed applications available in the environment.

Database Applications  As an example that illustrates the concept of splitting
application logic between client and server, let us consider one of the most common
families of client/server applications: those that use relational databases. In this
environment, the server is essentially a database server. Interaction between client
and server is in the form of transactions in which the client makes a database request
and receives a database response.

Figure 18.3 illustrates, in general terms, the architecture of such a system. The
server is responsible for maintaining the database, for which purpose a complex data-
base management system software module is required. A variety of different applica-
tions that make use of the database can be housed on client machines. The “glue” that
ties client and server together is software that enables the client to make requests for
access to the server’s database. A popular example of such logic is the structured
query language (SQL).

Figure 18.3 suggests that all of the application logic—the software for “number
crunching” or other types of data analysis—is on the client side, while the server is only
concerned with managing the database. Whether such a configuration is appropriate
depends on the style and intent of the application. For example, suppose the primary

Figure 18.3  Client/Server Architecture for Database Applications

Communications
software

Database management
system

Server operating system

Hardware platform

Database logic

Server

Presentation services

Application logic

Communications
software

Client
operating system

Hardware platform

Client workstation

Database logic

Request

Response

Protocol
interaction

M18_STAL4290_09_GE_C18.indd 5 4/18/17 7:13 AM

18-6   Chapter 18 / Distributed Processing, Client/Server, and Clusters

Figure 18.4  Client/Server Database Usage

Initial query

100,000 possible records

Next query

1,000 possible records

Final query

One record returned 1,000,000
record

database

ServerClient

(a) Desirable client/server use

Query

300,000 records returned

1,000,000
record

database

Server

Client

(b) Misused client/server

purpose is to provide online access for record lookup. Figure 18.4a suggests how this
might work. Suppose the server is maintaining a database of 1 million records (called
rows in relational database terminology), and the user wants to perform a lookup that
should result in zero, one, or at most a few records. The user could search for these
records using a number of search criteria (e.g., records older than 1992, records referring
to individuals in Ohio, records referring to a specific event or characteristic, etc.). An
initial client query may yield a server response that there are 100,000 records that
satisfy the search criteria. The user then adds additional qualifiers and issues a new
query. This time, a response indicating that there are 1,000 possible records is returned.
Finally, the client issues a third request with additional qualifiers. The resulting search
criteria yield a single match, and the record is returned to the client.

The preceding application is well-suited to a client/server architecture for two
reasons:

1.	 There is a massive job of sorting and searching the database. This requires a
large disk or bank of disks, a high-speed CPU, and a high-speed I/O architecture.
Such capacity and power is not needed and is too expensive for a single-user
workstation or PC.

2.	 It would place too great a traffic burden on the network to move the entire
1-million-record file to the client for searching. Therefore, it is not enough for the
server just to be able to retrieve records on behalf of a client; the server needs
to have database logic that enables it to perform searches on behalf of a client.

M18_STAL4290_09_GE_C18.indd 6 4/18/17 7:13 AM

18.1 / CLIENT/SERVER COMPUTING   18-7

Now consider the scenario of Figure 18.4b, which has the same 1-million-record
database. In this case, a single query results in the transmission of 300,000 records
over the network. This might happen if, for example, the user wishes to find the grand
total or mean value of some field across many records or even the entire database.

Clearly, this latter scenario is unacceptable. One solution to this problem, which
maintains the client/server architecture with all of its benefits, is to move part of the
application logic over to the server. That is, the server can be equipped with applica-
tion logic for performing data analysis as well as data retrieval and data searching.

Classes of Client/Server Applications  Within the general framework of client/
server, there is a spectrum of implementations that divide the work between client
and server differently. Figure 18.5 illustrates in general terms some of the major
options for database applications. Other splits are possible, and the options may have
a different characterization for other types of applications. In any case, it is useful to
examine this figure to get a feel for the kind of trade-offs possible.

Figure 18.5 depicts four classes:

•	 Host-based processing: Host-based processing is not true client/server comput-
ing as the term is generally used. Rather, host-based processing refers to the

Figure 18.5 � Classes of Client/Server
Applications

DBMS

Database logic

Application logic

DBMS

Database logic

Application logic

DBMS

Database logic

DBMS

Database logicDatabase logic

Application logicApplication logic

Presentation logic

Presentation logic

Presentation logic

Application logic

Presentation logic

(a) Host-based processing

(b) Server-based processing

(c) Cooperative processing

(d) Client-based processing

Client Server

M18_STAL4290_09_GE_C18.indd 7 4/18/17 7:13 AM

18-8   Chapter 18 / Distributed Processing, Client/Server, and Clusters

traditional mainframe environment in which all or virtually all of the processing
is done on a central host. Often the user interface is via a dumb terminal. Even
if the user is employing a microcomputer, the user’s station is generally limited
to the role of a terminal emulator.

•	 Server-based processing: The most basic class of client/server configuration is
one in which the client is principally responsible for providing a graphical user
interface, while virtually all of the processing is done on the server. This configu-
ration is typical of early client/server efforts, especially departmental-level sys-
tems. The rationale behind such configurations is that the user workstation is
best suited to providing a user-friendly interface, and that databases and appli-
cations can easily be maintained on central systems. Although the user gains
the advantage of a better interface, this type of configuration does not generally
lend itself to any significant gains in productivity, or to any fundamental changes
in the actual business functions that the system supports.

•	 Client-based processing: At the other extreme, virtually all application process-
ing may be done at the client, with the exception of data validation routines
and other database logic functions that are best performed at the server. Gen-
erally, some of the more sophisticated database logic functions are housed on
the client side. This architecture is perhaps the most common client/server
approach in current use. It enables the user to employ applications tailored to
local needs.

•	 Cooperative processing: In a cooperative processing configuration, the applica-
tion processing is performed in an optimized fashion, taking advantage of the
strengths of both client and server machines and of the distribution of data.
Such a configuration is more complex to set up and maintain but, in the long
run, this type of configuration may offer greater user productivity gains and
greater network efficiency than other client/server approaches.

Figures 18.5c and 18.5d correspond to configurations in which a considerable
fraction of the load is on the client. This so-called fat client model has been popular-
ized by application development tools such as Sybase Inc.’s PowerBuilder and Gupta
Corp.’s SQL Windows. Applications developed with these tools are typically depart-
mental in scope. The main benefit of the fat client model is that it takes advantage of
desktop power, offloading application processing from servers and making them
more efficient and less likely to be bottlenecks.

There are, however, several disadvantages to the fat client strategy. The addition
of more functions rapidly overloads the capacity of desktop machines, forcing com-
panies to upgrade. If the model extends beyond the department to incorporate many
users, the company must install high-capacity LANs to support the large volumes of
transmission between the thin servers and the fat clients. Finally, it is difficult to
maintain, upgrade, or replace applications distributed across tens or hundreds of
desktops.

Figure 18.5b is representative of a thin client approach. This approach more
nearly mimics the traditional host-centered approach and is often the migration
path for evolving corporate-wide applications from the mainframe to a distributed
environment.

M18_STAL4290_09_GE_C18.indd 8 4/18/17 7:13 AM

18.1 / CLIENT/SERVER COMPUTING   18-9

Three-Tier Client/Server Architecture  The traditional client/server
architecture involves two levels, or tiers: a client tier and a server tier. A three-tier
architecture is also common (see Figure 18.6). In this architecture, the application
software is distributed among three types of machines: a user machine, a middle-tier
server, and a backend server. The user machine is the client machine we have been
discussing and, in the three-tier model, is typically a thin client. The middle-tier
machines are essentially gateways between the thin user clients and a variety of
backend database servers. The middle-tier machines can convert protocols and map
from one type of database query to another. In addition, the middle-tier machine can
merge/integrate results from different data sources. Finally, the middle-tier machine
can serve as a gateway between the desktop applications and the backend legacy
applications by mediating between the two worlds.

The interaction between the middle-tier server and the backend server also
follows the client/server model. Thus, the middle-tier system acts as both a client and
a server.

File Cache Consistency  When a file server is used, performance of file I/O can
be noticeably degraded relative to local file access because of the delays imposed by
the network. To reduce this performance penalty, individual systems can use file
caches to hold recently accessed file records. Because of the principle of locality, use
of a local file cache should reduce the number of remote server accesses that must
be made.

Figure 18.6  Three-Tier Client/Server Architecture

Client

Middle-tier server
(application server)

Back end servers
(data servers)

M18_STAL4290_09_GE_C18.indd 9 4/18/17 7:13 AM

18-10   Chapter 18 / Distributed Processing, Client/Server, and Clusters

Figure 18.7  Distributed File Caching in Sprite

Server
tra�c

File
tra�c

Server
tra�c

Disk
tra�c

Network

Server
disk

Disk
tra�c

File
tra�c

Client
disk

Client
cache

Server
cache

Client
cache

Figure 18.7 illustrates a typical distributed mechanism for caching files among
a networked collection of workstations. When a process makes a file access, the
request is presented first to the cache of the process’s workstation (“file traffic”). If
not satisfied there, the request is passed either to the local disk, if the file is stored
there (“disk traffic”), or to a file server, where the file is stored (“server traffic”). At
the server, the server’s cache is first interrogated and, if there is a miss, then the
server’s disk is accessed. The dual caching approach is used to reduce communica-
tions traffic (client cache) and disk I/O (server cache).

When caches always contain exact copies of remote data, we say the caches are
consistent. It is possible for caches to become inconsistent when the remote data are
changed and the corresponding obsolete local cache copies are not discarded. This
can happen if one client modifies a file that is also cached by other clients. The dif-
ficulty is actually at two levels. If a client adopts a policy of immediately writing any
changes to a file back to the server, then any other client that has a cache copy of the
relevant portion of the file will have obsolete data. The problem is made even worse
if the client delays writing back changes to the server. In that case, the server itself
has an obsolete version of the file, and new file read requests to the server might
obtain obsolete data. The problem of keeping local cache copies up to date to changes
in remote data is known as the cache consistency problem.

The simplest approach to cache consistency is to use file-locking techniques to
prevent simultaneous access to a file by more than one client. This guarantees con-
sistency at the expense of performance and flexibility. A more powerful approach is
provided with the facility in Sprite [NELS88, OUST88]. Any number of remote pro-
cesses may open a file for read and create their own client cache. But when an open
file request to a server requests write access and other processes have the file open
for read access, the server takes two actions. First, it notifies the writing process that,
although it may maintain a cache, it must write back all altered blocks immediately

M18_STAL4290_09_GE_C18.indd 10 4/18/17 7:13 AM

18.1 / CLIENT/SERVER COMPUTING   18-11

upon update. There can be at most one such client. Second, the server notifies all
reading processes that have the file open that the file is no longer cacheable.

Middleware

The development and deployment of client/server products has far outstripped
efforts to standardize all aspects of distributed computing, from the physical layer up
to the application layer. This lack of standards makes it difficult to implement an
integrated, multivendor, enterprise-wide client/server configuration. Because much
of the benefit of the client/server approach is tied up with its modularity and the
ability to mix and match platforms and applications to provide a business solution,
this interoperability problem must be solved.

To achieve the true benefits of the client/server approach, developers must have
a set of tools that provide a uniform means and style of access to system resources
across all platforms. This will enable programmers to build applications that not only
look and feel the same on various PCs and workstations, but that use the same
method to access data regardless of the location of that data.

The most common way to meet this requirement is by the use of standard pro-
gramming interfaces and protocols that sit between the application above and com-
munications software and operating system below. Such standardized interfaces and
protocols have come to be referred to as middleware. With standard programming
interfaces, it is easy to implement the same application on a variety of server types
and workstation types. This obviously benefits the customer, but vendors are also
motivated to provide such interfaces. The reason is that customers buy applications,
not servers; customers will only choose among those server products that run the
applications they want. The standardized protocols are needed to link these various
server interfaces back to the clients that need access to them.

There is a variety of middleware packages ranging from the very simple to the
very complex. What they all have in common is the capability to hide the complexities
and disparities of different network protocols and operating systems. Client and
server vendors generally provide a number of the more popular middleware packages
as options. Thus, a user can settle on a particular middleware strategy then assemble
equipment from various vendors that support that strategy.

Middleware Architecture  Figure 18.8 suggests the role of middleware in a
client/server architecture. The exact role of the middleware component will depend
on the style of client/server computing being used. Referring back to Figure 18.5,
recall that there are a number of different client/server approaches, depending on the
way in which application functions are split up. In any case, Figure 18.8 gives a good
general idea of the architecture involved.

Note there is both a client and server component of middleware. The basic
purpose of middleware is to enable an application or a user at a client to access a
variety of services on servers without being concerned about differences among serv-
ers. To look at one specific application area, the structured query language (SQL) is
supposed to provide a standardized means for access to a relational database by
either a local or remote user or application. However, many relational database ven-
dors, although they support SQL, have added their own proprietary extensions to

M18_STAL4290_09_GE_C18.indd 11 4/18/17 7:13 AM

18-12   Chapter 18 / Distributed Processing, Client/Server, and Clusters

SQL. This enables vendors to differentiate their products but also creates potential
incompatibilities.

As an example, consider a distributed system used to support, among other
things, the personnel department. The basic employee data, such as employee name
and address, might be stored on a Gupta database, whereas salary information might
be contained on an Oracle database. When a user in the personnel department
requires access to particular records, that user does not want to be concerned with
which vendor’s database contains the records needed. Middleware provides a layer
of software that enables uniform access to these differing systems.

It is instructive to look at the role of middleware from a logical, rather than an
implementation, point of view. This viewpoint is illustrated in Figure 18.9. Middleware
enables the realization of the promise of distributed client/server computing. The
entire distributed system can be viewed as a set of applications and resources avail-
able to users. Users need not be concerned with the location of data or indeed the
location of applications. All applications operate over a uniform applications pro-
gramming interface (API). The middleware, which cuts across all client and server
platforms, is responsible for routing client requests to the appropriate server.

Although there is a wide variety of middleware products, these products are
typically based on one of two underlying mechanisms: message passing or remote
procedure calls. These two methods are examined in the next two sections.

  18.2	 DISTRIBUTED MESSAGE PASSING

It is usually the case in a distributed processing systems that the computers do not
share main memory; each is an isolated computer system. Thus, interprocessor com-
munication techniques that rely on shared memory, such as semaphores, cannot be

Figure 18.8  The Role of Middleware in Client/Server Architecture

Communications
software

Application
services

Server operating system

Hardware platform

Middleware

Server

Presentation services

Application logic

Communications
software

Client
operating system

Hardware platform

Client workstation

Middleware
Middleware
interaction

Protocol
interaction

M18_STAL4290_09_GE_C18.indd 12 4/18/17 7:13 AM

18.2 / DISTRIBUTED MESSAGE PASSING   18-13

used. Instead, techniques that rely on message passing are used. In this section and the
next, we look at the two most common approaches. The first is the straightforward
application of messages as they are used in a single system. The second is a separate
technique that relies on message passing as a basic function: the remote procedure call.

Figure 18.10a shows the use of message passing to implement client/server func-
tionality. A client process requires some service (e.g., read a file, print) and sends a mes-
sage containing a request for service to a server process. The server process honors the
request and sends a message containing a reply. In its simplest form, only two functions
are needed: Send and Receive. The Send function specifies a destination and includes
the message content. The Receive function tells from whom a message is desired (includ-
ing “all”) and provides a buffer where the incoming message is to be stored.

Figure 18.11 suggests an implementation for message passing. Processes make
use of the services of a message-passing module. Service requests can be expressed
in terms of primitives and parameters. A primitive specifies the function to be per-
formed, and the parameters are used to pass data and control information. The actual
form of a primitive depends on the message-passing software. It may be a procedure
call, or it may itself be a message to a process that is part of the operating system.

The Send primitive is used by the process that desires to send the message. Its
parameters are the identifier of the destination process and the contents of the mes-
sage. The message-passing module constructs a data unit that includes these two
elements. This data unit is sent to the machine that hosts the destination process, using
some sort of communications facility, such as TCP/IP. When the data unit is received
in the target system, it is routed by the communications facility to the message-passing
module. This module examines the process ID field and stores the message in the
buffer for that process.

Figure 18.9  Logical View of Middleware

Application

APIs

Middleware
(distributed system services)

Platform interfaces

Application

Platform:
OS
Hardware

Platform:
OS
Hardware

M18_STAL4290_09_GE_C18.indd 13 4/18/17 7:13 AM

18-14   Chapter 18 / Distributed Processing, Client/Server, and Clusters

Figure 18.10  Middleware Mechanisms

Application RPC
stub

program

Transport

Network

Application
RPC
stub

program

Transport

Network

(b) Remote procedure calls

Application-specific
procedure invocations

and returns

Application

Message-oriented
middleware

(with message queue)

Transport

Network

(a) Message-oriented middleware

Application-specific
messages

(c) Object request broker

Network

Transport

Object
request
broker

Network

Transport

Object
server

Object requests
and responses

Object requests
and responses

Client

Client Server

Application

Message-oriented
middleware

(with message queue)

Transport

Network

ApplicationRPC
stub

program

Transport

Network

Server

Client Server

Figure 18.11  Basic Message-Passing Primitives

Sending
process

Receiving
process

Message-passing
module

Message-passing
module

ProcessId Message

M18_STAL4290_09_GE_C18.indd 14 4/18/17 7:13 AM

18.2 / DISTRIBUTED MESSAGE PASSING   18-15

In this scenario, the receiving process must announce its willingness to receive
messages by designating a buffer area and informing the message-passing module by
a Receive primitive. An alternative approach does not require such an announce-
ment. Instead, when the message-passing module receives a message, it signals the
destination process with some sort of Receive signal then makes the received message
available in a shared buffer.

Several design issues are associated with distributed message passing, and these
are addressed in the remainder of this section.

Reliability versus Unreliability

A reliable message-passing facility is one that guarantees delivery if possible. Such
a facility makes use of a reliable transport protocol or similar logic and performs
error checking, acknowledgment, retransmission, and reordering of misordered
messages. Because delivery is guaranteed, it is not necessary to let the sending
process know the message was delivered. However, it might be useful to provide
an acknowledgment back to the sending process so it knows that delivery has
already taken place. In either case, if the facility fails to achieve delivery (e.g., per-
sistent network failure, crash of destination system), the sending process is notified
of the failure.

At the other extreme, the message-passing facility may simply send the message
out into the communications network but will report neither success nor failure. This
alternative greatly reduces the complexity and processing and communications over-
head of the message-passing facility. For those applications that require confirmation
that a message has been delivered, the applications themselves may use request and
reply messages to satisfy the requirement.

Blocking versus Nonblocking

With nonblocking, or asynchronous, primitives, a process is not suspended as a result
of issuing a Send or Receive. Thus, when a process issues a Send primitive, the operat-
ing system returns control to the process as soon as the message has been queued for
transmission or a copy has been made. If no copy is made, any changes made to the
message by the sending process before or even while it is being transmitted are made
at the risk of the process. When the message has been transmitted or copied to a safe
place for subsequent transmission, the sending process is interrupted to be informed
that the message buffer may be reused. Similarly, a nonblocking Receive is issued by
a process that then proceeds to run. When a message arrives, the process is informed
by interrupt, or it can poll for status periodically.

Nonblocking primitives provide for efficient, flexible use of the message-pass-
ing facility by processes. The disadvantage of this approach is that it is difficult to test
and debug programs that use these primitives. Irreproducible, timing-dependent
sequences can create subtle and difficult problems.

The alternative is to use blocking, or synchronous, primitives. A blocking Send
does not return control to the sending process until the message has been transmitted
(unreliable service) or until the message has been sent and an acknowledgment
received (reliable service). A blocking Receive does not return control until a mes-
sage has been placed in the allocated buffer.

M18_STAL4290_09_GE_C18.indd 15 4/18/17 7:13 AM

18-16   Chapter 18 / Distributed Processing, Client/Server, and Clusters

  18.3	 REMOTE PROCEDURE CALLS

A variation on the basic message-passing model is the remote procedure call. This is
now a widely accepted and common method for encapsulating communication in a
distributed system. The essence of the technique is to allow programs on different
machines to interact using simple procedure call/return semantics, just as if the two
programs were on the same machine. That is, the procedure call is used for access
to remote services. The popularity of this approach is due to the following
advantages.

1.	 The procedure call is a widely accepted, used, and understood abstraction.

2.	 The use of remote procedure calls enables remote interfaces to be specified as
a set of named operations with designated types. Thus, the interface can be
clearly documented, and distributed programs can be statically checked for type
errors.

3.	 Because a standardized and precisely defined interface is specified, the com-
munication code for an application can be generated automatically.

4.	 Because a standardized and precisely defined interface is specified, developers
can write client and server modules that can be moved among computers and
operating systems with little modification and recoding.

The remote procedure call mechanism can be viewed as a refinement of reliable,
blocking message passing. Figure 18.10b illustrates the general architecture, and
Figure 18.12 provides a more detailed look. The calling program makes a normal
procedure call with parameters on its machine. For example,

CALL P(X, Y)

where

P = procedure name

X = passed arguments

Y = returned values

It may or may not be transparent to the user that the intention is to invoke a
remote procedure on some other machine. A dummy or stub procedure P must be
included in the caller’s address space or be dynamically linked to it at call time. This
procedure creates a message that identifies the procedure being called and includes
the parameters. It then sends this message to a remote system and waits for a reply.
When a reply is received, the stub procedure returns to the calling program, providing
the returned values.

At the remote machine, another stub program is associated with the called
procedure. When a message comes in, it is examined and a local CALL P(X, Y) is
generated. This remote procedure is thus called locally, so its normal assumptions
about where to find parameters, the state of the stack, and so on are identical to the
case of a purely local procedure call.

Several design issues are associated with remote procedure calls, and these are
addressed in the remainder of this section.

M18_STAL4290_09_GE_C18.indd 16 4/18/17 7:13 AM

18.3 / REMOTE PROCEDURE CALLS   18-17

Parameter Passing

Most programming languages allow parameters to be passed as values (call by value)
or as pointers to a location that contains the value (call by reference). Call by value
is simple for a remote procedure call: The parameters are simply copied into the
message and sent to the remote system. It is more difficult to implement call by refer-
ence. A unique, system-wide pointer is needed for each object. The overhead for this
capability may not be worth the effort.

Parameter Representation

Another issue is how to represent parameters and results in messages. If the called
and calling programs are in identical programming languages on the same type of
machines with the same operating system, then the representation requirement may
present no problems. If there are differences in these areas, then there will probably
be differences in the ways in which numbers and even text are represented. If a
full-blown communications architecture is used, then this issue is handled by the
presentation layer. However, the overhead of such an architecture has led to the
design of remote procedure call facilities that bypass most of the communications
architecture and provide their own basic communications facility. In that case, the
conversion responsibility falls on the remote procedure call facility (e.g., see
[GIBB87]).

The best approach to this problem is to provide a standardized format for com-
mon objects, such as integers, floating-point numbers, characters, and character
strings. Then the native parameters on any machine can be converted to and from the
standardized representation.

Figure 18.12  Remote Procedure Call Mechanism

Local stub

RPC
mechanism

Local stub

RPC
mechanism

Local application
or

operating system

Client
application

Remote server
application

Local
procedure

calls

Local
procedure

call

Local
response

Local
response

Local
response

Remote procedure call

Remote procedure call

M18_STAL4290_09_GE_C18.indd 17 4/18/17 7:13 AM

18-18   Chapter 18 / Distributed Processing, Client/Server, and Clusters

Client/Server Binding

Binding specifies how the relationship between a remote procedure and the calling
program will be established. A binding is formed when two applications have made
a logical connection and are prepared to exchange commands and data.

Nonpersistent binding means that a logical connection is established between
the two processes at the time of the remote procedure call, and that as soon as the
values are returned, the connection is dismantled. Because a connection requires the
maintenance of state information on both ends, it consumes resources. The nonper-
sistent style is used to conserve those resources. On the other hand, the overhead
involved in establishing connections makes nonpersistent binding inappropriate for
remote procedures that are called frequently by the same caller.

With persistent binding, a connection that is set up for a remote procedure call
is sustained after the procedure return. The connection can then be used for future
remote procedure calls. If a specified period of time passes with no activity on the
connection, then the connection is terminated. For applications that make many
repeated calls to remote procedures, persistent binding maintains the logical connec-
tion and allows a sequence of calls and returns to use the same connection.

Synchronous versus Asynchronous

The concepts of synchronous and asynchronous remote procedure calls are analogous
to the concepts of blocking and nonblocking messages. The traditional remote proce-
dure call is synchronous, which requires that the calling process wait until the called
process returns a value. Thus, the synchronous RPC behaves much like a subroutine call.

The synchronous RPC is easy to understand and program because its behavior
is predictable. However, it fails to exploit fully the parallelism inherent in distributed
applications. This limits the kind of interaction the distributed application can have,
resulting in lower performance.

To provide greater flexibility, various asynchronous RPC facilities have been
implemented to achieve a greater degree of parallelism while retaining the familiarity
and simplicity of the RPC [ANAN92]. Asynchronous RPCs do not block the caller;
the replies can be received as and when they are needed, thus allowing client execu-
tion to proceed locally in parallel with the server invocation.

A typical asynchronous RPC use is to enable a client to invoke a server repeat-
edly so the client has a number of requests in the pipeline at one time, each with its
own set of data. Synchronization of client and server can be achieved in one of
two ways:

1.	 A higher-layer application in the client and server can initiate the exchange
then check at the end that all requested actions have been performed.

2.	 A client can issue a string of asynchronous RPCs followed by a final synchro-
nous RPC. The server will respond to the synchronous RPC only after complet-
ing all of the work requested in the preceding asynchronous RPCs.

In some schemes, asynchronous RPCs require no reply from the server and the
server cannot send a reply message. Other schemes either require or allow a reply,
but the caller does not wait for the reply.

M18_STAL4290_09_GE_C18.indd 18 4/18/17 7:13 AM

18.4 / CLUSTERS   18-19

Object-Oriented Mechanisms

As object-oriented technology becomes more prevalent in operating system design,
client/server designers have begun to embrace this approach. In this approach, clients
and servers ship messages back and forth between objects. Object communications
may rely on an underlying message or RPC structure or be developed directly on top
of object-oriented capabilities in the operating system.

A client that needs a service sends a request to an object request broker, which
acts as a directory of all the remote service available on the network (see Fig-
ure 18.10c). The broker calls the appropriate object and passes along any relevant
data. Then the remote object services the request and replies to the broker, which
returns the response to the client.

The success of the object-oriented approach depends on standardization of the
object mechanism. Unfortunately, there are several competing designs in this area.
One is Microsoft’s Component Object Model (COM), the basis for Object Linking
and Embedding (OLE). A competing approach, developed by the Object Manage-
ment Group, is the Common Object Request Broker Architecture (CORBA), which
has wide industry support. IBM, Apple, Sun, and many other vendors support the
CORBA approach.

  18.4	 CLUSTERS

Clustering is an alternative to symmetric multiprocessing (SMP) as an approach to
providing high performance and high availability and is particularly attractive for
server applications. We can define a cluster as a group of interconnected, whole com-
puters working together as a unified computing resource that can create the illusion
of being one machine. The term whole computer means a system that can run on its
own, apart from the cluster; in the literature, each computer in a cluster is typically
referred to as a node.

[BREW97] lists four benefits that can be achieved with clustering. These can
also be thought of as objectives or design requirements:

•	 Absolute scalability: It is possible to create large clusters that far surpass the
power of even the largest stand-alone machines. A cluster can have dozens or
even hundreds of machines, each of which is a multiprocessor.

•	 Incremental scalability: A cluster is configured in such a way that it is possible
to add new systems to the cluster in small increments. Thus, a user can start out
with a modest system and expand it as needs grow, without having to go through
a major upgrade in which an existing small system is replaced with a larger
system.

•	 High availability: Because each node in a cluster is a stand-alone computer, the
failure of one node does not mean loss of service. In many products, fault toler-
ance is handled automatically in software.

•	 Superior price/performance: By using commodity building blocks, it is possible
to put together a cluster with equal or greater computing power than a single
large machine, at much lower cost.

M18_STAL4290_09_GE_C18.indd 19 4/18/17 7:13 AM

18-20   Chapter 18 / Distributed Processing, Client/Server, and Clusters

Cluster Configurations

In the literature, clusters are classified in a number of different ways. Perhaps the
simplest classification is based on whether the computers in a cluster share access to
the same disks. Figure 18.13a shows a two-node cluster in which the only intercon-
nection is by means of a high-speed link that can be used for message exchange to
coordinate cluster activity. The link can be a LAN that is shared with other computers
that are not part of the cluster, or the link can be a dedicated interconnection facility.
In the latter case, one or more of the computers in the cluster will have a link to a
LAN or WAN so there is a connection between the server cluster and remote client
systems. Note in the figure, each computer is depicted as being a multiprocessor. This
is not necessary but does enhance both performance and availability.

In the simple classification depicted in Figure 18.13, the other alternative is a
shared disk cluster. In this case, there generally is still a message link between nodes.
In addition, there is a disk subsystem that is directly linked to multiple computers
within the cluster. In Figure 18.13b, the common disk subsystem is a RAID system.
The use of RAID or some similar redundant disk technology is common in clusters
so the high availability achieved by the presence of multiple computers is not com-
promised by a shared disk that is a single point of failure.

Figure 18.13  Cluster Configurations

P P

High-speed message link

High-speed message link

M I/O I/O

P P

I/OI/O M

(a) Standby server with no shared disk

(b) Shared disk

P P

RAID

M I/O I/O

P P

I/OI/O M

I/O I/O

M18_STAL4290_09_GE_C18.indd 20 4/18/17 7:13 AM

18.4 / CLUSTERS   18-21

A clearer picture of the range of clustering approaches can be gained by looking
at functional alternatives. A white paper from Hewlett Packard [HP96] provides a
useful classification along functional lines (see Table 18.2), which we now discuss.

A common, older method, known as passive standby, is simply to have one
computer handle all of the processing load while the other computer remains inactive,
standing by to take over in the event of a failure of the primary. To coordinate the
machines, the active, or primary, system periodically sends a “heartbeat” message to
the standby machine. Should these messages stop arriving, the standby assumes that
the primary server has failed and puts itself into operation. This approach increases
availability but does not improve performance. Further, if the only information that
is exchanged between the two systems is a heartbeat message, and if the two systems
do not share common disks, then the standby provides a functional backup but has
no access to the databases managed by the primary.

The passive standby is generally not referred to as a cluster. The term cluster is
reserved for multiple interconnected computers that are all actively doing processing
while maintaining the image of a single system to the outside world. The term active
secondary is often used in referring to this configuration. Three classifications of
clustering can be identified: separate servers, shared nothing, and shared memory.

In one approach to clustering, each computer is a separate server with its own
disks and there are no disks shared between systems (see Figure 18.13a). This arrange-
ment provides high performance as well as high availability. In this case, some type
of management or scheduling software is needed to assign incoming client requests
to servers so the load is balanced and high utilization is achieved. It is desirable to

Clustering Method Description Benefits Limitations

Passive Standby A secondary server takes
over in case of primary
server failure.

Easy to implement. High cost because the
secondary server is
unavailable for other
processing tasks.

Active Secondary The secondary server is
also used for processing
tasks.

Reduced cost because
secondary servers can be
used for processing.

Increased complexity.

Separate Servers Separate servers have
their own disks. Data are
continuously copied from
primary to secondary
server.

High availability. High network and server
overhead due to copying
operations.

Servers Connected
to Disks

Servers are cabled to the
same disks, but each
server owns its disks. If
one server fails, its disks
are taken over by the
other server.

Reduced network and
server overhead due to
elimination of copying
operations.

Usually requires disk
mirroring or RAID
technology to compensate
for risk of disk failure.

Servers Share Disks Multiple servers simulta-
neously share access to
disks.

Low network and server
overhead. Reduced risk of
downtime caused by disk
failure.

Requires lock manager
software. Usually used
with disk mirroring or
RAID technology.

Table 18.2  Clustering Methods: Benefits and Limitations

M18_STAL4290_09_GE_C18.indd 21 4/18/17 7:13 AM

18-22   Chapter 18 / Distributed Processing, Client/Server, and Clusters

have a failover capability, which means that if a computer fails while executing an
application, another computer in the cluster can pick up and complete the applica-
tion. For this to happen, data must constantly be copied among systems so each
system has access to the current data of the other systems. The overhead of this data
exchange ensures high availability at the cost of a performance penalty.

To reduce the communications overhead, most clusters now consist of servers
connected to common disks (see Figure 18.13b). In one variation of this approach,
called shared nothing, the common disks are partitioned into volumes, and each
volume is owned by a single computer. If that computer fails, the cluster must be
reconfigured so some other computer has ownership of the volumes of the failed
computer.

It is also possible to have multiple computers share the same disks at the same
time (called the shared disk approach), so each computer has access to all of the
volumes on all of the disks. This approach requires the use of some type of locking
facility to ensure data can only be accessed by one computer at a time.

Operating System Design Issues

Full exploitation of a cluster hardware configuration requires some enhancements to
a single-system operating system.

Failure Management  How failures are managed by a cluster depends on the
clustering method used (see Table 18.2). In general, two approaches can be taken to
dealing with failures: highly available clusters and fault-tolerant clusters. A highly
available cluster offers a high probability that all resources will be in service. If a
failure occurs, such as a node goes down or a disk volume is lost, then the queries in
progress are lost. Any lost query, if retried, will be serviced by a different computer
in the cluster. However, the cluster operating system makes no guarantee about the
state of partially executed transactions. This would need to be handled at the
application level.

A fault-tolerant cluster ensures all resources are always available. This is
achieved by the use of redundant shared disks and mechanisms for backing out
uncommitted transactions and committing completed transactions.

The function of switching an application and data resources over from a failed
system to an alternative system in the cluster is referred to as failover. A related func-
tion is the restoration of applications and data resources to the original system once
it has been fixed; this is referred to as failback. Failback can be automated, but this is
desirable only if the problem is truly fixed and unlikely to recur. If not, automatic
failback can cause subsequently failed resources to bounce back and forth between
computers, resulting in performance and recovery problems.

Load Balancing  A cluster requires an effective capability for balancing the load
among available computers. This includes the requirement that the cluster be
incrementally scalable. When a new computer is added to the cluster, the load-
balancing facility should automatically include this computer in scheduling
applications. Middleware mechanisms need to recognize that services can appear on
different members of the cluster and may migrate from one member to another.

M18_STAL4290_09_GE_C18.indd 22 4/18/17 7:13 AM

18.4 / CLUSTERS   18-23

Parallelizing Computation  In some cases, effective use of a cluster requires
executing software from a single application in parallel. [KAPP00] lists three general
approaches to the problem:

•	 Parallelizing compiler: A parallelizing compiler determines, at compile time,
which parts of an application can be executed in parallel. These are then split
off to be assigned to different computers in the cluster. Performance depends
on the nature of the problem and how well the compiler is designed.

•	 Parallelized application: In this approach, the programmer writes the applica-
tion from the outset to run on a cluster and uses message passing to move
data, as required, between cluster nodes. This places a high burden on the pro-
grammer but may be the best approach for exploiting clusters for some
applications.

•	 Parametric computing: This approach can be used if the essence of the applica-
tion is an algorithm or program that must be executed a large number of times,
each time with a different set of starting conditions or parameters. A good
example is a simulation model, which will run a large number of different sce-
narios, then develop statistical summaries of the results. For this approach to be
effective, parametric processing tools are needed to organize, run, and manage
the jobs in an orderly manner.

Cluster Computer Architecture

Figure 18.14 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or switch hardware. Each computer is capable of
operating independently. In addition, a middleware layer of software is installed in
each computer to enable cluster operation. The cluster middleware provides a unified
system image to the user, known as a single-system image. The middleware may also
be responsible for providing high availability, by means of load balancing and
responding to failures in individual components. [HWAN99] lists the following as
desirable cluster middleware services and functions:

•	 Single entry point: A user logs on to the cluster rather than to an individual
computer

•	 Single file hierarchy: The user sees a single hierarchy of file directories under
the same root directory.

•	 Single control point: There is a default node used for cluster management and
control.

•	 Single virtual networking: Any node can access any other point in the cluster,
even though the actual cluster configuration may consist of multiple intercon-
nected networks. There is a single virtual network operation.

•	 Single memory space: Distributed shared memory enables programs to share
variables.

•	 Single job-management system: Under a cluster job scheduler, a user can sub-
mit a job without specifying the host computer to execute the job.

M18_STAL4290_09_GE_C18.indd 23 4/18/17 7:13 AM

18-24   Chapter 18 / Distributed Processing, Client/Server, and Clusters

•	 Single-user interface: A common graphic interface supports all users, regardless
of the workstation from which they enter the cluster.

•	 Single I/O space: Any node can remotely access any I/O peripheral or disk
device without knowledge of its physical location.

•	 Single process space: A uniform process-identification scheme is used. A pro-
cess on any node can create or communicate with any other process on a remote
node.

•	 Checkpointing: This function periodically saves the process state and intermedi-
ate computing results, to allow rollback recovery after a failure.

•	 Process migration: This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster.
The remaining items are concerned with providing a single-system image.

Returning to Figure 18.14, a cluster will also include software tools for enabling
the efficient execution of programs that are capable of parallel execution.

Clusters Compared to SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple
processors to support high-demand applications. Both solutions are commercially
available, although SMP has been around far longer.

The main strength of the SMP approach is that an SMP is easier to manage and
configure than a cluster. The SMP is much closer to the original single-processor
model for which nearly all applications are written. The principal change required in
going from a uniprocessor to an SMP is to the scheduler function. Another benefit
of the SMP is that it usually takes up less physical space and draws less power than

Figure 18.14  Cluster Computer Architecture

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Net. interface HW

Comm SW

PC/workstation

Cluster middleware
(Single-system image and availability infrastructure)

Sequential applications

High-speed network or switch

Parallel applications

Parallel programming environment

M18_STAL4290_09_GE_C18.indd 24 4/18/17 7:13 AM

18.5 / WINDOWS CLUSTER SERVER   18-25

a comparable cluster. A final important benefit is that the SMP products are well
established and stable.

Over the long run, however, the advantages of the cluster approach are likely
to result in clusters dominating the high-performance server market. Clusters are far
superior to SMPs in terms of incremental and absolute scalability. Clusters are also
superior in terms of availability, because all components of the system can readily be
made highly redundant.

  18.5	 WINDOWS CLUSTER SERVER

Windows Failover Clustering is a shared-nothing cluster, in which each disk volume
and other resources are owned by a single system at a time.

The Windows cluster design makes use of the following concepts:

•	 Cluster Service: The collection of software on each node that manages all
cluster-specific activity.

•	 Resource: An item managed by the cluster service. All resources are objects
representing actual resources in the system, including hardware devices such as
disk drives and network cards and logical items such as logical disk volumes,
TCP/IP addresses, entire applications, and databases.

•	 Online: A resource is said to be online at a node when it is providing service on
that specific node.

•	 Group: A collection of resources managed as a single unit. Usually, a group
contains all of the elements needed to run a specific application, and for client
systems to connect to the service provided by that application.

The concept of group is of particular importance. A group combines
resources into larger units that are easily managed, both for failover and load
balancing. Operations performed on a group, such as transferring the group to
another node, automatically affect all of the resources in that group. Resources
are implemented as dynamically linked libraries (DLLs) and managed by a
resource monitor. The resource monitor interacts with the cluster service via
remote procedure calls and responds to cluster service commands to configure
and move resource groups.

Figure 18.15 depicts the Windows clustering components and their relation-
ships in a single system of a cluster. The node manager is responsible for maintaining
this node’s membership in the cluster. Periodically, it sends heartbeat messages to
the node managers on other nodes in the cluster. In the event that one node manager
detects a loss of heartbeat messages from another cluster node, it broadcasts a mes-
sage to the entire cluster, causing all members to exchange messages to verify their
view of current cluster membership. If a node manager does not respond, it is
removed from the cluster and its active groups are transferred to one or more other
active nodes in the cluster.

The configuration database manager maintains the cluster configuration data-
base. The database contains information about resources and groups and node

M18_STAL4290_09_GE_C18.indd 25 4/18/17 7:13 AM

18-26   Chapter 18 / Distributed Processing, Client/Server, and Clusters

ownership of groups. The database managers on each of the cluster nodes cooperate
to maintain a consistent picture of configuration information. Fault-tolerant transac-
tion software is used to assure that changes in the overall cluster configuration are
performed consistently and correctly.

The resource manager/failover manager makes all decisions regarding resource
groups and initiates appropriate actions such as startup, reset, and failover. When
failover is required, the failover managers on the active node cooperate to negotiate
a distribution of resource groups from the failed system to the remaining active sys-
tems. When a system restarts after a failure, the failover manager can decide to move
some groups back to this system. In particular, any group may be configured with a
preferred owner. If that owner fails and then restarts, the group is moved back to the
node in a rollback operation.

The event processor connects all of the components of the cluster service, han-
dles common operations, and controls cluster service initialization. The communica-
tions manager manages message exchange with all other nodes of the cluster. The
global update manager provides a service used by other components within the clus-
ter service.

Microsoft is continuing to ship their cluster product, but they have also
developed virtualization solutions based on efficient live migration of virtual

Figure 18.15  Windows Cluster Server Block Diagram

Cluster management tools

Cluster API DLL

Event processor

RPC

Resource monitors

Communication
manager

Resource mgr

Failover mgrApp
resource

DLL

Physical
resource

DLL

Logical
resource

DLL

App
resource

DLL

Node
manager

Cluster
service

Resource
management

interface

Other
nodes

Nonaware
app

Cluster-aware
app

Database
manager

Global update
manager

M18_STAL4290_09_GE_C18.indd 26 4/18/17 7:13 AM

18.6 / BEOWULF AND LINUX CLUSTERS   18-27

machines between hypervisors running on different computer systems as part of
Windows Server 2008 R2. For new applications, live migration offers many ben-
efits over the cluster approach, such as simpler management, and improved
flexibility.

  18.6	 BEOWULF AND LINUX CLUSTERS

In 1994, the Beowulf project was initiated under the sponsorship of the NASA High
Performance Computing and Communications (HPCC) project. Its goal was to inves-
tigate the potential of clustered PCs for performing important computation tasks
beyond the capabilities of contemporary workstations at minimum cost. Today, the
Beowulf approach is widely implemented and is perhaps the most important cluster
technology available.

Beowulf Features

Key features of Beowulf include the following [RIDG97]:

•	 Mass market commodity components

•	 Dedicated processors (rather than scavenging cycles from idle workstations)

•	 A dedicated, private network (LAN or WAN or internetted combination)

•	 No custom components

•	 Easy replication from multiple vendors

•	 Scalable I/O

•	 A freely available software base

•	 Use of freely available distribution computing tools with minimal changes

•	 Return of the design and improvements to the community

Although elements of Beowulf software have been implemented on a number
of different platforms, the most obvious choice for a base is Linux, and most Beowulf
implementations use a cluster of Linux workstations and/or PCs. Figure 18.16 depicts
a representative configuration. The cluster consists of a number of workstations,
perhaps of differing hardware platforms, all running the Linux operating system.
Secondary storage at each workstation may be made available for distributed access
(for distributed file sharing, distributed virtual memory, or other uses). The cluster
nodes (the Linux systems) are interconnected with a commodity networking
approach, typically Ethernet. The Ethernet support may be in the form of a single
Ethernet switch or an interconnected set of switches. Commodity Ethernet products
at the standard data rates (10 Mbps, 100 Mbps, 1 Gbps) are used.

Beowulf Software

The Beowulf software environment is implemented as an add-on to commercially
available, royalty-free base Linux distributions. The principal source of open-source
Beowulf software is the Beowulf site at www.beowulf.org, but numerous other orga-
nizations also offer free Beowulf tools and utilities.

M18_STAL4290_09_GE_C18.indd 27 4/18/17 7:13 AM

http://www.beowulf.org

18-28   Chapter 18 / Distributed Processing, Client/Server, and Clusters

Each node in the Beowulf cluster runs its own copy of the Linux kernel and can
function as an autonomous Linux system. To support the Beowulf cluster concept,
extensions are made to the Linux kernel to allow the individual nodes to participate
in a number of global namespaces. The following are examples of Beowulf system
software:

•	 Beowulf distributed process space (BPROC): This package allows a process ID
space to span multiple nodes in a cluster environment and also provides mecha-
nisms for starting processes on other nodes. The goal of this package is to provide
key elements needed for a single-system image on Beowulf cluster. BPROC
provides a mechanism to start processes on remote nodes without ever logging
into another node, and by making all the remote processes visible in the process
table of the cluster’s front-end node.

•	 Beowulf Ethernet channel bonding: This is a mechanism that joins multiple
low-cost networks into a single logical network with higher bandwidth. The only
additional work over using single network interface is the computationally
simple task of distributing the packets over the available device transmit queues.
This approach allows load balancing over multiple Ethernets connected to
Linux workstations.

•	 Pvmsync: This is a programming environment that provides synchronization
mechanisms and shared data objects for processes in a Beowulf cluster.

•	 EnFuzion: EnFuzion consists of a set of tools for doing parametric computing.
Parametric computing involves the execution of a program as a large number
of jobs, each with different parameters or starting conditions. EnFusion emu-
lates a set of robot users on a single root node machine, each of which will log
into one of the many clients that form a cluster. Each job is set up to run with
a unique, programmed scenario, with an appropriate set of starting conditions
[KAPP00].

Figure 18.16  Generic Beowulf Configuration

Ethernet or
interconnected ethernets

Linux
workstations

Distributed
shared storage

M18_STAL4290_09_GE_C18.indd 28 4/18/17 7:13 AM

18.8 / REFERENCES   18-29

  18.7	 SUMMARY

Client/server computing is the key to realizing the potential of information sys-
tems and networks to improve productivity significantly in organizations. With
client/server computing, applications are distributed to users on single-user work-
stations and personal computers. At the same time, resources that can and should
be shared are maintained on server systems that are available to all clients.
Thus, the client/server architecture is a blend of decentralized and centralized
computing.

Typically, the client system provides a graphical user interface (GUI) that
enables a user to exploit a variety of applications with minimal training and relative
ease. Servers support shared utilities, such as database management systems.
The actual application is divided between client and server in a way intended to
optimize ease of use and performance.

The key mechanism required in any distributed system is interprocess com-
munication. Two techniques are in common use. A message-passing facility gener-
alizes the use of messages within a single system. The same sorts of conventions
and synchronization rules apply. Another approach is the use of the remote
procedure call. This is a technique by which two programs on different machines
interact using procedure call/return syntax and semantics. Both the called and
calling program behave as if the partner program were running on the same
machine.

A cluster is a group of interconnected, whole computers working together as a
unified computing resource that can create the illusion of being one machine. The
term whole computer means a system that can run on its own, apart from the
cluster.

  18.8	 REFERENCES

ANAN92  Ananda, A.; Tay, B.; and Koh, E. “A Survey of Asynchronous Remote Procedure Calls.”
Operating Systems Review, April 1992.

BREW97  Brewer, E. “Clustering: Multiply and Conquer.” Data Communications, July 1997.
GIBB87  Gibbons, P. “A Stub Generator for Multilanguage RPC in Heterogeneous Environments.”

IEEE Transactions on Software Engineering, January 1987.
HP96  Hewlett Packard. White Paper on Clustering. June 1996.
HWAN99  Hwang, K., et al. “Designing SSI Clusters with Hierarchical Checkpointing and Single I/O

Space.” IEEE Concurrency, January–March 1999.
KAPP00  Kapp, C. “Managing Cluster Computers.” Dr. Dobb’s Journal, July 2000.
NELS88  Nelson, M.; Welch, B.; and Ousterhout, J. “Caching in the Sprite Network File System.” ACM

Transactions on Computer Systems, February 1988.
OUST88  Ousterhout, J., et al. “The Sprite Network Operating System.” Computer, February 1988.
RIDG97  Ridge, D., et al. “Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs.” Proceedings,

IEEE Aerospace Conference, 1997.

M18_STAL4290_09_GE_C18.indd 29 4/18/17 7:13 AM

18-30   Chapter 18 / Distributed Processing, Client/Server, and Clusters

  18.9	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

applications programming
interface

Beowulf
client
cluster
distributed message passing

failback
failover
fat client
file cache consistency
graphical user interface (GUI)
message

middleware
remote procedure call (RPC)
server
thin client

Review Questions

  18.1.	 What is client/server computing?
  18.2.	 What distinguishes client/server computing from any other form of distributed data

processing?
  18.3.	 What is the role of a communications architecture such as TCP/IP in a client/server

environment?
  18.4.	 Discuss the rationale for locating applications on the client, the server, or split between

client and server.
  18.5.	 What are fat clients and thin clients, and what are the differences in philosophy of the

two approaches?
  18.6.	 Suggest pros and cons for fat client and thin client strategies.
  18.7.	 Explain the rationale behind the three-tier client/server architecture.
  18.8.	 What is middleware?
  18.9.	 Because we have standards such as TCP/IP, why is middleware needed?
	18.10.	 List some benefits and disadvantages of blocking and nonblocking primitives for

message passing.
	18.11.	 List some benefits and disadvantages of nonpersistent and persistent binding for RPCs.
	18.12.	 List some benefits and disadvantages of synchronous and asynchronous RPCs.
	18.13.	 List and briefly define four different clustering methods.

Problems

  18.1.	 Let a be the percentage of program code that can be executed simultaneously by n
computers in a cluster, each computer using a different set of parameters or initial
conditions. Assume the remaining code must be executed sequentially by a single pro-
cessor. Each processor has an execution rate of x MIPS.
a.	 Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of this program, in terms of n, a, and x.
b.	 If n = 1 6 and x = 4 MIPS, determine the value of a that will yield a system

performance of 40 MIPS.
  18.2.	 An application program is executed on a nine-computer cluster. A benchmark program

takes time T on this cluster. Further, 25% of T is time in which the application is run-
ning simultaneously on all nine computers. The remaining time, the application has to
run on a single computer.

M18_STAL4290_09_GE_C18.indd 30 4/18/17 7:13 AM

18.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   18-31

a.	 Calculate the effective speedup under the aforementioned condition as compared
to executing the program on a single computer. Also calculate, the percentage of
code that has been parallelized (programmed or compiled so as to use the cluster
mode) in the preceding program.

b.	 Suppose we are able to effectively use 18 computers rather than 9 computers on
the parallelized portion of the code. Calculate the effective speedup that is
achieved.

  18.3.	 The following FORTRAN program is to be executed on a computer, and a parallel
version is to be executed on a 32-computer cluster:

L1: DO 10 I = 1,1024
L2: SUM(I) = 0
L3: DO 20 J = 1, I
L4: 20 SUM(I) = SUM(I) + I
L5: 10 CONTINUE

		 Suppose lines 2 and 4 each take two machine cycle times, including all processor and
memory-access activities. Ignore the overhead caused by the software loop control
statements (lines 1, 3, 5) and all other system overhead and resource conflicts.
a.	 What is the total execution time (in machine cycle times) of the program on a single

computer?
b.	 Divide the I-loop iterations among the 32 computers as follows: Computer

1 executes the first 32 iterations (I = 1 to 32), processor 2 executes the next 32 iter-
ations, and so on. What are the execution time and speedup factor compared with
part (a)? (Note the computational workload, dictated by the J-loop, is unbalanced
among the computers.)

c.	 Explain how to modify the parallelizing to facilitate a balanced parallel execution
of all the computational workload over 32 computers. A balanced load means an
equal number of additions assigned to each computer with respect to both loops.

d.	 What is the minimum execution time resulting from the parallel execution on 32
computers? What is the resulting speedup over a single computer?

M18_STAL4290_09_GE_C18.indd 31 4/18/17 7:13 AM

19-1

Distributed Process
Management

19.1	 Process Migration
Motivation
Process Migration Mechanisms
Negotiation of Migration
Eviction
Preemptive versus Nonpreemptive Transfers

19.2	 Distributed Global States
Global States and Distributed Snapshots
The Distributed Snapshot Algorithm

19.3	 Distributed Mutual Exclusion
Distributed Mutual Exclusion Concepts
Ordering of Events in a Distributed System
Distributed Queue
A Token-Passing Approach

19.4	 Distributed Deadlock
Deadlock in Resource Allocation
Deadlock in Message Communication

19.5	 Summary

19.6	 References

19.7	 Key Terms, Review Questions, And Problems

Chapter

M19_STAL4290_09_GE_C19.indd 1 4/18/17 7:14 AM

19-2   Chapter 19 / Distributed Process Management

This chapter examines key mechanisms used in distributed operating systems. First
we look at process migration, which is the movement of an active process from one
machine to another. Next, we examine the question of how processes on different
systems can coordinate their activities when each is governed by a local clock and
when there is a delay in the exchange of information. Finally, we explore two key
issues in distributed process management: mutual exclusion and deadlock.

  19.1	 PROCESS MIGRATION

Process migration is the transfer of a sufficient amount of the state of a process from
one computer to another for the process to execute on the target machine. Interest
in this concept grew out of research into methods of load balancing across multiple
networked systems, although the application of the concept now extends beyond that
one area.

In the past, only a few of the many papers on load distribution were based on
true implementations of process migration, which includes the ability to preempt a
process on one machine and reactivate it later on another machine. Experience
showed that preemptive process migration is possible, although with higher overhead
and complexity than originally anticipated [ARTS89a]. This cost led some observers
to conclude that process migration was not practical. Such assessments have proved
too pessimistic. New implementations, including those in commercial products, have
fueled a continuing interest and new developments in this area. This section provides
an overview.

Motivation

Process migration is desirable in distributed systems for a number of reasons [SMIT88,
JUL88], including:

•	 Load sharing: By moving processes from heavily loaded to lightly loaded sys-
tems, the load can be balanced to improve overall performance. Empirical data
suggest that significant performance improvements are possible [LELA86,
CABR86]. However, care must be taken in the design of load-balancing algo-
rithms. [EAGE86] points out that the more communication necessary for the
distributed system to perform the balancing, the worse the performance
becomes. A discussion of this issue, with references to other studies, can be
found in [ESKI90].

Learning Objectives

After studying this chapter, you should be able to:
•	 Give an explanation of process migration.
•	 Understand the concept of distributed global states.
•	 Analyze distributed mutual exclusion algorithms.
•	 Analyze distributed deadlock algorithms.

M19_STAL4290_09_GE_C19.indd 2 4/18/17 7:14 AM

19.1 / PROCESS MIGRATION   19-3

•	 Communications performance: Processes that interact intensively can be moved
to the same node to reduce communications cost for the duration of their inter-
action. Also, when a process is performing data analysis on some file or set of
files larger than the process’s size, it may be advantageous to move the process
to the data rather than vice versa.

•	 Availability: Long-running processes may need to move to survive in the face
of faults for which advance notice is possible or in advance of scheduled down-
time. If the operating system provides such notification, a process that wants to
continue can either migrate to another system or ensure that it can be restarted
on the current system at some later time.

•	 Utilizing special capabilities: A process can move to take advantage of unique
hardware or software capabilities on a particular node.

Process Migration Mechanisms

A number of issues need to be addressed in designing a process migration facility.
Among these are the following:

•	 Who initiates the migration?

•	 What portion of the process is migrated?

•	 What happens to outstanding messages and signals?

Initiation of Migration  Who initiates migration will depend on the goal of the
migration facility. If the goal is load balancing, then some module in the operating
system that is monitoring system load will generally be responsible for deciding when
migration should take place. The module will be responsible for preempting or signaling
a process to be migrated. To determine where to migrate, the module will need to be in
communication with peer modules in other systems so the load patterns on other
systems can be monitored. If the goal is to reach particular resources, then a process
may migrate itself as the need arises. In this latter case, the process must be aware of
the existence of a distributed system. In the former case, the entire migration function,
and indeed the existence of multiple systems, may be transparent to the process.

What Is Migrated?  When a process is migrated, it is necessary to destroy the
process on the source system and create it on the target system. This is a movement
of a process, not a replication. Thus, the process image, consisting of at least the process
control block, must be moved. In addition, any links between this process and other
processes, such as for passing messages and signals, must be updated. Figure 19.1
illustrates these considerations. Process 3 has migrated out of machine S to become
Process 4 in machine D. All link identifiers held by processes (denoted in lowercase
letters) remain the same as before. It is the responsibility of the operating system to
move the process control block and to update link mappings. The transfer of the
process of one machine to another is invisible to both the migrated process and its
communication partners.

The movement of the process control block is straightforward. The difficulty,
from a performance point of view, concerns the process address space and any open

M19_STAL4290_09_GE_C19.indd 3 4/18/17 7:14 AM

19-4   Chapter 19 / Distributed Process Management

files assigned to the process. Consider first the process address space and let us
assume that a virtual memory scheme (paging or paging/segmentation) is being used.
The following strategies have been considered [MILO00]:

•	 Eager (all): Transfer the entire address space at the time of migration. This is
certainly the cleanest approach. No trace of the process need to be left behind
at the old system. However, if the address space is very large and if the process
is likely not to need most of it, then this may be unnecessarily expensive. Initial
costs of migration may be on the order of minutes. Implementations that pro-
vide a checkpoint/restart facility are likely to use this approach, because it is
simpler to do the checkpointing and restarting if all of the address space is
localized.

Figure 19.1  Example of Process Migration

Kernel

Machine S

(a) Before migration

Machine D

P1 P2 P3 P4 P5

4
ab

5

1 c
b

2

3
a

b

b

c
d

ef

Kernel

P1 P2 P3

3a

1d

2c

3a

1
d

2c

Kernel

Machine S

(b) After migration

Machine D

P1 P2 P4 P5

4 ab

5

1 c
b

2

Kernel

P1 P2 P3 P4

4a
b c

d
ef

a

a

a

M19_STAL4290_09_GE_C19.indd 4 4/18/17 7:14 AM

19.1 / PROCESS MIGRATION   19-5

•	 Precopy: The process continues to execute on the source node while the address
space is copied to the target node. Pages modified on the source during the
precopy operation have to be copied a second time. This strategy reduces the
time that a process is frozen and cannot execute during migration.

•	 Eager (dirty): Transfer only those pages of the address space that are in main
memory and have been modified. Any additional blocks of the virtual address
space will be transferred on demand only. This minimizes the amount of data
that are transferred. It does require, however, that the source machine continue
to be involved in the life of the process by maintaining page and/or segment
table entries and it requires remote paging support.

•	 Copy-on-reference: This is a variation of eager (dirty) in which pages are only
brought over when referenced. This has the lowest initial cost of process migra-
tion, ranging from a few tens to a few hundreds of microseconds.

•	 Flushing: The pages of the process are cleared from the main memory of the
source by flushing dirty pages to disk. Then pages are accessed as needed from
disk instead of from memory on the source node. This strategy relieves the
source of the need to hold any pages of the migrated process in main memory,
immediately freeing a block of memory to be used for other processes.

If it is likely that the process will not use much of its address space while on the
target machine (e.g., the process is only temporarily going to another machine to
work on a file and will soon return), then one of the last three strategies makes sense.
On the other hand, if much of the address space will eventually be accessed while on
the target machine, then the piecemeal transfer of blocks of the address space may
be less efficient than simply transferring all of the address space at the time of migra-
tion, using one of the first two strategies.

In many cases, it may not be possible to know in advance whether or not much
of the nonresident address space will be needed. However, if processes are structured
as threads, and if the basic unit of migration is the thread rather than the process, then
a strategy based on remote paging would seem to be the best. Indeed, such a strategy
is almost mandated, because the remaining threads of the process are left behind and
also need access to the address space of the process. Thread migration is implemented
in the Emerald operating system [JUL89].

Similar considerations apply to the movement of open files. If the file is initially
on the same system as the process to be migrated, and if the file is locked for exclusive
access by that process, then it may make sense to transfer the file with the process.
The danger here is that the process may only be gone temporarily and may not need
the file until its return. Therefore, it may make sense to transfer the entire file only
after an access request is made by the migrated process. If a file is shared by multiple
distributed processes, then distributed access to the file should be maintained without
moving the file.

If caching is permitted, as in the Sprite system (see Figure 16.7), then an addi-
tional complexity is introduced. For example, if a process has a file open for writing
and it forks and migrates a child, the file would then be open for writing on two differ-
ent hosts; Sprite’s cache consistency algorithm dictates that the file be made noncache-
able on the machines on which the two processes are executing [DOUG89, DOUG91].

M19_STAL4290_09_GE_C19.indd 5 4/18/17 7:14 AM

19-6   Chapter 19 / Distributed Process Management

Messages and Signals  The final issue listed previously, the fate of messages and
signals, is addressed by providing a mechanism for temporarily storing outstanding
messages and signals during the migration activity then directing them to the new
destination. It may be necessary to maintain forwarding information at the initial site
for some time to assure that all outstanding messages and signals get through.

A Migration Scenario  As a representative example of self-migration, let us
consider the facility available on IBM’s AIX operating system [WALK89], which is
a distributed UNIX operating system. A similar facility is available on the LOCUS
operating system [POPE85], and in fact the AIX system is based on the LOCUS
development. This facility has also been ported to the OSF/1 AD operating system,
under the name TNC [ZAJC93].

The following sequence of events occurs:

1.	 When a process decides to migrate itself, it selects a target machine and sends
a remote tasking message. The message carries a part of the process image and
open file information.

2.	 At the receiving site, a kernel server process forks a child, giving it this
information.

3.	 The new process pulls over data, environment, arguments, or stack information
as needed to complete its operation. Program text is copied over if it is dirty or
demand paged from the global file system if it is clean.

4.	 The originating process is signaled on the completion of the migration. This
process sends a final done message to the new process and destroys itself.

A similar sequence would be followed when another process initiates the migra-
tion. The principal difference is that the process to be migrated must be suspended
so it can be migrated in a nonrunning state. This procedure is followed in Sprite, for
example [DOUG89].

In the foregoing scenario, migration is a dynamic activity involving a number
of steps for moving the process image over. When migration is initiated by another
process, rather than self-migration, another approach is to copy the process image
and its entire address space into a file, destroy the process, copy the file to another
machine using a file transfer facility, then recreate the process from the file on the
target machine. [SMIT89] describes such an approach.

Negotiation of Migration

Another aspect of process migration relates to the decision about migration. In some
cases, the decision is made by a single entity. For example, if load balancing is the goal,
a load-balancing module monitors the relative load on various machines and per-
forms migration as necessary to maintain a load balance. If self-migration is used to
allow a process access to special facilities or to large remote files, then the process
itself may make the decision. However, some systems allow the designated target
system to participate in the decision. One reason for this could be to preserve
response time for users. A user at a workstation, for example, might suffer noticeable
response time degradation if processes migrate to the user’s system, even if such
migration served to provide better overall balance.

M19_STAL4290_09_GE_C19.indd 6 4/18/17 7:14 AM

19.1 / PROCESS MIGRATION   19-7

An example of a negotiation mechanism is that found in Charlotte [FINK89,
ARTS89b]. Migration policy (when to migrate which process to what destination) is
the responsibility of the Starter utility, which is a process that is also responsible for
long-term scheduling and memory allocation. The Starter can therefore coordinate
policy in these three areas. Each Starter process may control a cluster of machines.
The Starter receives timely and fairly elaborate load statistics from the kernel of each
of its machines.

The decision to migrate must be reached jointly by two Starter processes (one
on the source node and one on the destination node), as illustrated in Figure 19.2.
The following steps occur:

1.	 The Starter that controls the source system (S) decides that a process P should
be migrated to a particular destination system (D). It sends a message to D’s
Starter, requesting the transfer.

2.	 If D’s Starter is prepared to receive the process, it sends back a positive
acknowledgment.

3.	 S’s Starter communicates this decision to S’s kernel via service call (if the starter
runs on S) or a message to the KernJob (KJ) of machine S (if the starter runs
on another machine). KJ is a process used to convert messages from remote
processes into service calls.

4.	 The kernel on S then offers to send the process to D. The offer includes statistics
about P, such as its age and processor and communication loads.

5.	 If D is short of resources, it may reject the offer. Otherwise, the kernel on D
relays the offer to its controlling Starter. The relay includes the same informa-
tion as the offer from S.

Figure 19.2  Negotiation of Process Migration

0 1 2 3 4

Starter

1: Will you take P?

Starter

2: Yes, migrate to machine 3

S D

4: O�er P

5. O�er P 6: MigrateIn P

7: Accept o�er

3: MigrateOut P

KJ KJ KJ KJ KJ

A B

P

M19_STAL4290_09_GE_C19.indd 7 4/18/17 7:14 AM

19-8   Chapter 19 / Distributed Process Management

6.	 The Starter’s policy decision is communicated to D by a MigrateIn call.

7.	 D reserves necessary resources to avoid deadlock and flow-control problems
and then sends an acceptance to S.

Figure 19.2 also shows two other processes, A and B, that have links open to P.
Following the foregoing steps, machine 1, where S resides, must send a link update
message to both machines 0 and 2 to preserve the links from A and B to P. Link
update messages tell the new address of each link held by P and are acknowledged
by the notified kernels for synchronization purposes. After this point, a message sent
to P on any of its links will be sent directly to D. These messages can be exchanged
concurrently with the steps just described. Finally, after step 7 and after all links have
been updated, S collects all of P’s context into a single message and sends it to D.

Machine 4 is also running Charlotte but is not involved in this migration and
therefore has no communication with the other systems in this episode.

Eviction

The negotiation mechanism allows a destination system to refuse to accept the migra-
tion of a process to itself. In addition, it might also be useful to allow a system to evict
a process that has been migrated to it. For example, if a workstation is idle, one or
more processes may be migrated to it. Once the user of that workstation becomes
active, it may be necessary to evict the migrated processes to provide adequate
response time.

An example of an eviction capability is that found in Sprite [DOUG89]. In
Sprite, which is a workstation operating system, each process appears to run on a
single host throughout its lifetime. This host is known as the home node of the process.
If a process is migrated, it becomes a foreign process on the destination machine. At
any time the destination machine may evict the foreign process, which is then forced
to migrate back to its home node.

The elements of the Sprite eviction mechanism are as follows:

1.	 A monitor process at each node keeps track of current load to determine when
to accept new foreign processes. If the monitor detects activity at the worksta-
tion’s console, it initiates an eviction procedure on each foreign process.

2.	 If a process is evicted, it is migrated back to its home node. The process may be
migrated again if another node is available.

3.	 Although it may take some time to evict all processes, all processes marked for
eviction are immediately suspended. Permitting an evicted process to execute
while it is waiting for eviction would reduce the time during which the process
is frozen, but also reduce the processing power available to the host while evic-
tions are underway.

4.	 The entire address space of an evicted process is transferred to the home node.
The time to evict a process and migrate it back to its home node may be reduced
substantially by retrieving the memory image of an evicted process from its
previous foreign host as referenced. However, this compels the foreign host to
dedicate resources and honor service requests from the evicted process for a
longer period of time than necessary.

M19_STAL4290_09_GE_C19.indd 8 4/18/17 7:14 AM

19.2 / DISTRIBUTED GLOBAL STATES   19-9

Preemptive versus Nonpreemptive Transfers

The discussion in this section has dealt with preemptive process migration, which
involves transferring a partially executed process, or at least a process whose creation
has been completed. A simpler function is nonpreemptive process transfer, which
involves only processes that have not begun execution and hence do not require trans-
ferring the state of the process. In both types of transfer, information about the environ-
ment in which the process will execute must be transferred to the remote node. This
may include the user’s current working directory, the privileges inherited by the process,
and inherited resources such as file descriptions.

Nonpreemptive process migration can be useful in load balancing (e.g., see
[SHIV92]). It has the advantage that it avoids the overhead of full-blown process
migration. The disadvantage is that such a scheme does not react well to sudden
changes in load distribution.

  19.2	 DISTRIBUTED GLOBAL STATES

Global States and Distributed Snapshots

All of the concurrency issues that are faced in a tightly coupled system, such as mutual
exclusion, deadlock, and starvation, are also faced in a distributed system. Design
strategies in these areas are complicated by the fact that there is no global state to the
system. That is, it is not possible for the operating system, or any process, to know
the current state of all processes in the distributed system. A process can only know
the current state of all the processes on the local system, by access to process control
blocks in memory. For remote processes, a process can only know state information
that is received via messages, which represent the state of the remote process sometime
in the past. This is analogous to the situation in astronomy: Our knowledge of a distant
star or galaxy consists of light and other electromagnetic waves arriving from the dis-
tant object, and these waves provide a picture of the object sometime in the past. For
example, our knowledge of an object at a distance of five light-years is five years old.

The time lags imposed by the nature of distributed systems complicate all issues
relating to concurrency. To illustrate this, we present an example taken from [ANDR90].
We will use process/event graphs (see Figures 19.3 and 19.4) to illustrate the problem.
In these graphs, there is a horizontal line for each process representing the time axis.
A point on the line corresponds to an event (e.g., internal process event, message send,
message receive). A box surrounding a point represents a snapshot of the local process
state taken at that point. An arrow represents a message between two processes.

In our example, an individual has a bank account distributed over two branches
of a bank. To determine the total amount in the customer’s account, the bank must
determine the amount in each branch. Suppose the determination is to be made at
exactly 3:00 p.m. Figure 19.3a shows an instance in which a balance of $100.00 in the
combined account is found. But the situation in Figure 19.3b is also possible. Here,
the balance from branch A is in transit to branch B at the time of observation; the
result is a false reading of $0.00. This particular problem can be solved by examining
all messages in transit at the time of observation. Branch A will keep a record of all

M19_STAL4290_09_GE_C19.indd 9 4/18/17 7:14 AM

19-10   Chapter 19 / Distributed Process Management

transfers out of the account, together with the identity of the destination of the trans-
fer. Therefore, we will include in the “state” of a branch A account both the current
balance and a record of transfers. When the two accounts are examined, the observer
finds a transfer that has left branch A destined for the customer’s account in branch
B. Because the amount has not yet arrived at branch B, it is added into the total bal-
ance. Any amount that has been both transferred and received is counted only once,
as part of the balance at the receiving account.

This strategy is not foolproof, as shown in Figure 19.3c. In this example, the clocks
at the two branches are not perfectly synchronized. The state of the customer account at
branch A at 3:00 p.m. indicates a balance of $100.00. However, this amount is subse-
quently transferred to branch B at 3:01 according to the clock at A but arrives at B at 2:59
according to B’s clock. Therefore, the amount is counted twice for a 3:00 observation.

To understand the difficulty we face and to formulate a solution, let us define
the following terms:

•	 Channel: A channel exists between two processes if they exchange messages.
We can think of the channel as the path or means by which the messages are

Figure 19.3  Example of Determining Global States

Branch B

(a) Total = $100

SA = $100

SB = $0

SB = $0

3:00

t

t

t

t

t

t

Branch A

Branch B

msg = “Transfer $100
to Branch B”

(b) Total = $0

SA= $0

3:00

3:00

3:01

2:59
Branch A

Branch B

msg = “Transfer $100
to Branch B”

(c) Total = $200

SA = $100

SB = $100

3:00

3:00

3:01

2:59

Branch A

M19_STAL4290_09_GE_C19.indd 10 4/18/17 7:14 AM

19.2 / DISTRIBUTED GLOBAL STATES   19-11

transferred. For convenience, channels are viewed as unidirectional. Thus, if two
processes exchange messages, two channels are required, one for each direction
of message transfer.

•	 State: The state of a process is the sequence of messages that have been sent
and received along channels incident with the process.

•	 Snapshot: A snapshot records the state of a process. Each snapshot includes a
record of all messages sent and received on all channels since the last
snapshot.

•	 Global state: The combined state of all processes.

•	 Distributed snapshot: A collection of snapshots, one for each process.

The problem is that a true global state cannot be determined because of the
time lapse associated with message transfer. We can attempt to define a global state
by collecting snapshots from all processes. For example, the global state of
Figure 19.4a at the time of the taking of snapshots shows a message in transit on
the 6A,B7 channel, one in transit on the 6A,C7 channel, and one in transit on the
6C,A7 channel. Messages 2 and 4 are represented appropriately, but message 3 is
not. The distributed snapshot indicates that this message has been received but not
yet sent.

We desire that the distributed snapshot record a consistent global state. A
global state is consistent if for every process state that records the receipt of a

Figure 19.4  Inconsistent and Consistent Global States

SB

SB

M1

M1

M2

M2

M3 M4

Sc

Process B

Process C

(a) Inconsistent Global State

t

t

t

t

t

t

SA

Process A

SB

Process B

Process C

(b) Consistent Global State

SA

Process A

M4M3

M19_STAL4290_09_GE_C19.indd 11 4/18/17 7:14 AM

19-12   Chapter 19 / Distributed Process Management

message, the sending of that message is recorded in the process state of the process
that sent the message. Figure 19.4b gives an example. An inconsistent global state
arises if a process has recorded the receipt of a message but the corresponding send-
ing process has not recorded that the message has been sent (see Figure 19.4a).

The Distributed Snapshot Algorithm

A distributed snapshot algorithm that records a consistent global state has been
described in [CHAN85]. The algorithm assumes that messages are delivered in the
order in which they are sent, and that no messages are lost. A reliable transport pro-
tocol (e.g., TCP) satisfies these requirements. The algorithm makes use of a special
control message, called a marker.

Some process initiates the algorithm by recording its state and sending a marker
on all outgoing channels before any more messages are sent. Each process p then
proceeds as follows. Upon the first receipt of the marker (say from process q), receiv-
ing process p performs the following:

1.	 p records its local state Sp.

2.	 p records the state of the incoming channel from q to p as empty.

3.	 p propagates the marker to all of its neighbors along all outgoing channels.

These steps must be performed atomically; that is, no messages can be sent or
received by p until all 3 steps are performed.

At any time after recording its state, when p receives a marker from another
incoming channel (say from process r), it performs the following:

•	 p records the state of the channel from r to p as the sequence of messages p has
received from r from the time p recorded its local state Sp to the time it received
the marker from r.

The algorithm terminates at a process once the marker has been received along
every incoming channel.

[ANDR90] makes the following observations about the algorithm:

1.	 Any process may start the algorithm by sending out a marker. In fact, several
nodes could independently decide to record the state and the algorithm would
still succeed.

2.	 The algorithm will terminate in finite time if every message (including marker
messages) is delivered in finite time.

3.	 This is a distributed algorithm: Each process is responsible for recording its own
state and the state of all incoming channels.

4.	 Once all of the states have been recorded (the algorithm has terminated at all
processes), the consistent global state obtained by the algorithm can be assem-
bled at every process by having every process send the state data that it has
recorded along every outgoing channel, and having every process forward the
state data that it receives along every outgoing channel. Alternatively, the
initiating process could poll all processes to acquire the global state.

5.	 The algorithm does not affect and is not affected by any other distributed algo-
rithm that the processes are participating in.

M19_STAL4290_09_GE_C19.indd 12 4/18/17 7:14 AM

19.2 / DISTRIBUTED GLOBAL STATES   19-13

As an example of the use of the algorithm (taken from [BEN06]), consider the
set of processes illustrated in Figure 19.5. Each process is represented by a node, and
each unidirectional channel is represented by a line between two nodes, with the
direction indicated by an arrowhead. Suppose the snapshot algorithm is run, with
nine messages being sent along each of its outgoing channels by each process. Process
1 decides to record the global state after sending six messages, and process 4 inde-
pendently decides to record the global state after sending three messages. Upon
termination, the snapshots are collected from each process; the results are shown in
Figure 19.6. Process 2 sent four messages on each of the two outgoing channels to
processes 3 and 4 prior to the recording of the state. It received four messages from
process 1 before recording its state, leaving messages 5 and 6 to be associated with
the channel. The reader should check the snapshot for consistency: Each message
sent was either received at the destination process or recorded as being in transit in
the channel.

The distributed snapshot algorithm is a powerful and flexible tool. It can be
used to adapt any centralized algorithm to a distributed environment, because the
basis of any centralized algorithm is knowledge of the global state. Specific examples
include detection of deadlock and detection of process termination (e.g., see [BEN06],
[LYNC96]). It can also be used to provide a checkpoint of a distributed algorithm to
allow rollback and recovery if a failure is detected.

Figure 19.5 � Process and Channel
Graph

1 2 4

3

Figure 19.6  An Example of a Snapshot

Process 1
  Outgoing channels
   2 sent  1,2,3,4,5,6
   3 sent  1,2,3,4,5,6
  Incoming channels

Process 3
  Outgoing channels
   2 sent  1,2,3,4,5,6,7,8
  Incoming channels
   1 received  1,2,3 stored 4,5,6
   2 received  1,2,3 stored 4
   4 received  1,2,3

Process 2
  Outgoing channels
   3 sent  1,2,3,4
   4 sent  1,2,3,4
  Incoming channels
   1 received  1,2,3,4 stored 5,6
   3 received  1,2,3,4,5,6,7,8

Process 4
  Outgoing channels
   3 sent  1,2,3
  Incoming channels
   2 received  1,2 stored 3,4

M19_STAL4290_09_GE_C19.indd 13 4/18/17 7:14 AM

19-14   Chapter 19 / Distributed Process Management

  19.3	 DISTRIBUTED MUTUAL EXCLUSION

Recall that in Chapters 5 and 6, we addressed issues relating to the execution of
concurrent processes. Two key problems that arose were those of mutual exclusion
and deadlock. Chapters 5 and 6 focused on solutions to this problem in the context
of a single system, with one or more processors but with a common main memory. In
dealing with a distributed operating system and a collection of processors that do not
share common main memory or clock, new difficulties arise and new solutions are
called for. Algorithms for mutual exclusion and deadlock must depend on the
exchange of messages and cannot depend on access to common memory. In this sec-
tion and the next, we examine mutual exclusion and deadlock in the context of a
distributed operating system.

Distributed Mutual Exclusion Concepts

When two or more processes compete for the use of system resources, there is a need
for a mechanism to enforce mutual exclusion. Suppose two or more processes require
access to a single nonsharable resource, such as a printer. During the course of execu-
tion, each process will be sending commands to the I/O device, receiving status infor-
mation, sending data, and/or receiving data. We will refer to such a resource as a
critical resource, and the portion of the program that uses it as a critical section of
the program. It is important that only one program at a time be allowed in its critical
section. We cannot simply rely on the operating system to understand and enforce
this restriction, because the detailed requirement may not be obvious. In the case of
the printer, for example, we wish any individual process to have control of the printer
while it prints an entire file. Otherwise, lines from competing processes will be
interleaved.

The successful use of concurrency among processes requires the ability to
define critical sections and enforce mutual exclusion. This is fundamental for any
concurrent processing scheme. Any facility or capability that is to provide support
for mutual exclusion should meet the following requirements:

1.	 Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

2.	 A process that halts in its noncritical section must do so without interfering with
other processes.

3.	 It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation.

4.	 When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

5.	 No assumptions are made about relative process speeds or number of
processors.

6.	 A process remains inside its critical section for a finite time only.

M19_STAL4290_09_GE_C19.indd 14 4/18/17 7:14 AM

19.3 / DISTRIBUTED MUTUAL EXCLUSION   19-15

Figure 19.7 shows a model that we can use for examining approaches to mutual
exclusion in a distributed context. We assume some number of systems intercon-
nected by some type of networking facility. Within each system, we assume some
function or process within the operating system is responsible for resource allocation.
Each such process controls a number of resources and serves a number of user pro-
cesses. The task is to devise an algorithm by which these processes may cooperate in
enforcing mutual exclusion.

Algorithms for mutual exclusion may be either centralized or distributed. In a
fully centralized algorithm, one node is designated as the control node and controls
access to all shared objects. When any process requires access to a critical resource,
it issues a Request to its local resource-controlling process. This process, in turn, sends
a Request message to the control node, which returns a Reply (permission) message
when the shared object becomes available. When a process has finished with a
resource, a Release message is sent to the control node. Such a centralized algorithm
has two key properties:

1.	 Only the control node makes resource-allocation decisions.

2.	 All necessary information is concentrated in the control node, including the
identity and location of all resources and the allocation status of each resource.

The centralized approach is straightforward, and it is easy to see how mutual
exclusion is enforced: The control node will not satisfy a request for a resource until

Figure 19.7  Model for Mutual Exclusion Problem in Distributed Process Management

RP1

System 1

P11 P12 P1k

R11 R12 R1m

RPN

System N

PN1 PN2 PNk

RN1 RN2 RNm

RPj

RPj = Resource-controlling process in system j
Pji = User process i in system j
Rji = Resource i in system j

System j

Pj1 Pj2 Pjk

Rj1 Rj2 Rjm

M19_STAL4290_09_GE_C19.indd 15 4/18/17 7:14 AM

19-16   Chapter 19 / Distributed Process Management

that resource has been released. However, such a scheme suffers several drawbacks.
If the control node fails, then the mutual exclusion mechanism breaks down, at least
temporarily. Furthermore, every resource allocation and deallocation requires an
exchange of messages with the control node. Thus, the control node may become a
bottleneck.

Because of the problems with centralized algorithms, there has been more inter-
est in the development of distributed algorithms. A fully distributed algorithm is
characterized by the following properties:

1.	 All nodes have an equal amount of information, on average.

2.	 Each node has only a partial picture of the total system and must make decisions
based on this information.

3.	 All nodes bear equal responsibility for the final decision.

4.	 All nodes expend equal effort, on average, in effecting a final decision.

5.	 Failure of a node, in general, does not result in a total system collapse.

6.	 There exists no system-wide common clock with which to regulate the timing
of events.

Points 2 and 6 may require some elaboration. With respect to point 2, some
distributed algorithms require that all information known to any node be communi-
cated to all other nodes. Even in this case, at any given time, some of that information
will be in transit and will not have arrived at all of the other nodes. Thus, because of
time delays in message communication, a node’s information is usually not com-
pletely up to date and is in that sense only partial information.

With respect to point 6, because of the delay in communication among systems,
it is impossible to maintain a system-wide clock that is instantly available to all sys-
tems. Furthermore, it is also technically impractical to maintain one central clock and
to keep all local clocks synchronized precisely to that central clock; over a period of
time, there will be some drift among the various local clocks that will cause a loss of
synchronization.

It is the delay in communication, coupled with the lack of a common clock, that
makes it much more difficult to develop mutual exclusion mechanisms in a distrib-
uted system compared to a centralized system. Before looking at some algorithms
for distributed mutual exclusion, we examine a common approach to overcoming the
clock inconsistency problem.

Ordering of Events in a Distributed System

Fundamental to the operation of most distributed algorithms for mutual exclusion and
deadlock is the temporal ordering of events. The lack of a common clock or a means
of synchronizing local clocks is thus a major constraint. The problem can be expressed
in the following manner. We would like to be able to say that an event a at system i
occurred before (or after) event b at system j, and we would like to be able to arrive
consistently at this conclusion at all systems in the network. Unfortunately, this state-
ment is not precise for two reasons. First, there may be a delay between the actual
occurrence of an event and the time that it is observed on some other system. Second,
the lack of synchronization leads to a variance in clock readings on different systems.

M19_STAL4290_09_GE_C19.indd 16 4/18/17 7:14 AM

19.3 / DISTRIBUTED MUTUAL EXCLUSION   19-17

To overcome these difficulties, a method referred to as timestamping has been
proposed by Lamport [LAMP78], which orders events in a distributed system without
using physical clocks. This technique is so efficient and effective that it is used in the
great majority of algorithms for distributed mutual exclusion and deadlock.

To begin, we need to decide on a definition of the term event. Ultimately, we
are concerned with actions that occur at a local system, such as a process entering or
leaving its critical section. However, in a distributed system, the way in which pro-
cesses interact is by means of messages. Therefore, it makes sense to associate events
with messages. A local event can be bound to a message very simply; for example, a
process can send a message when it desires to enter its critical section or when it is
leaving its critical section. To avoid ambiguity, we associate events with the sending
of messages only, not with the receipt of messages. Thus, each time that a process
transmits a message, an event is defined that corresponds to the time that the message
leaves the process.

The timestamping scheme is intended to order events consisting of the trans-
mission of messages. Each system i in the network maintains a local counter, Ci, which
functions as a clock. Each time a system transmits a message, it first increments its
clock by 1. The message is sent in the form

(m, Ti, i)

where

m = contents of the message

Ti = timestamp for this message, set to equal Ci

i = numerical identifier of this system in the distributed system

When a message is received, the receiving system j sets its clock to one more
than the maximum of its current value and the incoming timestamp:

Cj d 1 + max[Cj, Ti]

At each site, the ordering of events is determined by the following rules. For a
message x from site i and a message y from site j, x is said to precede y if one of the
following conditions holds:

1.	 If Ti 6 Tj, or

2.	 If Ti = Tj and i 6 j

The time associated with each message is the timestamp accompanying the
message, and the ordering of these times is determined by the two foregoing rules.
That is, two messages with the same timestamp are ordered by the numbers of their
sites. Because the application of these rules is independent of site, this approach
avoids any problems of drift among the various clocks of the communicating
processes.

An example of the operation of this algorithm is shown in Figure 19.8. There
are three sites, each of which is represented by a process that controls the timestamp-
ing algorithm. Process P1 begins with a clock value of 0. To transmit message a, it
increments its clock by 1 and transmits (a, 1, 1), where the first numerical value is the
timestamp and the second is the identity of the site. This message is received by

M19_STAL4290_09_GE_C19.indd 17 4/18/17 7:14 AM

19-18   Chapter 19 / Distributed Process Management

processes at sites 2 and 3. In both cases, the local clock has a value of zero and is set
to a value of 2 = 1 + max[0, 1]. P2 issues the next message, first incrementing its
clock to 3. Upon receipt of this message, P1 and P3 increment their clocks to 4. Then
P1 issues message b and P3 issues message j at about the same time and with the same
timestamp. Because of the ordering principle outlined previously, this causes no con-
fusion. After all of these events have taken place, the ordering of messages is the same
at all sites, namely 5a, x, b, j6 .

The algorithm works in spite of differences in transmission times between pairs
of systems, as illustrated in Figure 19.9. Here, P1 and P4 issue messages with the same
timestamp. The message from P1 arrives earlier than that of P4 at site 2, but later than

Figure 19.8  Example of Operation of Timestamping Algorithm

P1

0
1

4

5

6

0
1

7

2 2

4

5

6

3

6

0
Time

(local clock)

P2 P3

(a,1,1)

(b,5,1)
(j,5,3)

(x,3,2)

Figure 19.9 � Another Example of Operation of Timestamping
Algorithm

P1 P2 P3 P4

0 0

3

3

0

2

0
1

1 (q,1,4)

(a,1,1)

2
2

2Time
(local clock)

M19_STAL4290_09_GE_C19.indd 18 4/18/17 7:14 AM

19.3 / DISTRIBUTED MUTUAL EXCLUSION   19-19

that of P4 at site 3. Nevertheless, after all messages have been received at all sites, the
ordering of messages is the same at all sites: 5a, q6 .

Note the ordering imposed by this scheme does not necessarily correspond to
the actual time sequence. For the algorithms based on this timestamping scheme, it
is not important which event actually happened first. It is only important that all
processes that implement the algorithm agree on the ordering that is imposed on
the events.

In the two examples just discussed, each message is sent from one process
to all other processes. If some messages are not sent this way, some sites do not
receive all of the messages in the system, and it is therefore impossible that all
sites have the same ordering of messages. In such a case, a collection of partial
orderings exist. However, we are primarily concerned with the use of timestamps
in distributed algorithms for mutual exclusion and deadlock detection. In such
algorithms, a process usually sends a message (with its timestamp) to every other
process, and the timestamps are used to determine how the messages are
processed.

Distributed Queue

First Version  One of the earliest proposed approaches to providing distributed
mutual exclusion is based on the concept of a distributed queue [LAMP78]. The
algorithm is based on the following assumptions:

1.	 A distributed system consists of N nodes, uniquely numbered from 1 to N. Each
node contains one process that makes requests for mutually exclusive access to
resources on behalf of other processes; this process also serves as an arbitrator
to resolve incoming requests from other nodes that overlap in time.

2.	 Messages sent from one process to another are received in the same order in
which they are sent.

3.	 Every message is correctly delivered to its destination in a finite amount of time.

4.	 The network is fully connected; this means that every process can send mes-
sages directly to every other process, without requiring an intermediate process
to forward the message.

Assumptions 2 and 3 can be realized by the use of a reliable transport protocol, such
as TCP (Chapter 13).

For simplicity, we describe the algorithm for the case in which each site only
controls a single resource. The generalization to multiple resources is trivial.

The algorithm attempts to generalize an algorithm that would work in a straight-
forward manner in a centralized system. If a single central process managed the
resource, it could queue incoming requests and grant requests in a first-in-first-out
manner. To achieve this same algorithm in a distributed system, all of the sites must
have a copy of the same queue. Timestamping can be used to assure that all sites agree
on the order in which resource requests are to be granted. One complication arises:
Because it takes some finite amount of time for messages to transit a network, there
is a danger that two different sites will not agree on which process is at the head of
the queue. Consider Figure 19.9. There is a point at which message a has arrived at P2

M19_STAL4290_09_GE_C19.indd 19 4/18/17 7:14 AM

19-20   Chapter 19 / Distributed Process Management

and message q has arrived at P3, but both messages are still in transit to other pro-
cesses. Thus, there is a period of time in which P1 and P2 consider message a to be the
head of the queue and in which P3 and P4 consider message q to be the head of the
queue. This could lead to a violation of the mutual exclusion requirement. To avoid
this, the following rule is imposed: For a process to make an allocation decision based
on its own queue, it needs to have received a message from each of the other sites
such that the process is guaranteed that no message earlier than its own head of queue
is still in transit. This rule is explained in part 3b of the algorithm described
subsequently.

At each site, a data structure is maintained that keeps a record of the most
recent message received from each site (including the most recent message generated
at this site). Lamport refers to this structure as a queue; actually it is an array with
one entry for each site. At any instant, entry q[j] in the local array contains a message
from Pj. The array is initialized as follows:

q[j] = (Release, 0, j) j = 1, c, N

Three types of messages are used in this algorithm:

•	 (Request, Ti, i): A request for access to a resource is made by Pi.

•	 (Reply, Tj, j): Pj grants access to a resource under its control.

•	 (Release, Tk, k): Pk releases a resource previously allocated to it.

The algorithm is as follows:

1.	 When Pi requires access to a resource, it issues a request (Request, Ti, i), time-
stamped with the current local clock value. It puts this message in its own array
at q[i] and sends the message to all other processes.

2.	 When Pj receives (Request, Ti, i), it puts this message in its own array at q[i]. If
q[j] does not contain a request message, then Pj transmits (Reply, Tj, j) to Pi. It
is this action that implements the rule described previously, which assures that
no earlier Request message is in transit at the time of a decision.

3.	 Pi can access a resource (enter its critical section) when both of these conditions
hold:

a.	 Pi's own Request message in array q is the earliest Request message in the
array; because messages are consistently ordered at all sites, this rule permits
one and only one process to access the resource at any instant.

b.	 All other messages in the local array are later than the message in q[i]; this
rule guarantees that Pi has learned about all requests that preceded its cur-
rent request.

3.	 Pi releases a resource by issuing a release (Release, Ti, i), which it puts in its
own array and transmits to all other processes.

4.	 When Pi receives (Release, Tj, j), it replaces the current contents of q[j] with
this message.

5.	 When Pi receives (Reply, Tj, j), it replaces the current contents of q[j] with this
message.

M19_STAL4290_09_GE_C19.indd 20 4/18/17 7:14 AM

19.3 / DISTRIBUTED MUTUAL EXCLUSION   19-21

It is easily shown that this algorithm enforces mutual exclusion, is fair, avoids
deadlock, and avoids starvation:

•	 Mutual exclusion: Requests for entry into the critical section are handled
according to the ordering of messages imposed by the timestamping mecha-
nism. Once Pi decides to enter its critical section, there can be no other Request
message in the system that was transmitted before its own. This is true because
Pi has by then necessarily received a message from all other sites and these
messages from other sites date from later than its own Request message. We can
be sure of this because of the Reply message mechanism; remember that
messages between two sites cannot arrive out of order.

•	 Fair: Requests are granted strictly on the basis of timestamp ordering. There-
fore, all processes have equal opportunity.

•	 Deadlock free: Because the timestamp ordering is consistently maintained at
all sites, deadlock cannot occur.

•	 Starvation free: Once Pi has completed its critical section, it transmits the
Release message. This has the effect of deleting Pi's Request message at all
other sites, allowing some other process to enter its critical section.

As a measure of efficiency of this algorithm, note to guarantee exclusion,
3 * (N - 1) messages are required: (N - 1) Request messages, (N - 1) Reply mes-
sages, and (N - 1) Release messages.

Second Version  A refinement of the Lamport algorithm was proposed in
[RICA81]. It seeks to optimize the original algorithm by eliminating Release
messages. The same assumptions as before are in force, except that it is not necessary
that messages sent from one process to another are received in the same order in
which they are sent.

As before, each site includes one process that controls resource allocation. This
process maintains an array q and obeys the following rules:

1.	 When Pi requires access to a resource, it issues a request (Request, Ti, i), time-
stamped with the current local clock value. It puts this message in its own array
at q[i] and sends the message to all other processes.

2.	 When Pj receives (Request, Ti, i), it obeys the following rules:

a.	 If Pj is currently in its critical section, it defers sending a Reply message (see
Rule 4, which follows)

b.	 If Pj is not waiting to enter its critical section (has not issued a Request that
is still outstanding), it transmits (Reply, Tj, j) to Pi.

c.	 If Pj is waiting to enter its critical section and if the incoming message follows
Pj's request, then it puts this message in its own array at q[i] and defers send-
ing a Reply message.

d.	 If Pj is waiting to enter its critical section and if the incoming message
precedes Pj's request, then it puts this message in its own array at q[i] and
transmits (Reply, Tj, j) to Pi.

M19_STAL4290_09_GE_C19.indd 21 4/18/17 7:14 AM

19-22   Chapter 19 / Distributed Process Management

5.	 Pi can access a resource (enter its critical section) when it has received a Reply
message from all other processes.

6.	 When Pi leaves its critical section, it releases the resource by sending a Reply
message to each pending Request.

The state transition diagram for each process is shown in Figure 19.10.
To summarize, when a process wishes to enter its critical section, it sends a time-

stamped Request message to all other processes. When it receives a Reply from all
other processes, it may enter its critical section. When a process receives a Request
from another process, it must eventually send a matching Reply. If a process does not
wish to enter its critical section, it sends a Reply at once. If it wants to enter its critical
section, it compares the timestamp of its Request with that of the last Request received,
and if the latter is more recent, it defers its Reply; otherwise Reply is sent at once.

With this method, 2 * (N - 1) messages are required: (N - 1) Request mes-
sages to indicate Pi’s intention of entering its critical section, and (N - 1) Reply
messages to allow the access it has requested.

The use of timestamping in this algorithm enforces mutual exclusion. It also
avoids deadlock. To prove the latter, assume the opposite: It is possible that, when
there are no more messages in transit, we have a situation in which each process has
transmitted a Request and has not received the necessary Reply. This situation cannot
arise, because a decision to defer a Reply is based on a relation that orders Requests.
There is therefore one Request that has the earliest timestamp and that will receive
all the necessary Replies. Deadlock is therefore impossible.

Figure 19.10  State Diagram for Algorithm in [RICA81]

Computation

Requesting
Mutual

Exclusion

Send a Request to
All Other Processes

All Replies
are Received

Exit from
Critical Section

Return Replies
for Waiting Requests

Mutual
Exclusion
Request

Critical
Section

Activating
Others

Wait

M19_STAL4290_09_GE_C19.indd 22 4/18/17 7:14 AM

19.4 / DISTRIBUTED DEADLOCK   19-23

Starvation is also avoided because Requests are ordered. Because Requests are
served in that order, every Request will at some stage become the oldest and will then
be served.

A Token-Passing Approach

A number of investigators have proposed a quite different approach to mutual exclu-
sion, which involves passing a token among the participating processes. The token is
an entity that at any time is held by one process. The process holding the token may
enter its critical section without asking permission. When a process leaves its critical
section, it passes the token to another process.

In this subsection, we look at one of the most efficient of these schemes. It was
first proposed in [SUZU82]; a logically equivalent proposal also appeared in
[RICA83]. For this algorithm, two data structures are needed. The token, which is
passed from process to process, is actually an array, token, whose kth element records
the timestamp of the last time that the token visited process Pk. In addition, each
process maintains an array, request, whose jth element records the timestamp of the
last Request received from Pj.

The procedure is as follows. Initially, the token is assigned arbitrarily to one of
the processes. When a process wishes to use its critical section, it may do so if it cur-
rently possesses the token; otherwise it broadcasts a timestamped request message
to all other processes and waits until it receives the token. When process Pj leaves its
critical section, it must transmit the token to some other process. It chooses the next
process to receive the token by searching the request array in the order
j + 1, j + 2, c , 1, 2, c , j - 1 for the first entry request [k] such that the time-
stamp for Pk’s last request for the token is greater than the value recorded in the
token for Pk’s last holding of the token, that is, request [k] 7 token [k].

Figure 19.11 depicts the algorithm, which is in two parts. The first part deals with
the use of the critical section and consists of a prelude, followed by the critical section,
followed by a postlude. The second part concerns the action to be taken upon receipt
of a request. The variable clock is the local counter used for the timestamp function.
The operation wait (access, token) causes the process to wait until a message of the
type “access” is received, which is then put into the variable array token.

The algorithm requires either of the following:

•	 N messages (N - 1 to broadcast the request and 1 to transfer the token) when
the requesting process does not hold the token

•	 No messages, if the process already holds the token

  19.4	 DISTRIBUTED DEADLOCK

In Chapter 6, we defined deadlock as the permanent blocking of a set of processes that
either compete for system resources or communicate with one another. This definition
is valid for a single system as well as for a distributed system. As with mutual exclusion,
deadlock presents more complex problems in a distributed system, compared with a
shared memory system. Deadlock handling is complicated in a distributed system

M19_STAL4290_09_GE_C19.indd 23 4/18/17 7:14 AM

19-24   Chapter 19 / Distributed Process Management

because no node has accurate knowledge of the current state of the overall system and
because every message transfer between processes involves an unpredictable delay.

Two types of distributed deadlock have received attention in the literature:
those that arise in the allocation of resources, and those that arise with the commu-
nication of messages. In resource deadlocks, processes attempt to access resources,
such as data objects in a database or I/O resources on a server; deadlock occurs if
each process in a set of processes requests a resource held by another process in the
set. In communications deadlocks, messages are the resources for which processes
wait; deadlock occurs if each process in a set is waiting for a message from another
process in the set, and no process in the set ever sends a message.

Figure 19.11  Token-Passing Algorithm (for process Pi)

if (!token_present) {
  clock++;         /* Prelude */
  broadcast (Request, clock, i);
  wait (access, token);
  token_present = true;
}

token_held = true;
<critical section>;

token[i] = clock;       /* Postlude */
token_held = false;
 for (int j = i + 1; j < n; j++) {
  if (request(j) > token[j] && token_present) {
   token_present = false;
   send (access, token[j]);
  }
}

(a) First Part

if (received (Request, k, j)) {
  request (j) = max(request(j), k);
  if (token_present && !token_held)
   <text of postlude>;

}

(b) Second Part

Notation
  send (j, access, token) end message of type access, with token, by

process j
  broadcast (request, clock, i) send message from process i of type request,

with timestamp clock, to all other processes
  received (request, t, j) receive message from process j of type

request, with timestamp t

M19_STAL4290_09_GE_C19.indd 24 4/18/17 7:14 AM

19.4 / DISTRIBUTED DEADLOCK   19-25

Deadlock in Resource Allocation

Recall from Chapter 6 that a deadlock in resource allocation exists only if all of the
following conditions are met:

•	 Mutual exclusion: Only one process may use a resource at a time. No process
may access a resource unit that has been allocated to another process.

•	 Hold and wait: A process may hold allocated resources while awaiting assign-
ment of others.

•	 No preemption: No resource can be forcibly removed from a process holding it.

•	 Circular wait: A closed chain of processes exists, such that each process holds
at least one resource needed by the next process in the chain.

The aim of an algorithm that deals with deadlock is either to prevent the forma-
tion of a circular wait, or to detect its actual or potential occurrence. In a distributed
system, the resources are distributed over various sites and access to them is regulated
by control processes that do not have complete, up-to-date knowledge of the global
state of the system and must therefore make their decisions on the basis of local
information. Thus, new deadlock algorithms are required.

One example of the difficulty faced in distributed deadlock management is the
phenomenon of phantom deadlock. An example of phantom deadlock is illustrated
in Figure 19.12. The notation P1 S P2 S P3 means that P1 is halted waiting for a
resource held by P2, and P2 is halted waiting for a resource held by P3. Let us say that
at the beginning of the example, P3 owns resource Ra and P1 owns resource Rb. Sup-
pose now that P3 issues first a message releasing Ra then a message requesting Rb. If
the first message reaches a cycle-detecting process before the second, the sequence
of Figure 19.12a results, which properly reflects resource requirements. If, however,
the second message arrives before the first message, a deadlock is registered (see
Figure 19.12b). This is a false detection, not a real deadlock, due to the lack of a global
state, such as would exist in a centralized system.

Figure 19.12  Phantom Deadlock

P1 P2

(a) Release arrives before request

P3

P1 P2 P3

P1

Release Ra

Request Rb

P2 P3

P1 P2

(b) Request arrives before release

P3

P1

Request Rb

Release Ra

P2 P3

M19_STAL4290_09_GE_C19.indd 25 4/18/17 7:14 AM

19-26   Chapter 19 / Distributed Process Management

Deadlock Prevention  Two of the deadlock prevention techniques discussed in
Chapter 6 can be used in a distributed environment.

1.	 The circular-wait condition can be prevented by defining a linear ordering of
resource types. If a process has been allocated resources of type R, then it may
subsequently request only those resources of types following R in the ordering.
A major disadvantage of this method is that resources may not be requested in
the order in which they are used; thus, resources may be held longer than
necessary.

2.	 The hold-and-wait condition can be prevented by requiring that a process
request all of its required resources at one time, and blocking the process until
all requests can be granted simultaneously. This approach is inefficient in two
ways. First, a process may be held up for a long time waiting for all of its resource
requests to be filled, when in fact it could have proceeded with only some of
the resources. Second, resources allocated to a process may remain unused for
a considerable period, during which time they are denied to other processes.

Both of these methods require that a process determine its resource require-
ments in advance. This is not always the case; an example is a database application in
which new items can be added dynamically. As an example of an approach that does
not require this foreknowledge, we consider two algorithms proposed in [ROSE78].
These were developed in the context of database work, so we shall speak of transac-
tions rather than processes.

The proposed methods make use of timestamps. Each transaction carries
throughout its lifetime the timestamp of its creation. This establishes a strict ordering
of the transactions. If a resource R already being used by transaction T1 is requested
by another transaction T2, the conflict is resolved by comparing their timestamps.
This comparison is used to prevent the formation of a circular-wait condition. Two
variations of this basic method are proposed by the authors, referred to as the “wait-
die” method and the “wound-wait” method.

Let us suppose T1 currently holds R and T2 issues a request. For the wait-die
method, Figure 19.13a shows the algorithm used by the resource allocator at the site
of R. The timestamps of the two transactions are denoted as e(T1) and e(T2). If T2
is older, it is blocked until T1 releases R, either by actively issuing a release or by
being “killed” when requesting another resource. If T2 is younger, then T2 is restarted
but with the same timestamp as before.

Thus, in a conflict, the older transaction takes priority. Because a killed transac-
tion is revived with its original timestamp, it grows older and therefore gains increased
priority. No site needs to know the state of allocation of all resources. All that are
required are the timestamps of the transactions that request its resources.

Figure 19.13  Deadlock Prevention Methods

  if (e(T2) < e(T1))

    halt_T2 ('wait');

  else

    kill_T2 ('die');

  if (e(T2) < e(T1)) 

     kill_T1 ('wound');

  else

    halt_T2 ('wait');

(a) Wait-die method (b) Wound-wait method

M19_STAL4290_09_GE_C19.indd 26 4/18/17 7:14 AM

19.4 / DISTRIBUTED DEADLOCK   19-27

The wound-wait method immediately grants the request of an older transaction
by killing a younger transaction that is using the required resource. This is shown in
Figure 19.13b. In contrast to the wait-die method, a transaction never has to wait for
a resource being used by a younger transaction.

Deadlock Avoidance  Deadlock avoidance is a technique in which a decision is
made dynamically whether a given resource allocation request could, if granted, lead
to a deadlock. [SING94] points out that distributed deadlock avoidance is impractical
for the following reasons:

1.	 Every node must keep track of the global state of the system; this requires
substantial storage and communications overhead.

2.	 The process of checking for a safe global state must be mutually exclusive.
Otherwise, two nodes could each be considering the resource request of a dif-
ferent process and concurrently reach the conclusion that it is safe to honor the
request, when in fact if both requests are honored, deadlock will result.

3.	 Checking for safe states involves considerable processing overhead for a dis-
tributed system with a large number of processes and resources.

Deadlock Detection  With deadlock detection, processes are allowed to obtain
free resources as they wish, and the existence of a deadlock is determined after the
fact. If a deadlock is detected, one of the constituent processes is selected and required
to release the resources necessary to break the deadlock.

The difficulty with distributed deadlock detection is that each site only knows
about its own resources, whereas a deadlock may involve distributed resources. Sev-
eral approaches are possible, depending on whether the system control is centralized,
hierarchical, or distributed (see Table 19.1).

With centralized control, one site is responsible for deadlock detection. All
request and release messages are sent to the central process as well as to the process
that controls the particular resource. Because the central process has a complete
picture, it is in a position to detect a deadlock. This approach requires a lot of mes-
sages and is vulnerable to a failure of the central site. In addition, phantom deadlocks
may be detected.

With hierarchical control, the sites are organized in a tree structure, with one
site serving as the root of the tree. At each node, other than leaf nodes, information
about the resource allocation of all dependent nodes is collected. This permits dead-
lock detection to be done at lower levels than the root node. Specifically, a deadlock
that involves a set of resources will be detected by the node that is the common
ancestor of all sites whose resources are among the objects in conflict.

With distributed control, all processes cooperate in the deadlock detection func-
tion. In general, this means that considerable information must be exchanged, with time-
stamps; thus the overhead is significant. [RAYN88] cites a number of approaches based
on distributed control, and [DATT90] provides a detailed examination of one approach.

We now give an example of a distributed deadlock detection algorithm
([DATT92], [JOHN91]). The algorithm deals with a distributed database system in
which each site maintains a portion of the database and transactions may be initiated
from each site. A transaction can have at most one outstanding resource request. If

M19_STAL4290_09_GE_C19.indd 27 4/18/17 7:14 AM

19-28   Chapter 19 / Distributed Process Management

a transaction needs more than one data object, the second data object can be
requested only after the first data object has been granted.

Associated with each data object i at a site are two parameters: a unique identi-
fier Di and the variable Locked_by (Di). This latter variable has the value nil if the
data object is not locked by any transaction; otherwise its value is the identifier of the
locking transaction.

Associated with each transaction j at a site are four parameters:

•	 A unique identifier Tj

•	 The variable Held_by (Tj), which is set to nil if transaction Tj is executing or in
a Ready state. Otherwise, its value is the transaction that is holding the data
object required by transaction Tj.

•	 The variable Wait_for (Tj), which has the value nil if transaction Ti is not waiting
for any other transaction. Otherwise, its value is the identifier of the transaction
that is at the head of an ordered list of transactions that are blocked.

•	 A queue Request_Q (Tj), which contains all outstanding requests for data
objects being held by Tj. Each element in the queue is of the form (Tk, Dk), where
Tk is the requesting transaction and Dk is the data object held by Tj.

For example, suppose transaction T2 is waiting for a data object held by T1,
which is, in turn, waiting for a data object held by T0. Then the relevant parameters
have the following values:

Transaction Wait_for Held_by Request_Q
T0 nil nil T1

T1 T0 T0 T2

T2 T0 T1 nil

Table 19.1  Distributed Deadlock Detection Strategies

Centralized Algorithms Hierarchical Algorithms Distributed Algorithms

Strengths Weaknesses Strengths Weaknesses Strengths Weaknesses

•	Algorithms are
conceptually
simple and
easy to
implement.

•	Central site
has complete
information
and can
optimally
resolve
deadlocks.

•	Considerable
communica-
tions overhead;
every node
must send
state informa-
tion to central
node.

•	Vulnerable to
failure of
central node.

•	Not vulnerable
to single point
of failure.

•	Deadlock
resolution
activity is
limited if most
potential
deadlocks are
relatively
localized.

•	May be diffi-
cult to config-
ure system so
that most
potential
deadlocks are
localized;
otherwise
there may
actually be
more overhead
than in a
distributed
approach.

•	Not vulnerable
to single point
of failure.

•	No node is
swamped with
deadlock
detection
activity.

•	Deadlock
resolution is
cumbersome
because
several sites
may detect the
same deadlock
and may not
be aware of
other nodes
involved in the
deadlock.

•	Algorithms are
difficult to
design because
of timing
considerations.

M19_STAL4290_09_GE_C19.indd 28 4/18/17 7:14 AM

19.4 / DISTRIBUTED DEADLOCK   19-29

This example highlights the difference between Wait_for (Ti) and Held_by (Ti). Nei-
ther process can proceed until T0 releases the data object needed by T1, which can
then execute and release the data object needed by T2.

Figure 19.14 shows the algorithm used for deadlock detection. When a transac-
tion makes a lock request for a data object, a server process associated with that data
object either grants or denies the request. If the request is not granted, the server
process returns the identity of the transaction holding the data object.

When the requesting transaction receives a granted response, it locks the data
object. Otherwise, the requesting transaction updates its Held_by variable to the
identity of the transaction holding the data object. It adds its identity to the Request_Q
of the holding transaction. It updates its Wait_for variable either to the identity of
the holding transaction (if that transaction is not waiting) or to the identity of the
Wait_for variable of the holding transaction. In this way, the Wait_for variable is set
to the value of the transaction that ultimately is blocking execution. Finally, the
requesting transaction issues an update message to all of the transactions in its own
Request_Q to modify all the Wait_for variables that are affected by this change.

When a transaction receives an update message, it updates its Wait_for variable
to reflect the fact that the transaction on which it had been ultimately waiting is now
blocked by yet another transaction. Then it does the actual work of deadlock detec-
tion by checking to see if it is now waiting for one of the processes that is waiting for
it. If not, it forwards the update message. If so, the transaction sends a clear message
to the transaction holding its requested data object and allocates every data object
that it holds to the first requester in its Request_Q and enqueues remaining request-
ers to the new transaction.

An example of the operation of the algorithm is shown in Figure 19.15. When
T0 makes a request for a data object held by T3, a cycle is created. T0 issues an update
message that propagates from T1 to T2 to T3. At this point, T3 discovers that the inter-
section of its Wait_for and Request_Q variables is not empty. T3 sends a clear message
to T2 so T3 is purged from Request_Q (T2), and it releases the data objects it held,
activating T4 and T6.

Deadlock in Message Communication

Mutual Waiting  Deadlock occurs in message communication when each of a
group of processes is waiting for a message from another member of the group and
there are no messages in transit.

To analyze this situation in more detail, we define the dependence set (DS) of
a process. For a process Pi that is halted, waiting for a message, DS(Pi) consists of all
processes from which Pi is expecting a message. Typically, Pi can proceed if any of the
expected messages arrives. An alternative formulation is that Pi can proceed only
after all of the expected messages arrive. The former situation is the more common
one and is considered here.

With the preceding definition, a deadlock in a set S of processes can be defined
as follows:

1.	 All the processes in S are halted, waiting for messages.

2.	 S contains the dependence set of all processes in S.

3.	 No messages are in transit between members of S.

M19_STAL4290_09_GE_C19.indd 29 4/18/17 7:14 AM

19-30   Chapter 19 / Distributed Process Management

Figure 19.14  A Distributed Deadlock Detection Algorithm

/* Data object Dj receiving a lock_request(Ti) */
  if (Locked_by(Dj) == null)
   send(granted);
  else {
   send not granted to Ti;
   send Locked_by(Dj) to Ti
  }
/* Transaction Ti makes a lock request for data object Dj */
  send lock_request(Ti) to Dj;
  wait for granted/not granted;
  if (granted) {
   Locked_by(Dj) = Ti;
   Held_by(Ti) = f;
  }
  else { /* suppose Dj is being used by transaction Tj */
   Held_by(Ti) = Tj;
   Enqueue(Ti, Request_Q(Tj));
   if (Wait_for(Tj) == null)
    Wait_for(Ti) = Tj ;
   else
    Wait_for(Ti) = Wait_for(Tj);
    update(Wait_for(Ti), Request_Q(Ti));
  }
/* Transaction Tj receiving an update message */
  if (Wait_for(Tj) != Wait_for(Ti))
   Wait_for(Tj) = Wait_for(Ti);
  if (intersect(Wait_for(Tj), Request_Q(Tj)) = null)
   update(Wait_for(Ti), Request_Q(Tj);
  else {
   DECLARE DEADLOCK;
    /* initiate deadlock resolution as follows */
    /* Tj is chosen as the transaction to be aborted */
    /* Tj releases all the data objects it holds */
    send_clear(Tj, Held_by(Tj));
   � allocate each data object Di held by Tj to the first requester Tk

in Request_Q(Tj);
    for �(every transaction Tn in Request_Q(Tj) requesting data object

Di held by Tj)
    {
     Enqueue(Tn, Request_Q(Tk));
    }
  }
/* Transaction Tk receiving a clear(Tj, Tk) message */
  � purge the tuple having Tj as the requesting transaction from

Request_Q(Tk);

M19_STAL4290_09_GE_C19.indd 30 4/18/17 7:14 AM

19.4 / DISTRIBUTED DEADLOCK   19-31

Figure 19.15 � Example of Distributed Deadlock Detection
Algorithm of Figure 19.14

T0 T1 T2 T3

T4 T5

T6

T0 T1 T2 T3

T4 T5

T6

Transaction Wait_for Held_by Request_Q

T0 nil nil T1

T1 T0 T0 T2

T2 T0 T1 T3

T3 T0 T2 T4, T6

T4 T0 T3 T5

T5 T0 T4 nil

T6 T0 T3 nil

Transaction Wait_for Held_by Request_Q

T0 T1

T1 T0

T0

T0

T3

T2

T2 T0 T1 T3

T3 T0 T2 T4, T6, T0

T4 T0 T3 T5

T5 T0 T4 NIL

T6 T0 T3 NIL

(a) State of system before request

(b) State of system after (b) State of system after T0 makes a request to T3

M19_STAL4290_09_GE_C19.indd 31 4/18/17 7:14 AM

19-32   Chapter 19 / Distributed Process Management

Any process in S is deadlocked because it can never receive a message that will
release it.

In graphical terms, there is a difference between message deadlock and resource
deadlock. With resource deadlock, a deadlock exists if there is a closed loop, or cycle,
in the graph that depicts process dependencies. In the resource case, one process is
dependent on another if the latter holds a resource that the former requires. With
message deadlock, the condition for deadlock is that all successors of any member of
S are themselves in S.

Figure 19.16 illustrates the point. In Figure 19.16a, P1 is waiting for a message
from either P2 or P5; P5 is not waiting for any message and so can send a message to
P1, which is therefore released. As a result, the links (P1, P5) and (P1, P2) are deleted.
Figure 19.16b adds a dependency: P5 is waiting for a message from P2, which is waiting
for a message from P3, which is waiting for a message from P1, which is waiting for a
message from P2. Thus, deadlock exists.

As with resource deadlock, message deadlock can be attacked by either preven-
tion or detection. [RAYN88] gives some examples.

Unavailability of Message Buffers  Another way in which deadlock can occur
in a message-passing system has to do with the allocation of buffers for the storage
of messages in transit. This kind of deadlock is well known in packet-switching data
networks. We first examine this problem in the context of a data network, then view
it from the point of view of a distributed operating system.

Figure 19.16 � Deadlock in Message
Communication

(a) No deadlock

P1

P5 P3

P2 P4

(b) Deadlock

P1

P5 P3

P2 P4

M19_STAL4290_09_GE_C19.indd 32 4/18/17 7:14 AM

19.4 / DISTRIBUTED DEADLOCK   19-33

The simplest form of deadlock in a data network is direct store-and-forward
deadlock and can occur if a packet-switching node uses a common buffer pool from
which buffers are assigned to packets on demand. Figure 19.17a shows a situation in
which all of the buffer space in node A is occupied with packets destined for B. The
reverse is true at B. Neither node can accept any more packets because their buffers
are full. Thus neither node can transmit or receive on any link.

Direct store-and-forward deadlock can be prevented by not allowing all buffers
to end up dedicated to a single link. Using separate fixed-size buffers, one for each
link, will achieve this prevention. Even if a common buffer pool is used, deadlock is
avoided if no single link is allowed to acquire all of the buffer space.

A more subtle form of deadlock, indirect store-and-forward deadlock, is illus-
trated in Figure 19.17b. For each node, the queue to the adjacent node in one direction
is full with packets destined for the next node beyond. One simple way to prevent
this type of deadlock is to employ a structured buffer pool (see Figure 19.18). The
buffers are organized in a hierarchical fashion. The pool of memory at level 0 is

Figure 19.17  Store-and-Forward Deadlock

Bu�er
pool full

A B

(a) Direct store-and-forward deadlock

Filled with
packets to B

Bu�er
pool full

Filled with
packets to D

(b) Indirect store-and-forward deadlock

B

CD

E

A

Filled with
packets to A

Filled with
packets to E

Filled with
packets to C

M19_STAL4290_09_GE_C19.indd 33 4/18/17 7:14 AM

19-34   Chapter 19 / Distributed Process Management

unrestricted; any incoming packet can be stored there. From level 1 to level N (where
N is the maximum number of hops on any network path), buffers are reserved in the
following way: Buffers at level k are reserved for packets that have traveled at least
k hops so far. Thus, in heavy load conditions, buffers fill up progressively from level
0 to level N. If all buffers up through level k are filled, arriving packets that have
covered k or less hops are discarded. It can be shown [GOPA85] that this strategy
eliminates both direct and indirect store-and-forward deadlocks.

The deadlock problem just described would be dealt with in the context of
communications architecture, typically at the network layer. The same sort of prob-
lem can arise in a distributed operating system that uses message passing for inter-
process communication. Specifically, if the send operation is nonblocking, then a
buffer is required to hold outgoing messages. We can think of the buffer used to hold
messages to be sent from process X to process Y to be a communications channel
between X and Y. If this channel has finite capacity (finite buffer size), then it is pos-
sible for the send operation to result in process suspension. That is, if the buffer is of
size n and there are currently n messages in transit (not yet received by the destina-
tion process), then the execution of an additional send will block the sending process
until a receive has opened up space in the buffer.

Figure 19.19 illustrates how the use of finite channels can lead to deadlock. The
figure shows two channels, each with a capacity of four messages, one from process
X to process Y and one from Y to X. If exactly four messages are in transit in each of
the channels, and both X and Y attempt a further transmission before executing a
receive, then both are suspended and a deadlock arises.

Figure 19.18 � Structured Buffer Pool for Deadlock
Prevention

Common Pool
(Class 0)

Bu�er space for
packets that have
traveled k hops

Class 2

Class k

Class N

Class 1

M19_STAL4290_09_GE_C19.indd 34 4/18/17 7:14 AM

19.6 / REFERENCES   19-35

If it is possible to establish upper bounds on the number of messages that will
ever be in transit between each pair of processes in the system, then the obvious
prevention strategy would be to allocate as many buffer slots as needed for all these
channels. This might be extremely wasteful, and of course requires this foreknowl-
edge. If requirements cannot be known ahead of time, or if allocating based on upper
bounds is deemed too wasteful, then some estimation technique is needed to optimize
the allocation. It can be shown that this problem is unsolvable in the general case;
some heuristic strategies for coping with this situation are suggested in [BARB90].

  19.5	 SUMMARY

A distributed operating system may support process migration. This is the transfer of
a sufficient amount of the state of a process from one machine to another for the
process to execute on the target machine. Process migration may be used for load
balancing, to improve performance by minimizing communication activity, to increase
availability, or to allow processes access to specialized remote facilities.

With a distributed system, it is often important to establish global state informa-
tion, to resolve contention for resources, and to coordinate processes. Because of the
variable and unpredictable time delay in message transmission, care must be taken
to assure that different processes agree on the order in which events have occurred.

Process management in a distributed system includes facilities for enforcing
mutual exclusion and for taking action to deal with deadlock. In both cases, the prob-
lems are more complex than those in a single system.

  19.6	 REFERENCES

ANDR90 Andrianoff, S. “A Module on Distributed Systems for the Operating System Course.” Proceed-
ings, Twenty-First SIGCSE Technical Symposium on Computer Science Education, SIGSCE Bul-
letin, February 1990.

ARTS89a Artsy, Y., ed. “Special Issue on Process Migration.” Newsletter of the IEEE Computer Society
Technical Committee on Operating Systems, Winter 1989.

ARTS89b Artsy, Y. “Designing a Process Migration Facility: The Charlotte Experience.” Computer,
September 1989.

Figure 19.19 � Communication Deadlock in a
Distributed System

X Y

M19_STAL4290_09_GE_C19.indd 35 4/18/17 7:14 AM

19-36   Chapter 19 / Distributed Process Management

BARB90 Barbosa, V. “Strategies for the Prevention of Communication Deadlocks in Distributed
Parallel Programs.” IEEE Transactions on Software Engineering, November 1990.

BEN06 Ben-Ari, M. Principles of Concurrent and Distributed Programming. Harlow, England: Addison-
Wesley, 2006.

CABR86 Cabrear, L. “The Influence of Workload on Load Balancing Strategies.” USENIX Conference
Proceedings, Summer 1986.

CASA94 Casavant, T., and Singhal, M. Distributed Computing Systems. Los Alamitos, CA: IEEE Com-
puter Society Press, 1994.

CHAN90 Chandras, R. “Distributed Message Passing Operating Systems.” Operating Systems Review,
January 1990.

DATT90 Datta, A., and Ghosh, S. “Deadlock Detection in Distributed Systems.” Proceedings, Phoenix
Conference on Computers and Communications, March 1990.

DATT92 Datta, A.; Javagal, R.; and Ghosh, S. “An Algorithm for Resource Deadlock Detection in Dis-
tributed Systems,” Computer Systems Science and Engineering, October 1992.

DOUG89 Douglas, F., and Ousterhout, J. “Process Migration in Sprite: A Status Report.” Newsletter of
the IEEE Computer Society Technical Committee on Operating Systems, Winter 1989.

DOUG91 Douglas, F., and Ousterhout, J. “Transparent Process Migration: Design Alternatives and the
Sprite Implementation.” Software Practice and Experience, August 1991.

EAGE86 Eager, D.; Lazowska, E.; and Zahnorjan, J. “Adaptive Load Sharing in Homogeneous Distrib-
uted Systems.” IEEE Transactions on Software Engineering, May 1986.

ESKI90 Eskicioglu, M. “Design Issues of Process Migration Facilities in Distributed Systems.” Newsletter
of the IEEE Computer Society Technical Committee on Operating Systems and Application Envi-
ronments, Summer 1990.

FINK89 Finkel, R. “The Process Migration Mechanism of Charlotte.” Newsletter of the IEEE Computer
Society Technical Committee on Operating Systems, Winter 1989.

GOPA85 Gopal, I. “Prevention of Store-and-Forward Deadlock in Computer Networks.” IEEE Trans-
actions on Communications, December 1985.

JOHN91 Johnston, B.; Javagal, R.; Datta, A.; and Ghosh, S. “A Distributed Algorithm for Resource
Deadlock Detection.” Proceedings, Tenth Annual Phoenix Conference on Computers and Com-
munications, March 1991.

JUL88 Jul, E.; Levy, H.; Hutchinson, N.; and Black, A. “Fine-Grained Mobility in the Emerald System.”
ACM Transactions on Computer Systems, February 1988.

JUL89 Jul, E. “Migration of Light-Weight Processes in Emerald.” Newsletter of the IEEE Computer
Society Technical Committee on Operating Systems, Winter 1989.

LAMP78 Lamport, L. “Time, Clocks, and the Ordering of Events in a Distributed System.” Communica-
tions of the ACM, July 1978.

LELA86 Leland, W., and Ott, T. “Load-Balancing Heuristics and Process Behavior.” Proceedings, ACM
SigMetrics Performance 1986 Conference, 1986.

LYNC96 Lynch, N. Distributed Algorithms. San Francisco, CA: Morgan Kaufmann, 1996.
MILO00 Milojicic, D.; Douglis, F.; Paindaveine, Y.; Wheeler, R.; and Zhou, S. “Process Migration.” ACM

Computing Surveys, September 2000.
POPE85 Popek, G., and Walker, B. The LOCUS Distributed System Architecture, Cambridge, MA: MIT

Press, 1985.
RAYN88 Raynal, M. Distributed Algorithms and Protocols. New York: Wiley, 1988.
RICA81 Ricart, G., and Agrawala, A. “An Optimal Algorithm for Mutual Exclusion in Computer

Networks.” Communications of the ACM, January 1981 (Corrigendum in Communications of the
ACM, September 1981).

M19_STAL4290_09_GE_C19.indd 36 4/18/17 7:14 AM

19.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS   19-37

RICA83 Ricart, G., and Agrawala, A. “Author’s Response to ‘On Mutual Exclusion in Computer
Networks’ by Carvalho and Roucairol.” Communications of the ACM, February 1983.

ROSE78 Rosenkrantz, D.; Stearns, R.; and Lewis, P. “System Level Concurrency Control in Distributed
Database Systems.” ACM Transactions on Database Systems, June 1978.

SHIV92 Shivaratri, N.; Krueger, P.; and Singhal, M. “Load Distributing for Locally Distributed Systems.”
Computer, December 1992.

SING94 Singhal, M. “Deadlock Detection in Distributed Systems.” In [CASA94].
SMIT88 Smith, J. “A Survey of Process Migration Mechanisms.” Operating Systems Review, July 1988.
SMIT89 Smith, J. “Implementing Remote fork() with Checkpoint/restart.” Newsletter of the IEEE Com-

puter Society Technical Committee on Operating Systems, Winter 1989.
SUZU82 Suzuki, I., and Kasami, T. “An Optimality Theory for Mutual Exclusion Algorithms in Com-

puter Networks.” Proceedings of the Third International Conference on Distributed Computing
Systems, October 1982.

WALK89 Walker, B., and Mathews, R. “Process Migration in AIX’s Transparent Computing Facility.”
Newsletter of the IEEE Computer Society Technical Committee on Operating Systems,
Winter 1989.

ZAJC93 Zajcew, R., et al. “An OSF/1 UNIX for Massively Parallel Multicomputers.” Proceedings, Winter
USENIX Conference, January 1993.

  19.7	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

	19.1.	 Discuss some of the reasons for implementing process migration.
	19.2.	 How is the process address space handled during process migration?
	19.3.	 What are the motivations for preemptive and nonpreemptive process migration?
	19.4.	 Why is it impossible to determine a true global state?
	19.5.	 What is the difference between distributed mutual exclusion enforced by a centralized

algorithm and enforced by a distributed algorithm?
	19.6.	 Define the two types of distributed deadlock.

Problems

	19.1.	 The flushing policy is described in the subsection on process migration strategies in
Section 19.1.
a.	 From the perspective of the source, which other strategy does flushing resemble?
b.	 From the perspective of the target, which other strategy does flushing resemble?

	19.2.	 For Figure 19.9, it is claimed that all four processes assign an ordering of 5a, q6 to the
two messages, even though q arrives before a at P3. Work through the algorithm to
demonstrate the truth of the claim.

channel
distributed deadlock
distributed mutual exclusion

eviction
global state
nonpreemptive transfer

preemptive transfer
process migration
snapshot

M19_STAL4290_09_GE_C19.indd 37 4/18/17 7:14 AM

19-38   Chapter 19 / Distributed Process Management

	19.3.	 For Lamport’s algorithm, are there any circumstances under which Pi can save itself
the transmission of a Reply message?

	19.4.	 For the mutual exclusion algorithm of [RICA81],
a.	 Prove that mutual exclusion is enforced.
b.	 If messages do not arrive in the order that they are sent, the algorithm does not

guarantee that critical sections are executed in the order of their requests. Is starva-
tion possible?

	19.5.	 In the token-passing mutual exclusion algorithm, is the timestamping used to reset
clocks and correct drifts, as in the distributed queue algorithms? If not, what is the
function of the timestamping?

	19.6.	 For the token-passing mutual exclusion algorithm, prove that it:
a.	 guarantees mutual exclusion.
b.	 avoids deadlock.
c.	 is fair.

	19.7.	 In Figure 19.11b, explain why the second line cannot simply read ;request (j) = t.<

M19_STAL4290_09_GE_C19.indd 38 4/18/17 7:14 AM

20-1

Overview of Probability
and Stochastic Processes

20.1	 Probability
Definitions of Probability
Conditional Probability and Independence
Bayes’s Theorem

20.2	 Random Variables
Distribution and Density Functions
Important Distributions
Multiple Random Variables

20.3	 Elementary Concepts of Stochastic Processes
First- and Second-Order Statistics
Stationary Stochastic Processes
Spectral Density
Independent Increments
Ergodicity

20.4	 Problems

Chapter

M20_STAL4290_09_GE_C20.indd 1 4/18/17 7:24 AM

20-2   Chapter 20 / Overview of Probability and Stochastic Processes

Before setting out on our exploration of queueing analysis, we review background
on probability and stochastic processes. The reader familiar with these topics can
safely skip this chapter.

The chapter begins with an introduction to some elementary concepts from
probability theory and random variables; this material is needed for Chapter 21, on
queueing analysis. Following this, we look at stochastic processes, which are also
relevant to queueing analysis.

  20.1	 PROBABILITY

We give here the barest outline of probability theory, but enough to support the rest
of this chapter.

Definitions of Probability

Probability is concerned with the assignment of numbers to events. The probability
Pr[A] of an event A is a number between 0 and 1 that corresponds to the likelihood
that the event A will occur. Generally, we talk of performing an experiment and
obtaining an outcome. The event A is a particular outcome or set of outcomes, and a
probability is assigned to that event.

It is difficult to get a firm grip on the concept of probability. Different applica-
tions of the theory present probability in different lights. In fact, there are a number
of different definitions of probability. We highlight three here.

Axiomatic Definition  A formal approach to probability is to state a number of
axioms that define a probability measure and, from them, to derive laws of probability
that can be used to perform useful calculations. The axioms are simply assertions that
must be accepted. Once the axioms are accepted, it is possible to prove each of the
laws.

The axioms and laws make use of the following concepts from set theory. The
certain event Ω is the event that occurs in every experiment; it consists of the uni-
verse, or sample space, of all possible outcomes. The union A h B of two events A
and B is the event that occurs when either A or B or both occur. The intersection
A x B, also written AB, is the event that occurs when both events A and B occur.
The events A and B are mutually exclusive if the occurrence of one of them excludes
the occurrence of the other; that is, there is no outcome that is included in both A and
B. The event A, called the complement of A, is the event that occurs when A does

Learning Objectives

After studying this chapter, you should be able to:
•	 Understand the basic concepts of probability.
•	 Explain the concept of random variable.
•	 Understand some of the important basic concepts of stochastic processes.

M20_STAL4290_09_GE_C20.indd 2 4/18/17 7:24 AM

20.1 / PROBABILITY   20-3

not occur—that is, all outcomes in the sample space not included in A. These concepts
are easily visualized with Venn diagrams, such as those shown in Figure 20.1. In each
diagram, the shaded part corresponds to the expression below the diagram. Parts (c)
and (d) correspond to cases in which A and B are not mutually exclusive; that is, some
outcomes are defined as part of both events A and B. Parts (e) and (f) correspond to
cases in which A and B are mutually exclusive. Note in these cases, the intersection
of the two events is the empty set.

The common set of axioms used to define probability is as follows:

Figure 20.1  Venn Diagrams

(b) NOT A
A

A B A B

A B A B

A A

(a) A

(c) A AND B
A ù B

(d) A OR B
A ù B

(e) A AND B
A ø B

(f) A OR B
A ø B

V V

V V

V V

1.	 0 … Pr[A] … 1 for each event A

2.	 Pr[Ω] = 1

3.	 Pr[A h B] = Pr[A] + Pr[B] if A and B are mutually exclusive

M20_STAL4290_09_GE_C20.indd 3 4/18/17 7:24 AM

20-4   Chapter 20 / Overview of Probability and Stochastic Processes

Axiom 3 can be extended to many events. For example, Pr[A h B h C] =
Pr[A] + Pr[B] + Pr[C] if A, B, and C are mutually exclusive. Note the axioms do not
say anything about how probabilities are to be assigned to individual outcomes or
events.

Based on these axioms, many laws can be derived. Here are some of the most
important:

Pr[A) = 1 - Pr[A]

Pr[A x B] = 0 if A and B are mutually exclusive

Pr[A h B] = Pr[A] + Pr[B] - Pr[A x B]

Pr[A h B h C] = Pr[A] + Pr[B] + Pr[C] - Pr[A x B] - Pr[A x C] -
Pr[B x C] + Pr[A x B x C]

As an example, consider the throwing of a single die. This has six possible out-
comes. The certain event is the event that occurs when any of the six die faces is on
top. The union of the events {even} and {less than three} is the event {1 or 2 or 4 or
6}; the intersection of these events is the event {2}. The events {even} and {odd} are
mutually exclusive. If we assume each of the six outcomes is equally likely and assign
a probability of 1/6 to each outcome, it is easy to see that the three axioms are satis-
fied. We can apply the laws of probability as follows:

Pr5even6 = Pr526 + Pr546 + Pr566 = 1/2

Pr5 less than three6 = Pr516 + Pr526 = 1/3

Pr[5even6 h 5less than three6] = Pr5even6 + Pr5less than three6 - Pr526
= 1/2 + 1/3 - 1/6 = 2/3

Relative Frequency Definition  The relative frequency approach uses the
following definition of probability. Perform an experiment a number of times; each
time is called a trial. For each trial, observe whether the event A occurs. Then the
probability Pr[A] of an event A is the limit:

Pr[A] = lim
nS∞

nA

n

where n is the number of trials, and nA is the number of occurrences of A.
For example, we could toss a coin many times. If the ratio of heads to total tosses

hovers around 0.5 after a very large number of tosses, then we can assume that this
is a fair coin, with equal probability of heads and tails.

Classical Definition  For the classical definition, let N be the number of possible
outcomes, with the restriction that all outcomes are equally likely, and NA the number
of outcomes in which event A occurs. Then the probability of A is defined as:

Pr[A] =
NA

N

M20_STAL4290_09_GE_C20.indd 4 4/18/17 7:24 AM

20.1 / PROBABILITY   20-5

For example, if we throw one die, then N is 6 and there are three outcomes that
correspond to the event {even}; hence Pr5even6 = 3/6 = 0.5. Here’s a more com-
plicated example: We roll two dice and want to determine the probability p that the
sum is 7. You could consider the number of different sums that could be produced
(2, 3, . . . , 12), which is 11, and conclude incorrectly that the probability is 1/11. We
need to consider equally likely outcomes. For this purpose, we need to consider each
combination of die faces, and we must distinguish between the first and second die.
For example, the outcome (3, 4) must be counted separately from the outcome (4, 3).
With this approach, there are 36 equally likely outcomes, and the favorable outcomes
are the six pairs (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1). Thus, p = 6/36 = 1/6.

Conditional Probability and Independence

We often want to know a probability that is conditional on some event. The effect of
the condition is to remove some of the outcomes from the sample space. For example,
what is the probability of getting a sum of 8 on the roll of two dice, if we know that
the face of at least one die is an even number? We can reason as follows. Because one
die is even and the sum is even, the second die must show an even number. Thus, there
are three equally likely successful outcomes: (2, 6), (4, 4), and (6, 2), out of a total
set of possibilities of [36 - (number of events with both faces odd)] = 36 - 3 *
3 = 27. The resulting probability is 3/27 = 1/9.

Formally, the conditional probability of an event A assuming the event B has
occurred, denoted by Pr[A �B], is defined as the ratio:

Pr[A �B] =
Pr[AB]

Pr[B]

where we assume Pr[B] is not zero.
In our example, A = 5sum of 86 and B = 5at least one die even6 . The quan-

tity Pr[AB] encompasses all of those outcomes in which the sum is 8 and at least one
die is even. As we have seen, there are three such outcomes. Thus, Pr[AB] = 3/36
= 1/12. A moment’s thought should convince you that Pr[B] = 3/4. We can now
calculate:

Pr[A �B] =
1/12
3/4

=
1
9

This agrees with our previous reasoning.
Two events A and B are called independent if Pr[AB] = Pr[A]Pr[B]. It can

easily be seen that if A and B are independent, Pr[A �B] = Pr[A] and Pr[B �A] = Pr[B].

Bayes’s Theorem

We close this section with one of the most important results from probability theory,
known as Bayes’s Theorem. First, we need to state the total probability formula. Given
a set of mutually exclusive events E1, E2, c, En, such that the union of these events
covers all possible outcomes, and given an arbitrary event A, then it can be shown that

	 Pr[A] = a
n

i=1
 Pr[A �Ei]Pr[Ei]	 (20.1)

M20_STAL4290_09_GE_C20.indd 5 4/18/17 7:24 AM

20-6   Chapter 20 / Overview of Probability and Stochastic Processes

Bayes’s Theorem may be stated as follows:

Pr[Ei �A] =
Pr[A �Ei]P[Ei]

Pr[A]
=

Pr[A �Ei]P[Ei]

a
n

j=1
Pr[A �Ej]Pr[Ej]

Figure 20.2a illustrates the concepts of total probability and Bayes’s Theorem.
Bayes’s Theorem is used to calculate posterior odds, that is, the probability that

something really is the case, given evidence in favor of it. For example, suppose we
are transmitting a sequence of 0s and 1s over a noisy transmission line. Let S0 and S1
be the events that a 0 is sent at a given time and a 1 is sent, respectively, and R0 and
R1 be the events that a 0 is received and a 1 is received. Suppose we know the prob-
abilities of the source, namely Pr[S1] = p and Pr[S0] = 1 - p. Now the line is
observed to determine how frequently an error occurs when a 1 is sent and when a
0 is sent, and the following probabilities are calculated: Pr[R0 �S1] = pa and
Pr[R1 �S0] = pb. If a 0 is received, we can then calculate the conditional probability
of an error, namely the conditional probability that a 1 was sent given that a 0 was
received, using Bayes’s Theorem:

Pr[S1 �R0] =
Pr[R0 �S1]Pr[S1]

Pr[R0 �S1]Pr[S1] + Pr[R0 �S0]Pr[S0]
=

pap

pap + (1 - pb)(1 - p)

Figure 20.2b illustrates the preceding equation. In the figure, the sample space
is represented by a unit square. Half of the square corresponds to S0 and half to S1,
so Pr[S0] = Pr[S1] = 0.5. Similarly, half of the square corresponds to R0 and half to
R1, so Pr[R0] = Pr[R1] = 0.5. Within the area representing S0, 1/4 of that area cor-
responds to R1, so Pr[R1 �S0] = 0.25. Other conditional probabilities are similarly
evident.

Figure 20.2  Illustration of Total Probability and Bayes’ Theorem

A

E1 E2

E3 E4

= S0; 0 sent

= S1; 1 sent

= R0; 0 received

(b) Example(a) Diagram to illustrate concepts

= R1; 1 received

M20_STAL4290_09_GE_C20.indd 6 4/18/17 7:24 AM

20.2 / RANDOM VARIABLES   20-7

  20.2	 RANDOM VARIABLES

A random variable is a mapping from the set of all possible events in a sample space
under consideration to the real numbers. That is, a random variable associates a real
number with each event. This concept is sometimes expressed in terms of an experi-
ment with many possible outcomes; a random variable assigns a value to each such
outcome. Thus, the value of a random variable is a random quantity. We give the fol-
lowing formal definition. A random variable X is a function that assigns a number to
every outcome in a sample space and satisfies the following conditions:

1.	 The set 5X … x6 is an event for every x.

2.	 Pr[X = ∞] = Pr[X = - ∞] = 0.

A random variable is continuous if it takes on an uncountably infinite number
of distinct values. A random variable is discrete if it takes on a finite or countably
infinite number of values.

Distribution and Density Functions

A continuous random variable X can be described by either its distribution function
F(x) or density function f(x):

Distribution function: F(x) = Pr[X … x] F(- ∞) = 0; F(∞) = 1

Density function: f(x) =
d
dx

F(x) F(x) = L
 x

-∞

f(y)dy L
 ∞

-∞

f(y)dy = 1

For a discrete random variable, its probability distribution is characterized by

PX(k) = Pr[X = k]a
all k

PX(k) = 1

We are often concerned with some characteristic of a random variable rather than
the entire distribution, such as shown in Table 20.1:

Mean value (also known as expected value or first
moment) d E[X] = mX = L

 ∞

-∞

xf (x)dx continuous case

E[X] = mX = a
all k

k Pr[x = k] discrete case

Second moment d E[X2] = L
 ∞

-∞

x2f(x)dx continuous case

E[X2] = a
all k

k2 Pr[x = k] discrete case

Variance Var [X] = E[(X - mX)2] = E[X2] - mX
2

Standard deviation sX = 2Var[x]

Table 20.1  Random Variable Characteristics

M20_STAL4290_09_GE_C20.indd 7 4/18/17 7:25 AM

20-8   Chapter 20 / Overview of Probability and Stochastic Processes

The variance and standard deviation are measures of the dispersion of values
around the mean. A high variance means the variable takes on more values relatively
farther from the mean than for a low variance. It is easy to show that for any
constant a:

E[aX] = aE[X]; Var[aX] = a2Var[X]

The mean is known as a first-order statistic; the second moment and variance
are second-order statistics. Higher-order statistics can also be derived from the prob-
ability density function.

Important Distributions

Several distributions that play an important role in queueing analysis are described
next.

Exponential Distribution  The exponential distribution with parameter l 7 0
is given by (see Figures 20.3a and 20.3b) and has the following distribution and
density functions:

F(x) = 1 - e-lx f(x) = le-lx x Ú 0

Figure 20.3  Some Probability Functions

0.4

0.3

0.2

0.1

0.0
86420

(d) Normal probability density (m = 4, s = 1)

1.0

0.8

0.6

0.4

0.2

0.0

f (
x)

 =
 e

xp
(–

x)

43210
(b) Exponential probability density (l = 1)

1.0

0.8

0.6

0.4

0.2

0.0
43210

(a) Exponential probability distribution (l = 1)

0.20

0.15

0.10

0.05

0.00
121086420

(c) Poisson distribution (l = 1)

Pr
[X

=k
]

=
(l

k e
–l

)/
k!

F
(x

)
=

1–
e–x

f (
x)

 =
e–(

x–
4)

2 /
2

√2
π

M20_STAL4290_09_GE_C20.indd 8 4/18/17 7:25 AM

20.2 / RANDOM VARIABLES   20-9

The exponential distribution has the interesting property that its mean is equal to its
standard deviation:

E[X] = sX =
1
l

When used to refer to a time interval, such as a service time, this distribution is some-
times referred to as a random distribution. This is because, for a time interval that has
already begun, each time at which the interval may finish is equally likely.

This distribution is important in queueing theory because we can often assume
that the service time of a server in a queueing system is exponential. In the case of
telephone traffic, the service time is the time for which a subscriber engages the
equipment of interest. In a packet-switching network, the service time is the transmis-
sion time and is therefore proportional to the packet length. It is difficult to give a
sound theoretical reason why service times should be exponential, but in many cases
they are very nearly exponential. This is good news because it simplifies the queueing
analysis immensely.

Poisson Distribution  Another important distribution is the Poisson distribution
(see Figure 20.3c), with parameter l 7 0, which takes on values at the points 0, 1, . . . :

Pr[X = k] =
lk

k!
 e-l k = 0, 1, 2 c

E[X] = Var[X] = l

If l 6 1, then Pr[X = k] is maximum for k = 0. If l 7 1 but not an integer,
then Pr[X = k] is maximum for the largest integer smaller than l; if l is a positive
integer, then there are two maxima at k = l and k = l - 1.

The Poisson distribution is also important in queueing analysis because
we must assume a Poisson arrival pattern to be able to develop the queueing equa-
tions (discussed in Chapter 21). Fortunately, the assumption of Poisson arrivals is
usually valid.

The way in which the Poisson distribution can be applied to arrival rate is as
follows. If items arrive at a queue according to a Poisson process, this may be
expressed as:

Pr[k items arrive in time interval T] =
(lT)k

k!
 e-lT

E[number of items to arrive in time interval T] = lT

Mean arrival rate, in items per second = l

Arrivals occurring according to a Poisson process are often referred to as ran-
dom arrivals. This is because the probability of arrival of an item in a small interval
is proportional to the length of the interval, and is independent of the amount of
elapsed time since the arrival of the last item. That is, when items are arriving accord-
ing to a Poisson process, an item is as likely to arrive at one instant as any other,
regardless of the instants at which the other items arrive.

Another interesting property of the Poisson process is its relationship to the
exponential distribution. If we look at the times between arrivals of items Ta (called

M20_STAL4290_09_GE_C20.indd 9 4/18/17 7:25 AM

20-10   Chapter 20 / Overview of Probability and Stochastic Processes

the interarrival times), then we find that this quantity obeys the exponential
distribution:

 Pr[Ta 6 t] = 1 - e-lt

 E[Ta] =
1
l

Thus, the mean interarrival time is the reciprocal of the arrival rate, as we would
expect.

Normal Distribution  The normal distribution with parameters m 7 0 and s has
the following density function (see Figure 20.3d) and distribution function:

f(x) =
1

s22p
 e-(x -m)2/2s2

 F(x) =
1

s22p
 L

x

-∞
e-(y -m)2/2s2

dy

with

E[X] = m

Var[X] = s2

An important result is the central limit theorem, which states that the distribu-
tion of the average of a large number of independent random variables will be
approximately normal, almost regardless of their individual distributions. One key
requirement is finite mean and variance. The central limit theorem plays a key role
in statistics.

Multiple Random Variables

With two or more random variables, we are often concerned whether variations in
one are reflected in the other. This subsection defines some important measures of
dependence.

In general, the statistical characterization of multiple random variables requires
a definition of their joint probability density function or joint probability distribution
function:

Distribution: F(x1, x2, c xn) = Pr[X1 … x1, X2 … x2, c , Xn … xn]

Density: f(x1, x2, c , xn) =
0n

0x10x2 g 0xn
 F(x1, x2, c , xn)

Discrete distribution: P(x1, x2, c xn) = Pr[X1 = x1, X2 = x2, c , Xn = xn]

For any two random variables X and Y, we have

E[X + Y] = E[X] + E[Y]

Two continuous random variables X and Y are called (statistically) independent
if F(x, y) = F(x)F(y), and therefore f(x, y) = f(x)f(y). If the random variables X and
Y are discrete, then they are independent if P(x, y) = P(x)P(y).

For independent random variables, the following relationships hold:

E[XY] = E[X] * E[Y]

Var[X + Y] = Var[X] + Var[Y]

M20_STAL4290_09_GE_C20.indd 10 4/18/17 7:25 AM

20.2 / RANDOM VARIABLES   20-11

The covariance of two random variables X and Y is defined as follows:

Cov(X, Y) = E[(X - mX)(Y - mY)] = E[XY] - E[X]E[Y]

If the variances of X and Y are finite, then their covariance is finite but may be
positive, negative, or zero.

For finite variances of X and Y, the correlation coefficient of X and Y is
defined as:

	 r(X, Y) =
Cov(X,Y)

sXsY
	 (20.2)

We can think of this as a measure of the linear dependence between X and Y, normal-
ized to be relative to the amount of variability in X and Y. The following relationship
holds:

-1 … r(X, Y) … 1

It is said X and Y are positively correlated if r(X, Y) 7 0, that X and Y are
negatively correlated if r(X, Y) 6 0, and X and Y are uncorrelated if
r(X, Y) = Cov(X, Y) = 0. If X and Y are independent random variables, then they
are uncorrelated and r(X, Y) = 0. However, it is possible for X and Y to be uncor-
related but not independent (see Problem 20.12).

The correlation coefficient provides a measure of the extent to which two ran-
dom variables are linearly related. If the joint distribution of X and Y is relatively
concentrated around a straight line in the xy-plane that has a positive slope, then
r(X, Y) will typically be close to 1. This indicates that a movement in X will be
matched by a movement of relatively similar magnitude and direction in Y. If the
joint distribution of X and Y is relatively concentrated around a straight line that has
a negative slope, then r(X, Y) will typically be close to -1.

The following relationship is easily demonstrated:

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

If X and Y have the same variance s2, then the preceding can be rewritten as:

Var(X + Y) = 2s2(1 + r(X, Y))

If X and Y are uncorrelated [r(X, Y) = 0], then Var(X + Y) = 2s2. These results
easily generalize to more than two variables: Consider a set of random variables
X1, c , XN, such that each has the same variance s2. Then

Var¢ aN
i=1

Xi≤ = s2¢N + 2a
i
a
j6 i

r(i, j)≤
where r(i, j) is shorthand for r(Xi, Xj). Using the relationship Var(X/N) = Var(X)/N2,
we can develop an equation for the variance of the sample mean of a set of random
variables:

 X =
1
N

 a
N

i=1
Xi

 Var(X) =
s2

N
 ¢1 + a

i
a
j6 i

r(i, j)≤
If the Xi are mutually independent, then we have Var(X) =

s2

N
.

M20_STAL4290_09_GE_C20.indd 11 4/18/17 7:25 AM

20-12   Chapter 20 / Overview of Probability and Stochastic Processes

  20.3	 ELEMENTARY CONCEPTS OF STOCHASTIC PROCESSES

A stochastic process, also called a random process, is a family of random variables
5x(t), t ∈ T6 indexed by a parameter t over some index set T. Typically, the index
set is interpreted as the time dimension, and x(t) is a function of time. Another way
to say this is a stochastic process is a random variable that is a function of time. A
continuous-time stochastic process is one in which t varies continuously, typically over
the nonnegative real line 5x(t), 0 … t 6 ∞6 , although sometimes over the entire real
line; whereas a discrete-time stochastic process is one in which t takes on discrete
values, typically the positive integers 5x(t), t = 1, 2, c6 , although in some cases the
range is the integers from - ∞ to + ∞ .

Recall a random variable is defined as a function that maps the outcome of an
experiment into a given value. With that in mind, the expression x(t) can be inter-
preted in several ways:

1.	 A family of time functions (t variable; all possible outcomes)

2.	 A single time function (t variable; one outcome)

3.	 A random variable (t fixed; all possible outcomes)

4.	 A single number (t fixed; one outcome)

The specific interpretation of x(t) is usually clear from the context.
A word about terminology. A continuous-value stochastic process is one in

which the random variable x(t) with t fixed (case 3) takes on continuous values,
whereas a discrete-value stochastic process is one in which the random variable at
any time t takes on a finite or countably infinite number of values. A continuous-time
stochastic process may be either continuous value or discrete value, and a discrete-
time stochastic process may be either continuous value or discrete value.

As with any random variable, x(t) for a fixed value of t can be characterized by
a probability distribution and a probability density. For continuous-value stochastic
processes, these functions take the following form:

Distribution function: (x; t)F = Pr[x(t) … x] F(- ∞ ; t) = 0; F(∞ ; t) = 1

Density function: f(x; t) =
0
0x

 F(x; t) F(x; t) = L
 x

-∞

f(y; t)dy L
 ∞

-∞

f(y; t)dy = 1

For discrete-value stochastic processes:

Px(t)(k) = Pr[x(t) = k] a
all k

Px(t)(k) = 1

A full statistical characterization of a stochastic process must take into account
the time variable. Using the first interpretation in the preceding list, a stochastic
process x(t) comprises an infinite number of random variables, one for each t. To
specify fully the statistics of the process, we would need to specify the joint probability
density function of the variables x(t1), x(t2), c , x(tn) for all values of n (1 … n 6 ∞)
and all possible sampling times (t1, t2, c , tn). For our purposes, we need not pursue
this topic.

M20_STAL4290_09_GE_C20.indd 12 4/18/17 7:25 AM

20.3 / ELEMENTARY CONCEPTS OF STOCHASTIC PROCESSES   20-13

First- and Second-Order Statistics

The mean and variance of a stochastic process are defined in the usual way:

 E[x(t)] = m(t) = L
 ∞

-∞

xf(x; t)dx continuous@value case

 E[x(t)] = m(t) = a
all k

k Pr[x(t) = k] discrete@value case

 E[x2(t)] = L
 ∞

-∞

x2f(x; t)dx continuous@value case

 E[x2(t)] = a
all k

k2Pr[x(t) = k] discrete@value case

Var[x(t)] = sx(t)
2 = E[(x(t) - m(t))2] = E[x2(t)] - m2(t)

Note that, in general, the mean and variance of a stochastic process are func-
tions of time. An important concept for our discussion is the autocorrelation function
R(t1, t2), which is the joint moment of the random variables x(t1) and x(t2):

 R(t1, t2) = E[x(t1)x(t2)]

As with the correlation function for two random variables introduced earlier,
the autocorrelation is a measure of the relationship between the two time instances
of a stochastic process. A related quantity is the autocovariance:

     C(t1, t2) = E[(x(t1) - m(t1))(x(t2) - m(t2))] = R(t1, t2) - m(t1)m(t2)	 (20.3)

Note the variance of x(t) is given by:

Var[x(t)] = C(t, t) = R(t, t) - m2(t)

Finally, the correlation coefficient (see Equation 20.2) of x(t1) and x(t2) is called
the normalized autocorrelation function of the stochastic process and can be
expressed as:

 r(t1, t2) =
E[(x(t1) - m(t1))(x(t2) - m(t2))]

s1s2

              =
C(t1, t2)
s1s2

	 � (20.4)

Unfortunately, some texts and some of the literature refer to r(t1, t2) as the autocor-
relation function, so the reader must beware.

Stationary Stochastic Processes

In general terms, a stationary stochastic process is one in which the probability char-
acteristics of the process do not vary as a function of time. There are several different
precise definitions of this concept, but the one of most interest here is the concept of

M20_STAL4290_09_GE_C20.indd 13 4/18/17 7:25 AM

20-14   Chapter 20 / Overview of Probability and Stochastic Processes

wide sense stationary. A process is stationary in the wide sense (or weakly stationary)
if its expected value is a constant and its autocorrelation function depends only on
the time difference:

 E[x(t)] = m

 R(t, t + t) = R(t + t, t) = R(t) = R(-t) for all t

From these equalities, the following can be derived:

 Var[x(t)] = R(t, t) - m2(t) = R(0) - m2

 C(t, t + t) = R(t, t + t) - m(t) m(t + t) = R(t) - m2 = C(t)

An important characteristic of R(t) is that it measures the degree of depen-
dence of one time instant of a stochastic process on other time instants. If R(t) goes
to zero exponentially fast as t becomes large, then there is little dependence of one
instant of a stochastic process on instants far removed in time. Such a process is called
a short memory process, whereas if R(t) remains substantial for large values of t
(decays to zero at a slower than exponential rate), the stochastic process is a long
memory process.

Spectral Density

The power spectrum, or spectral density, of a stationary random process is the Fourier
transform of its autocorrelation function:

S(w) = L
 ∞

-∞

R(t)e-jwtdt

where w is the frequency in radians (w = 2pf) and j = 2-1.
For a deterministic time function, the spectral density gives the distribution

frequency of the power of the signal. For a stochastic process, S(w) is the average
density of power in the frequency components of x(t) in the neighborhood of w. Recall
that one interpretation of x(t) is that of a single time function (t variable; one out-
come). For that interpretation, the time function, as with any time function, is made
up of a summation of frequency components, and its spectral density gives the relative
power contributed by each component. If we view x(t) as a family of time functions
(t variable; all possible outcomes), then the spectral density gives the average power
in each frequency component, averaged over all possible time functions x(t).

The Fourier inversion formula gives the time function in terms of its Fourier
transform:

R(t) =
1

2p L
 ∞

-∞

S(w)ejwtdw

With t = 0, the preceding yields:

1
2p L

 ∞

-∞

S(w)dw = R(0) = E[� x(t) � 2]

M20_STAL4290_09_GE_C20.indd 14 4/18/17 7:25 AM

20.3 / ELEMENTARY CONCEPTS OF STOCHASTIC PROCESSES   20-15

Thus, the total area under S(w)/2p equals the average power of the process x(t). Also
note:

S(0) = L
 ∞

-∞

R(t)dt

S(0) represents the direct-current (dc) component of the power spectrum and cor-
responds to the integral of the autocorrelation function. This component will be
finite only if R(t) decays as t S ∞ sufficiently rapidly for the integral of R(t) to be
finite.

We can also express the power spectrum for a stochastic process that is defined
at discrete points in time (discrete-time stochastic process). In this case, we have:

S(w) = a
∞

k=-∞
R(k)e-jkw S(0) = a

∞

k=-∞
R(k)

Again, S(0) represents the dc component of the power spectrum and corresponds to
the infinite sum of the autocorrelation function. This component will be finite only if
R(t) decays as t S ∞ sufficiently rapidly for the summation to be finite.

Table 20.2 shows some interesting correspondences between the autocorrela-
tion function and the power spectral density.

Independent Increments

A continuous-time stochastic process 5x(t), 0 … t 6 ∞ 6 is said to have independent
increments if x(0) = 0 and, for all choices of indexes t0 6 t1 6 c 6 tn, the n
random variables

x(t1) - x(t0), x(t2) - x(t1), c , x(tn) - x(tn - 1)

are independent. Thus, the amount of “movement” in a stochastic process in one time
interval is independent of the movement in any other nonoverlapping time interval.
The process is said to have stationary independent increments if, in addition,
x(t2 + h) - x(t1 + h) has the same distribution as x(t2) - x(t1) for all choices of
t2 7 t1 and every h 7 0.

Two properties of processes with stationary independent increments are note-
worthy. If x(t) has stationary independent increments and E[x(t)] = m(t) is a continu-
ous function of time, then m(t) = a + bt, where a and b are constants. Also, if
Var[x(t) - x(0)] is a continuous function of time, then for all s, Var[x(s + t) -
x(s)] = s2t, where s2 is a constant.

Stationary Random Process Autocorrelation Function Power Spectral Density

X(t) RX(t) SX(w)

aX(t) a2RX(t) a2SX(w)

X′(t) -d2RX(t)/dt2 w2SX(w)

X(n)(t) (-1)nd2nRX(t)/dt2n w2nSX(w)

X(t)exp(jw0t) exp(jw0t)RX(t) SX(w - w0)

Table 20.2  Autocorrelation Functions and Spectral Densities

M20_STAL4290_09_GE_C20.indd 15 4/18/17 7:25 AM

20-16   Chapter 20 / Overview of Probability and Stochastic Processes

Two processes that play a central role in the theory of stochastic processes, the
Brownian motion process and the Poisson process, have independent increments. A
brief introduction to both follows.

Brownian Motion Process  Brownian motion is the random movement of
microscopic particles suspended in a liquid or gas, caused by collisions with molecules
of the surrounding medium. This physical phenomenon is the basis for the definition
of the Brownian motion stochastic process, also known as the Wiener process and the
Wiener-Levy process.

Let us consider the function B(t) for a particle in Brownian motion as denoting
the displacement from a starting point in one dimension after time t. Consider the
net movement of the particle in a time interval (s, t), which is long compared to the
time between impacts. The quantity B(t) - B(s) can be viewed as the sum of a large
number of small displacements. By the central limit theorem, we can assume this
quantity has a normal probability distribution.

If we assume the medium is in equilibrium, it is reasonable to assume the net
displacement depends only on the length of the time interval and not on the time at
which the interval begins. That is, the probability distribution of B(t) - B(s) should
be the same as B(t + h) - B(s + h) for any h 7 0. Finally, if the motion of the par-
ticle is due entirely to frequent random collisions, then the net displacements in
nonoverlapping time intervals should be independent, and therefore B(t) has inde-
pendent increments.

With the foregoing reasoning in mind, we define a Brownian motion process
B(t) as one that satisfies the following conditions:

1.	 5B(t), 0 … t 6 ∞ 6 has stationary independent increments.

2.	 For every t 7 0, the random variable B(t) has a normal distribution.

3.	 For all t 7 0, E[B(t)] = 0.

4.	 B(0) = 0.

The probability density of a Brownian motion process has the form:

fB(x, t) =
1

s22pt
 e-x2/2s2t

From this we have:

Var[B(t)] = t; Var[B(t) - B(s)] = � t - s �

Another important quantity is the autocorrelation of B(t), expressed as
RB(t1, t2). We derive this quantity in the following way. First, observe that for
t4 7 t3 7 t2 7 t1 :

 E[(B(t4) - B(t3))(B(t2) - B(t1))] = E[B(t4) - B(t3)] * E[B(t2) - B(t1)]

 = (E[B(t4)] - E[B(t3)]) * (E[B(t2)] - E[B(t1)])

 = (0 - 0) * (0 - 0) = 0

The first line of the preceding equation is true because the two intervals are nonover-
lapping, and therefore the quantities (B(t4) - B(t3)) and (B(t2) - B(t1)) are inde-
pendent, due to the assumption of independent increments. Recall that for

M20_STAL4290_09_GE_C20.indd 16 4/18/17 7:25 AM

20.3 / ELEMENTARY CONCEPTS OF STOCHASTIC PROCESSES   20-17

independent random variables X and Y, E[XY] = E[X]E[Y]. Now consider the two
intervals (0, t1) and (t1, t2), for 0 6 t1 6 t2. These are nonoverlapping intervals, so

 0 = E[(B(t2) - B(t1))(B(t1) - B(0))]

 = E[(B(t2) - B(t1))B(t1)]

 = E[B(t2)B(t1)] - E[B2(t1)]

 = E[B(t2)B(t1)] - Var[B(t1)]

 = E[B(t2)B(t1)] - t1

Therefore,

RB(t1, t2) = E[B(t1)B(t2)] = t1  where t1 6 t2

In general, then, the autocorrelation of B(t) can be expressed as
RB(t, s) = min [t, s]. Because B(t) has zero mean, the autocovariance is the same as
the autocorrelation. Thus, CB(t, s) = min [t, s].

For any t Ú 0 and d 7 0, the increment of a Brownian motion process,
B(t + d) - B(t), is normally distributed with mean 0 and variance d. Thus,

	 Pr[(B(t + d) - B(t)) … x] =
122pdL

x

-∞
e-y2/2ddy	 (20.5)

Note this distribution is independent of t and depends only on d, consistent with the
fact that B(t) has stationary increments.

One useful way to visualize the Brownian motion process is as the limit of a
discrete-time process. Let us consider a particle performing a random walk on the
real line. At small time intervals t, the particle randomly jumps a small distance d to
the left or right. We denote the position of the particle at time kt as Xt(kt). If positive
and negative jumps are equally likely, then Xt((k + 1)t) equals Xt(kt) + d or
Xt(kt) - d with equal probability. If we assume Xt(0) = 0, then the position of the
particle at time t is

Xt(t) = d(Y1 + Y2 c + Y:t/t;)

where Y1, Y2, c are independent random variables with equal probability of being
1 or -1 and :t/t; denotes the largest integer less than or equal to t/t. It is convenient
to normalize the step length d as 2t so

Xt(t) = 2t(Y1 + Y2 c + Y:t/t;)

By the central limit theorem, for fixed t, if t is sufficiently small then the sum in the
preceding equation consists of many random variables, and therefore the distribution
of Xt(t) is approximately normal with mean 0 and variance t, because the Yi have
mean 0 and variance 1. Also, for fixed t and h, if t is sufficiently small, then
Xt(t + h) - Xt(t) is approximately normal with mean 0 and variance h. Finally, we
note the increments of Xt(t) are independent. Thus, Xt(t) is a discrete-time function
that approximates Brownian motion. If we divide the time axis more finely, we
improve the approximation. In the limit, this becomes a continuous-time Brownian
motion process.

M20_STAL4290_09_GE_C20.indd 17 4/18/17 7:25 AM

20-18   Chapter 20 / Overview of Probability and Stochastic Processes

Poisson and Related Processes  Recall that for random arrivals in time, we have
the Poisson distribution:

Pr[k items arrive in time interval T] =
(lT)k

k!
 e-lT

We can define a Poisson counting process 5N(t), t Ú 06 as follows:

1.	 N(t) has stationary independent increments.

2.	 N(0) = 0.

3.	 For 0 6 t1 6 t2, the quantity N(t2) - N(t1) equals the number of points in the
interval (t1, t2) and is Poisson distributed with mean l(t1 - t2).

Then we have the following probability functions for N(t):

 Pr[N(t) = k] =
(lt)k

k!
 e-lt

 E[N(t)] = Var[N(t)] = lt

Clearly, N(t) is not stationary, because its mean is a function of time. Every time func-
tion of this stochastic process (one outcome) has the form of an increasing staircase
with steps equal to 1, occurring at the random points ti. Figure 20.4a gives an example
of N(t) for a specific outcome.

A stationary process related to the Poisson counting process is the Poisson
increment process. For a Poisson counting process N(t) with mean lt, and for a con-
stant L (L 7 0), we can define the Poisson increment process X(t) as follows:

X(t) =
N(t + L) - N(t)

L
X(t) equals k/L, where k is the number of points in the interval (t, t + L). The incre-
ment process derived from the counting process in Figure 20.4a is shown in Figure
20.4b. The following relationship holds.

E[X(t)] =
1
L

 E[N(t + L)] -
1
L

 E[N(t)] = l

With a constant mean, X(t) is a wide-sense stationary process and therefore has
an autocorrelation function of a single variable, R(t). It can be shown that this func-
tion is:

	 R(t) = d l2 � t � 7 L

l2 +
l2

L
 a1 -

� t �
L

b � t � 6 L
	 (20.6)

Thus, the correlation is greatest if the two time instants are within the interval length
of each other, and it is a small constant value for greater time differences.

Ergodicity

For a stochastic process x(t), there are two types of “averaging” functions that can be
performed: ensemble averages and time averages.

M20_STAL4290_09_GE_C20.indd 18 4/18/17 7:25 AM

20.3 / ELEMENTARY CONCEPTS OF STOCHASTIC PROCESSES   20-19

First, consider ensemble averages. For a constant value of t, x(t) is a single ran-
dom variable with a mean, variance, and other distributional properties. For a given
constant value C of t, the following measures exist:

E[x(C)] = mx(C) = L
 ∞

-∞

xf(x; C)dx continuous@value case

E[x(C)] = mx(C) = a
all k

k Pr[x(C) = k] discrete@value case

Var[x(C)] = sx(C)
2 = E[(x(C) - mx(C))2] = E[x(C)2] - mx

2(C)

Each of these quantities is calculated over all values of x(t) for all possible outcomes.
For a given random variable, the set of all possible outcomes is called an ensemble,
and hence these are referred to as ensemble averages.

Figure 20.4  Poisson Processes

(a) Poisson counting process

(b) Poisson increment process

ti

1

1/L

2/L

N(t)

X(t)

t

t

M20_STAL4290_09_GE_C20.indd 19 4/18/17 7:25 AM

20-20   Chapter 20 / Overview of Probability and Stochastic Processes

For time averages, consider a single outcome of x(t). This is a single determin-
istic function of t. Looking at x(t) in this way, we can consider what is the average
value of the function over time. This time average is generally expressed as follows:

 MT =
1

2T L
 T

-T

x(t)dt continuous@time case

 MT =
1
T a

T

t=1
x(t) discrete@time case

Note MT is a random variable, because the calculation of MT for a single time function
is a calculation for a single outcome.

A stationary process is said to be ergodic if time averages equal ensemble aver-
ages. Because E[x(t)] is a constant for a stationary process, we have

E[MT] = E[x(t)] = m

Thus, we can say that a stationary process is ergodic if

lim
TS∞

Var(MT) = 0

In words, as the time average is taken over larger and larger time intervals, the value
of the time average approaches the ensemble average.

The conditions under which a stochastic process is ergodic are beyond the
scope of this book, but the assumption is generally made. Indeed, the assumption of
ergodicity is essential to almost any mathematical model used for stationary stochas-
tic processes. The practical importance of ergodicity is that in most cases, one does
not have access to the ensemble of outcomes of a stochastic process or even to more
than one outcome. Thus, the only means of obtaining estimates of the probabilistic
parameters of the stochastic process is to analyze a single time function over a long
period of time.

  20.4	 PROBLEMS

	 20.1	 You are asked to play a game in which I hide a prize in one of three boxes (with equal
probability for all three boxes) while you are out of the room. When you return, you
have to guess which box hides the prize. There are two stages to the game. First, you
indicate one of the three boxes as your choice. As soon as you do that, I open the lid
of one of the other two boxes and I will always open an empty box. I can do this
because I know where the prize is hidden. At this point, the prize must be in the box
that you have chosen or in the other unopened box. You are now free to stick with your
original choice or to switch to the other unopened box. You win the prize if your final
selection is the box containing the prize. What is your best strategy? Should you (a) stay
with your original choice, (b) switch to the other box, or (c) do either because it does
not matter?

	 20.2	 A patient has a test for some disease that comes back positive (indicating he has the
disease). You are told that
•	 the accuracy of the test is 87% (i.e., if a patient has the disease, 87% of the time, the

test yields the correct result, and if the patient does not have the disease, 87% of
the time, the test yields the correct result)

•	 the incidence of the disease in the population is 1%
		 Given that the test is positive, how probable is it that the patient really has the disease?

M20_STAL4290_09_GE_C20.indd 20 4/18/17 7:25 AM

20.4 / PROBLEMS   20-21

	 20.3	 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies, the
Green and the Blue, operate in the city. You are told that:
•	 85% of the cabs in the city are Green and 15% are Blue
•	 A witness identified the cab as Blue

		 The court tested the reliability of the witness under the same circumstances that existed
on the night of the accident and concluded that the witness was correct in identifying
the color of the cab 80% of the time. What is the probability that the cab involved in
the incident was Blue rather than Green?

	 20.4	 The birthday paradox is a famous problem in probability that can be stated as follows:
What is the minimum value of K such that the probability is greater than 0.5 that at
least two people in a group of K people have the same birthday? Ignore February 29
and assume each birthday is equally likely. We will do the problem in two parts:
a.	 Define Q(K) as the probability that there are no duplicate birthdays in a group of

K people. Derive a formula for Q(K). Hint: First determine the number of different
ways, N, that we can have K values with no duplicates.

b.	 Define P(K) as the probability that there is at least one duplicate birthday in a
group of K people. Derive this formula. What is the minimum value of K such that
P(K) 7 0.5? It may help to plot P(K).

	 20.5	 A pair of fair dice (the probability of each outcome is 1/6) is thrown. Let X be the
maximum of the two numbers that comes up.
a.	 Find the distribution of X.
b.	 Find the expectation E[X], the variance Var[X], and the standard deviation sX.

	 20.6	 A player tosses a fair die. If a prime number greater than 1 appears, he wins that num-
ber of dollars, but if a nonprime number appears, he loses that number of dollars.
a.	 Denote the player’s gain or loss on one toss by the random variable X. Enumerate

the distribution of X.
b.	 Is the game fair (i.e., E[X] = 0)?

	 20.7	 In the carnival game known as chuck-a-luck, a player pays an amount E as an entrance
fee, selects a number between one and six, then rolls three dice. If all three dice show
the number selected, the player is paid four times the entrance fee; if two dice show
the number, the player is paid three times the entrance fee; and if only one die shows
the number, the player is paid twice the entrance fee. If the selected number does not
show up, the player is paid nothing. Let X denote the player’s gain in a single play of
this game, and assume the dice are fair.
a.	 Determine the probability function of X.
b.	 Compute E[X].

	 20.8	 The mean and variance of X are 50 and 4, respectively. Evaluate the following:
a.	 The mean of X2

b.	 The variance and standard deviation of 2X + 3
c.	 The variance and standard deviation of -X

	 20.9	 The continuous random variable R has a uniform density between 900 and 1,100, and
0 elsewhere. Find the probability that R is between 950 and 1,050.

	20.10	 Show that, all other things being equal, the greater the correlation coefficient of two
random variables is, the greater the variance of their sum and the less the variance of
their difference will be.

	20.11	 Suppose X and Y each have only two possible values, 0 and 1. Prove if X and Y are
uncorrelated, then they are also independent.

	20.12	 Consider a random variable X with the following distribution: Pr[X = -1] = 0.25;
Pr[X = 0] = 0.5; Pr[X = 1] = 0.25. Let Y = X2.
a.	 Are X and Y independent random variables? Justify your answer.
b.	 Calculate the covariance Cov(X, Y).
c.	 Are X and Y uncorrelated? Justify your answer.

M20_STAL4290_09_GE_C20.indd 21 4/18/17 7:25 AM

20-22   Chapter 20 / Overview of Probability and Stochastic Processes

	20.13	 An artificial example of a stochastic process is a deterministic signal x(t) = g(t). Deter-
mine the mean, variance, and autocorrelation of x(t).

	20.14	 Suppose x(t) is a stochastic process with

m(t) = 3 R(t1, t2) = 9 + 4e-0.2�t1 - t2�

		 Determine the mean, variance, and covariance of the following random variables:
Z = x(5) and W = x(8).

	20.15	 Let 5Zn6 be a set of uncorrelated real-valued random variables, each with a mean of
0 and a variance of 1. Define the moving average

Yn = a
K

i=0
aiZn - i

		 for constants a0, a1, c , aK. Show that Y is stationary and find its autocovariance
function.

	20.16	 Let Xn = A cos(nl) + B sin(nl) where A and B are uncorrelated random variables,
each with a mean of 0 and a variance of 1. Show that X is stationary with a spectrum
containing exactly one point.

M20_STAL4290_09_GE_C20.indd 22 4/18/17 7:25 AM

21-1

Queueing Analysis
21.1	 How Queues Behave—A Simple Example

21.2	 Why Queueing Analysis?

21.3	 Queueing Models
The Single-Server Queue
The Multiserver Queue
Basic Queueing Relationships
Assumptions

21.4	 Single-Server Queues

21.5	 Multiserver Queues

21.6	 Examples
Database Server
Calculating Percentiles
Tightly-Coupled Multiprocessor
A Multiserver Problem

21.7	 Queues with Priorities

21.8	 Networks of Queues
Partitioning and Merging of Traffic Streams
Queues in Tandem
Jackson’s Theorem
Application to a Packet-Switching Network

21.9	 Other Queueing Models

21.10	Estimating Model Parameters
Sampling
Sampling Errors

21.11	References

21.12	Problems

Chapter

M21_STAL4290_09_GE_C21.indd 1 4/18/17 7:25 AM

21-2   Chapter 21 / Queueing Analysis

Queueing1 analysis is one of the most important tools for those involved with com-
puter and network analysis. It can be used to provide approximate answers to a host
of questions, such as:

•	 What happens to file retrieval time when disk I/O utilization goes up?

•	 Does response time change if both processor speed and the number of users on
the system are doubled?

•	 How will performance be affected if the process scheduling algorithm includes
priorities?

•	 Which disk scheduling algorithm produces the best average performance?

The number of questions that can be addressed with a queueing analysis is end-
less and touches on virtually every area in computer science. The ability to make such
an analysis is an essential tool for those involved in this field.

Although the theory of queueing is mathematically complex, the application of
queueing theory to the analysis of performance is, in many cases, remarkably straight-
forward. A knowledge of elementary statistical concepts (means and standard devia-
tions) and a basic understanding of the applicability of queueing theory is all that is
required. Armed with these, the analyst can often make a queueing analysis on the
back of an envelope using readily available queueing tables, or with the use of simple
computer programs that occupy only a few lines of code.

The purpose of this chapter is to provide a practical guide to queueing analysis.
A subset, although a very important subset, of the subject is addressed. In the final
section, pointers to additional references are provided. An annex to this paper reviews
some elementary concepts in probability and statistics.

This chapter provides a practical guide to queueing analysis. A subset, although
a very important subset, of the subject is addressed.

1Two spellings are in use: queueing and queueing. The vast majority of queueing theory researchers use
queueing. The premier journal in this field is Queueing systems: Theory and Applications. On the other
hand, most American dictionaries and spell checkers prefer the spelling queueing.

Learning Objectives

After studying this chapter, you should be able to:

•	 Understand the characteristic behavior of queueing systems.
•	 Explain the value of queueing analysis.
•	 Explain the key features of single-server and multiserver queues.
•	 Analyze single-server queueing models.
•	 Analyze multiserver queueing models.
•	 Describe the effect of priorities on queueing performance.
•	 Understand the key concept relating to queueing networks.
•	 Understand the issues involved in estimating queueing model parameters.

M21_STAL4290_09_GE_C21.indd 2 4/18/17 7:25 AM

21.1 / HOW QUEUES BEHAVE—A SIMPLE EXAMPLE   21-3

  21.1	 HOW QUEUES BEHAVE—A SIMPLE EXAMPLE

Before getting into the details of queueing analysis, let us look at a crude example
that will give some feel for the topic. Consider a Web server that is capable of han-
dling an individual request in an average of 1 millisecond. In fact, to make things
simple, assume that the server handles each request in exactly 1 millisecond. Now, if
the rate of arriving requests is 1 per millisecond (1,000 per second), then it seems
sensible to state that the server can keep up with the load.

Suppose the requests arrive at a uniform rate of exactly one request each mil-
lisecond. When a request comes in, the server immediately handles the request. Just
as the server completes the current request, a new request arrives and the server goes
to work again.

Now let’s take a more realistic approach and suppose the average arrival rate
for requests is 1 per millisecond but that there is some variability. During any given
1 millisecond period, there may be no requests, or one, or multiple requests, but the
average is still 1 per millisecond. Again, common sense would seem to indicate that
the server could keep up. During busy times, when lots of requests bunch up, the
server can store outstanding requests in a buffer. Another way of putting this is to say
that arriving requests enter a queue to await service. During quiet times, the server
can catch up and clear the buffer. In this case, the interesting design issue would seem
to be: How big should the buffer be?

Tables 21.1 through 21.3 give a very rough idea of the behavior of this system.
In Table 21.1, we assume an average arrival rate of 500 requests per second, which is
half the capacity of the server. The entries in the table show the number of requests

Time Input Output Queue

  0     0     0    0

  1    88    88    0

  2    796   796    0

  3 1627 1000 627

  4    51   678    0

  5    34    34    0

  6   966   966    0

  7   714   714    0

  8 1276 1000 276

  9   494   769    0

10   933   933    0

11   107   107    0

12   241   241    0

13    16    16    0

14   671   671    0

Table 21.1  Queue Behavior with Normalized Arrival Rate of 0.5

M21_STAL4290_09_GE_C21.indd 3 4/18/17 7:25 AM

21-4   Chapter 21 / Queueing Analysis

Time Input Output Queue

15   643   643    0

16   812   812    0

17   262   262    0

18   218   218    0

19 1378 1000 378

20   507   885    0

21    15    15    0

22   820   820    0

23 1253 1000 253

24   307   559    0

25   540   540    0

26   190   190    0

27   500   500    0

28    96    96    0

29   943   943    0

30   105   105    0

31   183   183    0

32   447   447    0

33   542   542    0

34   166   166    0

35   165   165    0

36   490   490    0

37   510   510    0

38   877   877    0

39    37    37    0

40   163   163    0

41   104   104    0

42    42    42    0

43   291   291    0

44   645   645    0

45   363   363    0

46   134   134    0

47   920   920    0

48 1507 1000 507

49   598 1000 105

50   172   277    0

Average   499   499   43

Table 21.1  Queue Behavior with Normalized Arrival Rate of 0.5 (Continued)

M21_STAL4290_09_GE_C21.indd 4 4/18/17 7:25 AM

21.1 / HOW QUEUES BEHAVE—A SIMPLE EXAMPLE   21-5

that arrive each second, the number of requests served during that second, and the
number of outstanding requests waiting in the buffer at the end of the second. After
50 seconds, the table shows an average buffer contents of 43 requests, with a peak of
over 600 requests. In Table 21.2, the average arrival rate is increased to 95% of the
server’s capacity, that is, 950 requests per second, and the average buffer contents
rises to 1859. This seems a little surprising: the arrival rate has gone up by less than a

Time Input Output Queue

  0     0     0     0

  1   167   167     0

  2 1512 1000   512

  3 3091 1000 2603

  4    97 1000 1700

  5    65 1000   765

  6 1835 1000 1600

  7 1357 1000 1957

  8 2424 1000 3381

  9   939 1000 3320

10 1773 1000 4093

11   203 1000 3296

12   458 1000 2754

13    30 1000 1784

14 1275 1000 2059

15 1222 1000 2281

16 1543 1000 2824

17   498 1000 2322

18   414 1000 1736

19 2618 1000 3354

20   963 1000 3317

21    29 1000 2346

22 1558 1000 2904

23 2381 1000 4285

24   583 1000 3868

25 1026 1000 3894

26   361 1000 3255

27   950 1000 3205

28   182 1000 2387

29 1792 1000 3179

30   200 1000 2379

Table 21.2  Queue Behavior with Normalized Arrival Rate of 0.95

M21_STAL4290_09_GE_C21.indd 5 4/18/17 7:25 AM

21-6   Chapter 21 / Queueing Analysis

Time Input Output Queue

  0     0     0     0

  1   174   174     0

  2 1576 1000   576

  3 3221 1000 2797

  4   101 1000 1898

  5    67 1000   965

  6 1913 1000 1878

Table 21.3  Queue Behavior with Normalized Arrival Rate of 0.99

factor of 2, but the average buffer contents has gone up by more than a factor of 40.
In Table 21.3, the average arrival rate is increased slightly, to 99% of capacity, which
yields an average buffer contents of 2583. Thus, a tiny increase in average arrival rate
results in an increase of almost 40% in the average buffer contents.

This crude example suggests that the behavior of a system with a queue may
not accord with our intuition.

Time Input Output Queue

31   348 1000 1727

32   849 1000 1576

33 1030 1000 1606

34   315 1000   921

35   314 1000   235

36   931 1000   166

37   969 1000   135

38 1666 1000   801

39    70   871     0

40   310   310     0

41   198   198     0

42    80    80     0

43   553   553     0

44 1226 1000   226

45   690   916     0

46   255   255     0

47 1748 1000   748

48 2863 1000 2611

49 1136 1000 2747

50   327 1000 2074

Average   948   907 1859

Table 21.2  Queue Behavior with Normalized Arrival Rate of 0.95 (Continued)

M21_STAL4290_09_GE_C21.indd 6 4/18/17 7:25 AM

21.1 / HOW QUEUES BEHAVE—A SIMPLE EXAMPLE   21-7

Time Input Output Queue

  7 1414 1000 2292

  8 2526 1000 3818

  9   978 1000 3796

10 1847 1000 4643

11   212 1000 3855

12   477 1000 3332

13    32 1000 2364

14 1329 1000 2693

15 1273 1000 2966

16 1608 1000 3574

17   519 1000 3093

18   432 1000 2525

19 2728 1000 4253

20 1004 1000 4257

21    30 1000 3287

22 1624 1000 3911

23 2481 1000 5392

24   608 1000 5000

25 1069 1000 5069

26   376 1000 4445

27   990 1000 4435

28   190 1000 3625

29 1867 1000 4492

30   208 1000 3700

31   362 1000 3062

32   885 1000 2947

33 1073 1000 3020

34   329 1000 2349

35   327 1000 1676

36   970 1000 1646

37 1010 1000 1656

38 1736 1000 2392

39    73 1000 1465

40   323 1000   788

41   206   994     0

42    83    83     0

43   576   576     0

44 1277 1000   277

M21_STAL4290_09_GE_C21.indd 7 4/18/17 7:25 AM

21-8   Chapter 21 / Queueing Analysis

  21.2	 WHY QUEUEING ANALYSIS?

There are many cases when it is important to be able to project the effect of some
change in a design: Either the load on a system is expected to increase, or a design
change is contemplated. For example, an organization supports a number of termi-
nals, personal computers, and workstations on a 100-Mbps local area network (LAN).
An additional department in the building is to be cut over onto the network. Can the
existing LAN handle the increased workload, or would it be better to provide a sec-
ond LAN with a bridge between the two? There are other cases in which no facility
exists but, on the basis of expected demand, a system design needs to be created. For
example, a department intends to equip all of its personnel with a personal computer
and to configure these into a LAN with a file server. Based on experience elsewhere
in the company, the load generated by each PC can be estimated.

The concern is system performance. In an interactive or real-time application,
often the parameter of concern is response time. In other cases, throughput is the
principal issue. In any case, projections of performance are to be made on the basis
of existing load information, or on the basis of estimated load for a new environment.
A number of approaches are possible:

1.	 Do an after-the-fact analysis based on actual values.

2.	 Make a simple projection by scaling up from existing experience to the expected
future environment.

3.	 Develop an analytic model based on queueing theory.

4.	 Program and run a simulation model.

Option 1 is no option at all: We will wait and see what happens. This leads to
unhappy users and to unwise purchases. Option 2 sounds more promising. The analyst
may take the position that it is impossible to project future demand with any degree
of certainty. Therefore, it is pointless to attempt some exact modeling procedure.
Rather, a rough-and-ready projection will provide ballpark estimates. The problem
with this approach is that the behavior of most systems under a changing load is not
what one would intuitively expect, as Section 21.1 suggests. If there is an environment
in which there is a shared facility (e.g., a network, a transmission line, a time-sharing
system), then the performance of that system typically responds in an exponential
way to increases in demand.

Time Input Output Queue

45   719   996     0

46   265   265     0

47 1822 1000   822

48 2984 1000 2806

49 1184 1000 2990

50   341 1000 2331

Average   988   942 2583

Table 21.3  Queue Behavior with Normalized Arrival Rate of 0.99 (Continued)

M21_STAL4290_09_GE_C21.indd 8 4/18/17 7:25 AM

21.2 / WHY QUEUEING ANALYSIS?   21-9

Figure 21.1 is a representative example. The upper line shows what typically
happens to user response time on a shared facility as the load on that facility increases.
The load is expressed as a fraction of capacity. Thus, if we are dealing with an input
from a disk that is capable of transferring 1,000 blocks per second, then a load of 0.5
represents a transfer of 500 blocks per second, and the response time is the amount
of time it takes to retransmit any incoming block. The lower line is a simple projection
based on a knowledge of the behavior of the system up to a load of 0.5. Note while
things appear rosy when the simple projection is made, performance on the system
will in fact collapse beyond a load of about 0.8–0.9.

Thus, a more exact prediction tool is needed. Option 3 is to make use of an
analytic model, which is one that can be expressed as a set of equations that can be
solved to yield the desired parameters (response time, throughput, etc.). For com-
puter, operating system, and networking problems, and indeed for many practical
real-world problems, analytic models based on queueing theory provide a reasonably
good fit to reality. The disadvantage of queueing theory is that a number of simplify-
ing assumptions must be made to derive equations for the parameters of interest.

The final approach is a simulation model. Here, given a sufficiently powerful
and flexible simulation programming language, the analyst can model reality in great
detail and avoid making many of the assumptions required of queueing theory. How-
ever, in most cases, a simulation model is not needed or at least is not advisable as a
first step in the analysis. For one thing, both existing measurements and projections
of future load carry with them a certain margin of error. Thus, no matter how good

Figure 21.1  Projected Versus Actual Response Time

12

10

8

6

4

2

0

R
es

po
ns

e
T

im
e

0.80.60.40.20.0
System Load (as a fraction of capacity)

Actual response
time

Projected
response time

Limit
of experience

M21_STAL4290_09_GE_C21.indd 9 4/18/17 7:25 AM

21-10   Chapter 21 / Queueing Analysis

the simulation model, the value of the results is limited by the quality of the input.
For another, despite the many assumptions required of queueing theory, the results
that are produced often come quite close to those that would be produced by a more
careful simulation analysis. Furthermore, a queueing analysis can literally be accom-
plished in a matter of minutes for a well-defined problem, whereas simulation exer-
cises can take days, weeks, or longer to program and run.

Accordingly, it behooves the analyst to master the basics of queueing theory.

  21.3	 QUEUEING MODELS

The Single-Server Queue

The simplest queueing system is depicted in Figure 21.2. The central element of the
system is a server, which provides some service to items. Items from some population
of items arrive at the system to be served. If the server is idle, an item is served imme-
diately. Otherwise, an arriving item joins a waiting line.2 When the server has com-
pleted serving an item, the item departs. If there are items waiting in the queue, one
is immediately dispatched to the server. The server in this model can represent any-
thing that performs some function or service for a collection of items. For example,
a processor provides service to processes, a transmission line provides a transmission
service to packets or frames of data, and an I/O device provides a read or write service
for I/O requests.

Queue Parameters  Figure 21.2 also illustrates some important parameters
associated with a queueing model. Items arrive at the facility at some average rate l
(items arriving per second). Some examples of items arriving include packets arriving
at a router and calls arriving at a telephone exchange. At any given time, a certain
number of items will be waiting in the waiting line (zero or more); the average
number waiting is w, and the mean time that an item must wait is Tw. Tw is averaged

2The waiting line is referred to as a queue in some treatments in the literature; it is also common to refer
to the entire system as a queue. Unless otherwise noted, we use the term queue to mean waiting line.

Figure 21.2  Queueing System Structure and Parameters for Single-Server Queue

Arrivals

Waiting line
(queue) Dispatching

discipline
Server

Departures

w = items waiting
Tw = waiting time

Ts = service time
r = utilization

l = arrival rate

r = items resident in queueing system
Tr = residence time

M21_STAL4290_09_GE_C21.indd 10 4/18/17 7:26 AM

21.3 / QUEUEING MODELS   21-11

over all incoming items, including those that do not wait at all. The server handles
incoming items with an average service time Ts; this is the time interval between the
dispatching of an item to the server and the departure of that item from the server.
Utilization, r, is the fraction of time that the server is busy, measured over some
interval of time. Finally, two parameters apply to the system as a whole. The average
number of items resident in the system, including the item being served (if any) and
the items waiting (if any), is r; and the average time that an item spends in the system,
waiting and being served, is Tr; we refer to this as the mean residence time.3

If we assume the capacity of the queue is infinite, then no items are ever lost
from the system; they are just delayed until they can be served. Under these circum-
stances, the departure rate equals the arrival rate. As the arrival rate, which is the rate
of traffic passing through the system, increases, the utilization increases and with it,
congestion. The queue becomes longer, increasing waiting time. At r = 1, the server
becomes saturated, working 100% of the time. So long as utilization is less than 100%,
the server can keep up with arrivals, so the average departure rate equals the average
arrival rate. Once the server is saturated, working 100% of the time, the departure
rate remains constant, no matter how great the arrival rate becomes. Thus, the theo-
retical maximum input rate that can be handled by the system is:

lmax =
1
Ts

However, queues become very large near system saturation, growing without
bound when r = 1. Practical considerations, such as response time requirements or
buffer sizes, usually limit the input rate for a single server to 70–90% of the theoreti-
cal maximum.

Illustration of Key Features  It is helpful to have an illustration of the processes
involved in queueing. Figure 21.3 shows an example realization of a queueing process,
with the total number of items in the system plotted against time. The shaded areas
represent time periods in which the server is busy. On the time axis are marked two
types of events: the arrival of item j at time Aj and the completion of service of item
j at time Dj, when the item departs the system. The time that item j spends in the
system is TRj = Dj - Aj; the actual service time for item j is denoted by TSj.

In this example, TR1 is composed entirely of the service time TS1 for the first
item, because when item 1 arrives the system is empty and it can go straight into
service. TR2 is composed of the time that item 2 waits for service (D1 - A2) plus its
service time TS2. Similarly, TR3 = (D3 - A3) = (D3 - D2) + (D2 - A3) = TS3 +
(D2 - A3). However, item n may depart before the arrival of item n + 1, (e.g.,
D6 6 A7), so the general expression is TRn + 1 = TSn + 1 + MAX[0, Dn - An + 1].

Model Characteristics  Before deriving any analytic equations for the queueing
model, certain key characteristics of the model must be chosen. The following are the
typical choices, usually reasonable in a data communications context:

3Again, in some of the literature, this is referred to as the mean queueing time, while other treatments use
mean queueing time to mean the average time spent waiting in the waiting line (before being served).

M21_STAL4290_09_GE_C21.indd 11 4/18/17 7:26 AM

21-12   Chapter 21 / Queueing Analysis

•	 Item population: We assume items arrive from a source population so large that
it can be viewed as infinite. The effect of this assumption is that the arrival rate is
not altered as items enter the system. If the population is finite, then the popula-
tion available for arrival is reduced by the number of items currently in the system;
this would typically reduce the arrival rate proportionally. Networking and server
problems can usually be handled with an infinite-population assumption.

•	 Queue size: We assume an infinite queue size. Thus, the queue can grow without
bound. With a finite queue, items can be lost from the system; that is, if the
queue is full and additional items arrive, some items must be discarded. In
practice, any queue is finite, but in many cases, this makes no substantive dif-
ference to the analysis. We will address this issue briefly later in this chapter.

•	 Dispatching discipline: When the server becomes free, and if there is more than
one item waiting, a decision must be made as to which item to dispatch next.
The simplest approach is first-in-first-out (FIFO), also known as first-come-
first-served (FCFS); this discipline is what is normally implied when the term
queue is used. Another possibility is last-in-last-out (LIFO). A common
approach is a dispatching discipline based on relative priority. For example, a
router may use QoS (quality of service) information to give preferential treat-
ment to some packets. We will discuss dispatching based on priority subse-
quently. One dispatching discipline that you might encounter in practice is
based on service time. For example, a process scheduler may choose to dispatch
processes on the basis of shortest first (to allow the largest number of processes
to be granted time in a short interval) or longest first (to minimize processing
time relative to service time). Unfortunately, a discipline based on service time
is very difficult to model analytically.

Table 21.4 summarizes the notation that is used in Figure 21.2 and introduces
some other useful parameters. In particular, we are often interested in the variability
of various parameters, and this is neatly captured in the standard deviation.

Figure 21.3  Example of a Queueing Process

1

2

3

4

5

A1 A2 D1

TR1 = TS1 TS2

TR2

TR3

TS3

A3 A4 D2 A5 A6 D3 D4 D5 D6 A7 A8 D7 A9 D8 A10 D9 D10 A11 A12 A13 D11

For item i:
 Ai = Arrival time
 Di = Departure time
 TRi = Residence time
 TSi = Service time

Time

N
um

be
r

of
 it

em
s

in
 s

ys
te

m
(w

ai
ti

ng
 a

nd
 b

ei
ng

 s
er

ve
d)

M21_STAL4290_09_GE_C21.indd 12 4/18/17 7:26 AM

21.3 / QUEUEING MODELS   21-13

The Multiserver Queue

Figure 21.4a shows a generalization of the simple model we have been discussing for
multiple servers, all sharing a common queue. If an item arrives and at least one
server is available, then the item is immediately dispatched to that server. It is
assumed all servers are identical; thus, if more than one server is available, the selec-
tion of a particular server for a waiting item has no effect on service time. If all servers
are busy, a queue begins to form. As soon as one server becomes free, an item is
dispatched from the queue using the dispatching discipline in force.

With the exception of utilization, all of the parameters illustrated in Figure 21.2
carry over to the multiserver case with the same interpretation. If we have N identical
servers, then r is the utilization of each server, and we can consider Nr to be the
utilization of the entire system; this latter term is often referred to as the traffic inten-
sity, u. Thus, the theoretical maximum utilization is N * 100,, and the theoretical
maximum input rate is:

lmax =
N
Ts

The key characteristics typically chosen for the multiserver queue correspond
to those for the single-server queue. That is, we assume an infinite population and an
infinite queue size, with a single infinite queue shared among all servers. Unless oth-
erwise stated in this discussion, the dispatching discipline is FIFO. For the multiserver
case, if all servers are assumed identical, the selection of a particular server for a
waiting item has no effect on service time.

l = arrival rate; mean number of arrivals per second

Ts = mean service time for each arrival; amount of time being served, not counting time waiting in the queue

sTs = standard deviation of service time

r = utilization; fraction of time facility (server or servers) is busy

u = traffic intensity

r = mean number of items in system, waiting and being served

R = number of items in system, waiting and being served

Tr = mean time an item spends in system (residence time)

TR = time an item spends in system (residence time)

sr = standard deviation of r

sTr = standard deviation of Tr

w = mean number of items waiting to be served

sw = standard deviation of w

Tw = mean waiting time (including items that have to wait and items with waiting time = 0)

Td = mean waiting time for items that have to wait

N = number of servers

mx(y) = the yth percentile; that value of y below which x occurs y percent of the time

Table 21.4  Notation for Queueing Systems

M21_STAL4290_09_GE_C21.indd 13 4/18/17 7:26 AM

21-14   Chapter 21 / Queueing Analysis

By way of contrast, Figure 21.4b shows the structure of multiple single-server
queues. As we shall see, this apparently minor change in structure has significant
impact on performance.

Basic Queueing Relationships

To proceed much further, we have to make some simplifying assumptions. These
assumptions risk making the models less valid for various real-world situations. For-
tunately, in most cases, the results will be sufficiently accurate for planning and design
purposes.

There are, however, some relationships that are true in the general case, and
these are illustrated in Table 21.5. By themselves, these relationships are not particu-
larly helpful, although they can be used to answer a few basic questions. For example,
consider a spy from Burger King trying to figure out how many people are inside the
McDonald’s across the way. He can’t sit inside the McDonald’s all day, so he has to
determine an answer just based on observing the traffic in and out of the building.

Figure 21.4  Multiserver Versus Multiple Single-Server Queues

Server 2

Server N

(a) Multiserver queue

Server 1

Arrivals
Queue

l = arrival rate

Departures
Dispatching
discipline

l
N

l
N

l
N

l
N

l
N

l
N

Server 2

Server N

(b) Multiple Single-server queues

Server 1

Arrivals
l = arrival rate

Departures

M21_STAL4290_09_GE_C21.indd 14 4/18/17 7:26 AM

21.3 / QUEUEING MODELS   21-15

Over the course of the day, he observes that on average 32 customers per hour go
into the restaurant. He notes certain people and finds that on average a customer
stays inside 12 minutes. Using Little’s formula, the spy deduces that there are on
average 6.4 customers in McDonald’s at any given time (6.4 = 32 customers per
hour * 0.2 hours per customer).

It would be useful at this point to gain an intuitive grasp of the equations in
Table 21.5. For the equation r = lTs, consider that for an arrival rate of l, the average
time between arrivals is 1/l = T. If T is greater than Ts, then during a time interval
T, the server is only busy for a time Ts for a utilization of Ts/T = lTs. Similar reason-
ing applies in the multiserver case to yield r = (lTs)/N.

To understand Little’s formula, consider the following argument, which
focuses on the experience of a single item. When the item arrives, it will find on
average w items waiting ahead of it. When the item leaves the queue behind it to
be serviced, it will leave behind on average the same number of items in the queue,
namely w. To see this, note while the item is waiting, the line in front of it shrinks
until the item is at the front of the line; meanwhile, additional items arrive and get
in line behind this item. When the item leaves the queue to be serviced, the number
of items behind it, on average, is w, because w is defined as the average number of
items waiting. Further, the average time that the item was waiting for service is Tw.
Since items arrive at a rate of l, we can reason that in the time Tw, a total of lTw
items must have arrived. Thus, w = lTw. Similar reasoning can be applied to the
relationship r = lTr.

Turning to the last equation in the first column of Table 21.5, it is easy to
observe that the time that an item spends in the system is the sum of the time wait-
ing for service plus the time being served. Thus, on average, Tr = Tw + Ts. The last
equations in the second and third columns are easily justified. At any time, the
number of items in the system is the sum of the number of items waiting for service
plus the number of items being served. For a single server, the average number of
items being served is r. Therefore, r = w + r for a single server. Similarly,
r = w + Nr for N servers.

Assumptions

The fundamental task of a queueing analysis is as follows: Given the following infor-
mation as input:

•	 Arrival rate

•	 Service time

•	 Number of servers

General Single Server Multiserver

r = lTr Little’s formula
w = lTw Little’s formula
Tr = Tw + Ts

r = lTs

r = w + r r =
lTs

N
u = lTs = rN
r = w + Nr

Table 21.5  Some Basic Queueing Relationships

M21_STAL4290_09_GE_C21.indd 15 4/18/17 7:26 AM

21-16   Chapter 21 / Queueing Analysis

provide as output information concerning:

•	 Items waiting

•	 Waiting time

•	 Items in residence

•	 Residence time

What specifically would we like to know about these outputs? Certainly we
would like to know their average values (w, Tw, r, Tr). In addition, it would be useful
to know something about their variability. Thus, the standard deviation of each would
be useful (sr, sTr

, sw, sTw
). Other measures may also be useful. For example, to design

a buffer associated with a router or multiplexer, it might be useful to know for what
buffer size the probability of overflow is less than 0.001. That is, what is the value of
N such that Pr[items waiting 6 N] = 0.999?

To answer such questions in general requires complete knowledge of the prob-
ability distribution of the interarrival times (time between successive arrivals) and
service time. Furthermore, even with that knowledge, the resulting formulas are
exceedingly complex. Thus, to make the problem tractable, we need to make some
simplifying assumptions.

The most important of these assumptions concerns the arrival rate. We
assume the interarrival times are exponential, which is equivalent to saying that
the number of arrivals in a period t obeys the Poisson distribution, which is equiva-
lent to saying that the arrivals occur randomly and independent of one another.
This assumption is almost invariably made. Without it, most queueing analysis is
impractical, or at least quite difficult. With this assumption, it turns out that many
useful results can be obtained if only the mean and standard deviation of the
arrival rate and service time are known. Matters can be made even simpler and
more detailed results can be obtained if it is assumed the service time is exponen-
tial or constant.

A convenient notation, called Kendall’s notation, has been developed for sum-
marizing the principal assumptions that are made in developing a queueing model.
The notation is X/Y/N, where X refers to the distribution of the interarrival times, Y
refers to the distribution of service times, and N refers to the number of servers. The
most common distributions are denoted as follows:

G = general distribution of interarrival times or service times

GI = general distribution of interarrival times with the restriction that interar-
        rival times are independent

M = negative exponential distribution

D = deterministic arrivals or fixed-length service

Thus, M/M/1 refers to a single-server queueing model with Poisson arrivals
(exponential interarrival times) and exponential service times.

M21_STAL4290_09_GE_C21.indd 16 4/18/17 7:26 AM

21.4 / SINGLE-SERVER QUEUES   21-17

  21.4	 SINGLE-SERVER QUEUES

Table 21.6a provides some equations for single-server queues that follow the M/G/1
model. That is, the arrival rate is Poisson and the service time is general. Making use
of a scaling factor, A, the equations for some of the key output variables are straight-
forward. Note the key factor in the scaling parameter is the ratio of the standard
deviation of service time to the mean. No other information about the service time
is needed. Two special cases are of some interest. When the standard deviation is
equal to the mean, the service time distribution is exponential (M/M/1). This is the
simplest case, and the easiest one for calculating results. Table 21.6b shows the simpli-
fied versions of equations for the standard deviation of r and Tr, plus some other
parameters of interest. The other interesting case is a standard deviation of service
time equal to zero, that is, a constant service time (M/D/1). The corresponding equa-
tions are shown in Table 21.6c.

Figures 21.5 and 21.6 plot values of average queue size and residence time ver-
sus utilization for three values of sTs

/Ts. This latter quantity is known as the coeffi-
cient of variation and gives a normalized measure of variability. Note the poorest
performance is exhibited by the exponential service time, and the best by a constant
service time. In many cases, one can consider the exponential service time to be a
worst case, so an analysis based on this assumption will give conservative results. This
is nice, because tables are available for the M/M/1 case and values can be looked up
quickly.

What value of sTs
/Ts is one likely to encounter? We can consider four regions:

•	 Zero: This is the rare case of constant service time. For example, if all transmit-
ted packets are of the same length, they would fit this category.

•	 Ratio less than 1: Because this ratio is better than the exponential case, using
M/M/1 tables will give queue sizes and times that are slightly larger than they
should be. Using the M/M/1 model would give answers on the safe side. An
example of this category might be a data entry application for a particular form.

•	 Ratio close to 1: This is a common occurrence and corresponds to exponential
service time. That is, service times are essentially random. Consider message
lengths to a computer terminal: A full screen might be 1920 characters, with
message sizes varying over the full range. Airline reservations, file lookups on
inquiries, shared LAN, and packet-switching networks are examples of systems
that often fit this category.

•	 Ratio greater than 1: If you observe this, you need to use the M/G/1 model and
not rely on the M/M/1 model. A common occurrence of this is a bimodal distri-
bution, with a wide spread between the peaks. An example is a system that
experiences many short messages, many long messages, and few in between.

The same consideration applies to the arrival rate. For a Poisson arrival rate, the
interarrival times are exponential, and the ratio of standard deviation to mean is 1. If
the observed ratio is much less than one, then arrivals tend to be evenly spaced (not

M21_STAL4290_09_GE_C21.indd 17 4/18/17 7:26 AM

A
ss

um
pt

io
ns

:
1.

 P
oi

ss
on

 a
rr

iv
al

 r
at

e.
2.

 D
is

pa
tc

hi
ng

 d
is

ci
pl

in
e

do
es

 n
ot

 g
iv

e
pr

ef
er

en
ce

 to
 it

em
s

ba
se

d
on

 s
er

vi
ce

 ti
m

es
.

3.
 F

or
m

ul
as

 fo
r

st
an

da
rd

 d
ev

ia
ti

on
 a

ss
um

e
fi

rs
t-

in
-f

ir
st

-o
ut

 d
is

pa
tc

hi
ng

.
4.

 N
o

it
em

s
ar

e
di

sc
ar

de
d

fr
om

 th
e

qu
eu

e.

(a
)

G
en

er
al

 S
er

vi
ce

 T
im

es
 (

M
/G

/1
)

 A
=

1 2 J1+as
T

s

T
s
b2

R
 r

=
r

+
r

2 A

1
-

r

 w
=

r
2 A

1
-

r

 T
r
=

T
s

+
r

T
sA

1
-

r

 T
w
=

r
T

sA

1
-

r

(b
)

E
xp

on
en

ti
al

 S
er

vi
ce

 T
im

es
 (

M
/M

/1
)

r
=

r

1
-

r
w

=
r

2

1
-

r

T
r
=

T
s

1
-

r
T

w
=

r
T

s

1
-

r

s
r
=

2r 1
-

r
s

T
r
=

T
s

1
-

r

 P
r[

R
=

N
]
=

(1
-

r
)r

N

 P
r[

R
…

N
]
=

aN i=
0
(1

-
r

)r
i

 P
r[

T
R

…
T

]
=

1
-

e-(
1

-
r

)t
/T

s

 m
T

r(y
)
=

T
r

*
ln
a

10
0

10
0

-
y
b

 m
T

w
(y

)
=

T
w r

*
ln

 a
10

0r

10
0

-
y
b

(c
)

C
on

st
an

t S
er

vi
ce

 T
im

es
 (

M
/D

/1
)

 r
=

r
2

2(
1

-
r

)
+

r

 w
=

r
2

2(
1

-
r

)

 T
r
=

T
s(

2
-

r
)

2(
1

-
r

)

 T
w
=

r
T

s

2(
1

-
r

)

 s
r
=

1
1

-
r

 Br
-

3r
2 2

+
5r

3 6
-

r
4 12

 s
T

r
=

T
s

1
-

r
 Br 3

-
r

2 12

T
ab

le
 2

1.
6 

Fo
rm

ul
as

 fo
r

Si
ng

le
-S

er
ve

r
Q

ue
ue

s

21-18

M21_STAL4290_09_GE_C21.indd 18 4/18/17 7:26 AM

21.4 / SINGLE-SERVER QUEUES   21-19

Figure 21.5  Mean Number of Items in System for Single-Server Queue

8

6

4

2

0

1.00.80.60.40.20.0

Utilization (r)

M
ea

n
nu

m
be

r
of

 it
em

s
in

 s
ys

te
m

 (
r)

sTs
 = Ts

sTs
 = 0

sTs
 = 0.5Ts

Figure 21.6  Mean Residence Time for Single-Server Queue

10

8

6

4

2

0
1.00.80.60.40.20.0

Utilization (r)

T r
/T

S

sTs
 = Ts

sTs
 = 0.5Ts

sTs
 = 0

M21_STAL4290_09_GE_C21.indd 19 4/18/17 7:26 AM

21-20   Chapter 21 / Queueing Analysis

much variability), and the Poisson assumption will overestimate queue sizes and
delays. On the other hand, if the ratio is greater than 1, then arrivals tend to cluster
and congestion becomes more acute.

  21.5	 MULTISERVER QUEUES

Table 21.7 lists formulas for some key parameters for the multiserver case. Note the
restrictiveness of the assumptions. Useful congestion statistics for this model have
been obtained only for the case of M/M/N, where the exponential service times are
identical for the N servers.

Note the presence of the Erlang C function in nearly all of the equations. This
is the probability that all servers are busy at a given instant; equivalently, this is the
probability that the number of items in the system (waiting and being served) is
greater than or equal to the number of servers. The equation has the form

C(N, r) =
1 - K(N, r)

1 - rK(N, r)

where K is known as the Poisson ratio function. Because C is a probability, its value
is always between zero and one. As can be seen, this quantity is a function of the
number of servers and the utilization. This expression turns up frequently in
queueing calculations. Tables of values are readily found, or a computer program
must be used. Note for a single-server system, this equation simplifies to
C(1, r) = r.

  21.6	 EXAMPLES

Let us look at a few examples to get some feel for the use of these equations.

Database Server

Consider a LAN with 100 personal computers and a server that maintains a common
database for a query application. The average time for the server to respond to a
query is 0.6 seconds, and the standard deviation is estimated to equal the mean. At
peak times, the query rate over the LAN reaches 20 queries per minute. We would
like to answer the following questions:

•	 What is the average response time ignoring line overhead?

•	 If a 1.5-second response time is considered the maximum acceptable, what per-
cent growth in message load can occur before the maximum is reached?

•	 If 20% more utilization is experienced, will response time increase by more or
less than 20%?

M21_STAL4290_09_GE_C21.indd 20 4/18/17 7:26 AM

21.6 / EXAMPLES   21-21

Assumptions: 1. Poisson arrival rate.
2. Exponential service times.
3. All servers equally loaded.
4. All servers have same mean service time.
5. First-in-first-out dispatching.
6. No items are discarded from the queue.

K =
a

N - 1

I=0

(Nr)I

I!

a
N

I=0

(Nr)I

I!

 Poisson ratio function

Erlang C function = Probability that all servers are busy = C =
1 - K

1 - rK

 r = C
r

1 - r
+ Nr w = C

r

1 - r

 Tr = aC
N
b

Ts

1 - r
+ Ts Tw = aC

N
b

Ts

1 - r

 sTr
=

Ts

N(1 - r)
 2C(2 - C) + N2(1 - r)2

 sw =
1

1 - r
 2Cr(1 + r - Cr)

 Pr[TW 7 t] = Ce-N(1 -r)t/Ts

 mTw
(y) =

Ts

N(1 - r)
 lna 100C

100 - y
b

 Td =
Ts

N(1 - r)

Table 21.7  Formulas for Multiserver Queues (M/M/N)

Assume an M/M/1 model, with the database server being the server in the
model. We ignore the effect of the LAN, assuming that its contribution to the delay
is negligible. Facility utilization is calculated as:

 r = lTs

 = (20 arrivals per minute)(0.6 seconds per transmission)/(60 s/min)

 = 0.2

The first value, average response time, is easily calculated:

 Tr = Ts/(1 - r)
 = 0.6/(1 - 0.2) = 0.75 seconds

The second value is more difficult to obtain. Indeed, as worded, there is no answer
because there is a nonzero probability that some instances of response time will
exceed 1.5 seconds for any value of utilization. Instead, let us say we would like

M21_STAL4290_09_GE_C21.indd 21 4/18/17 7:26 AM

21-22   Chapter 21 / Queueing Analysis

90% of all responses to be less than 1.5 seconds. Then, we can use the equation from
Table 21.6b:

 mTr
(y) = Tr * ln(100/(100 - y))

 mTr
(90) = Tr * ln(10) =

Ts

1 - r
* 2.3 = 1.5 seconds

We have Ts = 0.6. Solving for r yields r = 0.08. In fact, utilization would have to
decline from 20% to 8% to put 1.5 seconds at the 90th percentile.

The third part of the question is to find the relationship between increases in
load versus response time. Because a facility utilization of 0.2 is down in the flat part
of the curve, response time will increase more slowly than utilization. In this case, if
facility utilization increases from 20% to 40%, which is a 100% increase, the value of
Tr goes from 0.75 seconds to 1.0 second, which is an increase of only 33%.

Calculating Percentiles

Consider a configuration in which packets are sent from computers on a LAN to
systems on other networks. All of these packets must pass through a router that con-
nects the LAN to a wide area network and hence to the outside world. Let us look
at the traffic from the LAN through the router. Packets arrive with a mean arrival
rate of 5 per second. The average packet length is 144 octets, and it is assumed packet
length is exponentially distributed. Line speed from the router to the wide area net-
work is 9,600 bps. The following questions are asked:

1.	 What is the mean residence time for the router?

2.	 How many packets are in the router, including those waiting for transmission
and the one currently being transmitted (if any), on the average?

3.	 Same question as (2), for the 90th percentile.

4.	 Same question as (2), for the 95th percentile.

 l = 5 packets per second
 Ts = (144 octets * 8 bits per octet)/9,600 bps = 0.12 seconds
 r = lTs = 5 * 0.12 = 0.6

 Tr = Ts/(1 - r) = 0.3 seconds Mean residence time
 r = r/(1 - r) = 1.5 packets Mean number of resident items

To obtain the percentiles, we use the equation from Table 21.6b:

Pr[R = N] = (1 - r)rN

To calculate the yth percentile of queue size, we write the preceding equation in
cumulative form:

y

100
= a

mr(y)

k=0
 (1 - r)rk = 1 - r1 + mr(y)

Here mr(y) represents the maximum number of packets in the queue expected y
percent of the time. That is, mr(y) is that value below which R occurs y percent of the

M21_STAL4290_09_GE_C21.indd 22 4/18/17 7:26 AM

21.6 / EXAMPLES   21-23

time. In the form given, we can determine the percentile for any queue size. We wish
to do the reverse: Given y, find mr(y). So, taking the logarithm of both sides:

mr(y) =
lna1 -

y

100
b

ln r
- 1

If mr(y) is fractional, take the next higher integer; if it is negative, set it to zero. For
our example, r = 0.6 and we wish to find mr(90) and mr(95):

 mr(90) =
ln(1 - 0.90)

ln(0.6)
- 1 = 3.5

 mr(95) =
ln(1 - 0.95)

ln(0.6)
- 1 = 4.8

Thus, 90% of the time there are fewer than 4 packets in the queue, and 95% of the
time there are fewer than 5 packets. If we were designing to a 95th percentile crite-
rion, a buffer would have to be provided to store at least 5 packets.

Tightly-Coupled Multiprocessor

Let us consider the use of multiple tightly-coupled processors in a single computer
system. One of the design decisions had to do with whether processes are dedicated
to processors. If a process is permanently assigned to one processor from activation
until its completion, then a separate short-term queue is kept for each processor.
In this case, one processor can be idle, with an empty queue, while another proces-
sor has a backlog. To prevent this situation, a common queue can be used. All
processes go into one queue and are scheduled to any available processor. Thus,
over the life of a process, the process may be executed on different processors at
different times.

Let us try to get a feel for the performance speed-up to be achieved by using
a common queue. Consider a system with five processors, and the average amount
of processor time provided to a process while in the Running state is 0.1 second.
Assume the standard deviation of service time is observed to be 0.094 second.
Because the standard deviation is close to the mean, we will assume exponential
service time. Also assume processes are arriving at the Ready state at the rate of 40
per second.

Single-Server Approach  If processes are evenly distributed among the
processors, then the load for each processor is 40/5 = 8 processes per second. Thus,

 r = lTs

 = 8 * 0.1 = 0.8

The residence time is then easily calculated:

tr =
Ts

1 - r
=

0.1
0.2

= 0.5 sec

M21_STAL4290_09_GE_C21.indd 23 4/18/17 7:26 AM

21-24   Chapter 21 / Queueing Analysis

Multiserver Approach  Now assume a single Ready queue is maintained for all
processors. We now have an aggregate arrival rate of 40 processes per second.
However, the facility utilization is still 0.8 (lTs/M). To calculate the residence time
from the formula in Table 21.7, we need to first calculate the Erlang C function. If you
have not programmed the parameter, it can be looked up in a table under a facility
utilization of 0.8 for five servers to yield C = 0.554. Substituting,

Tr = (0.1) +
(0.544)(0.1)

5(1 - 0.8)
= 0.1544

So the use of multiserver queue has reduced average residence time from 0.5
seconds down to 0.1544 seconds, which is greater than a factor of 3. If we look at just
the waiting time, the multiserver case is 0.0544 seconds compared to 0.4 seconds,
which is a factor of 7.

Although you may not be an expert in queueing theory, you now know enough
to be annoyed when you have to wait in a line at a multiple single-server queue
facility.

A Multiserver Problem

An engineering firm provides each of its analysts with a personal computer, all of
which are hooked up over a LAN to a database server. In addition, there is an expen-
sive, stand-alone graphics workstation that is used for special-purpose design tasks.
During the course of a typical eight-hour day, 10 engineers will make use of the
workstation and spend an average of 30 minutes at a session.

Single-Server Model  The engineers complain to their manager that the wait for
using the workstation is long, often an hour or more, and are asking for more
workstations. This surprises the manager since the utilization of the workstation is
only 5/8 (10 * 1/2 = 5 hours out of 8). To convince the manager, one of the engineers
performs a queueing analysis. The engineer makes the usual assumptions of an
infinite population, random arrivals, and exponential service times, none of which
seem unreasonable for rough calculations. Using the equations in Tables 21.5 and
21.6b, the engineer gets:

Tw =
rTs

1 - r
= 50 minutes

Average time an engineer spends wait-
ing for the workstation

mTw
 (90) =

Tw

r
* ln(10r) = 146.6 minutes

90th percentile waiting time

l =
10

8 * 60
= 0.021 engineers/minute

Arrival rate of engineers

w = lTw = 1.0416 engineers Average number of engineers waiting

These figures show that indeed the engineers do have to wait an average of
almost an hour to use the workstation, and that in 10% of the cases, an engineer has
to wait well over two hours. Even if there is a significant error in the estimate, say

M21_STAL4290_09_GE_C21.indd 24 4/18/17 7:26 AM

21.6 / EXAMPLES   21-25

20%, the waiting time is still far too long. Furthermore, if an engineer can do no useful
work while waiting for the workstation, then a little over one engineer-day is being
lost per day.

Multiserver Model  The engineers have convinced the manager of the need for
more workstations. They would like the mean waiting time not to exceed 10 minutes,
with the 90th percentile value not to exceed 15 minutes. This concerns the manager,
who reasons that if one workstation results in a waiting time of 50 minutes, then five
workstations will be required to get the average down to 10 minutes.

The engineers set to work to determine how many workstations are required.
There are two possibilities: Put additional workstations in the same room as the
original one (multiserver queue) or scatter the workstations to various rooms on
various floors (multiple single-server queues). First, we look at the multiserver case
and consider the addition of a second workstation in the same room. Let’s assume
that the addition of the new workstation, which reduces waiting time, does not affect
the arrival rate (10 engineers per day). Then the available service time is 16 hours in
an eight-hour day with a demand of five hours (10 engineers * 0.5 hours), giving a
utilization of 5/16 = 0.3125. Using the equations in Table 21.7:

C(2, r) = C(2, 0.3125) = 0.1488 Probability that both servers are busy

Tw =
CTs

N(1 - r)
= 3.247 minutes

Average time an engineer spends
waiting for a workstation

mTw
 (90) =

Ts

2(1 - r)
 ln (10C) = 8.67 minutes

90th percentile waiting time

w = lTw = 0.07 engineers Average number of engineers waiting

With this arrangement, the probability that an engineer who wishes to use a worksta-
tion must wait is less than 0.15 and the average wait is just a little over three minutes,
with the 90th percentile wait of less than nine minutes. Despite the manager’s doubts,
the multiserver arrangement with two workstations easily meets the design
requirement.

All of the engineers are housed on two floors of the building, so the manager
wonders whether it might be more convenient to place one workstation on each
floor. If we assume the traffic to the two workstations is about evenly split, then
there are two M/M/1 queues, each with a l of five engineers per eight-hour day. This
yields:

r = lTs = 0.3125 Utilization of one server

Tw =
rTs

1 - r
= 13.64 minutes

Average time an engineer spends
waiting for the workstation

mTw
 (90) =

Tw

r
* ln(10r) = 49.73 minutes

90th percentile waiting time

w = lTw = 0.142 engineers Average number of engineers waiting

M21_STAL4290_09_GE_C21.indd 25 4/18/17 7:26 AM

21-26   Chapter 21 / Queueing Analysis

This performance is significantly worse than the multiserver model and does
not meet the design criteria. Table 21.8 summarizes the results and also shows the
results for four and five separate workstations. Note to meet the design goal, five
separate workstations are needed compared to only two multiserver
workstations.

  21.7	 QUEUES WITH PRIORITIES

So far, we have considered queues in which items are treated in a first-come-first-
served basis. There are many cases in both networking and operating system design
in which it is desirable to use priorities. Priorities may be assigned in a variety of ways.
For example, priorities may be assigned on the basis of traffic type. If it turns out that
the average service time for the various traffic types is identical, then the overall
equations for the system are not changed, although the performance seen by the dif-
ferent traffic classes will differ.

An important case is one in which priority is assigned on the basis of average
service time. Often, items with shorter expected service times are given priority over
items with longer service times. For example, a router may assign a higher priority to
a stream of voice packets than a stream of data packets, and typically, the voice pack-
ets would be much shorter than the data packets. With this kind of scheme, perfor-
mance is improved for higher-priority traffic.

Table 21.9 shows the formulas that apply when we assume two priority classes
with different service times for each class. These results are easily generalized to any
number of priority classes.

To see the effects of the use of priority, let us consider a simple example of a
data stream consisting of a mixture of long and short packets being transmitted by
a packet-switching node and that the rate of arrival of the two types of packets is
equal. Suppose both packets have lengths that are exponentially distributed, and
the long packets have a mean packet length of 10 times the short packets. In par-
ticular, let us assume a 64-Kbps transmission link and the mean packet lengths are
80 and 800 octets. Then the two service times are 0.01 and 0.1 seconds. Also assume
the arrival rate for each type is 8 packets per second. So the shorter packets are not
held up by the longer packets, let us assign the shorter packets a higher priority.
Then:

 r1 = 8 * 0.01 = 0.08 r2 = 8 * 0.1 = 0.8 r = 0.88

Workstations System r Tw mTw(90)

1 M/M/1 0.625 50 146.61

2 M/M/2 0.3125   3.25    8.67

3 M/M/1’s 0.3125 13.64   49.73

4 M/M/1’s 0.15625   5.56   15.87

5 M/M/1’s 0.125   4.29    7.65

Table 21.8  Summary of Calculations for Multiserver Example

M21_STAL4290_09_GE_C21.indd 26 4/18/17 7:26 AM

21.8 / NETWORKS OF QUEUES   21-27

 Tr1 = 0.01 +
0.08 * 0.01 + 0.8 * 0.1

1 - 0.08
= 0.098 seconds

 Tr2 = 0.1 +
0.098 - 0.01

1 - 0.88
= 0.833 seconds

 Tr = 0.5 * 0.098 + 0.5 * 0.833 = 0.4655 seconds

So we see the higher-priority packets get considerably better service than the lower-
priority packets.

  21.8	 NETWORKS OF QUEUES

In a distributed environment, isolated queues are unfortunately not the only problem
presented to the analyst. Often, the problem to be analyzed consists of several inter-
connected queues. Figure 21.7 illustrates this situation, using nodes to represent
queues and the interconnecting lines to represent traffic flow.

Assumptions: 1. Poisson arrival rate.
2. Priority 1 items are serviced before priority 2 items.
3. First-in-first-out dispatching for items of equal priority.
4. No item is interrupted while being served.
5. No items leave the queue (lost calls delayed).

(a) General Formulas
 l = l1 + l2
 r1 = l1Ts1; r2 = l2Ts2

 r = r1 + r2

 Ts =
l1

l
 Ts1 +

l2

l
 Ts2

 Tr =
l1

l
 Tr1 +

l2

l
 Tr2

(b) Exponential Service Times

 w1 =
r1(r1Ts1 + r2Ts2)

Ts1(1 - r1)

 w2 = w1
l2

l1(1 - r)

 Tr1 = Ts1 +
r1Ts1 + r2Ts2

1 - r1

 Tr2 = Ts2 +
Tr1 - Ts1

1 - r

Table 21.9  Formulas for Single-Server Queues with Two Priority Categories

Figure 21.7  Example of a Network of Queues

l1
1 2

l3
3 4

5

M21_STAL4290_09_GE_C21.indd 27 4/18/17 7:26 AM

21-28   Chapter 21 / Queueing Analysis

Two elements of such a network complicate the methods shown so far:

•	 The partitioning and merging of traffic, as illustrated by nodes 1 and 5, respec-
tively, in the figure

•	 The existence of queues in tandem, or series, as illustrated by nodes 3 and 4

No exact method has been developed for analyzing general queueing problems
that have the aforementioned elements. However, if the traffic flow is Poisson and
the service times are exponential, an exact and simple solution exists. In this section,
we first examine the two elements listed previously, then present the approach to
queueing analysis.

Partitioning and Merging of Traffic Streams

Suppose traffic arrives at a queue with a mean arrival rate of l, and that there are
two paths, A and B, by which an item may depart (see Figure 21.8a). When an item is
serviced and departs the queue, it does so via path A with probability P and via path
B with probability (1 - P). In general, the traffic distribution of streams A and B will
differ from the incoming distribution. However, if the incoming distribution is
Poisson, then the two departing traffic flows also have Poisson distributions, with
mean rates of Pl and (1 - P)l.

A similar situation exists for traffic merging (see Figure 21.8b). If two Poisson
streams with mean rates of l1 and l2 are merged, the resulting stream is Poisson with
a mean rate of l1 + l2.

Figure 21.8  Elements of Queueing Networks

Tsi Tsj Tsk
l l l l

(c) Simple tandem queue

Tsi

l1

l1 + l2

l2

(b) Tra	c merging

Tsi
l

Pl

(1 – P)l

(a) Tra	c partitioning

A

B

A

B

M21_STAL4290_09_GE_C21.indd 28 4/18/17 7:26 AM

21.8 / NETWORKS OF QUEUES   21-29

Both of these results generalize to more than two departing streams for parti-
tioning and more than two arriving streams for merging.

Queues in Tandem

Figure 21.8c is an example of a set of single-server queues in tandem: The input for
each queue except the first is the output of the previous queue. Assume the input to
the first queue is Poisson. Then, if the service time of each queue is exponential and
the queues are of infinite capacity, the output of each queue is a Poisson stream sta-
tistically identical to the input. When this stream is fed into the next queue, the delays
at the second queue are the same as if the original traffic had bypassed the first queue
and fed directly into the second queue. Thus, the queues are independent and may
be analyzed one at a time. Therefore, the mean total delay for the tandem system is
equal to the sum of the mean delays at each stage.

This result can be extended to the case where some or all of the nodes in tan-
dem are multiserver queues.

Jackson’s Theorem

Jackson’s theorem can be used to analyze a network of queues. The theorem is based
on three assumptions:

1.	 The queueing network consists of m nodes, each of which provides an indepen-
dent exponential service.

2.	 Items arriving from outside the system to any one of the nodes arrive with a
Poisson rate.

3.	 Once served at a node, an item goes (immediately) to one of the other nodes
with a fixed probability, or out of the system.

Jackson’s theorem states that in such a network of queues, each node is an
independent queueing system, with a Poisson input determined by the principles of
partitioning, merging, and tandem queueing. Thus, each node may be analyzed sepa-
rately from the others using the M/M/1 or M/M/N model, and the results may be
combined by ordinary statistical methods. Mean delays at each node may be added
to derive system delays, but nothing can be said about the higher moments of system
delays (e.g., standard deviation).

Jackson’s theorem appears attractive for application to packet-switching net-
works. One can model the packet-switching network as a network of queues. Each
packet represents an individual item. We assume each packet is transmitted sepa-
rately and, at each packet-switching node in the path from source to destination,
the packet is queued for transmission on the next length. The service at a queue is
the actual transmission of the packet and is proportional to the length of the
packet.

The flaw in this approach is that a condition of the theorem is violated: Namely,
it is not the case that the service distributions are independent. Because the length
of a packet is the same at each transmission link, the arrival process to each queue is
correlated to the service process. However, Kleinrock [KLEI76] has demonstrated
that, because of the averaging effect of merging and partitioning, assuming indepen-
dent service times provides a good approximation.

M21_STAL4290_09_GE_C21.indd 29 4/18/17 7:26 AM

21-30   Chapter 21 / Queueing Analysis

Application to a Packet-Switching Network4

Consider a packet-switching network, consisting of nodes interconnected by trans-
mission links, with each node acting as the interface for zero or more attached sys-
tems, each of which functions as a source and destination of traffic. The external
workload that is offered to the network can be characterized as:

g = a
N

j=1
a
N

k=1
gjk

where

g = total workload in packets per second

gjk = workload between source j and destination k

N = total number of sources and destinations

Because a packet may traverse more than one link between source and destina-
tion, the total internal workload will be higher than the offered load:

l = a
L

i=1
li

where

l = total load on all of the links in the network

li = load on link i

L = total number of links

The internal load will depend on the actual path taken by packets through the
network. We will assume a routing algorithm is given such that the load on the indi-
vidual links, li, can be determined from the offered load, gjk. For any particular rout-
ing assignment, we can determine the average number of links that a packet will
traverse from these workload parameters. Some thought should convince you that
the average length for all paths is given by:

E[number of links in a path] =
l

g

Now, our objective is to determine the average delay, T, experienced by a packet
through the network. For this purpose, it is useful to apply Little’s formula (see
Table 21.5). For each link in the network, the average number of items waiting and
being served for that link is given by:

ri = liTri

where Tri is the yet-to-be-determined queueing delay at each queue. Suppose we sum
these quantities. That would give us the average total number of packets waiting in
all of the queues of the network. It turns out that Little’s formula works in the aggre-
gate as well.5 Thus, the number of packets waiting and being served in the network
can be expressed as gT. Combining the two:

T =
1
g

 a
L

i=1
liTri

4 This discussion is based on the development in [KLEI76].
5 In essence, this statement is based on the fact that the sum of the averages is the average of the sums.

M21_STAL4290_09_GE_C21.indd 30 4/18/17 7:26 AM

21.9 / OTHER QUEUEING MODELS   21-31

To determine the value of T, we need to determine the values of the individual
delays, Tri. Because we are assuming each queue can be treated as an independent
M/M/1 model, this is easily determined:

Tri =
Tsi

1 - ri
=

Tsi

1 - liTsi

The service time Tsi for link i is just the ratio of the average packet length in bits
(M) to the data rate on the link in bits per second (Ri). Then:

Tri =

M
Ri

1 -
Mli

Ri

=
M

Ri - Mli

Putting all of the elements together, we can calculate the average delay of packets
sent through the network:

T =
1
g

 a
L

i=1

Mli

Ri - Mli

  21.9	 OTHER QUEUEING MODELS

In this chapter, we have concentrated on one type of queueing model. There are in
fact a number of models, based on two key factors:

•	 The manner in which blocked items are handled

•	 The number of traffic sources

When an item arrives at a server and finds that server busy, or arrives at a
multiple-server facility and finds all servers busy, that item is said to be blocked.
Blocked items can be handled in a number of ways. First, the item can be placed in a
queue awaiting a free server. This policy is referred to in the telephone traffic litera-
ture as lost calls delayed, although in fact the call is not lost. Alternatively, no queue
is provided. This in turn leads to two assumptions about the action of the item. The
item may wait some random amount of time then try again; this is known as lost calls
cleared. If the item repeatedly attempts to gain service, with no pause, it is referred
to as lost calls held. The lost calls delayed model is the most appropriate for most
computer and data communications problems. Lost calls cleared is usually the most
appropriate in a telephone-switching environment.

The second key element of a traffic model is whether the number of sources is
assumed infinite or finite. For an infinite source model, there is assumed to be a fixed
arrival rate. For the finite source case, the arrival rate will depend on the number of
sources already engaged. Thus, if each of L sources generates arrivals at a rate l/L,
then when the queueing facility is unoccupied, the arrival rate is l. However, if K
sources are in the queueing facility at a particular time, then the instantaneous arrival
rate at that time is l(L - K)/L. Infinite source models are easier to deal with. The
infinite source assumption is reasonable when the number of sources is at least 5–10
times the capacity of the system.

M21_STAL4290_09_GE_C21.indd 31 4/18/17 7:26 AM

21-32   Chapter 21 / Queueing Analysis

  21.10	ESTIMATING MODEL PARAMETERS

To perform a queueing analysis, we need to estimate the values of the input param-
eters, specifically the mean and standard deviation of the arrival rate and service time.
If we are contemplating a new system, these estimates may have to be based on judg-
ment and an assessment of the equipment and work patterns likely to prevail. How-
ever, it will often be the case that an existing system is available for examination. For
example, a collection of terminals, personal computers, and host computers are inter-
connected in a building by direct connection and multiplexers, and it is desired to
replace the interconnection facility with a LAN. To be able to size the network, it is
possible to measure the load currently generated by each device.

Sampling

The measurements that are taken are in the form of samples. A particular parameter,
for example, the rate of packets generated by a terminal or the size of packets, is
estimated by observing the number of packets generated during a period of time.

The most important quantity to estimate is the mean. For many of the equations
in Tables 21.6 and 21.7, this is the only quantity that need be estimated. The estimate
is referred to as the sample mean X and is calculated as follows:

X =
1
N

 a
N

i=1
Xi

where

N = sample size

Xi = ith item in the sample

It is important to note the sample mean is itself a random variable. For example,
if you take a sample from some population and calculate the sample mean, and do
this a number of times, the calculated values will differ. Thus, we can talk of the mean
and standard deviation of the sample mean, or even of the entire probability distribu-
tion of the sample mean. To distinguish the concepts, it is common to refer to the
probability distribution of the original random variable X as the underlying distribu-
tion, and the probability distribution of the sample mean X as the sampling distribu-
tion of the mean.

The remarkable thing about the sample mean is that its probability distribution
tends to the normal distribution as N increases for virtually all underlying distribu-
tions. The assumption of normality breaks down only if N is very small or if the
underlying distribution is highly abnormal.

The mean and variance of X are as follows:

 E[X] = E[X] = m

 Var[X] =
sX

2

N
Thus, if a sample mean is calculated, its expected value is the same as that of

the underlying random variable and the variability of the sample mean around this

M21_STAL4290_09_GE_C21.indd 32 4/18/17 7:26 AM

21.10 / ESTIMATING MODEL PARAMETERS   21-33

expected value decreases as N increases. These characteristics are illustrated in
Figure 21.9. The figure shows an underlying exponential distribution with mean value
m = 1. This could be the distribution of service times of a server, or of the interar-
rival times of a Poisson arrival process. If a sample of size 10 is used to estimate the
value of m, then the expected value is indeed m, but the actual value could easily be
off by as much as 50%. If the sample size is 100, the spread among possible calculated
values is considerably tightened, so that we would expect the actual sample mean
for any given sample to be much closer to m.

The sample mean as defined previously can be used directly to estimate the
service time of a server. For arrival rate, one can observe the interarrival times for
a sequence of N arrivals, calculate the sample mean, then calculate the estimated
arrival rate. An equivalent and simpler approach is to use the following
estimate:

l =
N
T

where N is the number of items observed in a period of time of duration T.
For much of queueing analysis, it is only an estimate of the mean that is

required. But for a few important equations, an estimate of the variance of the

Figure 20.9  Sample Means for an Exponential Population

4

3

2

1

0

4.03.53.02.52.01.51.00.50.0

Population
(exponential)

Density of sample
mean (N = 10)

Density of sample
mean (N = 100)

f(x)

x

M21_STAL4290_09_GE_C21.indd 33 4/18/17 7:26 AM

21-34   Chapter 21 / Queueing Analysis

underlying random variable, sX
2 , is also needed. The sample variance is calculated as

follows:

S2 =
1

N - 1
 a

N

i=1
(Xi - X)2

The expected value of S2 has the desired value:

E [S2] = sX
2

The variance of S2 depends on the underlying distribution and is, in general,
difficult to calculate. However, as you would expect, the variance of S2 decreases as
N increases.

Table 21.10 summarizes the concepts discussed in this section.

Sampling Errors

When we estimate values such as the mean and standard deviation on the basis of a
sample, we leave the realm of probability and enter that of statistics. This is a complex
topic that will not be explored here, except to provide a few comments.

The probabilistic nature of our estimated values is a source of error, known as
sampling error. In general, the greater the size of the sample taken, the smaller the
standard deviation of the sample mean or other quantity, and therefore the closer
that our estimate is likely to be to the actual value. By making certain reasonable
assumptions about the nature of the random variable being tested and the random-
ness of the sampling procedure, one can in fact determine the probability that a
sample mean or sample standard deviation is within a certain distance from the
actual mean or standard deviation. This concept is often reported with the results of
a sample. For example, it is common for the result of an opinion poll to include a
comment such as, “The result is within 5% of the true value with a confidence (prob-
ability) of 99%.”

There is, however, another source of error, which is less widely appreciated
among nonstatisticians: bias. For example, if an opinion poll is conducted and only
members of a certain socioeconomic group are interviewed, the results are not neces-
sarily representative of the entire population. In a communications context, sampling
done during one time of day may not reflect the activity at another time of day. If we
are concerned with designing a system that will handle the peak load that is likely to
be experienced, then we should observe the traffic during the time of day that is most
likely to produce the greatest load.

Population Sample Mean Sample Variance

Random variable X
X =

1
N

 a
N

i=1
Xi S2 =

1
N - 1

 a
N

i=1
(Xi - X)2

Expected value E[X] = m E[X] = m E[S2] = sX
2

Variance Var [X] = E[(X - m)2] = sX
2

Var [X] =
sX

2

N

Table 21.10  Statistical Parameters

M21_STAL4290_09_GE_C21.indd 34 4/18/17 7:26 AM

21.12 / PROBLEMS   21-35

  21.11	REFERENCES

KLEI76 Kleinrock, L. Queueing Systems, Volume II: Computer Applications. New York:
Wiley, 1976.

  21.12	PROBLEMS

	 21.1	 Section 21.3 provided an intuitive argument to justify Little’s formula. Develop a simi-
lar argument to justify the relationship r = lTr.

	 21.2	 Figure 21.3 shows the number of items in a system as a function of time. This can be
viewed as the difference between an arrival process and a departure process, of the
form n(t) = a(t) - d(t).
a.	 On one graph, show the functions a(t) and d(t) that produce the n(t) shown in

Figure 21.3.
b.	 Using the graph from (a), develop an intuitive argument to justify Little’s formula.

Hint: Consider the area between the two step functions, computed first by adding
vertical rectangles and second by adding horizontal rectangles.

	 21.3	 The owner of a shop observes that on average 18 customers per hour arrive and there
are typically 8 customers in the shop. What is the average length of time each customer
spends in the shop?

	 21.4	 A simulation program of a multiprocessor system starts running with no jobs in the
queue and ends with no jobs in the queue. The simulation program reports the average
number of jobs in the system over the simulation run as 12.356, the average arrival rate
as 25.6 jobs per minute, and the average delay for a job as 8.34 minutes. Was the simula-
tion correct?

	 21.5	 Section 21.3 provided an intuitive argument to justify the single-server relationship
r = lTs. Develop a similar argument to justify the multiserver relationship r = lTs/N.

	 21.6	 If an M/M/1 queue has arrivals at a rate of two per minute and serves at a rate of four
per minute, how many customers are found in the system on average? How many
customers are found in service on average?

	 21.7	 What is the utilization of an M/M/1 queue that has four people waiting on average?
	 21.8	 At an ATM machine in a supermarket, the average length of a transaction is two min-

utes, and on average, customers arrive to use the machine once every five minutes. How
long is the average time that a person must spend waiting and using the machine? What
is the 90th percentile of residence time? On average, how many people are waiting to
use the machine? Assume M/M/1.

	 21.9	 Messages arrive at random to be sent across a communications link with a data rate of
9,600 bps. The link is 70% utilized, and the average message length is 1,000 octets.
Determine the average waiting time for constant-length messages and for exponen-
tially distributed length messages.

	21.10	 Messages of three different sizes flow through a message switch. Seventy percent of
the messages take 1 millisecond to serve, 20% take 3 millisecond, and 10% take 10
millisecond. Calculate the average time spent in the switch, and the average number
of messages in the switch, when messages arrive at an average rate of:
a.	 one per 3 milliseconds.
b.	 one per 4 milliseconds.
c.	 one per 5 milliseconds.

	21.11	 Messages arrive at a switching center for a particular outgoing communications line
in a Poisson manner with a mean arrival rate of 180 messages per hour. Message length

M21_STAL4290_09_GE_C21.indd 35 4/18/17 7:26 AM

21-36   Chapter 21 / Queueing Analysis

is distributed exponentially with a mean length of 14,400 characters. Line speed is
9,600 bps.
a.	 What is the mean waiting time in the switching center?
b.	 How many messages will be waiting in the switching center for transmission on the

average?
	21.12	 Often inputs to a queueing system are not independent and random, but occur in

clusters. Mean waiting delays are greater for this type of arrival pattern than for Pois-
son arrivals. This problem demonstrates the effect with a simple example. Assume items
arrive at a queue in fixed-size batches of M items. The batches have a Poisson arrival
distribution with mean rate l/M, yielding a customer arrival rate of l. For each item,
the service time is Ts, and the standard deviation of service time of sTs.
a.	 If we treat the batches as large-size items, what is the mean and variance of batch

service time? What is the mean batch waiting time?
b.	 What is the mean waiting time for service for an item once its batch begins service?

Assume an item may be in any of the M positions in a batch with equal probability.
What is the total mean waiting time for an item?

c.	 Verify the results of (b) by showing that for M = 1, the results reduce to the M/G/1
case. How do the results vary for values of M 7 1?

	21.13	 Consider a single queue with a constant service time of four seconds and a Poisson
input with mean rate of 0.20 items per second.
a.	 Find the mean and standard deviation of queue size.
b.	 Find the mean and standard deviation of residence time.

	21.14	 Consider a frame relay node that is handling a Poisson stream of incoming frames to
be transmitted on a particular 1-Mbps outgoing link. The stream consists of two types
of frames. Both types of frames have the same exponential distribution of frame length
with a mean of 1,000 bits.
a.	 Assume priorities are not used. The combined arrival rate of frame of both

types is 800 frames per second. What is the mean residence time (Tr) for all
frames?

b.	 Now assume the two types are assigned different priorities, with the arrival rate of
type 1 of 200 frames per second and the arrival rate of type 2 of 600 frames per
second. Calculate the mean residence time for type 1, type 2, and overall.

c.	 Repeat (b) for l1 = l2 = 400 frames per second.
d.	 Repeat (b) for l1 = 600 frames per second and l2 = 200 frames per second.

	21.15	 The Multilink Protocol (MLP) is part of X.25; a similar facility is used in IBM’s System
Network Architecture (SNA). With MLP, a set of data links exists between two nodes
and is used as a pooled resource for transmitting packets, regardless of virtual circuit
number. When a packet is presented to MLP for transmission, any available link can
be chosen for the job. For example, if two LANs at different sites are connected by a
pair of bridges, there may be multiple point-to-point links between the bridges to
increase throughput and availability.

		       The MLP approach requires extra processing and frame overhead compared to
a simple link protocol. A special MLP header is necessary for the protocol. An alterna-
tive is to assign each of the arriving packets to the queue for a single outgoing link in
round-robin fashion. This would simplify processing, but what kind of effect would it
have on performance?

		       Let us consider a concrete example. Suppose there are five 9,600-bps links con-
necting two nodes, the average packet size is 100 octets with an exponential distribu-
tion, and packets arrive at a rate of 48 per second.
a.	 For a single-server design, calculate r and Tr.
b.	 For a multiserver design, it can be calculated that the Erlang C function has a value

of 0.554. Determine Tr.

M21_STAL4290_09_GE_C21.indd 36 4/18/17 7:26 AM

21.12 / PROBLEMS   21-37

	21.16	 A supplement to the X.25 packet-switching standard is a set of standards for a packet
assembler-disassembler (PAD), defined in standards X.3, X.28, and X.29. A PAD is
used to connect asynchronous terminals to a packet-switching network. Each terminal
attached to a PAD sends characters one at a time. These are buffered in the PAD then
assembled into an X.25 packet that is transmitted to the packet-switching network.
The buffer length is equal to the maximum data field size for an X.25 packet. A packet
is formed from assembled characters and transmitted whenever the buffer is full, a
special control character such as a carriage return is received, or when a timeout
occurs. For this problem, we ignore the last two conditions. Figure 21.10 illustrates the
queueing model for the PAD. The first queue models the delay for characters waiting
to be put into a packet; this queue is completely emptied when it is filled. The second
queue models the delay waiting to transmit packets. Use the following notation:

l = Poisson input rate of characters from each termina.l
C = Rate of transmission on the output channel in characters per second.
M = Number of data characters in a packet.
H = Number of overhead characters in a packet.
K = Number of terminals.

a.	 Determine the average waiting time for a character in the input queue.
b.	 Determine the average waiting time for a packet in the output queue.
c.	 Determine the average time spent by a character from when it leaves the terminal

to when it leaves the PAD. Plot the result as a function of normalized load.

Figure 21.10 � Queueing Model for a Packet
Assembler/Disassembler (PAD)

Input Queues

Output Queue

Characters

Packets

	21.17	 A fraction P of the traffic from a single exponential server is fed back into the input
as shown in Figure 21.11. In the figure, Λ denotes the system throughput, which is the
output rate from the server.
a.	 Determine the system throughput and the server utilization and the mean resi-

dence time for one pass through the server.
b.	 Determine the mean number of passes that an item makes through the system and

the mean total time spent in the system.

Figure 21.11  Feedback Queue

Ts
l (1 – P)

P

Λ

M21_STAL4290_09_GE_C21.indd 37 4/18/17 7:26 AM

PP1-1

Programming Project One

Developing A Shell

Z06_STAL4290_09_GE_PRO1.indd 1 4/18/17 7:26 AM

PP1-2   Programming Project One / Developing A Shell

The Shell or Command Line Interpreter is the fundamental User interface to an
operating system. Your first project is to write a simple shell—myshell—that has
the following properties:

1.	 The shell must support the following internal commands:

i.	 cd <directory>—Change the current default directory to <direc-
tory>. If the <directory> argument is not present, report the current
directory. If the directory does not exist, an appropriate error should be
reported. This command should also change the PWD environment
variable.

ii.	 clr—Clear the screen.

iii.	 dir <directory>—List the contents of directory <directory>.

iv.	 environ—List all the environment strings.

v.	 echo <comment>—Display <comment> on the display followed by a new
line (multiple spaces/tabs may be reduced to a single space).

vi.	 help—Display the user manual using the more filter.

vii.	 pause—Pause operation of the shell until “Enter” is pressed.

viii.	 quit—Quit the shell.

ix.	 The shell environment should contain shell=<pathname>/myshell
where <pathname>/myshell is the full path for the shell executable (not
a hardwired path back to your directory, but the one from which it was
executed).

2.	 All other command line input is interpreted as program invocation, which
should be done by the shell forking and execing the programs as its own child
processes. The programs should be executed with an environment that contains
the entry: parent=<pathname>/myshell where <pathname>/myshell
is as described in 1.ix above.

3.	 The shell must be able to take its command line input from a file. That is, if the
shell is invoked with a command line argument:

myshell batchfile

then batchfile is assumed to contain a set of command lines for the shell to
process. When the end-of-file is reached, the shell should exit. Obviously, if the
shell is invoked without a command line argument, it solicits input from the user
via a prompt on the display.

4.	 The shell must support I/O redirection on either or both stdin and/or stdout.
That is, the command line

programname arg1 arg2 < inputfile > outputfile

will execute the program programname with arguments arg1 and arg2, the
stdin FILE stream replaced by inputfile and the stdout FILE stream
replaced by outputfile.

Z06_STAL4290_09_GE_PRO1.indd 2 4/18/17 7:26 AM

Project Requirements   PP1-3

stdout redirection should also be possible for the internal commands dir,
environ, echo, and help.

With output redirection, if the redirection character is > then the
outputfile is created if it does not exist, and truncated if it does. If the redi-
rection token is >> then outputfile is created if it does not exist, and
appended to if it does.

5.	 The shell must support background execution of programs. An ampersand (&)
at the end of the command line indicates that the shell should return to the
command line prompt immediately after launching that program.

6.	 The command line prompt must contain the pathname of the current
directory.

Note: You can assume all command line arguments (including the redirection sym-
bols, <, > & >> and the background execution symbol, &) will be delimited from other
command line arguments by white space—one or more spaces and/or tabs (see the
command line in 4. above).

		 Project Requirements

1.	 Design a simple command line shell that satisfies the above criteria and imple-
ment it on the specified UNIX platform.

2.	 Write a simple manual describing how to use the shell. The manual should
contain enough detail for a beginner to UNIX to use it. For example, you should
explain the concepts of I/O redirection, the program environment, and back-
ground program execution. The manual MUST be named readme and must be
a simple text document capable of being read by a standard Text Editor.

For an example of the sort of depth and type of description required, you
should have a look at the online manuals for csh and tcsh (man csh, man
tcsh). These shells obviously have much more functionality than yours and
thus, your manuals don’t have to be quite so large.

You should NOT include building instructions, included file lists, or source
code—we can find that out from the other files you submit. This should be an
Operator’s manual not a Developer’s manual.

3.	 The source code MUST be extensively commented and appropriately struc-
tured to allow your peers to understand and easily maintain the code. Properly
commented and laid out code is much easier to interpret, and it is in your inter-
ests to ensure the person marking your project is able to understand your
coding without having to perform mental gymnastics!

4.	 Details of submission procedures will be supplied well before the deadline.

5.	 The submission should contain only source code file(s), include file(s), a make-
file (all lowercase please), and the readme file (all lowercase, please). No
executable program should be included. The person marking your project will
be automatically rebuilding your shell program from the source code provided.
If the submitted code does not compile, it cannot be marked!

Z06_STAL4290_09_GE_PRO1.indd 3 4/18/17 7:26 AM

PP1-4   Programming Project One / Developing A Shell

6.	 The makefile (all lowercase, please) MUST generate the binary file myshell
(all lowercase please). A sample makefile would be

Joe Citizen, s1234567 - Operating Systems Project 1
CompLab1/01 tutor: Fred Bloggs
myshell: myshell.c utility.c myshell.h
   gcc -Wall myshell.c utility.c -o myshell

The program myshell is then generated by just typing make at the command
line prompt.

Note: The fourth line in the above makefile MUST begin with a tab.

7.	 In the instance shown above, the files in the submitted directory would be:

makefile
myshell.c
utility.c
myshell.h
readme

		S ubmission

A makefile is required. All files in your submission will be copied to the same
directory, therefore, do not include any paths in your makefile. The makefile
should include all dependencies that build your program. If a library is included, your
makefile should also build the library.

Do not hand in any binary or object code files. All that is required is your source
code, a makefile, and a readme file. Test your project by copying the source code
only into an empty directory then compile it by entering the command make.

We shall be using a shell script that copies your files to a test directory, deletes
any preexisting myshell, *.a, and/or *.o files, performs a make, copies a set of test
files to the test directory, and then exercises your shell with a standard set of test
scripts through stdin and command line arguments. If this sequence fails due to wrong
names, wrong case for names, wrong version of source code that fails to compile,
nonexistence of files, and so on, then the marking sequence will also stop. In this
instance, the only marks that can be awarded will be for the tests completed at that
point, and the source code and manual.

		R equired Documentation

Your source code will be assessed and marked as well as the readme manual. Com-
menting is definitely required in your source code. The user manual can be presented
in a format of your choice (within the limitations of being displayable by a simple
Text Editor). Again, the manual should contain enough detail for a beginner to UNIX
to use the shell. For example, you should explain the concepts of I/O redirection, the
program environment, and background program execution. The manual MUST be
named readme (all lowercase, please, and NO .txt extension).

Z06_STAL4290_09_GE_PRO1.indd 4 4/18/17 7:26 AM

PP2-1

Programming Project Two

The HOST Dispatcher Shell

Z07_STAL4290_09_GE_PRO2.indd 1 4/18/17 7:27 AM

PP2-2   Programming Project Two / The HOST Dispatcher Shell

The Hypothetical Operating System Testbed (HOST) is a multiprogramming system
with a four-level priority process dispatcher operating within the constraints of finite
available resources.

		 Four-Level Priority Dispatcher

The dispatcher operates at four priority levels:

1.	 Real-Time processes must be run immediately on a first-come-first-served
(FCFS) basis, preempting any other processes running with lower priority.
These processes are run until completion.

2.	 Normal user processes are run on a three-level feedback dispatcher (see Fig-
ure PP2.1). The basic timing quantum of the dispatcher is one second. This is also
the value for the time quantum of the feedback scheduler.

The dispatcher needs to maintain two submission queues—Real-Time and User
priority—fed from the job dispatch list. The dispatch list is examined at every
dispatcher tick and jobs that “have arrived” are transferred to the appropriate
submission queue. The submission queues are then examined; any Real-Time jobs
are run to completion, preempting any other jobs currently running.

The Real-Time priority job queue must be empty before the lower-priority
feedback dispatcher is reactivated. Any User priority jobs in the User job queue that
can run within available resources (memory and I/O devices) are transferred to the
appropriate priority queue. Normal operation of a feedback queue will accept all

Figure PP2.1

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQ2

Processor

Z07_STAL4290_09_GE_PRO2.indd 2 4/18/17 7:27 AM

Resource Constraints   PP2-3

jobs at the highest-priority level and degrade the priority after each completed time
quantum. However, this dispatcher has the ability to accept jobs at a lower priority,
inserting them in the appropriate queue. This enables the dispatcher to emulate a
simple round-robin dispatcher (see Figure PP2.2) if all jobs are accepted at the low-
est priority.

When all “ready” higher-priority jobs have been completed, the feedback dis-
patcher resumes by starting or resuming the process at the head of the highest-pri-
ority nonempty queue. At the next tick the current job is suspended (or terminated
and its resources released) if there are any other jobs “ready” of an equal or higher
priority.

The logic flow should be as shown in Figure PP2.3 (and as discussed subse-
quently in this project assignment).

		R esource Constraints

The HOST has the following resources:

•	 2 Printers

•	 1 Scanner

•	 1 Modem

•	 2 CD drives

•	 1024 Mbytes of memory available for processes

Figure PP2.2

Admit
ReleaseRRQ

Processor

Figure PP2.3

Priority 1

Real-Time Queue

User Job Queue

Arrival time ≤ Dispatcher time

Resources
available

Job Dispatch List

Priority 2

Priority 3

Z07_STAL4290_09_GE_PRO2.indd 3 4/18/17 7:27 AM

PP2-4   Programming Project Two / The HOST Dispatcher Shell

Low-priority processes can use any or all of these resources, but the HOST
dispatcher is notified of which resources the process will use when the process is
submitted. The dispatcher ensures that each requested resource is solely available to
that process throughout its lifetime in the “ready-to-run” dispatch queues: from the
initial transfer from the job queue to the Priority 1–3 queues through to process
completion, including intervening idle time quanta.

Real-Time processes will not need any I/O resources (Printer, Scanner, Modem,
and CD), but will obviously require memory allocation—this memory requirement
will always be 64 Mbytes or less for Real-Time jobs.

		 Memory Allocation

For each process, a contiguous block of memory must be assigned. The memory block
must remain assigned to the process for the lifetime of the process.

Enough contiguous spare memory must be left so the Real-Time processes are
not blocked from execution—64 Mbytes for a running Real-Time job, leaving
960 Mbytes to be shared among “active” User jobs.

The HOST hardware MMU cannot support virtual memory, so no swapping of
memory to disk is possible. Neither is it a paged system.

Within these constraints, any suitable variable partition memory allocation
scheme (First Fit, Next Fit, Best Fit, Worst Fit, Buddy, and so on) may be used.

		 Processes

Processes on HOST are simulated by the dispatcher creating a new process for each
dispatched process. This process is a generic process (supplied as process—source:
sigtrap.c) that can be used for any priority process. It actually runs itself at very
low priority, sleeping for one-second periods and displaying the following:

1.	 A message displaying the process ID when the process starts;

2.	 A regular message every second the process is executed, and;

3.	 A message when the process is Suspended, Continued, or Terminated.

The process will terminate of its own accord after 20 seconds if it is not termi-
nated by your dispatcher. The process prints out using a randomly generated color
scheme for each unique process, so individual “slices” of processes can be easily
distinguishable. Use this process rather than your own.

The life cycle of a process is as follows:

1.	 The process is submitted to the dispatcher input queues via an initial process
list that designates the arrival time, priority, processor time required (in
seconds), memory block size, and other resources requested.

2.	 A process is “ready-to-run” when it has “arrived” and all required resources are
available.

3.	 Any pending Real-Time jobs are submitted for execution on a FCFS basis.

Z07_STAL4290_09_GE_PRO2.indd 4 4/18/17 7:27 AM

Dispatch List   PP2-5

4.	 If enough resources and memory are available for a lower-priority User process,
the process is transferred to the appropriate priority queue within the feedback
dispatcher unit, and the remaining resource indicators (memory list and I/O
devices) are updated.

5.	 When a job is started (fork and exec("process",...)), the dispatcher
will display the job parameters (Process ID, priority, processor time remaining
(in seconds), memory location and block size, and resources requested) before
performing the exec.

6.	 A Real-Time process is allowed to run until its time has expired when the dis-
patcher kills it by sending a SIGINT signal to it.

7.	 A low-priority User job is allowed to run for one dispatcher tick (one second)
before it is suspended (SIGTSTP) or terminated (SIGINT) if its time has
expired. If suspended, its priority level is lowered (if possible) and it is requeued
on the appropriate priority queue as shown in Figures P2.1 and P2.3. To retain
synchronization of output between your dispatcher and the child process, your
dispatcher should wait for the process to respond to a SIGTSTP or SIGINT
signal before continuing (waitpid(p->pid, &status, WUNTRACED)). To
match the performance sequence indicated in the comparison of scheduling
policies (see Figure 9.5), the User job should not be suspended and moved to a
lower-priority level unless another process is waiting to be (re)started.

8.	 Provided no higher-priority Real-Time jobs are pending in the submission
queue, the highest-priority pending process in the feedback queues is started
or restarted (SIGCONT).

9.	 When a process is terminated, the resources it used are returned to the dis-
patcher for reallocation to further processes.

10.	 When there are no more processes in the dispatch list—the input queues and
the feedback queues—the dispatcher exits.

		 Dispatch List

The Dispatch List is the list of processes to be processed by the dispatcher. The list
is contained in a text file that is specified on the command line. That is,

>hostd dispatchlist

Each line of the list describes one process with the following data as a “comma-
space” delimited list:

<arrival time>, <priority>, <processor time>, <mbytes>,
<#printers>, <#scanners>, <#modems>, <#CDs>

Thus,

12, 0, 1, 64, 0, 0, 0, 0
12, 1, 2, 128, 1, 0, 0, 1
13, 3, 6, 128, 1, 0, 1, 2

Z07_STAL4290_09_GE_PRO2.indd 5 4/18/17 7:27 AM

PP2-6   Programming Project Two / The HOST Dispatcher Shell

would indicate the following:

1st Job: Arrival at time 12, priority 0 (Real-Time), requiring 1 second of
processor time and 64 Mbytes of memory—no I/O resources required.

2nd Job: Arrival at time 12, priority 1 (high-priority User job), requiring
2 seconds of processor time, 128 Mbytes of memory, 1 printer, and
1 CD drive.

3rd Job: Arrival at time 13, priority 3 (lowest-priority User job), requiring
6 seconds of processor time, 128 Mbytes of memory, 1 printer,
1 modem, and 2 CD drives.

The submission text file can be of any length, containing up to 1000 jobs. It will
be terminated with an end-of-line followed by an end-of-file marker.

Dispatcher input lists to test the operation of the individual features of the
dispatcher are described subsequently in this project assignment. It should be noted
that these lists will almost certainly form the basis of tests that will be applied to
your dispatcher during marking. Operation as described in the exercises will be
expected.

Obviously, your submitted dispatcher will be tested with more complex combi-
nations as well!

A fully functional working example of the dispatcher will be presented during
the course. If in any doubt as to the manner of operation or format of output, you
should refer to this program to observe how your dispatcher is expected to operate.

		 Project Requirements

1.	 Design a dispatcher that satisfies the above criteria. In a formal design
document,

a.	 Describe and discuss what memory allocation algorithms you could have
used and justify your final design choice.

b.	 Describe and discuss the structures used by the dispatcher for queueing,
dispatching, and allocating memory and other resources.

c.	 Describe and justify the overall structure of your program, describing the
various modules and major functions (descriptions of the function “inter-
faces” are expected).

d.	 Discuss why such a multilevel dispatching scheme would be used, comparing
it with schemes used by “real” operating systems. Outline shortcomings in
such a scheme, suggesting possible improvements. Include the memory and
resource allocation schemes in your discussions.

The formal design document is expected to have in-depth discussions, descrip-
tions, and arguments. The design document is to be submitted separately as a
physical paper document. The design document should NOT include any
source code.

Z07_STAL4290_09_GE_PRO2.indd 6 4/18/17 7:27 AM

Submission of Code   PP2-7

2.	 Implement the dispatcher using the C language.

3.	 The source code MUST be extensively commented and appropriately struc-
tured to allow your peers to understand and easily maintain the code. Properly
commented and laid out code is much easier to interpret, and it is in your inter-
ests to ensure the person marking your project is able to understand your cod-
ing without having to perform mental gymnastics.

4.	 Details of submission procedures will be supplied well before the deadline.

5.	 The submission should contain only source code file(s), include file(s), and a
makefile. No executable program should be included. The marker will be
automatically rebuilding your program from the source code provided. If the
submitted code does not compile, it cannot be marked.

6.	 The makefile should generate the binary executable file hostd (all lowercase
please). A sample makefile would be as follows:

Joe Citizen, s1234567 - Operating Systems Project 2
CompLab1/01 tutor: Fred Bloggs
hostd: hostd.c utility.c hostd.h
gcc hostd.c utility.c -o hostd

The program hostd is then generated by typing make at the command line
prompt. Note: The fourth line in the above makefile MUST begin with a tab.

		 Deliverables

1.	 Source code file(s), include file(s), and a makefile.

2.	 The design document as outlined in Project Requirements section 1 above.

		S ubmission of Code

A makefile is required. All files will be copied to the same directory; therefore, do
not include any paths in your makefile. The makefile should include all dependen-
cies that build your program. If a library is included, your makefile should also
build the library.

Do not submit any binary or object code files. All that is required is your source
code and a makefile. Test your project by copying the source code only into an
empty directory then compile it with your makefile.

The marker will be using a shell script that copies your files to a test directory,
performs a make, then exercises your dispatcher with a standard set of test files. If
this sequence fails due to wrong names, wrong case for names, wrong version of
source code that fails to compile, nonexistence of files, etc., then the marking sequence
will also stop. In this instance, the only further marks that can be awarded will be for
the source code and design document.

Z07_STAL4290_09_GE_PRO2.indd 7 4/18/17 7:27 AM

C-1

Appendix C
Topics in Concurrency

C.1	 Processor Registers
User-Visible Registers
Control and Status Registers

C.2	 Instruction Execution For I/O Functions

C.3	 I/O Communication Techniques
Programmed I/O
Interrupt-Driven I/O
Direct Memory Access

C.4	 Hardware Performance Issues For Multicore
Increase in Parallelism
Power Consumption

C.5	 Reference

Z08_STAL4290_09_GE_APPC.indd 1 4/18/17 7:28 AM

C-2   APPENDIX C / Topics in Concurrency

This appendix provides additional details to supplement Chapter 1.

 	 C.1	 PROCESSOR REGISTERS

A processor includes a set of registers that provide memory that is faster and smaller
than main memory. Processor registers serve two functions:

•	 User-visible registers: Enable the machine or assembly language programmer
to minimize main memory references by optimizing register use. For high-level
languages, an optimizing compiler will attempt to make intelligent choices of
which variables to assign to registers and which to main memory locations.
Some high-level languages such as C allow the programmer to suggest to the
compiler which variables should be held in registers.

•	 Control and status registers: Used by the processor to control the operation of
the processor, and by privileged OS routines to control the execution of
programs.

There is not a clean separation of registers into these two categories. For exam-
ple, on some processors, the program counter is user visible, but on many it is not. For
purposes of the following discussion, however, it is convenient to use these
categories.

User-Visible Registers

A user-visible register may be referenced by means of the machine language that the
processor executes and is generally available to all programs, including application
programs as well as system programs. Types of registers that are typically available
are data, address, and condition code registers.

Data registers can be assigned to a variety of functions by the programmer. In
some cases, they are general purpose in nature and can be used with any machine
instruction that performs operations on data. Often, however, there are restrictions.
For example, there may be dedicated registers for floating-point operations, and oth-
ers for integer operations.

Address registers contain main memory addresses of data and instructions, or
they contain a portion of the address that is used in the calculation of the complete
or effective address. These registers may themselves be general purpose, or may be
devoted to a particular way, or mode, of addressing memory. Examples include the
following:

•	 Index register: Indexed addressing is a common mode of addressing that
involves adding an index to a base value to get the effective address.

•	 Segment pointer: With segmented addressing, memory is divided into seg-
ments, which are variable-length blocks of words.1 A memory reference con-
sists of a reference to a particular segment and an offset within the segment;

1 There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits that
is the normal unit in which information may be stored, transmitted, or operated on within a given computer.
Typically, if a processor has a fixed-length instruction set, then the instruction length equals the word length.

Z08_STAL4290_09_GE_APPC.indd 2 4/18/17 7:28 AM

C.1 / PROCESSOR REGISTERS   C-3

this mode of addressing is important in our discussion of memory management
in Chapter 7. In this mode of addressing, a register is used to hold the base
address (starting location) of the segment. There may be multiple registers; for
example, one for the OS (i.e., when OS code is executing on the processor) and
one for the currently executing application.

•	 Stack pointer: If there is user-visible stack2 addressing, then there is a dedicated
register that points to the top of the stack. This allows the use of instructions
that contain no address field, such as push and pop.

For some processors, a procedure call will result in automatic saving of all user-
visible registers, to be restored on return. Saving and restoring is performed by the
processor as part of the execution of the call and return instructions. This allows each
procedure to use these registers independently. On other processors, the programmer
must save the contents of the relevant user-visible registers prior to a procedure call,
by including instructions for this purpose in the program. Thus, the saving and restor-
ing functions may be performed in either hardware or software, depending on the
processor.

Control and Status Registers

A variety of processor registers are employed to control the operation of the proces-
sor. On most processors, most of these are not visible to the user. Some of them may
be accessible by machine instructions executed in what is referred to as a control or
kernel mode.

Of course, different processors will have different register organizations and use
different terminology. We provide here a reasonably complete list of register types,
with a brief description. In addition to the MAR, MBR, I/OAR, and I/OBR regis-
ters mentioned in Chapter 1 (see Figure 1.1), the following are essential to instruction
execution:

•	 Program counter (PC): Contains the address of the next instruction to be
fetched

•	 Instruction register (IR): Contains the instruction most recently fetched

All processor designs also include a register or set of registers, often known as
the program status word (PSW) that contains status information. The PSW typically
contains condition codes plus other status information, such as an interrupt enable/
disable bit and a kernel/user mode bit.

Condition codes (also referred to as flags) are bits typically set by the processor
hardware as the result of operations. For example, an arithmetic operation may pro-
duce a positive, negative, zero, or overflow result. In addition to the result itself being
stored in a register or memory, a condition code is also set following the execution of
the arithmetic instruction. The condition code may subsequently be tested as part of
a conditional branch operation. Condition code bits are collected into one or more
registers. Usually, they form part of a control register. Generally, machine instructions

2A stack is located in main memory and is a sequential set of locations that are referenced similarly to a
physical stack of papers, by putting on and taking away from the top. See Appendix P for a discussion of
stack processing.

Z08_STAL4290_09_GE_APPC.indd 3 4/18/17 7:28 AM

C-4   APPENDIX C / Topics in Concurrency

allow these bits to be read by implicit reference, but they cannot be altered by explicit
reference because they are intended for feedback regarding the results of instruction
execution.

In processors with multiple types of interrupts, a set of interrupt registers may
be provided, with one pointer to each interrupt-handling routine. If a stack is used to
implement certain functions (e.g., procedure call), then a stack pointer is needed (see
Appendix 1B). Memory management hardware, discussed in Chapter 7, requires dedi-
cated registers. Finally, registers may be used in the control of I/O operations.

A number of factors go into the design of the control and status register orga-
nization. One key issue is OS support. Certain types of control information are of
specific utility to the OS. If the processor designer has a functional understanding of
the OS to be used, then the register organization can be designed to provide hardware
support for particular features such as memory protection and switching between
user programs.

Another key design decision is the allocation of control information between
registers and memory. It is common to dedicate the first (lowest) few hundred or
thousand words of memory for control purposes. The designer must decide how much
control information should be in more expensive, faster registers and how much in
less expensive, slower main memory.

	 C.2	 INSTRUCTION EXECUTION FOR I/O FUNCTIONS

This section supplements the information in Section 1.3.
Data can be exchanged directly between an I/O module (e.g., a disk controller)

and the processor. Just as the processor can initiate a read or write with memory,
specifying the address of a memory location, the processor can also read data from
or write data to an I/O module. In this latter case, the processor identifies a specific
device that is controlled by a particular I/O module. Thus, an instruction sequence
similar in form to that of Figure 1.4 could occur, with I/O instructions rather than
memory-referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with main
memory to relieve the processor of the I/O task. In such a case, the processor grants
to an I/O module the authority to read from or write to memory, so the I/O-memory
transfer can occur without tying up the processor. During such a transfer, the I/O
module issues read or write commands to memory, relieving the processor of respon-
sibility for the exchange. This operation, known as direct memory access (DMA), is
examined in Section 1.7.

	 C.3	 I/O COMMUNICATION TECHNIQUES

Three techniques are possible for I/O operations:

•	 Programmed I/O

•	 Interrupt-driven I/O

•	 Direct memory access (DMA)

Z08_STAL4290_09_GE_APPC.indd 4 4/18/17 7:28 AM

C.3 / I/O COMMUNICATION TECHNIQUES   C-5

Programmed I/O

When the processor is executing a program and encounters an instruction relating to
I/O, it executes that instruction by issuing a command to the appropriate I/O module.
In the case of programmed I/O, the I/O module performs the requested action then
sets the appropriate bits in the I/O status register, but takes no further action to alert
the processor. In particular, it does not interrupt the processor. Thus, after the I/O
instruction is invoked, the processor must take some active role in determining when
the I/O instruction is completed. For this purpose, the processor periodically checks
the status of the I/O module until it finds that the operation is complete.

With this technique, the processor is responsible for extracting data from main
memory for output, and storing data in main memory for input. I/O software is writ-
ten in such a way that the processor executes instructions that give it direct control
of the I/O operation, including sensing device status, sending a read or write com-
mand, and transferring the data. Thus, the instruction set includes I/O instructions in
the following categories:

•	 Control: Used to activate an external device and tell it what to do. For example,
a magnetic-tape unit may be instructed to rewind or to move forward one
record.

•	 Status: Used to test various status conditions associated with an I/O module
and its peripherals.

•	 Transfer: Used to read and/or write data between processor registers and exter-
nal devices.

Figure C.1a gives an example of the use of programmed I/O to read in a block
of data from an external device (e.g., a record from tape) into memory. Data are read
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must
remain in a status-checking loop until it determines that the word is available in the
I/O module’s data register. This flowchart highlights the main disadvantage of this
technique: It is a time-consuming process that keeps the processor busy needlessly.

Interrupt-Driven I/O

With programmed I/O, the processor has to wait a long time for the I/O module of
concern to be ready for either reception or transmission of more data. The processor,
while waiting, must repeatedly interrogate the status of the I/O module. As a result,
the performance level of the entire system is severely degraded.

An alternative is for the processor to issue an I/O command to a module then
go on to do some other useful work. The I/O module will then interrupt the proces-
sor to request service when it is ready to exchange data with the processor. The
processor then executes the data transfer, as before, and resumes its former
processing.

Let us consider how this works, first from the point of view of the I/O module.
For input, the I/O module receives a READ command from the processor. The I/O
module then proceeds to read data in from an associated peripheral. Once the data
are in the module’s data register, the module signals an interrupt to the processor
over a control line. The module then waits until its data are requested by the

Z08_STAL4290_09_GE_APPC.indd 5 4/18/17 7:28 AM

C-6   APPENDIX C / Topics in Concurrency

processor. When the request is made, the module places its data on the data bus and
is then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The proces-
sor issues a READ command. It then saves the context (e.g., program counter and
processor registers) of the current program, and goes off and does something else
(e.g., the processor may be working on several different programs at the same time).
At the end of each instruction cycle, the processor checks for interrupts (see Fig-
ure 1.7). When the interrupt from the I/O module occurs, the processor saves the
context of the program it is currently executing and begins to execute an interrupt-
handling program that processes the interrupt. In this case, the processor reads the
word of data from the I/O module and stores it in memory. It then restores the context
of the program that had issued the I/O command (or some other program) and
resumes execution.

Figure C.1b shows the use of interrupt-driven I/O for reading in a block of data.
Interrupt-driven I/O is more efficient than programmed I/O because it eliminates
needless waiting. However, interrupt-driven I/O still consumes a lot of processor time,
because every word of data that goes from memory to I/O module, or from I/O mod-
ule to memory, must pass through the processor.

Figure C.1  Three Techniques for Input of a Block of Data

Issue Read
command to
I/O module

Read status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(a) Programmed I/O

CPU I/O

CPU memory

I/O CPU

I/O CPU

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue Read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(b) Interrupt-driven I/O

CPU memory

Do
something
else

Interrupt

CPU DMA

DMA CPU

I/O CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access

CPU I/O

I/O CPU

Z08_STAL4290_09_GE_APPC.indd 6 4/18/17 7:28 AM

C.3 / I/O COMMUNICATION TECHNIQUES   C-7

Almost invariably, there will be multiple I/O modules in a computer system, so
mechanisms are needed to enable the processor to determine which device caused
the interrupt and to decide, in the case of multiple interrupts, which one to handle
first. In some systems, there are multiple interrupt lines, so that each I/O module
signals on a different line. Each line will have a different priority. Alternatively, there
can be a single interrupt line, but additional lines are used to hold a device address.
Again, different devices are assigned different priorities.

Direct Memory Access (DMA)

Interrupt-driven I/O, though more efficient than simple programmed I/O, still requires
the active intervention of the processor to transfer data between memory and an I/O
module, and any data transfer must traverse a path through the processor. Thus, both
of these forms of I/O suffer from two inherent drawbacks:

1.	 The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

2.	 The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by a
separate module on the system bus or it can be incorporated into an I/O module. In
either case, the technique works as follows. When the processor wishes to read or
write a block of data, it issues a command to the DMA module, by sending the fol-
lowing information to the DMA module:

•	 Whether a read or write is requested

•	 The address of the I/O device involved

•	 The starting location in memory to read data from or write data to

•	 The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA mod-
ule sends an interrupt signal to the processor. Thus the processor is involved only at
the beginning and end of the transfer (see Figure C.1c).

The DMA module needs to take control of the bus to transfer data to and from
memory. Because of this competition for bus usage, there may be times when the
processor needs the bus and must wait for the DMA module. Note this is not an
interrupt; the processor does not save a context and do something else. Rather, the
processor pauses for one bus cycle (the time it takes to transfer one word across the
bus). The overall effect is to cause the processor to execute more slowly during a
DMA transfer when processor access to the bus is required. Nevertheless, for a mul-
tiple-word I/O transfer, DMA is far more efficient than interrupt-driven or pro-
grammed I/O.

Z08_STAL4290_09_GE_APPC.indd 7 4/18/17 7:28 AM

C-8   APPENDIX C / Topics in Concurrency

	 C.4	 HARDWARE PERFORMANCE ISSUES FOR MULTICORE

Microprocessor systems have experienced a steady, exponential increase in execution
performance for decades. This increase is due partly to refinements in the organiza-
tion of the processor on the chip, and partly to the increase in the clock frequency.

Increase in Parallelism

The organizational changes in processor design have primarily been focused on
increasing instruction-level parallelism, so more work could be done in each clock
cycle. These changes include, in chronological order (see Figure C.2):

Figure C.2  Alternative Chip Organizations

Instruction fetch unit

Issue logic

Program counter
Execution units and queues

L1 instruction cache

L2 cache

(a) Superscalar

L1 data cache

Single-thread register file

Instruction fetch unit

Issue logic

Execution units and queues

L1 instruction cache

L2 cache

(b) Simultaneous multithreading

L1 data cache

PC
 1

PC
 n

R
eg

is
te

r
1

R
eg

is
te

rs
 n

L
1-

I
L

1-
D

L2 cache

C
or

e
1

(s
up

er
sc

al
ar

 o
r

SM
T

)

(c) Multicore

L
1-

I
L

1-
D

C
or

e
2

(s
up

er
sc

al
ar

 o
r

SM
T

)

L
1-

I
L

1-
D

C
or

e
3

(s
up

er
sc

al
ar

 o
r

SM
T

)

L
1-

I
L

1-
D

C
or

e
n

(s
up

er
sc

al
ar

 o
r

SM
T

)

Z08_STAL4290_09_GE_APPC.indd 8 4/18/17 7:28 AM

C.4 / HARDWARE PERFORMANCE ISSUES FOR MULTICORE   C-9

•	 Pipelining: Individual instructions are executed through a pipeline of stages so
while one instruction is executing in one stage of the pipeline, another instruc-
tion is executing in another stage of the pipeline.

•	 Superscalar: Multiple pipelines are constructed by replicating execution
resources. This enables parallel execution of instructions in parallel pipelines,
so long as hazards are avoided.

•	 Simultaneous multithreading (SMT): Register banks are replicated so multiple
threads can share the use of pipeline resources.

For each of these innovations, designers have over the years attempted to
increase the performance of the system by adding complexity. In the case of pipelin-
ing, simple three-stage pipelines were replaced by pipelines with five stages, then
many more stages, with some implementations having over a dozen stages. There is
a practical limit to how far this trend can be taken, because with more stages, there
is the need for more logic, more interconnections, and more control signals. With
superscalar organization, performance increases can be achieved by increasing the
number of parallel pipelines. Again, there are diminishing returns as the number of
pipelines increases. More logic is required to manage hazards and to stage instruction
resources. Eventually, a single thread of execution reaches the point where hazards
and resource dependencies prevent the full use of the multiple pipelines available.
This same point of diminishing returns is reached with SMT, as the complexity of
managing multiple threads over a set of pipelines limits the number of threads and
number of pipelines that can be effectively utilized.

There is a related set of problems dealing with the design and fabrication of the
computer chip. The increase in complexity to deal with all of the logical issues related
to very long pipelines, multiple superscalar pipelines, and multiple SMT register
banks means that increasing amounts of the chip area is occupied with coordinating
and signal transfer logic. This increases the difficulty of designing, fabricating, and
debugging the chips. The increasingly difficult engineering challenge related to pro-
cessor logic is one of the reasons that an increasing fraction of the processor chip is
devoted to the simpler memory logic. Power issues, discussed next, provide another
reason.

Power Consumption

To maintain the trend of higher performance as the number of transistors per chip
rise, designers have resorted to more elaborate processor designs (pipelining, super-
scalar, and SMT) and to high clock frequencies. Unfortunately, power requirements
have grown exponentially as chip density and clock frequency have risen.

One way to control power density is to use more of the chip area for cache
memory. Memory transistors are smaller and have a power density an order of mag-
nitude lower than that of logic (see Figure C.3). The percentage of the chip area
devoted to memory has grown to exceed 50% as the chip transistor density has
increased.

How to use all those logic transistors is a key design issue. As discussed earlier
in this section, there are limits to the effective use of such techniques as superscalar
and SMT. In general terms, the experience of recent decades has been encapsulated

Z08_STAL4290_09_GE_APPC.indd 9 4/18/17 7:28 AM

C-10   APPENDIX C / Topics in Concurrency

in a rule of thumb known as Pollack’s rule [POLL99], which states that performance
increase is roughly proportional to square root of increase in complexity. In other
words, if you double the logic in a processor core, then it delivers only 40% more
performance. In principle, the use of multiple cores has the potential to provide near-
linear performance improvement with the increase in the number of cores.

Power considerations provide another motive for moving toward a multicore
organization. Because the chip has such a huge amount of cache memory, it becomes
unlikely that any one thread of execution can effectively use all that memory. Even
with SMT, you are multithreading in a relatively limited fashion and cannot therefore
fully exploit a gigantic cache, whereas a number of relatively independent threads or
processes has a greater opportunity to take full advantage of the cache memory.

	 C.5	 REFERENCE

POLL99  Pollack, F. “New Microarchitecture Challenges in the Coming Generations of
CMOS Process Technologies (keynote address).” Proceedings of the 32nd annual ACM/
IEEE International Symposium on Microarchitecture, 1999.

Figure C.3  Power and Memory Considerations

Feature size (µm)

logic

memory

Power density
(watts/cm2)

0.25
1

10

100

0.18 0.13 0.10

Z08_STAL4290_09_GE_APPC.indd 10 4/18/17 7:28 AM

D-1

Appendix D
Object-Oriented Design

D.1	 Motivation

D.2	 Object-Oriented Concepts
Object Structure
Object Classes
Containment

D.3	 Benefits of Object-Oriented Design

D.4	 Corba

D.5	 Recommended Reading and Website

Z09_STAL4290_09_GE_APPD.indd 1 4/18/17 7:28 AM

D-2   APPENDIX d / Object-Oriented Design

Windows and several other contemporary operating systems rely heavily on object-
oriented design principles. This appendix provides a brief overview of the main
concepts of object-oriented design.

	 D.1	 MOTIVATION

Object-oriented concepts have become quite popular in the area of computer pro-
gramming, with the promise of interchangeable, reusable, easily updated, and easily
interconnected software parts. More recently, database designers have begun to
appreciate the advantages of an object orientation, with the result that object-
oriented database management systems (OODBMS) are beginning to appear. Oper-
ating systems designers have also recognized the benefits of the object-oriented
approach.

Object-oriented programming and object-oriented database management sys-
tems are in fact different things, but they share one key concept: that software or data
can be “containerized.” Everything goes into a box, and there can be boxes within
boxes. In the simplest conventional program, one program step equates to one
instruction; in an object-oriented language, each step might be a whole boxful of
instructions. Similarly, with an object-oriented database, one variable, instead of
equating to a single data element, may equate to a whole boxful of data.

Table D.1 introduces some of the key terms used in object-oriented design.

Term Definition

Attribute Data variables contained within an object.

Containment A relationship between two object instances in which the containing object includes a
pointer to the contained object.

Encapsulation The isolation of the attributes and services of an object instance from the external environ-
ment. Services may only be invoked by name and attributes may only be accessed by means
of the services.

Inheritance A relationship between two object classes in which the attributes and services of a parent
class are acquired by a child class.

Interface A description closely related to an object class. An interface contains method definitions (with-
out implementations) and constant values. An interface cannot be instantiated as an object.

Message The means by which objects interact.

Method A procedure that is part of an object and that can be activated from outside the object to
perform certain functions.

Object An abstraction of a real-world entity.

Object class A named set of objects that share the same names, sets of attributes, and services.

Object instance A specific member of an object class, with values assigned to the attributes.

Polymorphism Refers to the existence of multiple objects that use the same names for services and present
the same interface to the external world but that represent different types of entities.

Service A function that performs an operation on an object.

Table D.1  Key Object-Oriented Terms

Z09_STAL4290_09_GE_APPD.indd 2 4/18/17 7:28 AM

D.2 / OBJECT-ORIENTED CONCEPTS   D-3

	 D.2	 OBJECT-ORIENTED CONCEPTS

The central concept of object-oriented design is the object. An object is a distinct
software unit that contains a collection of related variables (data) and methods (pro-
cedures). Generally, these variables and methods are not directly visible outside the
object. Rather, well-defined interfaces exist that allow other software to have access
to the data and the procedures.

An object represents some thing, be it a physical entity, a concept, a software
module, or some dynamic entity such as a TCP connection. The values of the variables
in the object express the information that is known about the thing that the object
represents. The methods include procedures whose execution affect the values in the
object and possibly also affect that thing being represented.

Figures D.1 and D.2 illustrate key object-oriented concepts.

Object Structure

The data and procedures contained in an object are generally referred to as variables
and methods, respectively. Everything that an object “knows” can be expressed in its
variables, and everything it can do is expressed in its methods.

The variables in an object, also called attributes, are typically simple scalars or
tables. Each variable has a type, possibly a set of allowable values, and may either be
constant or variable (by convention, the term variable is used even for constants).

Figure D.1  Objects

“I am a
grocery cart.”

Objects ClassesAn object knows things (called
attributes) and does things
(called services).

Classes can be
“specialized”

A group of like
objects makes
up a “class.”

“I am a sales
transaction.” “I am a customer.”

“I am an item.”

Class: Item

Class: Perishable Item

• I am an object of the class “item.”
• I know my manufacture date and
 my arrival date
• I can check my availability

• I am a perishable item.
• I know my manufacture date,
 arrival date, and expiration date
• I can check my availability

Z09_STAL4290_09_GE_APPD.indd 3 4/18/17 7:28 AM

D-4   APPENDIX d / Object-Oriented Design

Access restrictions may also be imposed on variables for certain users, classes of users,
or situations.

The methods in an object are procedures that can be triggered from outside to
perform certain functions. The method may change the state of the object, update
some of its variables, or act on outside resources to which the object has access.

Objects interact by means of messages. A message includes the name of
the sending object, the name of the receiving object, the name of a method in the
receiving object, and any parameters needed to qualify the execution of the
method. A message can only be used to invoke a method within an object. The only

Figure D.2  Object Concepts

The principle that an object
should hide things from other
objects, limiting visibility about
what “I know and do.”

Class: Item
“I am an item”

Class: Perishable Item
“I am a perishable item”

Generalization Specialization
Data

Encapsulation
The principle that a class can
extend from another previously
defined class. The guiding principle
is to organize the classes according
to generalization/specialization.

Inheritance

Private functions
(“calculate sales urgency”)

Public functions
(“check availability”)

“I do it my way.” “I do it my way.”

The principle that objects in
di�erent classes may understand
the same message yet respond in
di�erent ways.

Polymorphism

Check Availability

Z09_STAL4290_09_GE_APPD.indd 4 4/18/17 7:28 AM

D.2 / OBJECT-ORIENTED CONCEPTS   D-5

way to access the data inside an object is by means of the object’s methods. Thus,
a method may cause an action to be taken, or for the object’s variables to be
accessed, or both. For local objects, passing a message to an object is the same as
calling an object’s method. When objects are distributed, passing a message is
exactly what it sounds like.

The interface of an object is a set of public methods that the object supports.
An interface says nothing about implementation; objects in different classes may have
different implementations of the same interfaces.

The property of an object that its only interface with the outside world is by
means of messages is referred to as encapsulation. The methods and variables of an
object are encapsulated and available only via message-based communication.
Encapsulation offers two advantages:

1.	 It protects an object’s variables from corruption by other objects. This protec-
tion may include protection from unauthorized access and protection from the
types of problems that arise from concurrent access, such as deadlock and
inconsistent values.

2.	 It hides the internal structure of the object so that interaction with the object
is relatively simple and standardized. Furthermore, if the internal structure or
procedures of an object are modified without changing its external functionality,
other objects are unaffected.

Object Classes

In practice, there will typically be a number of objects representing the same types
of things. For example, if a process is represented by an object, then there will be one
object for each process present in a system. Clearly, every such object needs its own
set of variables. However, if the methods in the object are reentrant procedures, then
all similar objects could share the same methods. Furthermore, it would be inefficient
to redefine both methods and variables for every new but similar object.

The solution to these difficulties is to make a distinction between an object class
and an object instance. An object class is a template that defines the methods and
variables to be included in a particular type of object. An object instance is an actual
object that includes the characteristics of the class that defines it. The object contains
values for the variables defined in the object class. Instantiation is the process of
creating a new object instance for an object class.

Inheritance  The concept of an object class is powerful because it allows for the
creation of many object instances with a minimum of effort. This concept is made
even more powerful by the use of the mechanism of inheritance [TAIV96].

Inheritance enables a new object class to be defined in terms of an existing class.
The new (lower level) class, called the subclass, or the child class, automatically
includes the methods and variable definitions in the original (higher-level) class,
called the superclass, or parent class. A subclass may differ from its superclass in a
number of ways:

1.	 The subclass may include additional methods and variables not found in its
superclass.

Z09_STAL4290_09_GE_APPD.indd 5 4/18/17 7:28 AM

D-6   APPENDIX d / Object-Oriented Design

2.	 The subclass may override the definition of any method or variable in its super-
class by using the same name with a new definition. This provides a simple and
efficient way of handling special cases.

3.	 The subclass may restrict a method or variable inherited from its superclass in
some way.

Figure D.3, based on one in [KORS90], illustrates the concept.
The inheritance mechanism is recursive, allowing a subclass to become the

superclass of its own subclasses. In this way, an inheritance hierarchy may be con-
structed. Conceptually, we can think of the inheritance hierarchy as defining a search
technique for methods and variables. When an object receives a message to carry out
a method that is not defined in its class, it automatically searches up the hierarchy
until it finds the method. Similarly, if the execution of a method results in the refer-
ence to a variable not defined in that class, the object searches up the hierarchy for
the variable name.

Polymorphism  Polymorphism is an intriguing and powerful characteristic that
makes it possible to hide different implementations behind a common interface. Two
objects that are polymorphic to each other utilize the same names for methods and
present the same interface to other objects. For example, there may be a number of
print objects for different output devices, such as printDotmatrix, printLaser,
printScreen, and so forth, or for different types of documents, such as
printText, printDrawing, and printCompound. If each such object
includes a method called print, then any document could be printed by sending

Figure D.3  Inheritance

X
(superclass)

Y
(subclass)

(inherits from)

Derived part
(inherited from X)

Incremental part
(new code

specific to Y)

Z09_STAL4290_09_GE_APPD.indd 6 4/18/17 7:28 AM

D.2 / OBJECT-ORIENTED CONCEPTS   D-7

the message print to the appropriate object, without concern for how that method
is actually carried out. Typically, polymorphism is used to allow you have the same
method in multiple subclasses of the same superclass, each with a different detailed
implementation.

It is instructive to compare polymorphism to the usual modular programming
techniques. An objective of top-down modular design is to design lower-level mod-
ules of general utility with a fixed interface to higher-level modules. This allows the
one lower-level module to be invoked by many different higher-level modules. If the
internals of the lower-level module are changed without changing its interface, then
none of the upper-level modules that use it are affected. By contrast, with polymor-
phism, we are concerned with the ability of one higher-level object to invoke many
different lower-level objects using the same message format to accomplish similar
functions. With polymorphism, new lower-level objects can be added with minimal
changes to existing objects.

Interfaces  Inheritance enables a subclass object to use functionality of a
superclass. There may be cases when you wish to define a subclass that has
functionality of more than one superclass. This could be accomplished by allowing a
subclass to inherit from more than one superclass. C+ + is one language that allows
such multiple inheritance. However, for simplicity, most modern object-oriented
languages including Java, C\#, and Visual Basic .NET limit a class to inheriting from
only one superclass. Instead, a feature known as interfaces is used to enable a class to
borrow some functionality from one class and other functionality from a completely
different class.

Unfortunately, the term interface is used in much of the literature on objects
with both a general-purpose and a specific functional meaning. An interface, as we
are discussing it here, specifies an application-programming interface (API) for cer-
tain functionality. It does not define any implementation for that API. The syntax for
an interface definition typically looks similar to a class definition, except that there
is no code defined for the methods, just the method names, the arguments passed,
and the type of the value returned. An interface may be implemented by a class. This
works in much the same way that inheritance works. If a class implements an inter-
face, it must have the properties and methods of the interface defined in the class.
The methods that are implemented can be coded in any fashion, so long as the name,
arguments, and return type of each method from the interface are identical to the
definition in the interface.

Containment

Object instances that contain other objects are called composite objects. Contain-
ment may be achieved by including the pointer to one object as a value in another
object. The advantage of composite objects is that they permit the representation of
complex structures. For example, an object contained in a composite object may itself
be a composite object.

Typically, the structures built up from composite objects are limited to a tree
topology; that is, no circular references are allowed and each “child” object instance
may have only one “parent” object instance.

Z09_STAL4290_09_GE_APPD.indd 7 4/18/17 7:28 AM

D-8   APPENDIX d / Object-Oriented Design

It is important to be clear about the distinction between an inheritance hierar-
chy of object classes, and a containment hierarchy of object instances. The two are
not related. The use of inheritance simply allows many different object types to be
defined with a minimum of efforts. The use of containment allows the construction
of complex data structures.

	 D.3	 BENEFITS OF OBJECT-ORIENTED DESIGN

[CAST92] lists the following benefits of object-oriented design:

•	 Better organization of inherent complexity: Through the use of inheritance,
related concepts, resources, and other objects can be efficiently defined. Through
the use of containment, arbitrary data structures, which reflect the underlying
task at hand, can be constructed. Object-oriented programming languages and
data structures enable designers to describe operating system resources and
functions in a way that reflects the designer’s understanding of those resources
and functions.

•	 Reduced development effort through reuse: Reusing object classes that have
been written, tested, and maintained by others reduces development, testing,
and maintenance time.

•	 More extensible and maintainable systems: Maintenance, including product
enhancements and repairs, traditionally consumes about 65% of the cost of any
product life cycle. Object-oriented design drives that percentage down. The use
of object-based software helps limit the number of potential interactions of
different parts of the software, ensuring changes to the implementation of a
class can be made with little impact on the rest of the system.

These benefits are driving operating system design in the direction of object-
oriented systems. Objects enable programmers to customize an operating system to
meet new requirements without disrupting system integrity. Objects also pave the
road to distributed computing. Because objects communicate by means of messages,
it matters not whether two communicating objects are on the same system or on two
different systems in a network. Data, functions, and threads can be dynamically
assigned to workstations and servers as needed. Accordingly, the object-oriented
approach to the design of operating systems is becoming increasingly evident in PC
and workstation operating systems.

	 D.4	 CORBA

As we have seen in this book, object-oriented concepts have been used to design and
implement operating system kernels, bringing benefits of flexibility, manageability,
and portability. The benefits of using object-oriented techniques extend with equal
or greater benefit to the realm of distributed software, including distributed operating
systems. The application of object-oriented techniques to the design and implementa-
tion of distributed software is referred to as distributed object computing (DOC).

Z09_STAL4290_09_GE_APPD.indd 8 4/18/17 7:28 AM

D.4 / CORBA   D-9

The motivation for DOC is the increasing difficulty in writing distributed soft-
ware: while computing and network hardware get smaller, faster, and cheaper, dis-
tributed software gets larger, slower, and more expensive to develop and maintain.
[SCHM97] points out that the challenge of distributed software stems from two types
of complexity:

•	 Inherent: Inherent complexities arise from fundamental problems of distribu-
tion. Chief among these are detecting and recovering from network and host
failures, minimizing the impact of communication latency, and determining an
optimal partitioning of service components and workload onto computers
throughout a network. In addition, concurrent programming, with issues of
resource locking and deadlocks, is still difficult, and distributed systems are
inherently concurrent.

•	 Accidental: Accidental complexities arise from limitations with tools and tech-
niques used to build distributed software. A common source of accidental com-
plexity is the widespread use of functional design, which results in nonextensible
and nonreusable systems.

DOC is a promising approach to managing both types of complexity. The cen-
terpiece of the DOC approach are object request brokers (ORBs), which act as inter-
mediaries for communication between local and remote objects. ORBs eliminate
some of the tedious, error-prone, and nonportable aspects of designing and imple-
menting distributed applications. Supplementing the ORB must be a number of con-
ventions and formats for message exchange and interface definition between
applications and the object-oriented infrastructure.

There are three main competing technologies in the DOC market: the object
management group (OMG) architecture, called Common Object Request Broker
Architecture (CORBA); the Java remote method invocation (RMI) system; and
Microsoft’s distributed component object model (DCOM). CORBA is the most
advanced and well-established of the three. A number of industry leaders, including
IBM, Sun, Netscape, and Oracle, support CORBA, and Microsoft has announced that
it will link its Windows-only DCOM with CORBA. The remainder of this appendix
provides a brief overview of CORBA.

Table D.2 defines some key terms used in CORBA. The main features of
CORBA are as follows (see Figure D.4):

•	 Clients: Clients generate requests and access object services through a variety
of mechanisms provided by the underlying ORB.

•	 Object implementations: These implementations provide the services requested
by various clients in the distributed system. One benefit of the CORBA archi-
tecture is that both clients and object implementations can be written in any
number of programming languages and can still provide the full range of
required services.

•	 ORB core: The ORB core is responsible for communication between objects.
The ORB finds an object on the network, delivers requests to the object, acti-
vates the object (if not already active), and returns any message back to the
sender. The ORB core provides access transparency because programmers use

Z09_STAL4290_09_GE_APPD.indd 9 4/18/17 7:28 AM

D-10   APPENDIX d / Object-Oriented Design

exactly the same method with the same parameters when invoking a local
method or a remote method. The ORB core also provides location transpar-
ency: Programmers do not need to specify the location of an object.

•	 Interface: An object’s interface specifies the operations and types supported by
the object, and thus defines the requests that can be made on the object.
CORBA interfaces are similar to classes in C+ + and interfaces in Java. Unlike
C+ + classes, a CORBA interface specifies methods and their parameters and
return values, but is silent about their implementation. Two objects of the same
C+ + class have the same implementation of their methods.

•	 OMG interface definition language (IDL): IDL is the language used to define
objects. An example IDL interface definition is:

//OMG IDL
interface Factory
   { Object create () ;
} ;

CORBA Concept Definition

Client application Invokes requests for a server to perform operations on objects. A client applica-
tion uses one or more interface definitions that describe the objects and opera-
tions the client can request. A client application uses object references, not
objects, to make requests.

Exception Contains information that indicates whether a request was successfully
performed.

Implementation Defines and contains one or more methods that do the work associated with an
object operation. A server can have one or more implementations.

Interface Describes how instances of an object will behave, such as what operations are
valid on those objects.

Interface definition Describes the operations that are available on a certain type of object.

Invocation The process of sending a request.

Method The server code that does the work associated with an operation. Methods are
contained within implementations.

Object Represents a person, place, thing, or piece of software. An object can have oper-
ations performed on it, such as the promote operation on an employee object.

Object instance An occurrence of one particular kind of object.

Object reference An identifier of an object instance.

OMG Interface Definition
Language (IDL)

A definition language for defining interfaces in CORBA.

Operation The action that a client can request a server to perform on an object instance.

Request A message sent between a client and a server application.

Server application Contains one or more implementations of objects and their operations.

Table D.2  Key Concepts in a Distributed CORBA System

Z09_STAL4290_09_GE_APPD.indd 10 4/18/17 7:28 AM

D.4 / CORBA   D-11

This definition specifies an interface named Factory that supports one opera-
tion, create. The create operation takes no parameters and returns an object refer-
ence of type Object. Given an object reference for an object of type Factory, a
client could invoke it to create a new CORBA object. IDL is a programming-
independent language and, for this reason, a client does not invoke directly any object
operation. It needs a mapping to the client programming language to do that. It is
also possible, that the server and the client are programmed in different programming
languages. The use of a specification language is a way to deal with heterogeneous
processing across multiple languages and platform environments. Thus, IDL enables
platform independence.

•	 Language binding creation: IDL compilers map one OMG IDL file to different
programming languages, which may or may not be object oriented, such as Java,
Smalltalk, Ada, C, C+ + , and COBOL. That mapping includes the definition of
the language-specific data types and procedure interfaces to access service
objects, the IDL client stub interface, the IDL skeleton, the object adapters, the
dynamic skeleton interface, and the direct ORB interface. Usually, clients have
a compile-time knowledge of the object interface and use client stubs to do a
static invocation; in certain cases, clients do not have that knowledge and they
must do a dynamic invocation.

Figure D.4  Common Object Request Broker Architecture

Dynamic
invocation

IDL
stub

ORB
interface

ORB core

Client Object implementation

DSI
IDL

skeleton Object
adapter

Same for all ORBs

ORB-private interface

ORB Object request broker

IDL Interface definition language

DSI Dynamic skeleton interface

Interface-specific stubs and skeletons

May be multiple object adapters

Z09_STAL4290_09_GE_APPD.indd 11 4/18/17 7:28 AM

D-12   APPENDIX d / Object-Oriented Design

•	 IDL stub: Makes calls to the ORB core on behalf of a client application. IDL
stubs provide a set of mechanisms that abstract the ORB core functions into
direct RPC (remote procedure call) mechanisms that can be employed by the
end-client applications. These stubs make the combination of the ORB and
remote object implementation appear as if they were tied to the same in-line
process. In most cases, IDL compilers generate language-specific interface
libraries that complete the interface between the client and object
implementations.

•	 IDL skeleton: Provides the code that invokes specific server methods. Static
IDL skeletons are the server-side complements to the client-side IDL stubs.
They include the bindings between the ORB core and the object implementa-
tions that complete the connection between the client and object
implementations.

•	 Dynamic invocation: Using the dynamic invocation interface (DII), a client
application can invoke requests on any object without having compile-time
knowledge of the object’s interfaces. The interface details are filled in by con-
sulting with an interface repository and/or other run-time sources. The DII
allows a client to issue one-way commands (for which there is no response).

•	 Dynamic skeleton interface (DSI): Similar to the relationship between IDL
stubs and static IDL skeletons, the DSI provides dynamic dispatch to objects.
Equivalent to dynamic invocation on the server side.

•	 Object adapter: An object adapter is CORBA system component provided by
the CORBA vendor to handle general ORB-related tasks, such as activating
objects and activating implementations. The adapter takes these general tasks
and ties them to particular implementations and methods in the server.

	 D.5	 RECOMMENDED READING AND WEBSITE

[KORS90] is a good overview of object-oriented concepts. [STRO88] is a clear
description of object-oriented programming. An interesting perspective on object-
oriented concepts is provided in [SYND93]. [VINO97] is an overview of CORBA.

KORS90  Korson, T., and McGregor, J. “Understanding Object-Oriented: A Unifying Para-
digm.” Communications of the ACM, September 1990.

STRO88  Stroustrup, B. “What is Object-Oriented Programming?” IEEE Software, May 1988.
SNYD93 Snyder, A. “The Essence of Objects: Concepts and Terms.” IEEE Software, January

1993.
VINO97  Vinoski, S. “CORBA: Integrating Diverse Applications Within Distributed Hetero-

geneous Environments.” IEEE Communications Magazine, February 1997.

 Recommended Website:

Object Management Group: Industry consortium that promotes CORBA
and related object technologies

Z09_STAL4290_09_GE_APPD.indd 12 4/18/17 7:28 AM

E-1

Appendix E
Amdahl’s Law

E.1	 Implications of Amdahl’s Law

E.2	 References

Z10_STAL4290_09_GE_APPE.indd 1 4/18/17 7:42 AM

E-2   APPENDIX E / Amdahl’s Law

	 E.1	 IMPLICATIONS OF AMDAHL’S LAW

When considering system performance, computer system designers look for ways to
improve performance by improvement in technology or change in design. Examples
include the use of parallel processors, the use of a memory cache hierarchy, and
speedup in memory access time and I/O transfer rate due to technology improve-
ments. In all of these cases, it is important to note that a speedup in one aspect of the
technology or design does not result in a corresponding improvement in performance.
This limitation is succinctly expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in 1967 [AMDA67] and
deals with the potential speedup of a program using multiple processors compared
to a single processor. Consider a program running on a single processor such that a
fraction (1 - f) of the execution time involves code that is inherently serial, and a
fraction f that involves code that is infinitely parallelizable with no scheduling over-
head. Let T be the total execution time of the program using a single processor. Then
the speedup using a parallel processor with N processors that fully exploits the paral-
lel portion of the program is as follows:

Speedup =
time to execute program on a single processor

time to execute program on N parallel processors

 =
T(1 - f) + Tf

T(1 - f) +
Tf

N

=
1

(1 - f) +
f

N
This equation is illustrated in Figure E.1. Two important conclusions can be drawn:

1.	 When f is small, the use of parallel processors has little effect.

2.	 As N approaches infinity, speedup is bound by 1/(1 - f), so there are diminish-
ing returns for using more processors.

Figure E.1  Amdahl’s Law for Multiprocessors

Number of Processors

Sp
ee

du
p

20

15

10

5

1 10 100 1000

f = 0.95

f = 0.90

f = 0.75

f = 0.5

Z10_STAL4290_09_GE_APPE.indd 2 4/18/17 7:42 AM

E.2 / REFERENCES   E-3

These conclusions are too pessimistic, an assertion first put forward in
[GUST88]. For example, a server can maintain multiple threads or multiple tasks to
handle multiple clients and execute the threads or tasks in parallel up to the limit of
the number of processors. Many database applications involve computations on mas-
sive amounts of data that can be split up into multiple parallel tasks. Nevertheless,
Amdahl’s law illustrates the problems facing industry in the development of multi-
core machines with an ever-growing number of cores: The software that runs on such
machines must be adapted to a highly parallel execution environment to exploit the
power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that
results in a speedup. The speedup can be expressed as follows:

Speedup =
Performance after enhancement

Performance before enhancement
=

Execution time before enhancement
Execution time after enhancement

Suppose a feature of the system is used during execution a fraction of the time f,
before enhancement, and the speedup of that feature after enhancement is SUf. Then
the overall speedup of the system is

Speedup =
1

(1 - f) +
f

SUf

For example, suppose a task makes extensive use of floating-point operations, with
40% of the time is consumed by floating-point operations. With a new hardware
design, the floating-point module is speeded up by a factor of K. Then, the overall
speedup is:

Speedup =
1

0.6 +
0.4
K

Thus, independent of K, the maximum speedup is 1.67.

	 E.2	 REFERENCES

AMDA67  Amdahl, G. “Validity of the Single-Processor Approach to Achieving Large-Scale
Computing Capability.” Proceedings, of the AFIPS Conference, 1967.

GUST88  Gustafson, J. “Reevaluating Amdahl’s Law.” Communications of the ACM,
May 1988.

Z10_STAL4290_09_GE_APPE.indd 3 4/18/17 7:42 AM

F-1

Appendix F
Hash Tables

Z11_STAL4290_09_GE_APPF.indd 1 4/18/17 7:29 AM

F-2   APPENDIX F / Hash Tables

Consider the following problem. A set of N items is to be stored in a table. Each item
consists of a label plus some additional information, which we can refer to as the
value of the item. We would like to be able to perform a number of ordinary opera-
tions on the table, such as insertion, deletion, and searching for a given item by label.

If the labels of the items are numeric, in the range 0 to M - 1, then a simple
solution would be to use a table of length M. An item with label i would be inserted
into the table at location i. As long as items are of fixed length, table lookup is trivial
and involves indexing into the table based on the numeric label of the item. Further-
more, it is not necessary to store the label of an item in the table, because this is
implied by the position of the item. Such a table is known as a direct access table.

If the labels are nonnumeric, then it is still possible to use a direct access
approach. Let us refer to the items as A[1], . . . A[N]. Each item A[i] consists of a
label, or key, ki, and a value vi. Let us define a mapping function I(k) such that I(k)
takes a value between 1 and M for all keys, and I(ki) ≠ I(kj) for any i and j. In this
case, a direct access table can also be used, with the length of the table equal to M.

The one difficulty with these schemes occurs if M is much greater than N. In
this case, the proportion of unused entries in the table is large, and this is an inefficient
use of memory. An alternative would be to use a table of length N and store the N
items (label plus value) in the N table entries. In this scheme, the amount of memory
is minimized, but there is now a processing burden to do table lookup. There are
several possibilities:

•	 Sequential search: This brute-force approach is time consuming for large tables.

•	 Associative search: With the proper hardware, all of the elements in a table can
be searched simultaneously. This approach is not general purpose and cannot
be applied to any and all tables of interest.

•	 Binary search: If the labels or the numeric mapping of the labels are arranged
in ascending order in the table, then a binary search is much quicker than
sequential (see Table F.1) and requires no special hardware.

The binary search looks promising for table lookup. The major drawback with
this method is that adding new items is not usually a simple process and will require
reordering of the entries. Therefore, binary search is usually used only for reasonably
static tables that are seldom changed.

Technique Search Length

Direct 1

Sequential M + 1
2

Binary log2M

Linear hashing 2 - N�M

2 - 2N�M

Hash (overflow with chaining)
1 +

N - 1
2M

Table F.1  Average Search Length for One of N items in a Table of Length M

Z11_STAL4290_09_GE_APPF.indd 2 4/18/17 7:30 AM

Hash Tables   F-3

We would like to avoid the memory penalties of a simple direct access approach
and the processing penalties of the alternatives listed previously. The most frequently
used method to achieve this compromise is hashing. Hashing, which was developed
in the 1950s, is simple to implement and has two advantages. First, it can find most
items with a single seek, as in direct accessing. Second, insertions and deletions can
be handled without added complexity.

The hashing function can be defined as follows. Assume up to N items are to be
stored in a hash table of length M, with M Ú N, but not much larger than N. To insert
an item in the table:

I1.	� Convert the label of the item to a near-random number n between 0 and M - 1.
For example, if the label is numeric, a popular mapping function is to divide the
label by M and take the remainder as the value of n.

I2.	� Use n as the index into the hash table.

a.	 If the corresponding entry in the table is empty, store the item (label and
value) in that entry.

b.	 If the entry is already occupied, then store the item in an overflow area, as
discussed subsequently.

To perform table lookup of an item whose label is known:

L1.	�Convert the label of the item to a near-random number n between 0 and M - 1,
using the same mapping function as for insertion.

L2.	�Use n as the index into the hash table.

a.	 If the corresponding entry in the table is empty, then the item has not previ-
ously been stored in the table.

b.	 If the entry is already occupied and the labels match, then the value can be
retrieved.

c.	 If the entry is already occupied and the labels do not match, then continue
the search in the overflow area.

Hashing schemes differ in the way in which the overflow is handled. One com-
mon technique is referred to as the linear hashing technique and is commonly used
in compilers. In this approach, rule I2.b becomes

I2.b.	� If the entry is already occupied, set n = n + 1 (mod M) and go back to step
I2.a.

Rule L2.c is modified accordingly.
Figure F.1a is an example. In this case, the labels of the items to be stored are

numeric, and the hash table has eight positions (M = 8). The mapping function is to
take the remainder upon division by 8. The figure assumes the items were inserted in
ascending numerical order, although this is not necessary. Thus, items 50 and 51 map
into positions 2 and 3, respectively, and as these are empty, they are inserted there.
Item 74 also maps into position 2, but as it is not empty, position 3 is tried. This is also
occupied, so the position 4 is ultimately used.

Z11_STAL4290_09_GE_APPF.indd 3 4/18/17 7:30 AM

F-4   APPENDIX F / Hash Tables

It is not easy to determine the average length of the search for an item in an
open hash table because of the clustering effect. An approximate formula was
obtained by Schay and Spruth:1

Average search length =
2 - r
2 - 2r

where r = N/M. Note the result is independent of table size and depends only on
how full the table is. The surprising result is with the table 80% full, the average length
of the search is still around 3.

Even so, a search length of 3 may be considered long, and the linear hashing table
has the additional problem that it is not easy to delete items. A more attractive approach,
which provides shorter search lengths (see Table F.1) and allows deletions as well as
additions, is overflow with chaining. This technique is illustrated in Figure F.1b. In this
case, there is a separate table into which overflow entries are inserted. This table includes
pointers passing down the chain of entries associated with any position in the hash table.
In this case, the average search length, assuming randomly distributed data, is

Average search length = 1 +
N - 1

2M

For large values of N and M, this value approaches 1.5 for N = M. Thus, this tech-
nique provides for compact storage with rapid lookup.

1Schay, G., and Spruth, W. “Analysis of a File Addressing Method.” Communications of the ACM,
August 1962.

Figure F.1  Hashing

value (94)94

119 0
1
2
3
4
5
6
7

50
51

74
83
95

119

(a) Linear rehashing

Hash Table

value (119)

value (50)
value (51)
value (74)
value (83)

value (95)

—
50
51
74
83
—

95

50
51
74
83
94
95
119
139

(b) Overflow with chaining

value (50)
value (51)

value (95)

50 •
•

—
•

51

95

value (119)119

Overflow Table

value (74)
value (83)

value (139)

74 —
•

—
—

83

139

Z11_STAL4290_09_GE_APPF.indd 4 4/18/17 7:30 AM

G-1

Appendix G
Response Time

G.1	 Response Time Considerations

G.2	 References

Z12_STAL4290_09_GE_APPG.indd 1 4/18/17 7:30 AM

G-2   APPENDIX G / Response Time

	 G.1	 RESPONSE TIME CONSIDERATIONS

Response time is the time taken by a system to react to a given input. In an interactive
transaction, it may be defined as the time between the last keystroke by the user and
the beginning of the display of a result by the computer. For different types of appli-
cations, a slightly different definition is needed. In general, it is the time taken for the
system to respond to a request to perform a particular task.

Ideally, one would like the response time for any application to be short. How-
ever, it is almost invariably the case that shorter response time imposes greater cost.
This cost comes from two sources:

•	 Computer processing power: The faster the processor is, the shorter the
response time will be. Of course, increased processing power means increased
cost.

•	 Competing requirements: Providing rapid response time to some processes may
penalize other processes.

Thus the value of a given level of response time must be assessed versus the cost of
achieving that response time.

Table G.1, from [MART88] lists six general ranges of response times. Design
difficulties are faced when a response time of less than 1 second is required. A require-
ment for a sub-second response time is generated by a system that controls or in some
other way interacts with an ongoing external activity, such as an assembly line. Here
the requirement is straightforward. When we consider human-computer interaction,
such as in a data entry application, then we are in the realm of conversational response
time. In this case, there is still a requirement for a short response time, but the accept-
able length of time may be difficult to assess.

That rapid response time is the key to productivity in interactive applications
has been confirmed in a number of studies [SHNE84; THAD81; GUYN88]. These
studies show that when a computer and a user interact at a pace that ensures neither
has to wait on the other, productivity increases significantly, the cost of the work
done on the computer therefore drops, and quality tends to improve. It used to be
widely accepted that a relatively slow response, up to 2 seconds, was acceptable for
most interactive applications because the person was thinking about the next task.
However, it now appears that productivity increases as rapid response times are
achieved.

The results reported on response time are based on an analysis of online trans-
actions. A transaction consists of a user command from a terminal and the system’s
reply. It is the fundamental unit of work for online system users. It can be divided into
two time sequences:

•	 User response time: The time span between the moment the user receives a
complete reply to one command and enters the next command. People often
refer to this as think time.

•	 System response time: The time span between the moment the user enters a
command and the moment a complete response is displayed on the terminal.

Z12_STAL4290_09_GE_APPG.indd 2 4/18/17 7:30 AM

G.1 / RESPONSE TIME CONSIDERATIONS   G-3

Greater than 15 seconds

This rules out a conversational interaction. For certain types of applications, certain types of users may be
content to sit at a terminal for more than 15 seconds waiting for the answer to a single simple inquiry. However,
for a busy person, captivity for more than 15 seconds seems intolerable. If such delays will occur, the system
should be designed so the user can turn to other activities and request the response at some later time.

Greater than 4 seconds

These are generally too long for a conversation requiring the operator to retain information in short-term
memory (the operator’s memory, not the computer’s!). Such delays would be very inhibiting in problem-
solving activity and frustrating in data entry activity. However, after a major closure, such as the end of a
transaction, delays from 4 to 15 seconds can be tolerated.

2 to 4 seconds

A delay longer than 2 seconds can be inhibiting to terminal operations demanding a high level of concentra-
tion. A wait of 2–4 seconds at a terminal can seem surprisingly long when the user is absorbed and emotionally
committed to complete what he or she is doing. Again, a delay in this range may be acceptable after a minor
closure has occurred.

Less than 2 seconds

When the terminal user has to remember information throughout several responses, the response time must
be short. The more detailed the information remembered, the greater the need for responses of less than 2 sec-
onds. For elaborate terminal activities, 2 seconds represents an important response-time limit.

Sub-second response time

Certain types of thought-intensive work, especially with graphics applications, require very short response
times to maintain the user’s interest and attention for long periods of time.

Decisecond response time

A response to pressing a key and seeing the character displayed on the screen or clicking a screen object with
a mouse needs to be almost instantaneous—less than 0.1 second after the action. Interaction with a mouse
requires extremely fast interaction if the designer is to avoid the use of alien syntax (one with commands,
mnemonics, punctuation, etc.).

Table G.1  Response Time Ranges

As an example of the effect of reduced system response time, Figure G.1 shows
the results of a study carried out on engineers using a computer-aided design graphics
program for the design of integrated circuit chips and boards [SMIT83]. Each transac-
tion consists of a command by the engineer that in some way alters the graphic image
being displayed on the screen. The results show that the rate of transactions increases
as system response time falls and rises dramatically once system response time falls
below 1 second. What is happening is that as the system response time falls, so does
the user response time. This has to do with the effects of short-term memory and
human attention span.

Another area where response time has become critical is the use of the World
Wide Web, either over the Internet or over a corporate intranet. The time taken for
a typical Web page to come up on the user’s screen varies greatly. Response times can
be gauged based on the level of user involvement in the session; in particular, systems
with vary fast response times tend to command more user attention. In a study by
Sevcik [SEVC96, SEVC02], illustrated in Figure G.2, Web systems with a 3-second or

Z12_STAL4290_09_GE_APPG.indd 3 4/18/17 7:30 AM

G-4   APPENDIX G / Response Time

better response time maintain a high level of user attention. With a response time of
between 3 and 10 seconds, some user concentration is lost, and response times above
10 seconds discourage the user, who may simply abort the session. Other studies of
Web response time generally confirm these findings [BHAT01].

Figure G.2  Response Time Requirements

0 10 303

Time (seconds)

Fast
Full

Some

Little interaction

Changing TV channels on cable service

Cross USA telephone call connect time

Point-of-sale credit card verification

Making a 28.8-kbps modem connection

Executing a trade on the NY stock exchange

Medium

Slow

W
eb

 U
se

r
C

on
ce

nt
ra

ti
on

O
th

er
R

es
po

ns
e

T
im

es

Figure G.1  Response Time Results for High-Function Graphics

T
ra

ns
ac

ti
on

s
pe

r
us

er
-h

ou
r

4000

3500

3000

2500

2000

1500

1000

500

0
0.25 0.50 0.75 1.00 1.25 1.50

Expert

Average

Novice

System response time (seconds)

Z12_STAL4290_09_GE_APPG.indd 4 4/18/17 7:30 AM

G.2 / REFERENCES   G-5

	 G.2	 REFERENCES

BHAT01  Bhatti, N.; Bouch, A.; and Kuchinsky, A. “Integrated User-Perceived Quality into
Web Server Design.” Proceedings, 9th International World Wide Web Conference,
May 2000.

GUYN88  Guynes, J. “Impact of System Response Time on State Anxiety.” Communications
of the ACM, March 1988.

MART88  Martin, J. Principles of Data Communication. Englewood Cliffs, NJ: Prentice Hall,
1988.

SELV99  Selvidge, P. “How Long Is Too Long to Wait for a Webpage to Load.” Usability News,
Wichita State University, July 1999.

SEVC96  Sevcik, P. “Designing a High-Performance Web Site.” Business Communications
Review, March 1996.

SEVC02  Sevcik, P. “Understanding How Users View Application Performance.” Business
Communications Review, July 2002.

SHNE84  Shneiderman, B. “Response Time and Display Rate in Human Performance with
Computers.” ACM Computing Surveys, September 1984.

SMIT83  Smith, D. “Faster Is Better: A Business Case for Subsecond Response Time.” Com-
puterworld, April 18, 1983.

THAD81  Thadhani, A. “Interactive User Productivity.” IBM Systems Journal, No. 1, 1981.

Z12_STAL4290_09_GE_APPG.indd 5 4/18/17 7:30 AM

H-1

Appendix H
Queueing System Concepts

H.1	 Why Queueing Analysis?

H.2	 The Single-Server Queue

H.3	 The Multiserver Queue

H.4	 Poisson Arrival Rate

Z13_STAL4290_09_GE_APPH.indd 1 4/18/17 7:31 AM

H-2   Appendix H / Queueing System Concepts

In a number of chapters in this book, results from queueing theory are used.
Chapter 21 provides a detailed discussion of queueing analysis. For purposes of
understanding the description of the results in the book, however, the brief over-
view in this appendix should suffice. In this appendix, we present a brief definition
of queueing systems and define key terms.

	 H.1	 WHY QUEUEING ANALYSIS?

It is often necessary to make projections of performance on the basis of existing load
information or on the basis of estimated load for a new environment. A number of
approaches are possible:

1.	 Do an after-the-fact analysis based on actual values.

2.	 Make a simple projection by scaling up from existing experience to the expected
future environment.

3.	 Develop an analytic model based on queueing theory.

4.	 Program and run a simulation model.

Option 1 is no option at all: we will wait and see what happens. This leads to
unhappy users and to unwise purchases. Option 2 sounds more promising. The analyst
may take the position that it is impossible to project future demand with any degree
of certainty. Therefore, it is pointless to attempt some exact modeling procedure.
Rather, a rough-and-ready projection will provide ballpark estimates. The problem
with this approach is that the behavior of most systems under a changing load is not
what one would intuitively expect. If there is an environment in which there is a
shared facility (e.g., a network, a transmission line, and a time-sharing system), then
the performance of that system typically responds in an exponential way to increases
in demand.

Figure H.1 is a representative example. The upper line shows what typically
happens to user response time on a shared facility as the load on that facility increases.
The load is expressed as a fraction of capacity. Thus, if we are dealing with a router
that is capable of processing and forwarding 1000 packets per second, then a load of
0.5 represents an arrival rate of 500 packets per second, and the response time is the
amount of time it takes to retransmit any incoming packet. The lower line is a simple
projection1 based on knowledge of the behavior of the system up to a load of 0.5.
Note while things appear rosy when the simple projection is made, performance on
the system will in fact collapse beyond a load of about 0.8 to 0.9.

Thus, a more exact prediction tool is needed. Option 3 is to make use of an
analytic model, which is one that can be expressed as a set of equations that can be
solved to yield the desired parameters (response time, throughput, etc.). For com-
puter, operating system, and networking problems, and indeed for many practical
real-world problems, analytic models based on queueing theory provide a reasonably
good fit to reality. The disadvantage of queueing theory is that a number of simplify-
ing assumptions must be made to derive equations for the parameters of interest.

1The lower line is based on fitting a third-order polynomial to the data available up to a load of 0.5.

Z13_STAL4290_09_GE_APPH.indd 2 4/18/17 7:31 AM

H.2 / THE SINGLE-SERVER QUEUE   H-3

The final approach is a simulation model. Here, given a sufficiently powerful
and flexible simulation programming language, the analyst can model reality in great
detail and avoid making many of the assumptions required of queueing theory. How-
ever, in most cases, a simulation model is not needed or at least is not advisable as a
first step in the analysis. For one thing, both existing measurements and projections
of future load carry with them a certain margin of error. Thus, no matter how good
the simulation model, the value of the results is limited by the quality of the input.
For another, despite the many assumptions required of queueing theory, the results
that are produced often come quite close to those that would be produced by a more
careful simulation analysis. Furthermore, a queueing analysis can literally be accom-
plished in a matter of minutes for a well-defined problem, whereas simulation exer-
cises can take days, weeks, or longer to program and run.

Accordingly, it behooves the analyst to master the basics of queueing theory.

	 H.2	 THE SINGLE-SERVER QUEUE

The simplest queueing system is depicted in Figure H.2. The central element of the
system is a server, which provides some service to items. Items from some population
of items arrive at the system to be served. If the server is idle, an item is served imme-
diately. Otherwise, an arriving item joins a waiting line.2 When the server has com-
pleted serving an item, the item departs. If there are items waiting in the queue, one

2The waiting line is referred to as a queue in some treatments in the literature; it is also common to refer
to the entire system as a queue. Unless otherwise noted, we use the term queue to mean waiting line.

Figure H.1  Projected versus Actual Response Time

12

10

8

6

4

2

0

R
es

po
ns

e
T

im
e

0.80.60.40.20

System Load (as a fraction of capacity)

Actual response
time

Projected
response time

Limit
of experience

Z13_STAL4290_09_GE_APPH.indd 3 4/18/17 7:31 AM

H-4   Appendix H / Queueing System Concepts

is immediately dispatched to the server. The server in this model can represent any-
thing that performs some function or service for a collection of items. Some examples
are: a processor provides service to processes; a transmission line provides a transmis-
sion service to packets or frames of data; an I/O device provides a read or write
service for I/O requests.

Table H.1 summarizes some important parameters associated with a queueing
model. Items arrive at the facility at some average rate (items arriving per second)
l. At any given time, a certain number of items will be waiting in the queue (zero or
more); the average number waiting is w, and the mean time that an item must wait
is Tw. Tw is averaged over all incoming items, including those that do not wait at all.
The server handles incoming items with an average service time Ts; this is the time
interval between the dispatching of an item to the server, and the departure of that
item from the server. Utilization, r, is the fraction of time that the server is busy,
measured over some interval of time. Finally, two parameters apply to the system as
a whole. The average number of items resident in the system, including the item
being served (if any) and the items waiting (if any), is r; and the average time that
an item spends in the system, waiting and being served, is Tr; we refer to this as the
mean residence time.3

3Again, in some of the literature, this is referred to as the mean queueing time, while other treatments use
mean queueing time to mean the average time spent waiting in the queue (before being served).

l = arrival rate; mean number of arrivals per second

Ts = mean service time for each arrival; amount of time being served, not counting time waiting in the queue

r = utilization; fraction of time facility (server or servers) is busy

w = mean number of items waiting to be served

Tw = mean waiting time (including items that have to wait and items with waiting time = 0)

r = mean number of items resident in system (waiting and being served)

Tr = mean residence time; time an item spends in system (waiting and being served)

Table H.1  Notation for Queueing Systems

Figure H.2 � Queueing System Structure and Parameters for Single-Server Queue

Arrivals

Waiting line
(queue) Dispatching

discipline
Server

Departures

w = items waiting
Tw = waiting time

Ts = service time
r = utilization

l = arrival rate

r = items resident in queueing system
Tr = residence time

Z13_STAL4290_09_GE_APPH.indd 4 4/18/17 7:31 AM

H.3 / THE MULTISERVER QUEUE   H-5

If we assume that the capacity of the queue is infinite, then no items are ever
lost from the system; they are just delayed until they can be served. Under these
circumstances, the departure rate equals the arrival rate. As the arrival rate increases,
the utilization increases and with it, congestion. The queue becomes longer, increas-
ing waiting time. At r = 1, the server becomes saturated, working 100% of the time.
Thus, the theoretical maximum input rate that can be handled by the system is

lmax =
1
Ts

However, queues become very large near system saturation, growing without
bound when r = 1. Practical considerations, such as response time requirements or
buffer sizes, usually limit the input rate for a single server to between 70 and 90% of
the theoretical maximum.

The following assumptions are typically made:

•	 Item population: Typically, we assume an infinite population. This means the
arrival rate is not altered by the loss of population. If the population is finite,
then the population available for arrival is reduced by the number of items
currently in the system; this would typically reduce the arrival rate
proportionally.

•	 Queue size: Typically, we assume an infinite queue size. Thus, the waiting line
can grow without bound. With a finite queue, it is possible for items to be lost
from the system. In practice, any queue is finite. In many cases, this will make
no substantive difference to the analysis.

•	 Dispatching discipline: When the server becomes free, and if there is more than
one item waiting, a decision must be made as to which item to dispatch next.
The simplest approach is first-in-first-out; this discipline is what is normally
implied when the term queue is used. Another possibility is last-in-first-out. One
that you might encounter in practice is a dispatching discipline based on service
time. For example, a packet-switching node may choose to dispatch packets on
the basis of shortest first (to generate the most outgoing packets) or longest first
(to minimize processing time relative to transmission time). Unfortunately, a
discipline based on service time is very difficult to model analytically.

	 H.3	 THE MULTISERVER QUEUE

Figure H.3 shows a generalization of the simple model we have been discussing for
multiple servers, all sharing a common queue. If an item arrives and at least one
server is available, then the item is immediately dispatched to that server. It is
assumed all servers are identical; thus, if more than one server is available, it makes
no difference which server is chosen for the item. If all servers are busy, a queue
begins to form. As soon as one server becomes free, an item is dispatched from the
queue using the dispatching discipline in force.

With the exception of utilization, all of the parameters illustrated in Figure H.2
carry over to the multiserver case with the same interpretation. If we have N identical

Z13_STAL4290_09_GE_APPH.indd 5 4/18/17 7:31 AM

H-6   Appendix H / Queueing System Concepts

servers, then r is the utilization of each server, and we can consider Nr to be the
utilization of the entire system; this latter term is often referred to as the traffic inten-
sity, u. Thus, the theoretical maximum utilization is N * 100,, and the theoretical
maximum input rate is:

lmax =
N
Ts

The key characteristics typically chosen for the multiserver queue correspond
to those for the single-server queue. That is, we assume an infinite population and an
infinite queue size, with a single infinite queue shared among all servers. Unless oth-
erwise stated, the dispatching discipline is FIFO. For the multiserver case, if all servers
are assumed identical, the selection of a particular server for a waiting item has no
effect on service time.

By way of contrast, Figure H.3b shows the structure of multiple single-server
queues.

Figure H.3  Multiserver Versus Multiple Single-Server Queues

Server 2

Server N

(a) Multiserver queue

Server 1

Arrivals
Queue

l = arrival rate

Departures
Dispatching
discipline

l
N

l
N

l
N

l
N

l
N

l
N

Server 2

Server N

(b) Multiple single-server queues

Server 1

Arrivals
l = arrival rate

Departures

Z13_STAL4290_09_GE_APPH.indd 6 4/18/17 7:31 AM

H.4 / POISSON ARRIVAL RATE   H-7

	 H.4	 POISSON ARRIVAL RATE

Typically, analytic queueing models assume the arrival rate obeys a Poisson
distribution. This is what is assumed in the results of Table 9.6. We define this distribu-
tion as follows. If items arrive at a queue according to a Poisson distribution, this may
be expressed as

Pr[k items arrive in time interval T] =
(lT)k

k!
 e-lT

E[number of items to arrive in time interval T] = lT

Mean arrival rate, in items per second = l

Arrivals occurring according to a Poisson process are often referred to as
random arrivals. This is because the probability of arrival of an item in a small interval
is proportional to the length of the interval, and is independent of the amount of
elapsed time since the arrival of the last item. That is, when items are arriving accord-
ing to a Poisson process, an item is as likely to arrive at one instant as any other,
regardless of the instants at which the other customers arrive.

Another interesting property of the Poisson process is its relationship to the
exponential distribution. If we look at the times between arrivals of items Ta (called
the interarrival times), then we find that this quantity obeys the exponential
distribution:

 Pr[Ta 6 t] = 1 - e-lt

 E[Ta] =
1
l

Thus, the mean interarrival time is the reciprocal of the arrival rate, as we would
expect.

Z13_STAL4290_09_GE_APPH.indd 7 4/18/17 7:31 AM

I-1

Appendix I
The Complexity of Algorithms

I.1	 Complexity Overview

I.2	 References

Z14_STAL4290_09_GE_APPI.indd 1 4/18/17 7:31 AM

I-2   APPENDIX I / The Complexity of Algorithms

	 I.1	 COMPLEXITY OVERVIEW

A central issue in assessing the practicality of an algorithm is the relative amount of
time it takes to execute the algorithm. Typically, one cannot be sure that one has found
the most efficient algorithm for a particular function. The most that one can say is that
for a particular algorithm, the level of effort for execution is of a particular order of
magnitude. One can then compare that order of magnitude to the speed of current or
predicted processors to determine the level of practicality of a particular algorithm.

A common measure of the efficiency of an algorithm is its time complexity. We
define the time complexity of an algorithm to be f(n) if, for all n and all inputs of
length n, the execution of the algorithm takes at most f(n) steps. Thus, for a given size
of input and a given processor speed, the time complexity is an upper bound on the
execution time.

There are several ambiguities here. First, the definition of a step is not precise.
A step could be a single operation of a Turing machine, a single processor machine
instruction, a single high-level language machine instruction, and so on. However,
these various definitions of step should all be related by simple multiplicative con-
stants. For very large values of n, these constants are not important. What is important
is how fast the relative execution time is growing.

A second issue is that, generally speaking, we cannot pin down an exact formula
for f(n). We can only approximate it. But again, we are primarily interested in the rate
of change of f(n) as n becomes very large.

There is a standard mathematical notation, known as the “big-O” notation, for
characterizing the time complexity of algorithms that is useful in this context. The
definition is as follows: f(n) = O(g(n)) if and only if there exist two numbers a and
M such that

	 � f(n) � … a * � g(n) � , n Ú M	 (I.1)

An example helps clarify the use of this notation. Suppose we wish to evaluate
a general polynomial of the form:

P(x) = anxn + an - 1x
n - 1 + g + a1x + a0

Consider the following simple-minded algorithm from [POHL81]:

algorithm P1;
n, i, j: integer; x, polyval: real;
a, S: array [0..100] of real;
begin
 read(x, n);
 for i := 0 upto n do
 begin
 S[i] := 1; read(a[i]);
 for j := 1 upto i do S[i] := x × S[i];
 S[i] := a[i] × S[i]
 end;

Z14_STAL4290_09_GE_APPI.indd 2 4/18/17 7:31 AM

I.1 / COMPLEXITY OVERVIEW   I-3

 polyval := 0;
 for i := 0 upto n do polyval := polyval + S[i];
 write (’value at’, x, ’is’, polyval)
end.

In this algorithm, each sub-expression is evaluated separately. Each S[i] requires
(i + 1) multiplications: i multiplications to compute S[i] and one to multiply by a[i].
Computing all n terms requires

a
n

i=0
(i + 1) =

(n + 2)(n + 1)

2

multiplications. There are also (n + 1) additions, which we can ignore relative to the
much larger number of multiplications. Thus, the time complexity of this algorithm is
f(n) = (n + 2)(n + 1)/2. We now show f(n) = O(n2). From the definition of Equa-
tion (I.1), we want to show that for a = 1 and M = 4, the relationship holds for
g(n) = n2. We do this by induction on n. The relationship holds for n = 4 because
(4 + 2)(4 + 1)/2 = 15 6 42 = 16. Now assume it holds for all values of n up to k
[i.e., (k + 2)(k + 1)/2 6 k2]. Then, with n = k + 1:

(n + 2)(n + 1)

2
=

(k + 3)(k + 2)

2

 =
(k + 2)(k + 1)

2
+ k + 2

 … k2 + k + 2
 … k2 + 2k + 1 = (k + 1)2 = n2

Therefore, the result is true for n = k + 1.
In general, the big-O notation makes use of the term that grows the fastest. For

example:

1.	 O[ax7 + 3x3 + sin(x)] = O(ax7) = O(x7)

2.	 O(en + an10) = O(en)

3.	 O(n! + n50) = O(n!)

There is much more to the big-O notation, with fascinating ramifications. For
the interested reader, two of the best accounts are in [GRAH94] and [KNUT97].

An algorithm with an input of size n is said to be:

1.	 Linear: if the running time is O(n)

2.	 Polynomial: if the running time is O(nt) for some constant t

3.	 Exponential: if the running time is O(t h(n)) for some constant t and polynomial
h(n)

Generally, a problem that can be solved in polynomial time is considered fea-
sible, whereas anything larger than polynomial time, especially exponential time, is
considered infeasible. But you must be careful with these terms. First, if the size of
the input is small enough, even very complex algorithms become feasible. Suppose,
for example, you have a system that can execute 1012 operations per unit time.

Z14_STAL4290_09_GE_APPI.indd 3 4/18/17 7:31 AM

I-4   APPENDIX I / The Complexity of Algorithms

Table I-1 shows the size of input that can be handled in one time unit for algorithms
of various complexities. For algorithms of exponential or factorial time, only very
small inputs can be accommodated.

The second thing to be careful about is the way in which the input is character-
ized. For example, the complexity of cryptanalysis of an encryption algorithm can be
characterized equally well in terms of the number of possible keys or the length of
the key. For the Advanced Encryption Standard (AES), for example, the number of
possible keys is 2128, and the length of the key is 128 bits. If we consider a single
encryption to be a “step” and the number of possible keys to be N = 2n, then the
time complexity of the algorithm is linear in terms of the number of keys [O(N)] but
exponential in terms of the length of the key [O(2n)].

	 I.2	 REFERENCES

GRAH94 Graham, R.; Knuth, D.; and Patashnik, O. Concrete Mathematics: A Foundation for
Computer Science. Reading, MA: Addison-Wesley, 1994.

KNUT97 Knuth, D. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Reading, MA: Addison-Wesley, 1997.

POHL81 Pohl, I., and Shaw, A. The Nature of Computation: An Introduction to Computer
Science. Rockville, MD: Computer Science Press, 1981.

Complexity Size of Input Operations

log2n 21012
= 103 * 1011 1012

n 1012 1012

n2 106 1012

n6 102 1012

2n 39 1012

n! 15 1012

Table I.1  Level of Effort for Various Levels
of Complexity

Z14_STAL4290_09_GE_APPI.indd 4 4/18/17 7:31 AM

J-1

Appendix J
DISK STORAGE DEVICES

J.1	 Magnetic Disk
Data Organization and Formatting
Physical Characteristics

J.2	 Optical Memory
CD-ROM
CD Recordable
CD Rewritable
Digital Versatile Disk
High-Definition Optical Disks

Z15_STAL4290_09_GE_APPJ.indd 1 4/18/17 7:32 AM

J-2   APPENDIX J / DISK STORAGE DEVICES

	 J.1	 MAGNETIC DISK

A disk is a circular platter constructed of metal or of plastic coated with a magnetiz-
able material. Data are recorded on and later retrieved from the disk via a conducting
coil named the head. During a read or write operation, the head is stationary while
the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil
produces a magnetic field. Electric pulses are sent to the head, and magnetic patterns
are recorded on the surface below, with different patterns for positive and negative
currents. The read mechanism is based on the fact that a magnetic field moving relative
to a coil produces an electrical current in the coil. When the surface of the disk passes
under the head, it generates a current of the same polarity as the one already recorded.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion
of the platter rotating beneath it. This gives rise to the organization of data on the
platter in a concentric set of rings, called tracks. Each track is the same width as the
head. There are thousands of tracks per surface.

Figure J.1 depicts this data layout. Adjacent tracks are separated by gaps. This
prevents, or at least minimizes, errors due to misalignment of the head or simply
interference of magnetic fields.

Data are transferred to and from the disk in sectors (see Figure J.1). There are
typically hundreds of sectors per track, and these may be of either fixed or variable
length. In most contemporary systems, fixed-length sectors are used, with 512 bytes
being the nearly universal sector size. To avoid imposing unreasonable precision require-
ments on the system, adjacent sectors are separated by intratrack (intersector) gaps.

A bit near the center of a rotating disk travels past a fixed point (such as a read-
write head) slower than a bit on the outside. Therefore, some way must be found to
compensate for the variation in speed so the head can read all the bits at the same
rate. This can be done by increasing the spacing between bits of information recorded
in segments of the disk. The information can then be scanned at the same rate by
rotating the disk at a fixed speed, known as the constant angular velocity (CAV).

Figure J.2a shows the layout of a disk using CAV. The disk is divided into a num-
ber of pie-shaped sectors and into a series of concentric tracks. The advantage of using
CAV is that individual blocks of data can be directly addressed by track and sector.
To move the head from its current location to a specific address, it only takes a short
movement of the head to a specific track and a short wait for the proper sector to spin
under the head. The disadvantage of CAV is that the amount of data that can be stored
on the long outer tracks is the same as what can be stored on the short inner tracks.

Because the density, in bits per linear inch, increases in moving from the out-
ermost track to the innermost track, disk storage capacity in a straightforward CAV
system is limited by the maximum recording density that can be achieved on the
innermost track. To increase density, modern hard disk systems use a technique
known as multiple zone recording, in which the surface is divided into a number of
concentric zones (16 is typical). Within a zone, the number of bits per track is

Z15_STAL4290_09_GE_APPJ.indd 2 4/18/17 7:32 AM

J.1 / MAGNETIC DISK   J-3

constant. Zones farther from the center contain more bits (more sectors) than zones
closer to the center. This allows for greater overall storage capacity at the expense of
somewhat more complex circuitry. As the disk head moves from one zone to another,
the length (along the track) of individual bits changes, causing a change in the timing
for reads and writes. Figure J.2b suggests the nature of multiple zone recording; in
this illustration, each zone is only a single track wide.

Some means is needed to locate sector positions within a track. Clearly, there
must be some starting point on the track, and a way of identifying the start and end
of each sector. These requirements are handled by means of control data recorded
on the disk. Thus, the disk is formatted with some extra data used only by the disk
drive and not accessible to the user.

Figure J.1  Disk Data Layout

Intersector gap

Intertrack gap

Sector

Platter

Read-write head
(1 per surface)

Track
Rotation

Cylinder Spindle BoomDirection of
arm motion

Track sector

S4

S4

S4

S3

S3

S3

S2

S2

S2 S1

S1

S1

• • •

• • •

• • •S5

S5

S5

S6

S6

S6
SN

SN

SN

Z15_STAL4290_09_GE_APPJ.indd 3 4/18/17 7:32 AM

J-4   APPENDIX J / DISK STORAGE DEVICES

Physical Characteristics

Table J.1 lists the major characteristics that differentiate among the various types of
magnetic disks. First, the head may either be fixed or movable with respect to the
radial direction of the platter. In a fixed-head disk, there is one read/write head per
track. All of the heads are mounted on a rigid arm that extends across all tracks; such
systems are rare today. In a movable-head disk, there is only one read/write head.
Again, the head is mounted on an arm. Because the head must be able to be posi-
tioned above any track, the arm can be extended or retracted for this purpose.

The disk itself is mounted in a disk drive, which consists of the arm, a spindle
that rotates the disk, and the electronics needed for input and output of binary data.
A nonremovable disk is permanently mounted in the disk drive; the hard disk in a
personal computer is a nonremovable disk. A removable disk can be removed and
replaced with another disk. The advantage of the latter type is that unlimited amounts
of data are available with a limited number of disk systems. Furthermore, such a disk
may be moved from one computer system to another.

For most disks, the magnetizable coating is applied to both sides of the platter,
which is then referred to as double-sided. Some less expensive disk systems use sin-
gle-sided disks.

Figure J.2  Comparison of Disk Layout Methods

(a) Constant angular velocity (b) Multiple zone recording

Track
Sector

Zone

Table J.1  Physical Characteristics of Disk Systems

Head Motion
  Fixed head (one per track)
  Movable head (one per surface)
Disk Portability
  Nonremovable disk
  Removable disk
Sides
  Single sided
  Double sided

Platters
  Single platter
  Multiple platter
Head Mechanism
  Contact (floppy)
  Fixed gap
  Aerodynamic gap (Winchester)

Z15_STAL4290_09_GE_APPJ.indd 4 4/18/17 7:32 AM

J.1 / MAGNETIC DISK   J-5

Some disk drives accommodate multiple platters stacked vertically a fraction
of an inch apart. Multiple arms are provided (Figure J.3). Multiple-platter disks
employ a movable head, with one read-write head per platter surface. All of the heads
are mechanically fixed so all are at the same distance from the center of the disk and
move together. Thus, at any time, all of the heads are positioned over tracks that are
of equal distance from the center of the disk. The set of all the tracks in the same rela-
tive position on the platter is referred to as a cylinder. For example, all of the shaded
tracks in Figure J.4 are part of one cylinder.

Finally, the head mechanism provides a classification of disks into three types.
Traditionally, the read/write head has been positioned at a fixed distance above the
platter, allowing an air gap. At the other extreme is a head mechanism that actually
comes into physical contact with the medium during a read or write operation. This
mechanism is used with the floppy disk, which is a small, flexible platter and the least
expensive type of disk.

To understand the third type of disk, we need to comment on the relationship
between data density and the size of the air gap. The head must generate or sense an
electromagnetic field of sufficient magnitude to write and read properly. The nar-
rower the head is, the closer it must be to the platter surface to function. A narrower
head means narrower tracks and therefore greater data density, which is desirable.

Figure J.3  Components of a Disk Drive

Surface 2

Surface 1

Surface 0

Surface 4

Surface 3

Surface 6

Surface 5

Surface 8

Surface 7

Platter

Spindle Boom

Read/write head (1 per surface) Direction of
arm motion

Surface 9

Z15_STAL4290_09_GE_APPJ.indd 5 4/18/17 7:32 AM

J-6   APPENDIX J / DISK STORAGE DEVICES

However, the closer the head is to the disk, the greater the risk of error from impuri-
ties or imperfections. To push the technology further, the Winchester disk was devel-
oped. Winchester heads are used in sealed drive assemblies that are almost free of
contaminants. They are designed to operate closer to the disk’s surface than conven-
tional rigid disk heads, thus allowing greater data density. The head is actually an
aerodynamic foil that rests lightly on the platter’s surface when the disk is motionless.
The air pressure generated by a spinning disk is enough to make the foil rise above
the surface. The resulting noncontact system can be engineered to use narrower heads
that operate closer to the platter’s surface than conventional rigid disk heads.

Table J.2 gives disk parameters for typical contemporary high-performance disks.

	 J.2	 OPTICAL MEMORY

In 1983, one of the most successful consumer products of all time was introduced: the
compact disk (CD) digital audio system. The CD is a nonerasable disk that can store
more than 60 minutes of audio information on one side. The huge commercial success
of the CD enabled the development of low-cost optical-disk storage technology that
has revolutionized computer data storage. A variety of optical-disk systems are in use
(see Table J.3). We briefly review each of these.

CD-ROM

The audio CD and the CD-ROM (compact disk read-only memory) share a similar
technology. The main difference is that CD-ROM players are more rugged and have
error-correction devices to ensure data are properly transferred from disk to

Figure J.4  Tracks and Cylinders

Z15_STAL4290_09_GE_APPJ.indd 6 4/18/17 7:32 AM

J.2 / OPTICAL MEMORY   J-7

computer. Both types of disk are made in the same way. The disk is formed from a
resin, such as polycarbonate. Digitally recorded information (either music or com-
puter data) is imprinted as a series of microscopic pits on the surface of the poly-
carbonate. This is done, first of all, with a finely focused, high-intensity laser to create
a master disk. The master is used, in turn, to make a die to stamp out copies onto
polycarbonate. The pitted surface is then coated with a highly reflective surface,
usually aluminum or gold. This shiny surface is protected against dust and scratches
by a top coat of clear acrylic. Finally, a label can be silkscreened onto the acrylic.

Information is retrieved from a CD or CD-ROM by a low-powered laser
housed in an optical-disk player, or drive unit. The laser shines through the clear
polycarbonate while a motor spins the disk past it (see Figure J.5). The intensity of
the reflected light of the laser changes as it encounters a pit. Specifically, if the laser
beam falls on a pit, which has a somewhat rough surface, the light scatters and a low
intensity is reflected back to the source. The areas between pits are called lands. A
land is a smooth surface, which reflects back at higher intensity. The change between
pits and lands is detected by a photosensor and converted into a digital signal. The
sensor tests the surface at regular intervals. The beginning or end of a pit represents
a 1; when no change in elevation occurs between intervals, a 0 is recorded.

Recall that on a magnetic disk, information is recorded in concentric tracks. With
the simplest CAV system, the number of bits per track is constant. An increase in
density is achieved with multiple zoned recording, in which the surface is divided into
a number of zones, with zones farther from the center containing more bits than zones
closer to the center. Although this technique increases capacity, it is still not optimal.

To achieve greater capacity, CDs and CD-ROMs do not organize information
on concentric tracks. Instead, the disk contains a single spiral track, beginning near

Table J.2  Typical Hard Disk Drive Parameters

Characteristics

Seagate
Barracuda
ES.2

Seagate
Barracuda
7200.10

Seagate
Barracuda
7200.9 Seagate

Hitachi
Microdrive

Application High-capacity
server

High-performance
desktop

Entry-level
desktop

Laptop Handheld
devices

Capacity 1 TB 750 GB 160 GB 120 GB 8 GB

Minimum track-to-
track seek time

0.8 ms 0.3 ms 1.0 ms — 1.0 ms

Average seek time 8.5 ms 3.6 ms 9.5 ms 12.5 ms 12 ms

Spindle speed 7200 rpm 7200 rpm 7200 5400 rpm 3600 rpm

Average rotational
delay

4.16 ms 4.16 ms 4.17 ms 5.6 ms 8.33 ms

Maximum transfer
rate

3 GB/s 300 MB/s 300 MB/s 150 MB/s 10 MB/s

Bytes per sector 512 512 512 512 512

Tracks per cylinder
(number of platter
surfaces)

8 8 2 8 2

Z15_STAL4290_09_GE_APPJ.indd 7 4/18/17 7:32 AM

J-8   APPENDIX J / DISK STORAGE DEVICES

the center and spiraling out to the outer edge of the disk. Sectors near the outside of
the disk are the same length as those near the inside. Thus, information is packed
evenly across the disk in segments of the same size, and these are scanned at the same
rate by rotating the disk at a variable speed. The pits are then read by the laser at a
constant linear velocity (CLV). The disk rotates more slowly for accesses near the
outer edge than for those near the center. Thus, the capacity of a track and the rota-
tional delay both increase for positions nearer the outer edge of the disk. The data
capacity for a CD-ROM is about 680 MB.

CD-ROM is appropriate for the distribution of large amounts of data to a large
number of users. Because of the expense of the initial writing process, it is not appro-
priate for individualized applications. Compared with traditional magnetic disks, the
CD-ROM has three major advantages:

•	 The information-storage capacity is much greater on the optical disk.

•	 The optical disk together with the information stored on it can be mass repli-
cated inexpensively—unlike a magnetic disk. The data on a magnetic disk has
to be reproduced by copying one disk at a time using two disk drives.

•	 The optical disk is removable, allowing the disk itself to be used for archival
storage. Most magnetic disks are nonremovable. The information on nonremov-
able magnetic disks must first be copied to some other storage device before
the disk drive/disk can be used to store new information.

The disadvantages of CD-ROM are as follows:

•	 It is read-only and cannot be updated.

•	 It has an access time much longer than that of a magnetic disk drive, as much
as half a second.

CD Recordable

To accommodate applications in which only one or a small number of copies of a
set of data is needed, the write-once read-many CD, known as the CD recordable
(CD-R) has been developed. For CD-R, a disk is prepared in such a way that it can

Figure J.5  CD Operation

Polycarbonate
plastic

Protective
acrylic

Aluminum

Laser transmit/
receive

Pit
Land

Label

Z15_STAL4290_09_GE_APPJ.indd 8 4/18/17 7:32 AM

J.2 / OPTICAL MEMORY   J-9

be subsequently written once with a laser beam of modest intensity. Thus, with a
somewhat more expensive disk controller than for CD-ROM, the customer can write
once as well as read the disk.

The CD-R medium is similar to, but not identical to, that of a CD or CD-ROM.
For CDs and CD-ROMs, information is recorded by the pitting of the surface of the
medium, which changes reflectivity. For a CD-R, the medium includes a dye layer.
The dye is used to change reflectivity and is activated by a high-intensity laser. The
resulting disk can be read on a CD-R drive or a CD-ROM drive.

The CD-R optical disk is attractive for archival storage of documents and files.
It provides a permanent record of large volumes of user data.

CD Rewritable

The CD-RW optical disk can be repeatedly written and overwritten, as with a mag-
netic disk. Although a number of approaches have been tried, the only pure optical
approach that has proved attractive is called phase change. The phase change disk
uses a material that has two significantly different reflectivities in two different phase
states. There is an amorphous state, in which the molecules exhibit a random orienta-
tion that reflects light poorly; and a crystalline state, which has a smooth surface that
reflects light well. A beam of laser light can change the material from one phase to
the other. The primary disadvantage of phase change optical disks is that the material
eventually and permanently loses its desirable properties. Current materials can be
used for between 500,000 and 1,000,000 erase cycles.

The CD-RW has the obvious advantage over CD-ROM and CD-R that it can
be rewritten and thus used as a true secondary storage. As such, it competes with
magnetic disk. A key advantage of the optical disk is that the engineering tolerances
for optical disks are much less severe than for high-capacity magnetic disks. Thus,
optical disks exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last
found an acceptable replacement for the analog VHS video tape. The DVD will
replace the video tape used in video cassette recorders (VCRs) and, more impor-
tant for this discussion, replace the CD-ROM in personal computers and servers.
The DVD takes video into the digital age. It delivers movies with impressive pic-
ture quality, and it can be randomly accessed like audio CDs, which DVD machines
can also play. Vast volumes of data can be crammed onto the disk, currently seven
times as much as a CD-ROM. With DVD’s huge storage capacity and vivid quality,
PC games will become more realistic, and educational software will incorporate
more video. Following in the wake of these developments will be a new crest of
traffic over the Internet and corporate intranets, as this material is incorporated
into websites.

The DVD’s greater capacity is due to three differences from CDs:

1.	 Bits are packed more closely on a DVD. The spacing between loops of a spiral on
a CD is 1.6 mm and the minimum distance between pits along the spiral is
0.834 mm. The DVD uses a laser with shorter wavelength and achieves a loop

Z15_STAL4290_09_GE_APPJ.indd 9 4/18/17 7:32 AM

J-10   APPENDIX J / DISK STORAGE DEVICES

spacing of 0.74 mm and a minimum distance between pits of 0.4 mm. The result of
these two improvements is about a sevenfold increase in capacity, to about 4.7 GB.

2.	 The DVD employs a second layer of pits and lands on top of the first layer. A
dual-layer DVD has a semireflective layer on top of the reflective layer, and by
adjusting focus, the lasers in DVD drives can read each layer separately. This
technique almost doubles the capacity of the disk, to about 8.5 GB. The lower
reflectivity of the second layer limits its storage capacity so a full doubling is
not achieved.

3.	 The DVD-ROM can be two sided, whereas data are recorded on only one side
of a CD. This brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as read-only versions (see
Table J.3).

High-Definition Optical Disks

High-definition optical disks are designed to store high-definition videos and to pro-
vide significantly greater storage capacity compared to DVDs. The higher bit density
is achieved by using a laser with a shorter wavelength, in the blue-violet range. The
data pits, which constitute the digital 1s and 0s, are smaller on the high-definition
optical disks compared to DVD because of the shorter laser wavelength.

Table J.3  Optical Disk Products

CD

  Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses 12-cm
disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM

  Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The standard system
uses 12-cm disks and can hold more than 650 Mbytes.

CD-R

  CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.

CD-RW

  CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD

  Digital Versatile Disk. A technology for producing digitized, compressed representation of video informa-
tion, as well as large volumes of other digital data. Both 8- and 12-cm diameters are used, with a double-sided
capacity of up to 17 GB. The basic DVD is read-only (DVD-ROM).

DVD-R

  DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided disks
can be used.

DVD-RW

  DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times. Only
one-sided disks can be used.

Blu-Ray DVD

  High definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm
(blue-violet) laser. A single layer on a single side can store 25 GB.

Z15_STAL4290_09_GE_APPJ.indd 10 4/18/17 7:32 AM

J.2 / OPTICAL MEMORY   J-11

Two disk formats and technologies initially competed for market acceptance:
HD DVD and Blu-ray DVD. The Blu-ray scheme ultimately achieved market domi-
nance. The HD DVD scheme can store 15 GB on a single layer on a single side.
Blu-ray positions the data layer on the disk closer to the laser (shown on the right-
hand side of each diagram in Figure J.6). This enables a tighter focus and less distor-
tion and thus smaller pits and tracks. Blu-ray can store 25 GB on a single layer. Three
versions are available: read only (BD-ROM), recordable once (BD-R), and rerecord-
able (BD-RE).

Figure J.6  Optical Memory Characteristics

Beam spot Land
Data layer

laser wavelength
= 780 nm

CD 2.11 µm

1.2 µmPit

Track

405 nm

Blu-ray

0.1 µm

0.58 µm

650 nm

DVD

0.6 µm

1.32 µm

Z15_STAL4290_09_GE_APPJ.indd 11 4/18/17 7:32 AM

K-1

Appendix K
Cryptographic Algorithms

K.1	 Symmetric Encryption
The Data Encryption Standard (DES)
Advanced Encryption Standard (AES)

K.2	 Public-Key Cryptography
Rivest-Shamir-Adleman (RSA) Algorithm

K.3	 Message Authentication and Hash Functions
Authentication Using Symmetric Encryption
Message Authentication without Message Encryption
Message Authentication Code
One-Way Hash Function

K.4	 Secure Hash Functions

Z16_STAL4290_09_GE_APPK.indd 1 4/18/17 7:33 AM

K-2   Appendix K / Cryptographic Algorithms

The essential technology underlying virtually all automated network and computer
security applications is cryptography. Two fundamental approaches are in use: sym-
metric encryption, also known as conventional encryption, and public-key encryption,
also known as asymmetric encryption. This appendix provides an overview of both
types of encryption, together with a brief discussion of some important encryption
algorithms.

	 K.1	 SYMMETRIC ENCRYPTION

Symmetric encryption was the only type of encryption in use prior to the introduction
of public-key encryption in the late 1970s. Symmetric encryption has been used for
secret communication by countless individuals and groups, from Julius Caesar to the
German U-boat force to present-day diplomatic, military, and commercial users. It
remains by far the more widely used of the two types of encryption.

A symmetric encryption scheme has five ingredients (see Figure K.1):

•	 Plaintext: This is the original message or data that is fed into the algorithm as
input.

•	 Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

•	 Secret key: The secret key is also input to the encryption algorithm. The exact
substitutions and transformations performed by the algorithm depend on
the key.

•	 Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

•	 Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

Figure K.1  Simplified Model of Symmetric Encryption

Plaintext
input

Y = E[K, X] X = D[K, Y]

X

K K

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., AES)

Decryption algorithm
(reverse of encryption

algorithm)

Z16_STAL4290_09_GE_APPK.indd 2 4/18/17 7:33 AM

K.1 / SYMMETRIC ENCRYPTION   K-3

There are two requirements for secure use of symmetric encryption:

1.	 We need a strong encryption algorithm. At a minimum, we would like the algo-
rithm to be such that an opponent who knows the algorithm and has access to
one or more ciphertexts would be unable to decipher the ciphertext or figure
out the key. This requirement is usually stated in a stronger form: The opponent
should be unable to decrypt ciphertext or discover the key, even if he or she is
in possession of a number of ciphertexts together with the plaintext that pro-
duced each ciphertext.

2.	 Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

There are two general approaches to attacking a symmetric encryption scheme.
The first attack is known as cryptanalysis. Cryptanalytic attacks rely on the nature of
the algorithm plus perhaps some knowledge of the general characteristics of the plain-
text or even some sample plaintext-ciphertext pairs. This type of attack exploits the
characteristics of the algorithm to attempt to deduce a specific plaintext or to deduce
the key being used. If the attack succeeds in deducing the key, the effect is cata-
strophic: All future and past messages encrypted with that key are compromised.

The second method, known as the brute-force attack, is to try every possible
key on a piece of ciphertext until an intelligible translation into plaintext is obtained.
On average, half of all possible keys must be tried to achieve success. Table K.1 shows
how much time is involved for various key sizes. The table shows results for each key
size, assuming it takes 1 ms to perform a single decryption, a reasonable order of
magnitude for today’s computers. With the use of massively parallel organizations of
microprocessors, it may be possible to achieve processing rates many orders of mag-
nitude greater. The final column of the table considers the results for a system that
can process 1 million keys per microsecond. As one can see, at this performance level,
a 56-bit key can no longer be considered computationally secure.

The most commonly used symmetric encryption algorithms are block ciphers.
A block cipher processes the plaintext input in fixed-size blocks and produces a block
of ciphertext of equal size for each plaintext block. The two most important sym-
metric algorithms, both of which are block ciphers, are the Data Encryption Standard
(DES) and the Advanced Encryption Standard (AES).

Table K.1  Average Time Required for Exhaustive Key Search

Key Size (bits)
Number of Alternative
Keys

Time Required at
1 Decryption/Ms

Time Required at
106 Decryptions/Ms

32 232 = 4.3 * 109 231 ms = 35.8 minutes 2.15 milliseconds

56 256 = 7.2 * 1016 255 ms = 1142 years 10.01 hours

128 2128 = 3.4 * 1038 2127 ms = 5.4 * 1024 years 5.4 * 1018 years

168 2168 = 3.7 * 1050 2167 ms = 5.9 * 1036 years 5.9 * 1030 years

26 characters
(permutation)

26! = 4 * 1026 2 * 1026 ms = 6.4 * 1012 years 6.4 * 106 years

Z16_STAL4290_09_GE_APPK.indd 3 4/18/17 7:33 AM

K-4   Appendix K / Cryptographic Algorithms

The Data Encryption Standard (DES)

DES has been the dominant encryption algorithm since its introduction in 1977. How-
ever, because DES uses only a 56-bit key, it was only a matter of time before com-
puter processing speed made DES obsolete. In 1998, the Electronic Frontier
Foundation (EFF) announced that it had broken a DES challenge using a special-
purpose “DES cracker” machine that was built for less than $250,000. The attack took
less than three days. The EFF has published a detailed description of the machine,
enabling others to build their own cracker. And, of course, hardware prices continue
to drop as speeds increase, making DES worthless.

The life of DES was extended by the use of triple DES (3DES), which involves
repeating the basic DES algorithm three times, using either two or three unique keys,
for a key size of 112 or 168 bits.

The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. A secondary drawback is that both DES and 3DES use a 64-bit block size.
For reasons of both efficiency and security, a larger block size is desirable.

Advanced Encryption Standard

Because of these drawbacks, 3DES is not a reasonable candidate for long-term use.
As a replacement, the National Institute of Standards and Technology (NIST) in 1997
issued a call for proposals for a new Advanced Encryption Standard (AES), which
should have a security strength equal to or better than 3DES and significantly
improved efficiency. In addition to these general requirements, NIST specified that
AES must be a symmetric block cipher with a block length of 128 bits and support for
key lengths of 128, 192, and 256 bits. Evaluation criteria include security, computa-
tional efficiency, memory requirements, hardware and software suitability, and flexibil-
ity. In 2001, NIST issued AES as a federal information processing standard (FIPS 197).

	 K.2	 PUBLIC-KEY CRYPTOGRAPHY

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976, is the
first truly revolutionary advance in encryption in literally thousands of years. For one
thing, public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns. More important, public-key cryptography is asym-
metric, involving the use of two separate keys, in contrast to symmetric encryption,
which uses only one key. The use of two keys has profound consequences in the areas
of confidentiality, key distribution, and authentication.

Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than symmetric encryption. In fact, the security of any encryption
scheme depends on the length of the key and the computational work involved in
breaking a cipher. There is nothing in principle about either symmetric or public-key
encryption that makes one superior to another from the point of view of resisting
cryptanalysis. A second misconception is that public-key encryption is a general-
purpose technique that has made symmetric encryption obsolete. On the contrary,
because of the computational overhead of current public-key encryption schemes,

Z16_STAL4290_09_GE_APPK.indd 4 4/18/17 7:33 AM

K.2 / PUBLIC-KEY CRYPTOGRAPHY   K-5

there seems no foreseeable likelihood that symmetric encryption will be abandoned.
Finally, there is a feeling that key distribution is trivial when using public-key encryp-
tion, compared to the rather cumbersome handshaking involved with key distribution
centers for symmetric encryption. In fact, some form of protocol is needed, often
involving a central agent, and the procedures involved are no simpler or any more
efficient than those required for symmetric encryption.

A public-key encryption scheme has six ingredients (see Figure K.2):

•	 Plaintext: This is the readable message or data that is fed into the algorithm as
input.

•	 Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

•	 Public and private key: This is a pair of keys that have been selected so if one
is used for encryption, the other is used for decryption. The exact transforma-
tions performed by the encryption algorithm depend on the public or private
key that is provided as input.

•	 Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

•	 Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

The process works (produces the correct plaintext on output) regardless of the
order in which the pair of keys is used. As the names suggest, the public key of the
pair is made public for others to use, while the private key is known only to its owner.

Now, say Bob wants to send a private message to Alice, and suppose that he has
Alice’s public key and Alice has the matching private key (see Figure K.2a). Using
Alice’s public key, Bob encrypts the message to produce ciphertext. The ciphertext is
then transmitted to Alice. When Alice gets the ciphertext, she decrypts it using her
private key. Because only Alice has a copy of her private key, no one else can read
the message.

Public-key encryption can be used in another way, as illustrated in Figure K.2b.
Suppose Bob wants to send a message to Alice and, although it isn’t important that
the message be kept secret, he wants Alice to be certain that the message is indeed
from him. In this case Bob uses his own private key to encrypt the message. When
Alice receives the ciphertext, she finds that she can decrypt it with Bob’s public key,
thus proving that the message must have been encrypted by Bob: No one else has
Bob’s private key, and therefore no one else could have created a ciphertext that
could be decrypted with Bob’s public key.

A general-purpose public-key cryptographic algorithm relies on one key for
encryption and a different but related key for decryption. Furthermore, these algo-
rithms have the following important characteristics:

•	 It is computationally infeasible to determine the decryption key given only
knowledge of the cryptographic algorithm and the encryption key.

•	 Either of the two related keys can be used for encryption, with the other used
for decryption.

Z16_STAL4290_09_GE_APPK.indd 5 4/18/17 7:33 AM

K-6   Appendix K / Cryptographic Algorithms

The essential steps are the following:

1.	 Each user generates a pair of keys to be used for the encryption and decryption
of messages.

2.	 Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private. As Figure K.2a sug-
gests, each user maintains a collection of public keys obtained from others.

Figure K.2  Public-Key Cryptography

Plaintext
input

Bobs's
public key

ring

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm
(reverse of encryption

algorithm)

Joy

Mike

Mike Bob

Ted

Alice

Alice's public
key

Alice's private
key

(a) Encryption with public key

Plaintext
input

Transmitted
ciphertext

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm
(reverse of encryption

algorithm)

Bob's private
key

Bob's public
key

Alice's
public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =
D[PRa, Y]

X =
D[PUb, Y]

Z16_STAL4290_09_GE_APPK.indd 6 4/18/17 7:33 AM

K.3 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS   K-7

3.	 If Bob wishes to send a private message to Alice, Bob encrypts the message
using Alice’s public key.

4.	 When Alice receives the message, she decrypts it using her private key. No other
recipient can decrypt the message because only Alice knows her own private key.

With this approach, all participants have access to public keys, and private keys
are generated locally by each participant and therefore need never be distributed. As
long as a user protects his or her private key, incoming communication is secure. At
any time, a user can change the private key and publish the companion public key to
replace the old public key.

The key used in symmetric encryption is typically referred to as a secret key.
The two keys used for public-key encryption are referred to as the public key and the
private key. Invariably, the private key is kept secret, but it is referred to as a private
key rather than a secret key to avoid confusion with symmetric encryption.

Rivest-Shamir-Adleman (RSA) Algorithm

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi Shamir,
and Len Adleman at MIT. The RSA scheme has since that time reigned supreme as
the only widely accepted and implemented approach to public-key encryption. RSA
is a cipher in which the plaintext and ciphertext are integers between 0 and n - 1 for
some n. Encryption involves modular arithmetic. The strength of the algorithm is
based on the difficulty of factoring numbers into their prime factors.

	 K.3	 MESSAGE AUTHENTICATION AND HASH FUNCTIONS

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and came from its alleged source. Message authentication is a
procedure that allows communicating parties to verify that received messages are
authentic. The two important aspects are to verify that the contents of the message
have not been altered, and that the source is authentic. We may also wish to verify a
message’s timeliness (it has not been artificially delayed and replayed) and sequence
relative to other messages flowing between two parties.

Authentication Using Symmetric Encryption

It is possible to perform authentication simply by the use of symmetric encryption.
If we assume only the sender and receiver share a key (which is as it should be), then
only the genuine sender would be able successfully to encrypt a message for the other
participant. Furthermore, if the message includes an error-detection code and a
sequence number, the receiver is assured no alterations have been made and sequenc-
ing is proper. If the message also includes a timestamp, the receiver is assured that
the message has not been delayed beyond that normally expected for network
transit.

Z16_STAL4290_09_GE_APPK.indd 7 4/18/17 7:33 AM

K-8   Appendix K / Cryptographic Algorithms

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do not
rely on message encryption. In all of these approaches, an authentication tag is gener-
ated and appended to each message for transmission. The message itself is not
encrypted and can be read at the destination independent of the authentication func-
tion at the destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. Because symmetric encryption will provide
authentication, and because it is widely used with readily available products, why not
simply use such an approach, which provides both confidentiality and authentication?
Here are three situations in which message authentication without confidentiality is
preferable:

1.	 There are a number of applications in which the same message is broadcast to
a number of destinations. An example is the notification to users that the
network is now unavailable or an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication tag. The responsible system performs authentica-
tion. If a violation occurs, the other destination systems are alerted by a
general alarm.

2.	 Another possible scenario is an exchange in which one side has a heavy load
and cannot afford the time to decrypt all incoming messages. Authentication
is carried out on a selective basis, with messages chosen at random for
checking.

3.	 Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message authen-
tication tag were attached to the program, it could be checked whenever assur-
ance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.

Message Authentication Code

One authentication technique involves the use of a secret key to generate a small
block of data, known as a message authentication code, that is appended to the mes-
sage. This technique assumes that two communicating parties, say A and B, share a
common secret key KAB. When A has a message M to send to B, it calculates the
message authentication code as a function of the message and the key:
MACM = F(KAB, M). The message plus code are transmitted to the intended recipi-
ent. The recipient performs the same calculation on the received message, using the
same secret key, to generate a new message authentication code. The received code
is compared to the calculated code (see Figure K.3). If we assume only the receiver

Z16_STAL4290_09_GE_APPK.indd 8 4/18/17 7:33 AM

K.3 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS   K-9

and the sender know the identity of the secret key, and if the received code matches
the calculated code, then:

1.	 The receiver is assured the message has not been altered. If an attacker alters
the message but does not alter the code, then the receiver’s calculation of the
code will differ from the received code. Because the attacker is assumed not to
know the secret key, the attacker cannot alter the code to correspond to the
alterations in the message.

2.	 The receiver is assured the message is from the alleged sender. Because no one
else knows the secret key, no one else could prepare a message with a proper
code.

3.	 If the message includes a sequence number (such as is used with X.25, HDLC,
and TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The National
Bureau of Standards, in its publication DES Modes of Operation, recommends the
use of DES. DES is used to generate an encrypted version of the message, and the last
number of bits of ciphertext are used as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. It turns
out that because of the mathematical properties of the authentication function, it is
less vulnerable to being broken than encryption.

Figure K.3  Message Authentication Using a Message Authentication Code (MAC)

Message

MAC

K

K

Transmit

MAC
algorithm

MAC
algorithm

Compare

Z16_STAL4290_09_GE_APPK.indd 9 4/18/17 7:33 AM

K-10   Appendix K / Cryptographic Algorithms

One-Way Hash Function

A variation on the message authentication code that has received much attention is
the one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size message digest
H(M) as output. Unlike the MAC, a hash function does not also take a secret key as
input. To authenticate a message, the message digest is sent with the message in such
a way that the message digest is authentic.

Figure K.4 illustrates three ways in which the message can be authenticated.
The message digest can be encrypted using symmetric encryption (part a); if it is
assumed only the sender and receiver share the encryption key, then authenticity is
assured. The message digest can also be encrypted using public-key encryption (part
b). The public-key approach has two advantages: it provides a digital signature as well
as message authentication, and it does not require the distribution of keys to com-
municating parties.

These two approaches have an advantage over approaches that encrypt the
entire message in that less computation is required. Nevertheless, there has been
interest in developing a technique that avoids encryption altogether. Several reasons
for this interest are as follows:

•	 Encryption software is somewhat slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

•	 Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

•	 Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation
overhead.

•	 Encryption algorithms may be covered by patents and must be licensed, adding
a cost.

•	 Encryption algorithms may be subject to export control.

Figure K.4c shows a technique that uses a hash function but no encryption for
message authentication. This technique assumes that two communicating parties, say
A and B, share a common secret value SAB. When A has a message to send to B, it
calculates the hash function over the concatenation of the secret value and the mes-
sage: MDM = H(SAB � �M).1 It then sends [M � �MDM] to B. Because B possesses SAB,
it can recompute H(SAB � �M) and verify MDM. Because the secret value itself is not
sent, it is not possible for an attacker to modify an intercepted message. As long as
the secret value remains secret, it is also not possible for an attacker to generate a
false message.

This third technique, using a shared secret value, is the one adopted for IP
security; it has also been specified for SNMPv3.

1 � � denotes concatenation.

Z16_STAL4290_09_GE_APPK.indd 10 4/18/17 7:33 AM

K.4 / SECURE HASH FUNCTIONS   K-11

	 K.4	 SECURE HASH FUNCTIONS

An essential element of many security services and applications is a secure hash
function. A hash function accepts a variable-size message M as input and pro-
duces a fixed-size tag H(M), sometimes called a message digest, as output. For a
digital signature, a hash code is generated for a message, encrypted with the
sender’s private key, and sent with the message. The receiver computes a new hash
code for the incoming message, decrypts the hash code with the sender’s public
key and compares. If the message has been altered in transit, there will be a
mismatch.

Figure K.4  Message Authentication Using a One-Way Hash Function

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

K

E

K

(a) Using conventional encryption

Compare

D

H

H

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Kprivate

E

Kpublic

(b) Using public-key encryption

Compare

D

H

H

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

(c) Using secret value

CompareH

H

SS

Z16_STAL4290_09_GE_APPK.indd 11 4/18/17 7:33 AM

K-12   Appendix K / Cryptographic Algorithms

To be useful for security applications, a hash function H must have the following
properties:

1.	 H can be applied to a block of data of any size.

2.	 H produces a fixed-length output.

3.	 H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4.	 For any given value h, it is computationally infeasible to find x such that
H(x) = h. This is sometimes referred to in the literature as the one-way
property.

5.	 For any given block x, it is computationally infeasible to find y ≠ x such that
H(y) = H(x). This is sometimes referred to as weak collision resistance.

6.	 It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
This is sometimes referred to as strong collision resistance.

In recent years, the most widely used hash function has been the Secure Hash
Algorithm (SHA). SHA was developed by the NIST and published as a federal infor-
mation processing standard (FIPS 180) in 1993. When weaknesses were discovered
in SHA, a revised version was issued as FIPS 180-1 in 1995 and is generally referred
to as SHA-1. SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a
revised version of the standard, FIPS 180-2, that defined three new versions of SHA,
with hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and
SHA-512. These new versions have the same underlying structure and use the same
types of modular arithmetic and logical binary operations as SHA-1. In 2005, NIST
announced the intention to phase out approval of SHA-1 and move to a reliance on
the other SHA versions by 2010. Researchers have demonstrated that SHA-1 is far
weaker than its 160-bit hash length suggests, necessitating the move to the newer
versions of SHA.

Z16_STAL4290_09_GE_APPK.indd 12 4/18/17 7:33 AM

L-1

Appendix L
Standards Organizations

L.1	 The Importance of Standards

L.2	 Standards and Regulation

L.3	 Standards-Setting Organizations
Internet Standards and the Internet Society
The International Telecommunication Union
IEEE 802 Committee
The International Organization for Standardization

Z17_STAL4290_09_GE_APPL.indd 1 4/18/17 7:34 AM

L-2   Appendix L / Standards Organizations

An important concept that recurs frequently in this book is standards. This appen-
dix provides some background on the nature and relevance of standards and looks
at the key organizations involved in developing standards for networking and
communications.

	 L.1	 THE IMPORTANCE OF STANDARDS

It has long been accepted in the telecommunications industry that standards are
required to govern the physical, electrical, and procedural characteristics of commu-
nication equipment. In the past, this view has not been embraced by the computer
industry. Whereas communication equipment vendors recognize that their equipment
will generally interface to and communicate with other vendors’ equipment, com-
puter vendors have traditionally attempted to monopolize their customers. The pro-
liferation of computers and distributed processing has made that an untenable
position. Computers from different vendors must communicate with each other and,
with the ongoing evolution of protocol standards, customers will no longer accept
special-purpose protocol conversion software development. The result is that stan-
dards now permeate all the areas of technology discussed in this book.

There are a number of advantages and disadvantages to the standards-making
process. The principal advantages of standards are:

•	 A standard assures there will be a large market for a particular piece of equip-
ment or software. This encourages mass production and, in some cases, the use
of large-scale-integration (LSI) or very-large-scale-integration (VLSI) tech-
niques, resulting in lower costs.

•	 A standard allows products from multiple vendors to communicate, giving the
purchaser more flexibility in equipment selection and use.

The principal disadvantages of standards are:

•	 A standard tends to freeze the technology. By the time a standard is developed,
subjected to review and compromise, and promulgated, more efficient tech-
niques are possible.

•	 There are multiple standards for the same thing. This is not a disadvantage of
standards per se, but of the current way things are done. Fortunately, in recent
years the various standards-making organizations have begun to cooperate
more closely. Nevertheless, there are still areas where multiple conflicting stan-
dards exist.

	 L.2	 STANDARDS AND REGULATION

It is helpful for the reader to distinguish three concepts:

•	 Voluntary standards

•	 Regulatory standards

•	 Regulatory use of voluntary standards

Z17_STAL4290_09_GE_APPL.indd 2 4/18/17 7:34 AM

L.3 / STANDARDS-SETTING ORGANIZATIONS   L-3

Voluntary standards are developed by standards-making organizations, such as
those described in the next section. They are voluntary in that the existence of the
standard does not compel its use. That is, manufacturers voluntarily implement a prod-
uct that conforms to a standard if they perceive a benefit to themselves; there is no
legal requirement to conform. These standards are also voluntary in the sense that they
are developed by volunteers who are not paid for their efforts by the standards-making
organization that administers the process. These volunteers are generally employees
of interested organizations, such as manufacturers and government agencies.

Voluntary standards work because they are generally developed on the basis
of broad consensus, and because the customer demand for standard products encour-
ages the implementation of these standards by the vendors.

In contrast, a regulatory standard is developed by a government regulatory
agency to meet some public objective, such as economic, health, and safety objectives.
These standards have the force of regulation behind them and must be met by provid-
ers in the context in which the regulations apply. Familiar examples of regulatory
standards are in areas such as fire codes and health codes. But regulations can apply
to a wide variety of products, including those related to computers and communica-
tions. For example, the Federal Communications Commission regulates electromag-
netic emissions.

A relatively new, or at least newly prevalent, phenomenon is the regulatory use
of voluntary standards. A typical example of this is a regulation that requires that the
government purchase of a product be limited to those that conform to some refer-
enced set of voluntary standards. This approach has a number of benefits:

•	 It reduces the rule-making burden on government agencies.

•	 It encourages cooperation between government and standards organizations
to produce standards of broad applicability.

•	 It reduces the variety of standards that providers must meet.

	 L.3	 STANDARDS-SETTING ORGANIZATIONS

Various organizations have been involved in the development of standards related
to data and computer communications. The remainder of this document provides an
overview of some of the most important of these organizations:

•	 Internet Society

•	 ITU

•	 IEEE 802

•	 ISO

Internet Standards and the Internet Society

Many of the protocols that make up the TCP/IP protocol suite have been standard-
ized or are in the process of standardization. By universal agreement, an organization
known as the Internet Society is responsible for the development and publication of
these standards. The Internet Society is a professional membership organization that

Z17_STAL4290_09_GE_APPL.indd 3 4/18/17 7:34 AM

L-4   Appendix L / Standards Organizations

oversees a number of boards and task forces involved in Internet development and
standardization.

This section provides a brief description of the way in which standards for the
TCP/IP protocol suite are developed.

The Internet Organizations and RFC Publication  The Internet Society is
the coordinating committee for Internet design, engineering, and management. Areas
covered include the operation of the Internet itself and the standardization of
protocols used by end systems on the Internet for interoperability. Three organizations
under the Internet Society are responsible for the actual work of standards
development and publication:

•	 Internet Architecture Board (IAB): Responsible for defining the overall archi-
tecture of the Internet, providing guidance and broad direction to the IETF

•	 Internet Engineering Task Force (IETF): The protocol engineering and devel-
opment arm of the Internet

•	 Internet Engineering Steering Group (IESG): Responsible for technical man-
agement of IETF activities and the Internet standards process

Working groups chartered by the IETF carry out the actual development of
new standards and protocols for the Internet. Membership in a working group is
voluntary; any interested party may participate. During the development of a speci-
fication, a working group will make a draft version of the document available as an
Internet Draft, which is placed in the IETF’s “Internet Drafts” online directory. The
document may remain as an Internet Draft for up to six months, and interested
parties may review and comment on the draft. During that time, the IESG may
approve publication of the draft as an RFC (Request for Comment). If the draft
has not progressed to the status of an RFC during the six-month period, it is with-
drawn from the directory. The working group may subsequently publish a revised
version of the draft.

The IETF is responsible for publishing the RFCs, with approval of the IESG.
The RFCs are the working notes of the Internet research and development commu-
nity. A document in this series may be on essentially any topic related to computer
communications and may be anything from a meeting report to the specification of
a standard.

The work of the IETF is divided into eight areas, each with an area director and
each composed of numerous working groups. Table L.1 shows the IETF areas and
their focus.

The Standardization Process  The decision of which RFCs become Internet
standards is made by the IESG, on the recommendation of the IETF. To become a
standard, a specification must meet the following criteria:

•	 Be stable and well understood

•	 Be technically competent

•	 Have multiple, independent, and interoperable implementations with substan-
tial operational experience

Z17_STAL4290_09_GE_APPL.indd 4 4/18/17 7:34 AM

L.3 / STANDARDS-SETTING ORGANIZATIONS   L-5

•	 Enjoy significant public support

•	 Be recognizably useful in some or all parts of the Internet

The key difference between these criteria and those used for international stan-
dards from ITU is the emphasis here on operational experience.

The left-hand side of Figure L.1 shows the series of steps, called the standards
track, that a specification goes through to become a standard; this process is defined
in RFC 2026. The steps involve increasing amounts of scrutiny and testing. At each
step, the IETF must make a recommendation for advancement of the protocol, and
the IESG must ratify it. The process begins when the IESG approves the publica-
tion of an Internet Draft document as an RFC with the status of Proposed
Standard.

The white boxes in the diagram represent temporary states, which should be
occupied for the minimum practical time. However, a document must remain a Pro-
posed Standard for at least six months and a Draft Standard for at least four months
to allow time for review and comment. The shaded boxes represent long-term states
that may be occupied for years.

Table L.1  IETF Areas

IETF Area Theme Example Working Groups

Applications Internet applications Web-related protocols (HTTP)
EDI-Internet integration
LDAP

General IETF processes and procedures Policy Framework
Process for Organization of
Internet Standards

Internet Internet infrastructure IPv6
PPP extensions

Operations and management Standards and definitions for net-
work operations

SNMPv3
Remote Network Monitoring

Real-time applications and
infrastructure

Protocols and applications for real-
time requirements

Real-time Transport Protocol (RTP)
Session Initiation Protocol (SIP)

Routing Protocols and management for
routing information

Multicast routing
OSPF
QoS routing

Security Security protocols and
technologies

Kerberos
IPSec
X.509
S/MIME
TLS

Transport Transport layer protocols Differentiated services
IP telephony
NFS
RSVP

Z17_STAL4290_09_GE_APPL.indd 5 4/18/17 7:34 AM

L-6   Appendix L / Standards Organizations

For a specification to be advanced to Draft Standard status, there must be at
least two independent and interoperable implementations from which adequate
operational experience has been obtained.

After significant implementation and operational experience has been obtained,
a specification may be elevated to Internet Standard. At this point, the Specification
is assigned an STD number as well as an RFC number.

Finally, when a protocol becomes obsolete, it is assigned to the Historic state.

Internet Standards Categories  All Internet standards fall into one of the two
categories:

•	 Technical specification (TS): A TS defines a protocol, service, procedure, con-
vention, or format. The bulk of the Internet standards are TSs.

•	 Applicability statement (AS): An AS specifies how, and under what circum-
stances, one or more TSs may be applied to support a particular Internet capa-
bility. An AS identifies one or more TSs that are relevant to the capability, and
may specify values or ranges for particular parameters associated with a TS or
functional subsets of a TS that are relevant for the capability.

Other RFC Types  There are numerous RFCs that are not destined to become
Internet standards. Some RFCs standardize the results of community deliberations
about statements of principle or conclusions about what is the best way to perform
some operations or IETF process function. Such RFCs are designated as Best
Current Practice (BCP). Approval of BCPs follows essentially the same process for
approval of Proposed Standards. Unlike standards-track documents, there is not a

Figure L.1  Internet RFC Publication Process

Best Current
Practice

Proposed
Standard

Draft
Standard

Internet
Standard

Historic

Internet
Draft

Experimental Informational

Z17_STAL4290_09_GE_APPL.indd 6 4/18/17 7:34 AM

L.3 / STANDARDS-SETTING ORGANIZATIONS   L-7

three-stage process for BCPs; a BCP goes from Internet draft status to approved BCP
in one step.

A protocol or other specification that is not considered ready for standardiza-
tion may be published as an Experimental RFC. After further work, the specification
may be resubmitted. If the specification is generally stable, has resolved known design
choices, is believed to be well understood, has received significant community review,
and appears to enjoy enough community interest to be considered valuable, then the
RFC will be designated a Proposed Standard.

Finally, an Informational Specification is published for the general information
of the Internet community.

The International Telecommunication Union

The International Telecommunication Union (ITU) is a United Nations specialized
agency. Hence the members of ITU-T are governments. The U.S. representation is
housed in the Department of State. The charter of the ITU is that it “is responsible
for studying technical, operating, and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.” Its
primary objective is to standardize, to the extent necessary, techniques and opera-
tions in telecommunications to achieve end-to-end compatibility of international
telecommunication connections, regardless of the countries of origin and
destination.

ITU Radio Communication Sector  The ITU Radiocommunication (ITU-R)
Sector was created on March 1, 1993 and comprises the former CCIR and IFRB
(founded 1927 and 1947, respectively). ITU-R is responsible for all ITU’s work in the
field of radio communications. The main activities of ITU-R are:

•	 Develop draft ITU-R Recommendations on the technical characteristics of,
and operational procedures for, radiocommunication services and systems.

•	 Compile Handbooks on spectrum management and emerging radiocommuni-
cation services and systems.

ITU-R is organized into the following study groups:

•	 SG 1 Spectrum management

•	 SG 3 Radiowave propagation

•	 SG 4 Fixed-satellite service

•	 SG 6 Broadcasting service (terrestrial and satellite)

•	 SG 7 Science services

•	 SG 8 Mobile, radiodetermination, amateur and related satellite services

•	 SG 9 Fixed service

•	 SC Special Committee on Regulatory/Procedural Matters

•	 CCV Coordination Committee for Vocabulary

•	 CPM Conference Preparatory Meeting

Z17_STAL4290_09_GE_APPL.indd 7 4/18/17 7:34 AM

L-8   Appendix L / Standards Organizations

ITU Telecommunication Standardization Sector  The ITU-T was created on
March 1, 1993 as one consequence of a reform process within the ITU. It replaces the
International Telegraph and Telephone Consultative Committee (CCITT), which had
essentially the same charter and objectives as the new ITU-T. The ITU-T fulfills the
purposes of the ITU relating to telecommunications standardization by studying
technical, operating and tariff questions, and adopting Recommendations on them
with a view to standardizing telecommunications on a worldwide basis.

ITU-T is organized into 13 study groups that prepare Recommendations, num-
bered as follows:

1.	 Network and service operation

2.	 Tariff and accounting principles

3.	 Telecommunications management network and network maintenance

4.	 Protection against electromagnetic environment effects

5.	 Outside plant

6.	� Integrated broadband cable networks and television and sound transmission

7.	 Signaling requirements and protocols

8.	 Performance and quality of service

9.	 Next generation networks

10.	 Optical and other transport networks infrastructures

11.	 Multimedia terminals, systems, and applications

12.	 Security, languages, and telecommunication software

13.	 Mobile telecommunications networks

Schedule  Work within ITU-R and ITU-T is conducted in four-year cycles. Every
four years, a World Telecommunications Standardization Conference is held. The
work program for the next four years is established at the assembly in the form of
questions submitted by the various study groups, based on requests made to the study
groups by their members. The conference assesses the questions, reviews the scope
of the study groups, creates new or abolishes existing study groups, and allocates
questions to them.

Based on these questions, each study group prepares draft Recommendations.
A draft Recommendation may be submitted to the next conference, four years hence,
for approval. Increasingly, however, Recommendations are approved when they are
ready, without having to wait for the end of the four-year study period. This acceler-
ated procedure was adopted after the study period that ended in 1988. Thus, 1988 was
the last time that a large batch of documents was published at one time as a set of
Recommendations.

IEEE 802 Committee

The key to the development of the LAN market is the availability of a low-cost inter-
face. The cost to connect equipment to a LAN must be much less than the cost of the
equipment alone. This requirement, plus the complexity of the LAN logic, dictates a

Z17_STAL4290_09_GE_APPL.indd 8 4/18/17 7:34 AM

L.3 / STANDARDS-SETTING ORGANIZATIONS   L-9

solution based on the use of chips and very-large-scale integration (VLSI). However,
chip manufacturers will be reluctant to commit the necessary resources unless there
is a high-volume market. A widely accepted LAN standard assures volume and also
enables equipment from a variety of manufacturers to intercommunicate. This is the
rationale of the IEEE 802 committee.

The committee issued a set of standards, which were adopted in 1985 by the
American National Standards Institute (ANSI) as American National Standards.
The standards were subsequently revised and reissued as international standards
by the International Organization for Standardization (ISO) in 1987, with the designa-
tion ISO 8802. Since then, the IEEE 802 committee has continued to revise and
extend the standards, which are ultimately then adopted by ISO.

The committee quickly reached two conclusions. First, the task of communica-
tion across the local network is sufficiently complex that it needs to be broken up into
more manageable subtasks. Accordingly, the standards are organized as a three-layer
protocol hierarchy: Logical Link Control (LLC), medium access control (MAC), and
physical.

Second, no single technical approach will satisfy all requirements. The second
conclusion was reluctantly reached when it became apparent that no single standard
would satisfy all committee participants. There was support for various topologies,
access methods, and transmission media. The response of the committee was to stan-
dardize all serious proposals rather than to attempt to settle on just one. The current
state of standardization is reflected by the various working groups in IEEE 802 and
the work that each is doing (see Table L.2).

The International Organization for Standardization

The International Organization for Standardization, or ISO,1 is an international
agency for the development of standards on a wide range of subjects. It is a voluntary,
nontreaty organization whose members are designated standards bodies of partici-
pating nations, plus nonvoting observer organizations. Although ISO is not a govern-
mental body, more than 70% of ISO member bodies are governmental standards
institutions or organizations incorporated by public law. Most of the remainder have
close links with the public administrations in their own countries. The U.S. member
body is the American National Standards Institute.

ISO was founded in 1946 and has issued more than 12,000 standards in a broad
range of areas. Its purpose is to promote the development of standardization and
related activities to facilitate international exchange of goods and services and to
develop cooperation in the sphere of intellectual, scientific, technological, and eco-
nomic activity. Standards have been issued to cover everything from screw threads
to solar energy. One important area of standardization deals with the Open Systems
Interconnection (OSI) communications architecture and the standards at each layer
of the OSI architecture.

1 ISO is not an acronym (in which case it would be IOS), but a word, derived from the Greek isos, meaning
“equal.”

Z17_STAL4290_09_GE_APPL.indd 9 4/18/17 7:34 AM

L-10   Appendix L / Standards Organizations

In the areas of data communications and networking, ISO standards are actu-
ally developed in a joint effort with another standards body, the International Elec-
trotechnical Commission (IEC). IEC is primarily concerned with electrical and
electronic engineering standards. In the area of information technology, the interests
of the two groups overlap, with IEC emphasizing hardware and ISO focusing on
software. In 1987, the two groups formed the Joint Technical Committee 1 (JTC 1).
This committee has the responsibility of developing the documents that ultimately
become ISO (and IEC) standards in the area of information technology.

The development of an ISO standard from first proposal to actual publication
of the standard follows a six-step process. The objective is to ensure the final result is
acceptable to as many countries as possible. Briefly, the steps are:

1.	 Proposal stage: A new work item is assigned to the appropriate technical com-
mittee, and within that technical committee, to the appropriate working group.

2.	 Preparatory stage: The working group prepares a working draft. Successive
working drafts may be considered until the working group is satisfied that it has

Table L.2  IEEE 802 Active Working Groups

Number Name Charter

802.1 Higher Layer LAN Protocols Standards and recommended practices for: 802 LAN/
MAN architecture, Internet working among 802 LANs,
MANs, and other wide area networks, 802 overall net-
work management, and protocol layers above the MAC
and LLC layers

802.3 Ethernet Standards for CSMA/CD (Ethernet) based LANs

802.11 Wireless LAN Standards for wireless LANs

802.15 Wireless Personal Area
Networks

Personal area network standards for short distance wire-
less networks

802.16 Broadband Wireless Access Standards for broadband wireless access

802.17 Resilient Packet Ring Standards for RPR LAN/MAN for rates up to many
gigabits per second

802.18 Radio Regulatory TAG Monitor regulations that may affect 802.11, 802.15, and
802.16

802.19 Coexistence TAG Standards for coexistence between wireless standards of
unlicensed devices.

802.20 Mobile Broadband Wireless
Access

Standards for mobile broadband wireless access

802.21 Media Independent Handoff Standards to enable handover and interoperability
between heterogeneous network types including both
802 and non-802 networks

802.22 Wireless Regional Area
Networks

Standards for regional wireless networks using unused
frequencies in the broadcast television band

82.23 Emergency Services Media independent framework to provide consistent
access and data that facilitate compliance to applicable
civil authority requirements for communications systems
that include IEEE 802 networks.

Z17_STAL4290_09_GE_APPL.indd 10 4/18/17 7:34 AM

L.3 / STANDARDS-SETTING ORGANIZATIONS   L-11

developed the best technical solution to the problem being addressed. At this
stage, the draft is forwarded to the working group’s parent committee for the
consensus-building phase.

3.	 Committee stage: As soon as a first committee draft is available, it is registered
by the ISO Central Secretariat. It is distributed among interested members for
balloting and technical comment. Successive committee drafts may be consid-
ered until consensus is reached on the technical content. Once consensus has
been attained, the text is finalized for submission as a Draft International Stan-
dard (DIS).

4.	 Enquiry stage: The DIS is circulated to all ISO member bodies by the ISO
Central Secretariat for voting and commenting within a period of five months.
It is approved for submission as a Final Draft International Standard (FDIS) if
a two-thirds majority is in favor and not more than one-quarter of the total
number of votes cast are negative. If the approval criteria are not met, the text
is returned to the originating working group for further study, and a revised
document will again be circulated for voting and comment as a DIS.

5.	 Approval stage: The Final Draft International Standard (FDIS) is circulated to
all ISO member bodies by the ISO Central Secretariat for a final yes/no vote
within a period of two months. If technical comments are received during this
period, they are no longer considered at this stage, but registered for consider-
ation during a future revision of the International Standard. The text is approved
as an International Standard if a two-thirds majority is in favor and not more
than one-quarter of the total number of votes cast are negative. If these approval
criteria are not met, the standard is referred back to the originating working
group for reconsideration in the light of the technical reasons submitted in sup-
port of the negative votes received.

6.	 Publication stage: Once a FDIS has been approved, only minor editorial
changes, if and where necessary, are introduced into the final text. The final text
is sent to the ISO Central Secretariat, which publishes the International
Standard.

The process of issuing an ISO standard can be a slow one. Certainly, it would
be desirable to issue standards as quickly as the technical details can be worked out,
but ISO must ensure the standard will receive widespread support.

Z17_STAL4290_09_GE_APPL.indd 11 4/18/17 7:34 AM

M-1

Appendix M
Sockets: A Programmer’s Introduction

M.1	 Sockets, Socket Descriptors, Ports, and Connections

M.2	 The Client/Server Model of Communication
Running a Sockets Program on a Windows Machine Not Connected to

a Network
Running a Sockets Program on a Windows Machine Connected to a

Network, When Both Server and Client Reside on the Same
Machine

M.3	 Sockets Elements
Socket Creation
The Socket Address
Bind to a Local Port
Data Representation and Byte Ordering
Connecting a Socket
The gethostbyname()Function Call
Listening for an Incoming Client Connection
Accepting a Connection from a Client
Sending and Receiving Messages on a Socket
Closing a Socket
Report errors
Example TCP/IP Client Program (Initiating Connection)
Example TCP/IP Server Program (Passively Awaiting Connection)

M.4	 Stream and Datagram Sockets
Example UDP Client Program (Initiate Connections)
Example UDP Server Program (Passively Await Connection)

M.5	 Run-Time Program Control
Nonblocking Socket Calls
Asynchronous I/O (Signal Driven I/O)

M.6	 Remote Execution of a Windows Console Application
Local Code
Remote Code

Z18_STAL4290_09_GE_APPM.indd 1 4/18/17 7:34 AM

M-2   Appendix M / Sockets: A Programmer’s Introduction

The concept of sockets and sockets programming was developed in the 1980s in the
Unix environment as the Berkeley Sockets Interface. In essence, a socket enables
communications between a client and server process and may be either connection-
oriented or connectionless. A socket can be considered an endpoint in a communi-
cation. A client socket in one computer uses an address to call a server socket on
another computer. Once the appropriate sockets are engaged, the two computers
can exchange data.

Typically, computers with server sockets keep a TCP or UDP port open, ready
for unscheduled incoming calls. The client typically determines the socket identifica-
tion of the desired server by finding it in a Domain Name System (DNS) database.
Once a connection is made, the server switches the dialogue to a different port num-
ber to free up the main port number for additional incoming calls.

Internet applications, such as TELNET and remote login (rlogin) make use of
sockets, with the details hidden from the user. However, sockets can be constructed
from within a program (in a language such as C or Java), enabling the programmer
to easily support networking functions and applications. The sockets programming
mechanism includes sufficient semantics to permit unrelated processes on different
hosts to communicate.

The Berkeley Sockets Interface is the de facto standard application program-
ming interface (API) for developing networking applications, spanning a wide range
of operating systems. The sockets API provides generic access to interprocess com-
munications services. Thus, the sockets capability is ideally suited for students to
learn the principles of protocols and distributed applications by hands-on program
development.

The Sockets Application Program Interface (API) provides a library of func-
tions that programmers can use to develop network aware applications. It has the
functionality of identifying endpoints of the connection, establishing the communica-
tion, allowing messages to be sent, waiting for incoming messages, terminating the
communication, and error handling. The operating system used and the programming
language both determine the specific Sockets API.

We concentrate on only two of the most widely used interfaces—the Berkley
Software Distribution Sockets (BSD) as introduced for UNIX, and its slight modifi-
cation the Windows Sockets (WinSock) API from Microsoft.

This sockets material is intended for the C language programmer. (It pro-
vides external references for the C+ + , Visual Basic, and PASCAL languages.) The
Windows operating system is in the center of our discussion. At the same time, topics
from the original BSD UNIX specification are introduced in order to point out (usu-
ally minor) differences in the sockets specifications for the two operating systems.
Basic knowledge of the TCP/IP and UDP network protocols is assumed. Most of the
code would compile on both Windows and UNIX-like systems.

We cover C language sockets exclusively, but most other programming lan-
guages, such as C+ + , Visual Basic, and PASCAL, can take advantage of the Winsock
API, as well. The only requirement is that the language has to recognize dynamic
link libraries (DLLs). In a 32-bit Windows environment, you will need to import the
wsock32.lib to take advantage of the WinSock API. This library has to be linked,
so at run time the dynamic link library wsock32.dll gets loaded. wsock32.dll
runs over the TCP/IP stack. Windows NT, Windows 2000, and Windows 95 include

Z18_STAL4290_09_GE_APPM.indd 2 4/18/17 7:34 AM

M.1 / SOCKETS, SOCKET DESCRIPTORS, PORTS, AND CONNECTIONS   M-3

the file wsock32.dll by default. When you create your executables, if you link with
wsock32.lib library, you will implicitly link the wsock32.dll at run time, without
adding lines of code to your source file.

The website for this book provides links to useful Sockets websites.

	 M.1	 SOCKETS, SOCKET DESCRIPTORS, PORTS,
AND CONNECTIONS

Sockets are endpoints of communication referred to by their corresponding socket
descriptors, or natural language words describing the socket’s association with a par-
ticular machine or application (e.g., we will refer to a server socket as server_s). A
connection (or socket pair) consists of the pair of IP addresses that are communicat-
ing with each other, as well a pair of port numbers, where a port number is a 32-bit
positive integer usually denoted in its decimal form. Some destination port numbers
are well known and indicate the type of service being connected to.

For many applications, the TCP/IP environment expects that applications use
well-known ports to communicate with each other. This is done so client applications
assume the corresponding server application is listening on the well-known port
associated with that application. For example, the port number for HTTP, the proto-
col used to transfer HTML pages across the World Wide Web, is TCP port 80. By
default, a Web browser will attempt to open a connection on the destination host’s
TCP port 80 unless another port number is specified in the URL (such as 8000
or 8080).

A port identifies a connection point in the local stack (i.e., port number 80 is
typically used by a Web server). A socket identifies an IP address and port number
pair (i.e., port 192.168.1.20:80 would be the Web server port 80 on host 192.168.1.20.
The two together are considered a socket.). A socket pair identifies all four compo-
nents (source address and port, and destination address and port). Since well-known
ports are unique, they are sometimes used to refer to a specific application on any
host that might be running the application. Using the word socket, however, would
imply a specific application on some specific host. Connection, or a socket pair, stands
for the sockets connection between two specific systems that are communicating. TCP
allows multiple simultaneous connections involving the same local port number as
long as the remote IP addresses or port numbers are different for each connection.

Port numbers are divided into three ranges:

•	 Ports 0 through 1023 are well known. They are associated with services in a
static manner. For example, HTTP servers would always accept requests at
port 80.

•	 Port numbers from 1024 through 49151 are registered. They are used for mul-
tiple purposes.

•	 Dynamic and private ports are those from 49152 through 65535 and services
should not be associated with them.

In reality, machines start assigning dynamic ports starting at 1024. If you are
developing a protocol or application that will require the use of a link, socket, port,

Z18_STAL4290_09_GE_APPM.indd 3 4/18/17 7:34 AM

M-4   Appendix M / Sockets: A Programmer’s Introduction

protocol, etc., please contact the Internet Assigned Numbers Authority (IANA) to
receive a port number assignment. The IANA is located at and operated by the
Information Sciences Institute (ISI) of the University of Southern California. The
Assigned Numbers request for comments (RFC) published by IANA is the official
specification that lists port assignments. You can access it at http://www.iana
.org/assignments/port-numbers.

On both UNIX and Windows, the netstat command can be used to check the
status of all active local sockets. Figure M.1 is a sample netstat output.

	 M.2	 THE CLIENT/SERVER MODEL OF COMMUNICATION

A socket application consists of code, executed on both communication ends. The
program initiating transmission is often referred to as the client. The server, on the
other hand, is a program that passively awaits incoming connections from remote
clients. Server applications typically load during system startup and actively listen
for incoming connections on their well-known port. Client applications will then
attempt to connect to the server, and a TCP exchange will then take place. When the
session is complete, usually the client will be the one to terminate the connection.
Figure M.2 depicts the basic model of stream-based (or TCP/IP sockets)
communication.

Running a Sockets Program on a Windows Machine Not
Connected to a Network

As long as TCP/IP is installed on one machine, you can execute both the server and
client code on it. (If you do not have the TCP/IP protocol stack installed, you can
expect socket operations to throw exceptions such as BindException, Connect-
Exception, ProtocolException, SocketException, etc.) You will have to
use localhost as the hostname or 127.0.0.1 as the IP address.

Figure M.1  Sample Netstat Output

Proto Local Address Foreign Address State

TCP Mycomp:1025 Mycomp:0 LISTENING

TCP Mycomp:1026 Mycomp:0 LISTENING

TCP Mycomp:6666 Mycomp:0 LISTENING

TCP Mycomp:6667 Mycomp:0 LISTENING

TCP Mycomp:1234 mycomp:1234 TIME_WAIT

TCP Mycomp:1025 2hfc327.any.com:6667 ESTABLISHED

TCP Mycomp:1026 46c311.any.com:6668 ESTABLISHED

UDP Mycomp:6667 *.*

Z18_STAL4290_09_GE_APPM.indd 4 4/18/17 7:34 AM

http://2hfc327.any.com
http://46c311.any.com
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

M.2 / THE CLIENT/SERVER MODEL OF COMMUNICATION   M-5

Running a Sockets Program on a Windows Machine
Connected to a Network, When Both Server and Client
Reside on the Same Machine

In such a case, you will be communicating with yourself. It is important to know
whether your machine is attached to an Ethernet or communicates with the network
through a telephone modem. In the first case, you will have an IP address assigned

Figure M.2  Socket System Calls for Connection-Oriented Protocol

socket()

bind()

listen()

accept()

blocks until
connection from client

accept() creates a new socket to
serve the new client request

socket()

connect()

send()receive()

process request

connection
establishment

Open communication
endpoint

Open communication
endpoint

Set up connection
to server

Send/receive data

Send/receive data

Shutdown

Register well-known
address with system

Establish client's connection;
request queue size

Accept first client connection
request on the queue

data (request)

data (reply)

Server Client

send()

close()

receive()

close()

Z18_STAL4290_09_GE_APPM.indd 5 4/18/17 7:34 AM

M-6   Appendix M / Sockets: A Programmer’s Introduction

to your machine, without efforts on your part. When communicating via a modem,
you need to dial in, grab an IP address, and then be able to “talk to yourself.” In both
cases you can find out the IP address of the machine you are using with the winip-
cfg command for Win9X, and ipconfig for WinNT/2K and UNIX.

	 M.3	 SOCKETS ELEMENTS

Socket Creation

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol)

•	 domain is AF_UNIX, AF_INET, AF_OSI, etc. AF_INET is for communica-
tion on the Internet to IP addresses. We will only use AF_INET.

•	 type is either SOCK_STREAM (TCP, connection-oriented, reliable), or SOCK_
DGRAM (UDP, datagram, unreliable), or SOCK_RAW (IP level).

•	 protocol specifies the protocol used. It is usually 0 to say we want to use the
default protocol for the chosen domain and type. We always use 0.

If successful, socket() returns a socket descriptor, which is an integer, and -1 in
the case of a failure. An example call:

if ((sd = socket(AF_INET, SOCK_DGRAM, 0) < 0)
 {
 printf(socket() failed.);
 exit(1);
 }

The Socket Address

The structures to store socket addresses as used in the domain AF_INET:

struct in_addr {
 unsigned long s_addr;
};

in_addr just provides a name (s_addr) for the C language type to be associated
with IP addresses.

struct sockaddr_in {
 unsigned short sin_family; // AF_INET identifiers
 unsigned short sin_port; // port number,
 // if 0 then kernel chosen
struct in_addr sin_addr; // IP address

Z18_STAL4290_09_GE_APPM.indd 6 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-7

 // INADDR_ANY refers to the IP
 // addresses of the current host
 char sin_zero[8]; // Unused, always zero
};

Both local and remote addresses will be declared as a sockaddr_in structure.
Depending on this declaration, sin_addr will represent a local or remote IP address.
(On a UNIX like system, you need to include the file <netinet/in.h> for both
structures.)

Bind to a Local Port

#define WIN // WIN for Winsock and BSD for BSD sockets
#ifdef WIN
 . . .
#include <windows.h> // for all Winsock functions
 . . .
#endif
#ifdef BSD
 . . .
#include <sys/types.h>
#include <sys/socket.h> // for struct sockaddr
 . . .
#endif
int bind(int local_s, const struct sockaddr *addr,
int addrlen);

•	 local_s is a socket descriptor of the local socket, as created by the
socket()function;

•	 addr is a pointer to the (local) address structure of this socket;

•	 addrlen is the length (in bytes) of the structure referenced by addr.

bind() returns the integer 0 on success, and -1 on failure. After a call to bind(),
a local port number is associated with the socket, but no remote destination is yet
specified.

An example call:

struct sockaddr_in name;
...
name.sin_family = AF_INET; // use the Internet domain
name.sin_port = htons(0); // kernel provides a port
name.sin_addr.s_addr = htonl(INADDR_ANY); // use all IPs
                             of host
if (bind(local_socket, (struct sockaddr *)&name,
     sizeof(name)) != 0)
 // print error and exit

Z18_STAL4290_09_GE_APPM.indd 7 4/18/17 7:34 AM

M-8   Appendix M / Sockets: A Programmer’s Introduction

A call to bind is optional on the client side, but it is required on the server side.
After bind() is called on a socket, we can retrieve its address structure, given the
socket file descriptor, by using the function getsockname().

Data Representation and Byte Ordering

Some computers are big endian. This refers to the representation of objects such as
integers within a word. A big endian machine stores them in the expected way: the high
byte of an integer is stored in the leftmost byte, while the low byte of an integer is
stored in the rightmost byte. So the number 5 * 216 + 6 * 28 + 4 would be stored as:

Big endian representation 5 6 4
Little endian representation 4 6 5
Memory (byte) address 0 1 2 3

As you can see, reading a value of the wrong word size will result in an incorrect
value; when done on big endian architecture, on a little endian machine it can some-
times return the correct result. The big endian ordering is somewhat more natural to
humans, because we are used to reading numbers from left to right.

A Sun Sparc is a big endian machine. When it communicates with an i-386
PC (which is a little endian), the following discrepancy will exist: The i-386 will inter-
pret 5 * 216 + 6 * 28 + 4 as 4 * 216 + 6 * 28 + 5. To avoid this situation from
occurring, the TCP/IP protocol defines a machine independent standard for byte
order—network byte ordering. In a TCP/IP packet, the first transmitted data is the
most significant byte. Because big endian refers to storing the most significant byte
in the lowest memory address, which is the address of the data, TCP/IP defines net-
work byte order as big endian.

Winsock uses network byte order for various values. The functions htonl(),
htons(), ntohl(), ntohs() ensure the proper byte order is being used in Winsock
calls, regardless of whether the computer normally uses little endian or big endian
ordering.

The following functions are used to convert from host to network ordering
before transmission, and from network to host form after reception:

•	 unsigned long htonl(unsigned long n)—host to network conversion of a 32-bit
value;

•	 unsigned short htons(unsigned short n)—host to network conversion of a
16-bit value;

•	 unsigned long ntohl(unsigned long n)—network to host conversion of a 32-bit
value;

•	 unsigned short ntohs(unsigned short n)—network to host conversion of a
16-bit value.

Connecting a Socket

A remote process is identified by an IP address and a port number. The connect()
call evoked on the local site attempts to establish the connection to the remote des-
tination. It is required in the case of connection-oriented communication such as

Z18_STAL4290_09_GE_APPM.indd 8 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-9

stream-based sockets (TCP/IP). Sometimes we call connect() on datagram sockets,
as well. The reason is that this stores the destination address locally, so we do not need
to specify the destination address every time when we send datagram message and
thus can use the send() and recv() system calls instead of sendto() and recv-
from(). Such sockets, however, cannot be used to accept datagrams from other
addresses.

#define WIN // WIN for Winsock and BSD for BSD sockets
#ifdef WIN
#include <windows.h> // Needed for all Winsock functions
#endif
#ifdef BSD
#include <sys/types.h> // Needed for system defined
identifiers
#include <netinet/in.h> // Needed for Internet address
structure
#include <sys/socket.h> // Needed for socket(), bind(),
                  etc...
#endif
int connect(int local_s, const struct sockaddr
     *remote_addr, int rmtaddr_len)

•	 local_s is a local socket descriptor;

•	 remote_addr is a pointer to protocol address of other socket;

•	 rmtaddr_len is the length in bytes of the address structure.

Returned is an integer 0 (on success). The Windows connect function returns a non-
zero value to indicate an error, while the UNIX connection function returns a nega-
tive value in such case.

An example call:

#define PORT_NUM 1050 // Arbitrary port number
struct sockaddr_in serv_addr; // Server Internet address
int rmt_s; // Remote socket descriptor
 // Fill-in the server (remote) socket’s address
         information and connect
         // with the listening server.
server_addr.sin_family = AF_INET; // Address family to use
server_addr.sin_port = htons(PORT_NUM); // Port num to use
server_addr.sin_addr.s_addr
      = inet_addr(inet_ntoa(address));   // IP address
if (connect(rmt_s,(struct sockaddr *)&serv_addr,
      sizeof(serv_addr)) != 0)
            // print error and exit

Z18_STAL4290_09_GE_APPM.indd 9 4/18/17 7:34 AM

M-10   Appendix M / Sockets: A Programmer’s Introduction

The gethostbyname() Function Call

The function gethostbyname() is supplied a host name argument and returns
NULL in case of failure, or a pointer to a struct hostent instance on success.
It gives information about the host names, aliases, and IP addresses. This informa-
tion is obtained from the DNS or a local configuration database. The getservby-
name() will determine the port number associated with a named service. If a
numeric value is supplied instead, it is converted directly to binary and used as a
port number.

#define struct hostent {
 char *h_name; // official name of host
 char **h_aliases; // null terminated list of alias
                 names
 // for this host
 int h_addrtype; // host address type,
                  e.g. AF_INET
 int h_length; // length of address structure
 char **h_addr_list; // null terminated list of
                 addresses
 // in network byte order
};

Note h_addr_list refers to the IP address associated with the host.

#define WIN // WIN for Winsock and BSD for BSD sockets
#ifdef WIN
#include <windows.h> // for all Winsock functions
#endif
#ifdef BSD
#include <netdb.h> // for struct hostent
#endif
struct hostent *gethostbyname (const char *hostname);

Other functions that can be used to find hosts, services, protocols, or networks
are: getpeername(), gethostbyaddr(), getprotobyname(), getpro-
tobynumber(), getprotoent(), getservbyname(), getservby-
port(), getservent(), getnetbyname(), getnetbynumber(),
getnetent().

An example call:

#ifdef BSD
 . . .
#include <sys\types.h> // for caddr_t type
 . . .
#endif

Z18_STAL4290_09_GE_APPM.indd 10 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-11

#define SERV_NAME somehost.somecompany.com
#define PORT_NUM 1050 // Arbitrary port number
#define h_addr h_addr_list[0] // �To hold host Internet

address
 . . .
struct sockaddr_in myhost_addr; // This Internet address
struct hostent *hp; // buffer information about
remote host
int rmt_s; // Remote socket descriptor
 // UNIX specific part
bzero((char *)&myhost_addr, sizeof(myhost_addr));
 // Winsock specific
memset(&myhost_addr, 0, sizeof(myhost_addr));
 // Fill-in the server (remote) socket’s
          address information and connect
 // with the listening server.
myhost_addr.sin_family = AF_INET; // Address family
                         to use
myhost_addr.sin_port = htons(PORT_NUM); // Port num to use
if (hp = gethostbyname(MY_NAME)== NULL)
 // print error and exit
 // UNIX specific part
bcopy(hp->h_name, (char *)&myhost_addr.sin_addr,
     hp->h_length);
 // Winsock specific
memcpy(&myhost_addr.sin_addr, hp->h_addr, hp->h_length);
if(connect(rmt_s,(struct sockaddr *)&myhost_addr,
    sizeof(myhost_addr))!=0)
 // print error and exit

The UNIX function bzero() zeroes out a buffer of specified length. It is one of
a group of functions for dealing with arrays of bytes. bcopy() copies a specified number
of bytes from a source to a target buffer. bcmp() compares a specified number of bytes
of two byte buffers. The UNIX bzero() and bcopy() functions are not available in
Winsock, so the ANSI functions memset() and memcpy() have to be used instead.

An example sockets program to get a host IP address for a given host name:

#define WIN // WIN for Winsock and BSD for BSD sockets
#include <stdio.h> // Needed for printf()
#include <stdlib.h> // Needed for exit()
#include <string.h> // Needed for memcpy() and strcpy()
#ifdef WIN
#include <windows.h> // Needed for all Winsock stuff
#endif

Z18_STAL4290_09_GE_APPM.indd 11 4/18/17 7:34 AM

M-12   Appendix M / Sockets: A Programmer’s Introduction

#ifdef BSD
#include <sys/types.h> // Needed for system defined
                    identifiers.
#include <netinet/in.h> // Needed for Internet
                    address structure.
#include <arpa/inet.h>     // Needed for inet_ntoa.
#include <sys/socket.h>    // Needed for socket(),
                    bind(), etc...
#include <fcntl.h>
#include <netdb.h>
#endif
void main(int argc, char *argv[])
{
#ifdef WIN
WORD wVersionRequested = MAKEWORD(1,1);
                  // Stuff for WSA functions
WSADATA wsaData; // Stuff for WSA functions
#endif
struct hostent *host; // Structure for gethostbyname()
struct in_addr address; // Structure for Internet
address
char host_name[256]; // String for host name
if (argc != 2)
{
printf(*** ERROR - incorrect number of command line
arguments \n);
printf(usage is ’getaddr host_name’ \n);
exit(1);
}
#ifdef WIN
 // Initialize winsock
WSAStartup(wVersionRequested, &wsaData);
#endif
 // Copy host name into host_name
strcpy(host_name, argv[1]);
 // Do a gethostbyname()
printf(Looking for IP address for '%s'... \n,
      host_name);
host = gethostbyname(host_name);
                  // Output address if host found
if (host == NULL)
printf(IP address for '%s' could not be found \n,
      host_name);
else

Z18_STAL4290_09_GE_APPM.indd 12 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-13

{
memcpy(&address, host->h_addr, 4);
printf(IP address for '%s' is %s \n, host_name,
      inet_ntoa(address));
}
#ifdef WIN
                  // Cleanup winsock
WSACleanup();
#endif
}

Listening for an Incoming Client Connection

The listen() function is used on the server in the case of connection-oriented com-
munication to prepare a socket to accept messages from clients. It has the prototype:

int listen(int sd, int qlen);

•	 sd is a socket descriptor of a socket after a bind() call

•	 qlen specifies the maximum number of incoming connection requests that can
wait to be processed by the server while the server is busy.

The call to listen()returns an integer: 0 on success, and -1 on failure. For
example:

if (listen(sd, 5) < 0) {
 // print error and exit

Accepting a Connection from a Client

The accept() function is used on the server in the case of connection-oriented com-
munication (after a call to listen()) to accept a connection request from a client.

#define WIN // WIN for Winsock and BSD for BSD sockets
#ifdef WIN
 . . .
#include <windows.h> // for all Winsock functions
 . . .
#endif
#ifdef BSD
 . . .
#include <sys/types.h>
#include <sys/socket.h> // for struct sockaddr
 . . .
#endif
int accept(int server_s, struct sockaddr * client_addr,
int * clntaddr_len)

Z18_STAL4290_09_GE_APPM.indd 13 4/18/17 7:34 AM

M-14   Appendix M / Sockets: A Programmer’s Introduction

•	 server_s is a socket descriptor the server is listening on

•	 client_addr will be filled with the client address

•	 clntaddr_len contains the length of the client address structure.

The accept() function returns an integer representing a new socket (-1 in case of
failure).

Once executed, the first queued incoming connection is accepted, and a new
socket with the same properties as sd is created and returned. It is the socket that
the server will use from now on to communicate with this client. Multiple successful
calls to connect() will result in multiple new sockets returned.

An example call:

struct sockaddr_in client_addr;
int server_s, client_s, clntaddr_len;
 ...
if ((client_s = accept(server_s, (struct sockaddr *)&
client_addr, &clntaddr_len) < 0)
 // print error and exit
 // at this stage a thread or a process
             can take over and handle
           // communication with the client

Successive calls to accept on the same listening socket return different connected
sockets. These connected sockets are multiplexed on the same port of the server by
the running TCP stack functions.

Sending and Receiving Messages on a Socket

We will present only four function calls in this section. There are, however, more than
four ways to send and receive data through sockets. Typical functions for TCP/IP
sockets are send() and recv().

int send(int socket, const void *msg, unsigned
    int msg_length, int flags);
int recv(int socket, void *rcv_buff, unsigned
    int buff_length, int flags);

•	 socket is the local socket used to send and receive.

•	 msg is the pointer to a message.

•	 msg_length is the message length.

•	 rcv_buff is a pointer to the receive buffer.

•	 buff_length is its length.

•	 flags changes the default behavior of the call.

For example, a particular value of flags will be used to specify that the message
is to be sent without using local routing tables (they are used by default).

Z18_STAL4290_09_GE_APPM.indd 14 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-15

Typical functions for UDP sockets are:

int sendto(int socket, const void *msg, unsigned
    int msg_length, int flags, struct sockaddr
    *dest_addr, unsigned int addr_length);
int recvfrom(int socket, void *rcv_buff, unsigned
    int buff_length, int flags, struct sockaddr
    *src_addr, unsigned int addr_length);

Most parameters are the same as for send() and recv(), except dest_
addr/src_addr and addr_length. Unlike with stream sockets, datagram callers
of sendto() need to be informed of the destination address to send the message to,
and callers of recvfrom() need to distinguish between different sources sending
datagram messages to the caller. We provide code for TCP/IP and UDP client and
server applications in the following sections, where you can find the sample calls of
all four functions.

Closing a Socket

The prototype:

int closesocket(int sd); // Windows prototype
int close(int fd); // BSD UNIX prototype

fd and sd are a file descriptor (same as socket descriptor in UNIX) and a socket
descriptor.

When a socket on some reliable protocol, such as TCP/IP is closed, the kernel
will still retry to send any outstanding data, and the connection enters a TIME_WAIT
state (see Figure M.1). If an application picks the same port number to connect to,
the following situation can occur. When this remote application calls connect(),
the local application assumes that the existing connection is still active and sees the
incoming connection as an attempt to duplicate an existing connection. As a result,
[WSA]ECONNREFUSED error is returned. The operating system keeps a reference
counter for each active socket. A call to close() is essentially decrementing this
counter on the argument socket. This is important to keep in mind when we are using
the same socket in multiple processes. We will provide a couple of example calls in
the code segments presented in the next subsections.

Report errors

All the preceding operations on sockets can exhibit a number of different failures at
execution time. It is considered a good programming practice to report the returned
error. Most of these errors are designed to assist the developer in the debugging
process, and some of them can be displayed to the user, as well. In a Windows envi-
ronment, all of the returned errors are defined in winsock.h. On an UNIX-like
system, you can find these definitions in socket.h. The Windows codes are

Z18_STAL4290_09_GE_APPM.indd 15 4/18/17 7:34 AM

M-16   Appendix M / Sockets: A Programmer’s Introduction

computed by adding 10,000 to the original BSD error number and adding the prefix
WSA in front of the BSD error name. For example:

Windows name BSD name Windows value BSD value

WSAEPROTOTYPE EPROTOTYPE 10041 41

There are a few Windows-specific errors not present in a UNIX system:

WSASYSNOTREADY 10091 Returned by WSAStartup() indicat-
ing that the network subsystem is
unusable.

WSAVERNOTSUPPORTED 10092 Returned by WSAStartup() indicat-
ing that the Windows Sockets DLL
cannot support this app.

WSANOTINITIALISED 10093 Returned by any function except
WSAStartup(), when a successful
WSAStartup() has not yet been
performed.

An example error-catching source file, responsible for displaying an error and
exiting:

#ifdef WIN
#include <stdio.h> // for fprintf()
#include <winsock.h> // for WSAGetLastError()
#include <stdlib.h> // for exit()
#endif
#ifdef BSD
#include <stdio.h> // for fprintf() and perror()
#include <stdlib.h> // for exit()
#endif

void catch_error(char * program_msg)
{
char err_descr[128]; // to hold error description
int err;
err = WSAGetLastError();
 // record the winsock.h error
                  description
if (err == WSANO_DATA)
   strcpy(err_descr, WSANO_DATA (11004) Valid name, no
“     data record of requested type.);
if (err == WSANO_RECOVERY)
   strcpy(err_descr, WSANO_RECOVERY (11003) This is a
     non-recoverable error.);
if (err == WSATRY_AGAIN)

Z18_STAL4290_09_GE_APPM.indd 16 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-17

 . . .
fprintf(stderr,%s: %s\n, program_msg, err_descr);
exit(1);
}

You can extend the list of errors to be used in your Winsock application by looking
at http://www.sockets.com.

Example TCP/IP Client Program (Initiating Connection)

This client program is designed to receive a single message from a server (lines 39–41)
then terminate itself (lines 45–56). It sends a confirmation to the server after the
message is received (lines 42–44).

#define WIN // WIN for Winsock and BSD for BSD sockets
#include // Needed for printf()
#include // Needed for memcpy() and strcpy()
#ifdef WIN
#include // Needed for all Winsock stuff
#endif
#ifdef BSD
#include // Needed for system defined identifiers.
#include // Needed for Internet address structure.

#include // Needed for socket(), bind(), etc...
#include // Needed for inet_ntoa()
#include
#include
#endif
#define PORT_NUM 1050 // Port number used at the server
#define IP_ADDR 131.247.167.101 // IP address of server
                       (*** HARDWIRED ***)
void main(void)
{
#ifdef WIN
WORD wVersionRequested = MAKEWORD(1,1); // WSA functions
WSADATA wsaData; // WSA functions
#endif
unsigned int server_s; // Server socket descriptor
struct sockaddr_in server_addr; // Server Internet address
char out_buf[100]; // 100-byte output buffer for data
char in_buf[100]; // 100-byte input buffer for data
#ifdef WIN // Initialize Winsock
WSAStartup(wVersionRequested, &wsaData);
#endif

Z18_STAL4290_09_GE_APPM.indd 17 4/18/17 7:34 AM

http://www.sockets.com

M-18   Appendix M / Sockets: A Programmer’s Introduction

 // Create a socket
server_s = socket(AF_INET, SOCK_STREAM, 0);
 // Fill-in the server socket’s address and do a
       connect with
     // the listening server. The connect() will block.
Server_addr.sin_family = AF_INET;     // Address family
Server_addr.sin_port = htons(PORT_NUM); // Port num
Server_addr.sin_addr.s_addr = inet_addr(IP_ADDR);
                 // IP address
Connect(server_s, (struct sockaddr *)&server_addr,
sizeof(server_addr));
                 // Receive from the server
recv(server_s, in_buf, sizeof(in_buf), 0);
printf(Received from server... data = ’%s’ \n, in_buf);
                 // Send to the server
strcpy(out_buf, Message -- client to server);
send(server_s, out_buf, (strlen(out_buf) + 1), 0);
                 // Close all open sockets
#ifdef WIN
closesocket(server_s);
#endif
#ifdef BSD
close(server_s);
#endif
#ifdef WIN           // Cleanup winsock
WSACleanup();
#endif
}

Example TCP/IP Server Program (Passively Awaiting
Connection)

All the following server program does is serving a message to a client running on
another host. It creates one socket in line 37 and listens for a single incoming service
request from the client through this single socket. When the request is satisfied, this
server terminates (lines 62–74).

#define WIN // WIN for Winsock and BSD for BSD sockets
#include <stdio.h> // Needed for printf()
#include <string.h> // Needed for memcpy() and strcpy()
#ifdef WIN
#include <windows.h> // Needed for all Winsock calls
#endif
#ifdef BSD

Z18_STAL4290_09_GE_APPM.indd 18 4/18/17 7:34 AM

M.3 / SOCKETS ELEMENTS   M-19

#include <sys/types.h>   // Needed for system defined
                  identifiers.
#include <netinet/in.h> // Needed for Internet address
structure.
#include <sys/socket.h> // Needed for socket(), bind(),
                   etc...
#include <arpa/inet.h> // Needed for inet_ntoa()
#include <fcntl.h>
#include <netdb.h>
#endif
#define PORT_NUM 1050 // Arbitrary port number for
                  the server
#define MAX_LISTEN 3 // Maximum number of listens
                    to queue
void main(void)
{
#ifdef WIN
WORD wVersionRequested = MAKEWORD(1,1);
                 // for WSA functions
WSADATA wsaData;       // for WSA functions
#endif
unsigned int server_s;   // Server socket descriptor
struct sockaddr_in server_addr;
                // Server Internet address
unsigned int client_s;  // Client socket descriptor
struct sockaddr_in client_addr;
                 // Client Internet address
struct in_addr client_ip_addr; // Client IP address
int addr_len;          // Internet address length
char out_buf[100];       // 100-byte output buffer for data
char in_buf[100];      // 100-byte input buffer for data
#ifdef WIN         // Initialize Winsock
WSAStartup(wVersionRequested, &wsaData);
#endif            // Create a socket
               // - AF_INET is Address Family
              Internet and SOCK_STREAM is streams
server_s = socket(AF_INET, SOCK_STREAM, 0);
               // Fill-in my socket’s address
                information and bind the socket
               // �- See winsock.h for a

description of struct
sockaddr_in

server_addr.sin_family = AF_INET; // �Address family
to use

Z18_STAL4290_09_GE_APPM.indd 19 4/18/17 7:34 AM

M-20   Appendix M / Sockets: A Programmer’s Introduction

server_addr.sin_port = htons(PORT_NUM);
           // Port number to use
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
           // Listen on any IP addr.
bind(server_s, (struct sockaddr *)&server_addr,
sizeof(server_addr));
  // �Listen for connections (queueing up to MAX_LISTEN)
listen(server_s, MAX_LISTEN);
  // �Accept a connection. The accept() will block and

then return with
  // client_addr filled-in.
addr_len = sizeof(client_addr);
client_s = accept(server_s, (struct sockaddr *)&client_
addr, &addr_len);
  // �Copy the four-byte client IP address into an IP

address structure
  // - See winsock.h for a description of struct in_addr
memcpy(&client_ip_addr, &client_addr.sin_addr.s_addr, 4);
  // Print an informational message that accept completed
printf(Accept completed!!! IP address of client = %s
port = %d \n,
inet_ntoa(client_ip_addr), ntohs(client_addr.sin_port));
           // Send to the client
strcpy(out_buf, Message -- server to client);
send(client_s, out_buf, (strlen(out_buf) + 1), 0);
           // Receive from the client
recv(client_s, in_buf, sizeof(in_buf), 0);
printf(Received from client... data = ’%s’ \n, in_buf);
           // Close all open sockets
#ifdef WIN
closesocket(server_s);
closesocket(client_s);
#endif
#ifdef BSD
close(server_s);
close(client_s);
#endif
#ifdef WIN
           // Cleanup Winsock
WSACleanup();
#endif
}

Z18_STAL4290_09_GE_APPM.indd 20 4/18/17 7:34 AM

M.4 / STREAM AND DATAGRAM SOCKETS   M-21

This is not a very realistic implementation. More often, server applications will
contain some indefinite loop and be able to accept multiple requests. The preced-
ing code can be easily converted into such more realistic server by inserting lines
46–61 into a loop in which the termination condition is never satisfied (e.g.,
while(1){ . . . }). Such servers will create one permanent socket through
the socket() call (line 37), while a temporary socket gets spun off every time
when a request is accepted (line 49). In this manner, each temporary socket will
be responsible of handling a single incoming connection. If a server gets killed
eventually, the permanent socket will be closed, as will each of the active tempo-
rary sockets. The TCP implementation determines when the same port number will
become available for reuse by other applications. The status of such port will be in
TIME-WAIT state for some predetermined period of time, as shown in Figure M.1
for port number 1234.

	 M.4	 STREAM AND DATAGRAM SOCKETS

When sockets are used to send a connection-oriented, reliable stream of bytes across
machines, they are of SOCK_STREAM type. As we previously discussed, in such
cases sockets have to be connected before being used. The data are transmitted
through a bidirectional stream of bytes and are guaranteed to arrive in the order they
were sent.

Sockets of SOCK_DGRAM type (or datagram sockets) support a bidirectional
flow of data, as well, but data may arrive out of order, and possibly duplicated (i.e., it
is not guaranteed to be arriving in sequence or to be unique). Datagram sockets also
do not provide reliable service since they can fail to arrive at all. It is important to
note, though, that the data record boundaries are preserved, as long as the records
are no longer than the receiver could handle. Unlike stream sockets, datagram sockets
are connectionless; hence, they do not need to be connected before being used.
Figure M.3 shows the basic flowchart of datagram sockets communication. Taking
the stream-based communication model as a base, as one can easily notice, the calls
to listen() and accept() are dropped, and the calls to send() and recv() are
replaced by calls to sendto() and recvfrom().

Example UDP Client Program (Initiate Connections)

#define WIN // WIN for Winsock and BSD for BSD sockets
#include <stdio.h> // Needed for printf()
#include <string.h> // Needed for memcpy() and strcpy()
#ifdef WIN
#include <windows.h> // Needed for all Winsock stuff
#endif
#ifdef BSD

Z18_STAL4290_09_GE_APPM.indd 21 4/18/17 7:34 AM

M-22   Appendix M / Sockets: A Programmer’s Introduction

#include <sys/types.h> // Needed for system defined
                  identifiers.
#include <netinet/in.h> // Needed for Internet address
structure.
#include <sys/socket.h> // �Needed for socket(), bind(),

etc...
#include <arpa/inet.h> // Needed for inet_ntoa()
#include <fcntl.h>
#include <netdb.h>
#endif
#define PORT_NUM 1050 // Port number used
#define IP_ADDR 131.247.167.101
        // IP address of server1 (*** HARDWIRED ***)
void main(void)
{
#ifdef WIN

socket()

bind()

socket()

send()receive()

process request

Open communication
endpoint

Open communication
endpoint

Send/receive data

Send/receive data

Shutdown

Register well-known
address with system

data (request)

data (reply)

Server Client

send()

close()

receive()

close()

Figure M.3  Socket System Calls for Connectionless Protocol

Z18_STAL4290_09_GE_APPM.indd 22 4/18/17 7:34 AM

M.4 / STREAM AND DATAGRAM SOCKETS   M-23

WORD wVersionRequested = MAKEWORD(1,1);
                // Stuff for WSA functions
WSADATA wsaData;       // Stuff for WSA functions
#endif
unsigned int server_s;  // Server socket descriptor
struct sockaddr_in server_addr;
                // Server Internet address
int addr_len;         // Internet address length
char out_buf[100]; // 100-byte buffer for output data
char in_buf[100]; // 100-byte buffer for input data
#ifdef WIN // This stuff initializes winsock
WSAStartup(wVersionRequested, &wsaData);
#endif // Create a socket
 // �- AF_INET is Address Family

Internet and SOCK_DGRAM is
datagram

server_s = socket(AF_INET, SOCK_DGRAM, 0);
 // �Fill-in server1 socket’s

address information
server_addr.sin_family = AF_INET;
              // Address family to use
 server_addr.sin_port = htons(PORT_NUM);
              // Port num to use
 server_addr.sin_addr.s_addr = inet_addr(IP_ADDR);
              // IP address to use
             // Assign a message to buffer out_buf
 strcpy(out_buf, Message from client1 to server1);
             // �Now send the message to server1.

The + 1 includes the end-of-string
             // delimiter
 sendto(server_s, out_buf, (strlen(out_buf) + 1), 0,
 (struct sockaddr *)&server_addr, sizeof(server_addr));
             // Wait to receive a message
 addr_len = sizeof(server_addr);
 recvfrom(server_s, in_buf, sizeof(in_buf), 0,
 (struct sockaddr *)&server_addr, &addr_len);
             // Output the received message
 printf(Message received is: ’%s’ \n, in_buf);
             // Close all open sockets
#ifdef WIN
 closesocket(server_s);
#endif
#ifdef BSD
 close(server_s);

Z18_STAL4290_09_GE_APPM.indd 23 4/18/17 7:34 AM

M-24   Appendix M / Sockets: A Programmer’s Introduction

#endif
#ifdef WIN
 // Cleanup Winsock
 WSACleanup();
#endif
}

Example UDP Server Program (Passively Await
Connection)

#define WIN   // WIN for Winsock and BSD for BSD sockets
#include <stdio.h> // Needed for printf()
#include <string.h>     // Needed for memcpy() and strcpy()
#ifdef WIN
#include <windows.h> // Needed for all Winsock stuff
#endif
#ifdef BSD
#include <sys/types.h> // �Needed for system defined

identifiers.
#include <netinet/in.h> // �Needed for Internet address

structure.
#include <sys/socket.h> // �Needed for socket(),

bind(), etc...
#include <arpa/inet.h> // Needed for inet_ntoa()
#include <fcntl.h>
#include <netdb.h>
#endif
#define PORT_NUM 1050 // Port number used
#define IP_ADDR 131.247.167.101 // IP address of client1
void main(void)
{
#ifdef WIN
WORD wVersionRequested = MAKEWORD(1,1);
                // Stuff for WSA functions
WSADATA wsaData; // Stuff for WSA functions
#endif
unsigned int server_s; // Server socket descriptor
struct sockaddr_in server_addr;
                // Server1 Internet address
struct sockaddr_in client_addr; // Client1 Internet
address
int addr_len;         // Internet address length
char out_buf[100]; // 100-byte buffer for output data
char in_buf[100]; // 100-byte buffer for input data
long int i; // Loop counter

Z18_STAL4290_09_GE_APPM.indd 24 4/18/17 7:34 AM

M.4 / STREAM AND DATAGRAM SOCKETS   M-25

#ifdef WIN    // This stuff initializes winsock
WSAStartup(wVersionRequested, &wsaData);
#endif       // Create a socket
          // �AF_INET is Address Family Internet and

SOCK_DGRAM is datagram
server_s = socket(AF_INET, SOCK_DGRAM, 0);
         // Fill-in my socket’s address information
server_addr.sin_family = AF_INET;    // Address family
server_addr.sin_port = htons(PORT_NUM);   // Port number
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
         // Listen on any IP address
bind(server_s, (struct sockaddr *)&server_addr,
sizeof(server_addr));
      // Fill-in client1 socket’s address information
client_addr.sin_family = AF_INET;
      // Address family to use
client_addr.sin_port = htons(PORT_NUM); // Port num to use
client_addr.sin_addr.s_addr = inet_addr(IP_ADDR);
      // IP address to use
      // Wait to receive a message from client1
addr_len = sizeof(client_addr);
recvfrom(server_s, in_buf, sizeof(in_buf), 0,
(struct sockaddr *)&client_addr, &addr_len);
      // Output the received message
printf(Message received is: '%s' \n, in_buf);
      // Spin-loop to give client1 time to turn-around
for (i=0; i>> Step #5 <<<
      // �Now send the message to client1. The + 1

includes the end-of-string
      // delimiter
sendto(server_s, out_buf, (strlen(out_buf) + 1), 0,
(struct sockaddr *)&client_addr, sizeof(client_addr));
      // Close all open sockets
#ifdef WIN
closesocket(server_s);
#endif
#ifdef BSD
close(server_s);
#endif
#ifdef WIN
      // Cleanup Winsock
WSACleanup();
#endif
}

Z18_STAL4290_09_GE_APPM.indd 25 4/18/17 7:34 AM

M-26   Appendix M / Sockets: A Programmer’s Introduction

	 M.5	 RUN-TIME PROGRAM CONTROL

Nonblocking Socket Calls

By default, a socket is created as blocking, (i.e., it blocks until the current function
call is completed). For example, if we execute an accept() on a socket, the process
will block until there is an incoming connection from a client. In UNIX, two functions
are involved in turning a blocking socket into a nonblocking one: ioctl() and
select(). The first facilitates input/output control on a file descriptor or socket.
The select() function is then used to determine the socket status—ready or not
ready to perform action.

// change the blocking state of a socket
unsigned long unblock = TRUE;
         // TRUE for nonblocking, FALSE for blocking
ioctl(s, FIONBIO, &unblock);

We then call accept() periodically:

while(client_s = accept(s, NULL, NULL) > 0)
{
 if (client_s == EWOULDBLOCK)
     // wait until a client connection arrives,
     // while executing useful tasks
 else
     // process accepted connection
}   // display error and exit

or use the select() function call to query the socket status, as in the following
segment from a nonblocking socket program:

if (select(max_descr + 1, &sockSet, NULL, NULL,
&sel_timeout) == 0)
         // print a message for the user
else
{ . . .
client_s = accept(s, NULL, NULL);
 . . .
}

In this way, when some socket descriptor is ready for I/O, the process has to be con-
stantly polling the OS with select() calls, until the socket is ready. Although the
process executing a select() call would suspend the program until the socket is
ready or until the select() function times out (as opposed to suspending it until
the socket is ready, if the socket were blocking), this solution is still inefficient. Just
like calling a nonblocking accept() within a loop, calling select() within a loop
results in wasting CPU cycles.

Z18_STAL4290_09_GE_APPM.indd 26 4/18/17 7:34 AM

M.5 / RUN-TIME PROGRAM CONTROL   M-27

Asynchronous I/O (Signal Driven I/O)

A better solution is to use asynchronous I/O (i.e., when I/O activity is detected on
the socket, the OS informs the process immediately and thus relieves it from the
burden of polling all the time). In the original BSD UNIX, this involves the use of
calls to sigaction() and fcntl(). An alternative to poll for the status of a socket
through the select() call is to let the kernel inform the application about events
via a SIGIO signal. In order to do that, a valid signal handler for SIGIO must be
installed with sigaction(). The following program does not involve sockets, it
merely provides a simple example on how to install a signal handler. It catches an
interrupt char (Cntrl-C) input by setting the signal handling for SIGINT (interrupt
signal) via sigaction():

#include <stdio.h>     // for printf()
#include <sys/signal.h>   // for sigaction()
#include <unistd.h>    // for pause()
void catch_error(char *errorMessage);
                // for error handling
void InterruptSignalHandler(int signalType);
               // handle interr. signal
int main(int argc, char *argv[])
{
 struct sigaction handler;
                 // Signal handler specification
   // Set InterruptSignalHandler() as a handler function
 handler.sa_handler = InterruptSignalHandler;
                // Create mask for all signals
 if (sigfillset(&handler.sa_mask) < 0)
 catch_error(sigfillset() failed);

                // No flags
 handler.sa_flags = 0;
         // Set signal handling for interrupt signals
 if (sigaction(SIGINT, &handler, 0) < 0)
 catch_error(sigaction() failed);
 for(;;)
 pause();   // suspend program until signal received
 exit(0);
}
void InterruptSignalHandler(int signalType)
{
 printf(Interrupt Received. Program terminated.\n);
 exit(1);
}

Z18_STAL4290_09_GE_APPM.indd 27 4/18/17 7:34 AM

M-28   Appendix M / Sockets: A Programmer’s Introduction

A FASYNC flag must be set on a socket file descriptor via fcntl(). In more
detail, first we notify the OS about our desire to install a new disposition for SIGIO,
using sigaction(); then we force the OS to submit signals to the current process
by using fcntl(). This call is needed to ensure that among all processes that access
the socket, the signal is delivered to the current process (or process group); next, we
use fcntl()again to set the status flag on the same socket descriptor for asynchro-
nous FASYNC. The following segment of a datagram sockets program follows this
scheme. Note all the unnecessary details are omitted for clarity:

int main()
{
 . . .
      // Create socket for sending/receiving datagrams
      // Set up the server address structure
      // Bind to the local address
      // Set signal handler for SIGIO
      // Create mask that mask all signals
 if (sigfillset(&handler.sa_mask) < 0)
      // print error and exit
      // No flags
 handler.sa_flags = 0;
 if (sigaction(SIGIO, &handler, 0) < 0)
      // print error and exit
      // �We must own the socket to receive the SIGIO

message
 if (fcntl(s_socket, F_SETOWN, getpid()) < 0)
      //print error and exit
      // �Arrange for asynchronous I/O and SIGIO

delivery
 if (fcntl(s_socket, F_SETFL, FASYNC | O_NONBLOCK) < 0)
      // print error and exit
 for (;;)
 pause();
 . . .
}

Under Windows, the select() function is not implemented. The WSAAsync-
Select() is used to request notification of network events (i.e., request that
Ws2_32.dll sends a message to the window hWnd):

WSAAsyncSelect (SOCKET socket, HWND hWnd,
unsigned int wMsg, long lEvent)

The SOCKET type is defined in winsock.h. socket is a socket descriptor,
hWnd is the window handle, wMsg is the message, lEvent is usually a logical OR of all
events we are expecting to be notified of, when completed. Some of the event values

Z18_STAL4290_09_GE_APPM.indd 28 4/18/17 7:34 AM

M.6 / REMOTE EXECUTION OF A WINDOWS CONSOLE APPLICATION   M-29

are FD_CONNECT (connection completed), FD_ACCEPT (ready to accept), FD_
READ (ready to read), FD_WRITE (ready to write), FD_CLOSE (connection closed).
You can easily incorporate the following stream sockets program segment into the
previously presented programs or your own application. (Again, details are omitted.):

      // the message for the asynchronous notification
 #define wMsg (WM_USER + 4)
 ...
     // �socket_s has already been created and bound to

a name
     // listen for connections
if (listen(socket_s, 3) == SOCKET_ERROR)
     // print error message
     // exit after cleanup
     // get notification on connection accept
     // to this window
if (WSAAsyncSelect(s, hWnd, wMsg, FD_ACCEPT)==
SOCKET_ERROR)
     // print cannot process asynchronously
     // exit after cleanup
 else  // accept the incoming connection

Further references on Asynchronous I/O are “The Pocket Guide to TCP/IP Sockets—
C version” by Donahoo and Calvert (for UNIX), and “Windows Sockets Network
Programming” (for Windows), by Bob Quinn.

	 M.6	 REMOTE EXECUTION OF A WINDOWS CONSOLE
APPLICATION

Simple sockets operations can be used to accomplish tasks that are otherwise hard
to achieve. For example, by using sockets we can remotely execute an application.
The sample code1 is presented. Two sockets programs, a local and remote, are used
to transfer a Windows console application (an .exe file) from the local host to the
remote host. The program is executed on the remote host, then stdout is returned
to the local host.

Local Code

#include <stdio.h> // Needed for printf()
#include <stdlib.h> // Needed for exit()
#include <string.h> // Needed for memcpy() and strcpy()
#include <windows.h> // �Needed for Sleep() and Winsock

stuff

1 This and other code presented is in part written by Ken Christensen and Karl S. Lataxes at the Computer
Science Department of the University of South Florida, http://www.csee.usf.edu/~christen/tools/.

Z18_STAL4290_09_GE_APPM.indd 29 4/18/17 7:34 AM

http://www.csee.usf.edu/~christen/tools

M-30   Appendix M / Sockets: A Programmer’s Introduction

#include <fcntl.h> // Needed for file i/o constants
#include <sys\stat.h> // Needed for file i/o constants
#include <io.h> // Needed for open(), close(), and eof()
#define PORT_NUM 1050 // �Arbitrary port number for the

server
#define MAX_LISTEN 1 // �Maximum number of listens to

queue
#define SIZE 256 // �Size in bytes of transfer

buffer

void main(int argc, char *argv[])
{
WORD wVersionRequested = MAKEWORD(1,1); // WSA functions
WSADATA wsaData; // Winsock API data structure
unsigned int remote_s; // Remote socket descriptor
struct sockaddr_in remote_addr;
               // Remote Internet address
struct sockaddr_in server_addr;
               // Server Internet address
unsigned char bin_buf[SIZE]; // Buffer for file transfer
unsigned int fh;      // File handle
unsigned int length;   // Length of buffers transferred
struct hostent *host;   // Structure for gethostbyname()
struct in_addr address; // �Structure for Internet

address
char host_name[256];   // String for host name
int addr_len; // Internet address length
unsigned int local_s;   // Local socket descriptor
struct sockaddr_in local_addr; // Local Internet address
struct in_addr remote_ip_addr; // Remote IP address
 // Check if number of command line arguments is valid
if (argc !=4)
{
printf(*** ERROR - Must be ’local (host) (exefile)
      (outfile)’ \n);
printf(where host is the hostname *or* IP address \n);
printf(of the host running remote.c, exefile is the \n);
printf(name of the file to be remotely run, and \n);
printf(outfile is the name of the local output file. \n);
exit(1);
}
      // Initialization of winsock
WSAStartup(wVersionRequested, &wsaData);
      // Copy host name into host_name

Z18_STAL4290_09_GE_APPM.indd 30 4/18/17 7:34 AM

M.6 / REMOTE EXECUTION OF A WINDOWS CONSOLE APPLICATION   M-31

strcpy(host_name, argv[1]);
      // Do a gethostbyname()
host = gethostbyname(argv[1]);
if (host == NULL)
{
printf(*** ERROR - IP address for '%s' not be found \n,
host_name);
exit(1);
}      // �Copy the four-byte client IP address into

an IP address structure
memcpy(&address, host->h_addr, 4);
      // Create a socket for remote
remote_s = socket(AF_INET, SOCK_STREAM, 0);
      // Fill-in the server (remote) socket’s address
information and connect
      // with the listening server.
server_addr.sin_family = AF_INET; // Address family to use
server_addr.sin_port = htons(PORT_NUM); // Port num to use
server_addr.sin_addr.s_addr = inet_addr(inet_
ntoa(address)); // IP address
connect(remote_s, (struct sockaddr *)&server_addr,
sizeof(server_addr));
      // Open and read *.exe file
if((fh = open(argv[2], O_RDONLY | O_BINARY, S_IREAD |
    S_IWRITE)) == -1)
{
printf(ERROR - Unable to open file ’%s’\n, argv[2]);
exit(1);
}
      // Output message stating sending executable file
printf(Sending '%s' to remote server on ’%s’ \n,
argv[2], argv[1]);
      // Send *.exe file to remote
while(!eof(fh))
{
length = read(fh, bin_buf, SIZE);
send(remote_s, bin_buf, length, 0);
}
      // �Close the *.exe file that was sent to the

server (remote)
close(fh);
      // Close the socket
closesocket(remote_s);
      // Cleanup Winsock

Z18_STAL4290_09_GE_APPM.indd 31 4/18/17 7:34 AM

M-32   Appendix M / Sockets: A Programmer’s Introduction

WSACleanup();
      // Output message stating remote is executing
printf('%s' is executing on remote server \n, argv[2]);
      // Delay to allow everything to cleanup
Sleep(100);
      // Initialization of winsock
WSAStartup(wVersionRequested, &wsaData);

      // �Create a new socket to receive output file
from remote server

local_s = socket(AF_INET, SOCK_STREAM, 0);
      // �Fill-in the socket’s address information and

bind the socket
local_addr.sin_family = AF_INET; // Address family to use
local_addr.sin_port = htons(PORT_NUM); // Port num to use
local_addr.sin_addr.s_addr = htonl(INADDR_ANY);
      // Listen on any IP addr
bind(local_s, (struct sockaddr *)&local_addr,
sizeof(local_addr));
      // �Listen for connections (queueing up to

MAX_LISTEN)
listen(local_s, MAX_LISTEN);
      // �Accept a connection, the accept will block

and then return with
      // remote_addr filled in.
addr_len = sizeof(remote_addr);
remote_s = accept(local_s, (struct sockaddr*)
     &remote_addr, &addr_len);
      // �Copy the four-byte client IP address into an

IP address structure
memcpy(&remote_ip_addr, &remote_addr.sin_addr.s_addr, 4);
      // Create and open the output file for writing
if ((fh=open(argv[3], O_WRONLY | O_CREAT | O_TRUNC |
     O_BINARY,
S_IREAD | S_IWRITE)) == - 1)
{
printf(*** ERROR - Unable to open '%s'\n, argv[3]);
exit(1);
}
      // Receive output file from server
length = SIZE;
while(length > 0)
{
length = recv(remote_s, bin_buf, SIZE, 0);

Z18_STAL4290_09_GE_APPM.indd 32 4/18/17 7:34 AM

M.6 / REMOTE EXECUTION OF A WINDOWS CONSOLE APPLICATION   M-33

write(fh, bin_buf, length);
}
  // Close output file that was received from the remote
close(fh);
  // Close the sockets
closesocket(local_s);
closesocket(remote_s);
  // Output final status message
printf(Execution of '%s' and transfer of output
    to '%s' done! \n,
argv[2], argv[3]);
  // Cleanup Winsock
WSACleanup();
}

Remote Code

#include <stdio.h>    // Needed for printf()
#include <stdlib.h>      // Needed for exit()

#include <string.h>    // Needed for memcpy() and strcpy()
#include <windows.h> // �Needed for Sleep() and Winsock

stuff
#include <fcntl.h>    // Needed for file i/o constants
#include <sys\stat.h> // Needed for file i/o constants
#include <io.h> // Needed for open(), close(), and eof()
#define PORT_NUM 1050 // �Arbitrary port number for the

server
#define MAX_LISTEN 1       // �Maximum number of listens to

queue
#define IN_FILE run.exe // �Name given to transferred

*.exe file
#define TEXT_FILE output
               // Name of output file for stdout
#define SIZE 256          // �Size in bytes of transfer

buffer
void main(void)
{
WORD wVersionRequested = MAKEWORD(1,1); // WSA functions
WSADATA wsaData;      // WSA functions
unsigned int remote_s; // Remote socket descriptor
struct sockaddr_in remote_addr;
              // Remote Internet address
struct sockaddr_in server_addr;
              // Server Internet address

Z18_STAL4290_09_GE_APPM.indd 33 4/18/17 7:34 AM

M-34   Appendix M / Sockets: A Programmer’s Introduction

unsigned int local_s;      // Local socket descriptor
struct sockaddr_in local_addr; // Local Internet address
struct in_addr local_ip_addr; // Local IP address
int addr_len; // Internet address length
unsigned char bin_buf[SIZE]; // File transfer buffer
unsigned int fh; // File handle
unsigned int length; // Length of transf. buffers
                 // Do forever
while(1)
{                 // Winsock initialization
WSAStartup(wVersionRequested, &wsaData);
                 // Create a socket
remote_s = socket(AF_INET, SOCK_STREAM, 0);
         // �Fill-in my socket’s address information

and bind the socket
remote_addr.sin_family = AF_INET; // Address family to use
remote_addr.sin_port = htons(PORT_NUM);
         // Port number to use
remote_addr.sin_addr.s_addr = htonl(INADDR_ANY);
         // Listen on any IP addr
bind(remote_s, (struct sockaddr *)&remote_addr,
sizeof(remote_addr));
         // Output waiting message
printf(Waiting for a connection... \n);
   // Listen for connections (queueing up to MAX_LISTEN)
listen(remote_s, MAX_LISTEN);
   // �Accept a connection, accept() will block and return

with local_addr
addr_len = sizeof(local_addr);
local_s = accept(remote_s, (struct sockaddr *)&local_
addr, &addr_len);
   // �Copy the four-byte client IP address into an IP

address structure
memcpy(&local_ip_addr, &local_addr.sin_addr.s_addr, 4);
   // Output message acknowledging receipt, saving of *.exe
printf(Connection established, receiving remote executable
file \n);
   // Open IN_FILE for remote executable file
if((fh = open(IN_FILE, O_WRONLY | O_CREAT | O_TRUNC |
O_BINARY,
S_IREAD | S_IWRITE)) == - 1)
{
printf(*** ERROR - unable to open executable file \n);
exit(1);

Z18_STAL4290_09_GE_APPM.indd 34 4/18/17 7:34 AM

M.6 / REMOTE EXECUTION OF A WINDOWS CONSOLE APPLICATION   M-35

}
    // Receive executable file from local
length = 256;
while(length > 0)
{
length = recv(local_s, bin_buf, SIZE, 0);
write(fh, bin_buf, length);
}
    // Close the received IN_FILE
close(fh);
    // Close sockets
closesocket(remote_s);
closesocket(local_s);
    // Cleanup Winsock
WSACleanup();
    // Print message acknowledging execution of *.exe
printf(Executing remote executable (stdout to output
file) \n);
    // Execute remote executable file (in IN_FILE)
system(IN_FILE > TEXT_FILE);
    // �Winsock initialization to reopen socket to send

output file to local
WSAStartup(wVersionRequested, &wsaData);
    // Create a socket
    // �- AF_INET is Address Family Internet and SOCK_

STREAM is streams
local_s = socket(AF_INET, SOCK_STREAM, 0);
    // �Fill in the server’s socket address information

and connect with
    // the listening local
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(PORT_NUM);
server_addr.sin_addr.s_addr = inet_addr(inet_ntoa
      (local_ip_addr));
connect(local_s, (struct sockaddr *)&server_addr,
sizeof(server_addr));
    // �Print message acknowledging transfer of output to

client
printf(Sending output file to local host \n);
    // Open output file to send to client
if((fh = open(TEXT_FILE, O_RDONLY |
      O_BINARY, S_IREAD | S_IWRITE)) == - 1)
{
printf(*** ERROR - unable to open output file \n);

Z18_STAL4290_09_GE_APPM.indd 35 4/18/17 7:34 AM

M-36   Appendix M / Sockets: A Programmer’s Introduction

exit(1);
}
          // Send output file to client
while(!eof(fh))
{
length = read(fh, bin_buf, SIZE);
send(local_s, bin_buf, length, 0);
}
          // Close output file
close(fh);
          // Close sockets
closesocket(remote_s);
closesocket(local_s);
          // Cleanup Winsock
WSACleanup();
          // Delay to allow everything to cleanup
Sleep(100);
}
}

Z18_STAL4290_09_GE_APPM.indd 36 4/18/17 7:34 AM

N-1

Appendix N
The International Reference Alphabet

Z19_STAL4290_09_GE_APPN.indd 1 4/18/17 7:35 AM

N-2   Appendix N / The International Reference Alphabet

A familiar example of data is text or character strings. While textual data are most
convenient for human beings, they cannot, in character form, be easily stored or
transmitted by data processing and communications systems. Such systems are
designed for binary data. Thus, a number of codes have been devised by which char-
acters are represented by a sequence of bits. Perhaps the earliest common example
of this is the Morse code. Today, the most commonly used text code is the Interna-
tional Reference Alphabet (IRA).1 Each character in this code is represented by a
unique 7-bit binary code; thus, 128 different characters can be represented. Table N.1
lists all of the code values. In the table, the bits of each character are labeled from b7,
which is the most significant bit, to b1, the least significant bit. Characters are of two
types: printable and control (see Table N.2). Printable characters are the alphabetic,
numeric, and special characters that can be printed on paper or displayed on a screen.
For example, the bit representation of the character “K” is b7b6b5b4b3b2b1 = 1001011.
Some of the control characters have to do with controlling the printing or displaying

1 IRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet
Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for
Information Interchange (ASCII).

Table N.1  The International Reference Alphabet (IRA)

Bit Position

b7 0 0 0 0 1 1 1 1

b6 0 0 1 1 0 0 1 1

b5 0 1 0 1 0 1 0 1

b4 b3 b2 b1

0 0 0 0 NUL DLE SP 0 @ P ‘ p

0 0 0 1 SOH DC1 ! 1 A Q a q

0 0 1 0 STX DC2 ” 2 B R b r

0 0 1 1 ETX DC3 # 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t

0 1 0 1 ENQ NAK % 5 E U e u

0 1 1 0 ACK SYN & 6 F V f v

0 1 1 1 BEL ETB ’ 7 G W g w

1 0 0 0 BS CAN (8 H X h x

1 0 0 1 HT EM) 9 I Y i y

1 0 1 0 LF SUB * : J Z j z

1 0 1 1 VT ESC + ; K [k {

1 1 0 0 FF FS , < L \ l |

1 1 0 1 CR GS − = M] m }

1 1 1 0 SO RS . > N ^] n ~

1 1 1 1 SI US / ? O _ o DEL

Z19_STAL4290_09_GE_APPN.indd 2 4/18/17 7:35 AM

The International Reference Alphabet   N-3

Table N.2  IRA Control Characters

Format Control

BS (Backspace): Indicates movement of the print-
ing mechanism or display cursor backward one
position.

HT (Horizontal Tab): Indicates movement of the
printing mechanism or display cursor forward to
the next preassigned “tab” or stopping position.

LF (Line Feed): Indicates movement of the printing
mechanism or display cursor to the start of the
next line.

VT (Vertical Tab): Indicates movement of the printing
mechanism or display cursor to the next of a series
or preassigned printing lines.

FF (Form Feed): Indicates movement of the printing
mechanism or display cursor to the starting position
of the next page, form, or screen.

CR (Carriage Return): Indicates movement of the
printing mechanism or display cursor to the starting
position of the same line.

Transmission Control

SOH (Start of Heading): Used to indicate the start
of a heading, which may contain address or rout-
ing information.

STX (Start of Text): Used to indicate the start of
the text and so also indicates the end of the
heading.

ETX (End of Text): Used to terminate the text that
was started with STX.

EOT (End of Transmission): Indicates the end of a
transmission, which may have included one or
more “texts” with their headings.

ENQ (Enquiry): A request for a response from a
remote station. It may be used as a “WHO ARE
YOU” request for a station to identify itself.

ACK (Acknowledge): A character transmitted by a
receiving device as an affirmation response to a sender.
It is used as a positive response to polling messages.

NAK (Negative Acknowledgment): A character trans-
mitted by a receiving device as a negative response
to a sender. It is used as a negative response to poll-
ing messages.

SYN (Synchronous/Idle): Used by a synchronous trans-
mission system to achieve synchronization. When no
data is being sent a synchronous transmission sys-
tem may send SYN characters continuously.

ETB (End of Transmission Block): Indicates the end of
a block of data for communication purposes. It is
used for blocking data where the block structure is
not necessarily related to the processing format.

Information Separator

FS (File Separator)
GS (Group Separator)
RS (Record Separator)
US (Unit Separator)

Information separators to be used in an optional man-
ner except that their hierarchy shall be FS (the most
inclusive) to US (the least inclusive)

Miscellaneous

NUL (Null): No character. Used for filling in time
or filling space on tape when there are no data.

BEL (Bell): Used when there is need to call human
attention. It may control alarm or attention
devices.

SO (Shift Out): Indicates the code combinations
that follow shall be interpreted as outside of the
standard character set until a SI character is
reached.

SI (Shift In): Indicates the code combinations that
follow shall be interpreted according to the stan-
dard character set.

DEL (Delete): Used to obliterate unwanted charac-
ters; for example by overwriting.

SP (Space): A nonprinting character used to sepa-
rate words, or to move the printing mechanism or
display cursor forward by one position.

DLE (Data Link Escape): A character that shall
change the meaning of one or more contiguously
following characters. It can provide supplementary
controls, or permits the sending of data characters
having any bit combination.

DC1, DC2, DC3, DC4 (Device Controls): Characters
for the control of ancillary devices or special termi-
nal features.

CAN (Cancel): Indicates the data that precedes it in a
message or block should be disregarded (usually
because an error has been detected).

EM (End of Medium): Indicates the physical end of a
tape or other medium, or the end of the required or
used portion of the medium.

SUB (Substitute): Substituted for a character that is
found to be erroneous or invalid.

ESC (Escape): A character intended to provide code
extension in that it gives a specified number of con-
tinuously following characters an alternate meaning.

Z19_STAL4290_09_GE_APPN.indd 3 4/18/17 7:35 AM

N-4   Appendix N / The International Reference Alphabet

of characters; an example is carriage return. Other control characters are concerned
with communications procedures.

IRA-encoded characters are almost always stored and transmitted using 8 bits
per character. In that case, the eighth bit is a parity bit used for error detection. The
parity bit is the most significant bit and is therefore labeled b8. This bit is set such that
the total number of binary 1s in each octet is always odd (odd parity) or always even
(even parity). Thus a transmission error that changes a single bit, or any odd number
of bits, can be detected.

Z19_STAL4290_09_GE_APPN.indd 4 4/18/17 7:35 AM

O-1

Appendix O
BACI: The Ben-Ari Concurrent

Programming System
O.1	 Introduction

O.2	 Baci
System Overview
Concurrency Constructs in BACI
How to Obtain BACI

O.3	 Examples Of Baci Programs

O.4	 Baci Projects
Implementation of Synchronization Primitives
Semaphores, Monitors, and Implementations

O.5	 Enhancements To The Baci System

Z20_STAL4290_09_GE_APPO.indd 1 4/18/17 7:35 AM

O-2   Appendix o / BACI: The Ben-Ari Concurrent Programming System

	 O.1	 INTRODUCTION

In Chapter 5, concurrency concepts are introduced (e.g., mutual exclusion and the
critical section problem) and synchronization techniques are proposed (e.g., sema-
phores, monitors, and message passing). Deadlock and starvation issues for concur-
rent programs are discussed in Chapter 6. Due to the increasing emphasis on parallel
and distributed computing, understanding concurrency and synchronization is more
necessary than ever. To obtain a thorough understanding of these concepts, practical
experience writing concurrent programs is needed.

Three options exist for this desired “hands-on” experience. First, we can write
concurrent programs with an established concurrent programming language such as
Concurrent Pascal, Modula, Ada, or the SR Programming Language. To experiment
with a variety of synchronization techniques, however, we must learn the syntax of
many concurrent programming languages. Second, we can write concurrent programs
using system calls in an operating system such as UNIX. It is easy, however, to be
distracted from the goal of understanding concurrent programming by the details and
peculiarities of a particular operating system (e.g., details of the semaphore system
calls in UNIX). Lastly, we can write concurrent programs with a language developed
specifically for giving experience with concurrency concepts such as the Ben-Ari
Concurrent Interpreter (BACI). Using such a language offers a variety of synchroni-
zation techniques with a syntax that is usually familiar. Languages developed specifi-
cally for giving experience with concurrency concepts are the best option to obtain
the desired hands-on experience.

Section O.2 contains a brief overview of the BACI system and how to obtain
the system. Section O.3 contains examples of BACI programs, and Section O.4
contains a discussion of projects for practical concurrency experience at the imple-
mentation and programming levels. Lastly, Section O.5 contains a description of
enhancements to the BACI system that have been made.

	 O.2	 BACI

System Overview

BACI is a direct descendant of Ben-Ari’s modification to sequential Pascal (Pascal-S).
Pascal-S is a subset of standard Pascal by Wirth, without files, except INPUT and
OUTPUT, sets, pointer variables, and goto statements. Ben-Ari took the Pascal-S
language and added concurrent programming constructs such as the cobegin...
coend construct and the semaphore variable type with wait and signal opera-
tions. BACI is Ben-Ari’s modification to Pascal-S with additional synchronization
features (e.g., monitors) as well as encapsulation mechanisms to ensure that a user is
prevented from modifying a variable inappropriately (e.g., a semaphore variable
should only be modified by semaphore functions).

BACI simulates concurrent process execution and supports the following syn-
chronization techniques: general semaphores, binary semaphores, and monitors. The
BACI system is composed of two subsystems, as illustrated in Figure O.1. The first

Z20_STAL4290_09_GE_APPO.indd 2 4/18/17 7:35 AM

O.2 / BACI   O-3

subsystem, the compiler, compiles a user’s program into intermediate object code,
called PCODE. There are two compilers available with the BACI system, corre-
sponding to two popular languages taught in introductory programming courses.
The syntax of one compiler is similar to standard Pascal; BACI programs that use
the Pascal syntax are denoted as pgrm-name.pm. The syntax of the other compiler
is similar to standard C+ + ; these BACI programs are denoted as pgrm-name.cm.
Both compilers create two files during the compilation: pgrm-name.lst and pgrm-
name.pco.

The second subsystem in the BACI system, the interpreter, executes the object
code created by the compiler. In other words, the interpreter executes pgrm-name.
pco. The core of the interpreter is a preemptive scheduler; during execution, this
scheduler randomly swaps between concurrent processes, thus simulating a parallel
execution of the concurrent processes. The interpreter offers a number of different
debug options, such as single-step execution, disassembly of PCODE instructions,
and display of program storage locations.

Concurrency Constructs in BACI

In the rest of this appendix, we focus on the compiler similar to standard C+ + . We
call this compiler C- - ; although the syntax is similar to C+ + , it does not include
inheritance, encapsulation, or other object-oriented programming features. In this
section, we give an overview of the BACI concurrency constructs; see the user’s
guides at the BACI website for further details of the required Pascal or C- - BACI
syntax.

cobegin  A list of processes to be run concurrently is enclosed in a cobegin block.
Such blocks cannot be nested and must appear in the main program.

cobegin { proc1(...); proc2(...); ... ; procN(...); }

Figure O.1 

bacc

bapas

text editor

Compilers Interpreter

bainterp

compilation
 errors

object file

compilation listing

keyboard input

 correct
execution
 output

 incorrect
execution
 output

successful
compilation

pgrmname.cm

pgrmname.pm

bacc pgrm-name

bapas pgrm-name

pgrmname.lst

pgrmname.pco

bainterp pgrm-name

Z20_STAL4290_09_GE_APPO.indd 3 4/18/17 7:35 AM

O-4   Appendix o / BACI: The Ben-Ari Concurrent Programming System

The PCODE statements created by the compiler for the above block are interleaved
by the interpreter in an arbitrary, “random” order; multiple executions of the same
program containing a cobegin block will appear to be nondeterministic.

Semaphores  A semaphore in BACI is a nonnegative-valued int variable, which
can only be accessed by the semaphore calls defined subsequently. A binary
semaphore in BACI, one that only assumes the values 0 and 1, is supported by the
binarysem subtype of the semaphore type. During compilation and execution, the
compiler and interpreter enforce the restrictions that a binarysem variable can only
have the values 0 or 1 and that semaphore type can only be nonnegative. BACI
semaphore calls include

•	 initialsem(semaphore sem, int expression)

•	 p(semaphore sem): If the value of sem is greater than zero, then the inter-
preter decrements sem by one and returns, allowing p’s caller to continue. If the
value of sem is equal to zero, then the interpreter puts p’s caller to sleep. The
command wait is accepted as a synonym for p.

•	 v(semaphore sem): If the value of sem is equal to zero and one or more
processes are sleeping on sem, then wake up one of these processes. If no pro-
cesses are waiting on sem, then increment sem by one. In any event, v’s caller
is allowed to continue. (BACI conforms to Dijkstra’s original semaphore pro-
posal by randomly choosing which process to wake up when a signal arrives.)
The command signal is accepted as a synonym for v.

Monitors  BACI supports the monitor concept, with some restrictions. A monitor
is a C+ + block, like a block defined by a procedure or function, with some
additional properties (e.g., conditional variables). In BACI, a monitor must be
declared at the outermost, global level and it cannot be nested with another monitor
block. Three constructs are used by the procedures and functions of a monitor to
control concurrency: condition variables, waitc (wait on a condition), and
signalc (signal a condition). A condition never actually has a value; it is
somewhere to wait or something to signal. A monitor process can wait for a
condition to hold or signal that a given condition now holds through the waitc
and signalc calls. waitc and signalc calls have the following syntax and
semantics:

•	 waitc(condition cond, int prio): The monitor process (and hence the
outside process calling the monitor process) is blocked on the condition cond
and assigned the priority prio.

•	 waitc(condition cond): This call has the same semantics as the waitc
call, but the wait is assigned a default priority of 10.

•	 signalc(condition cond): Wake some process waiting on cond with the
smallest (highest) priority; if no process is waiting on cond, do nothing.

Z20_STAL4290_09_GE_APPO.indd 4 4/18/17 7:35 AM

O.3 / EXAMPLES OF BACI PROGRAMS   O-5

BACI conforms to the immediate resumption requirement. In other words, a
process waiting on a condition has priority over a process trying to enter the monitor,
if the process waiting on a condition has been signaled.

Other Concurrency Constructs  The C- - BACI compiler provides several
low-level concurrency constructs that can be used to create new concurrency control
primitives. If a function is defined as atomic, then the function is nonpreemptible. In
other words, the interpreter will not interrupt an atomic function with a context
switch. In BACI, the suspend function puts the calling process to sleep and the revive
function revives a suspended process.

How to Obtain BACI

The BACI system, with two user guides (one for each of the two compilers) and detailed
project descriptions, is available at the BACI website at http://inside.mines.edu/fs_
home/tcamp/baci/baci_index.html. The BACI system is written in both C and Java. The
C version of the BACI system can be compiled in Linux, RS/6000 AIX, Sun OS, DOS,
and CYGWIN on Windows with minimal modifications to the Makefile file. (See the
README file in the distribution for installation details for a given platform.)

	 O.3	 EXAMPLES OF BACI PROGRAMS

In Chapters 5 and 6, a number of the classical synchronization problems were dis-
cussed (e.g., the readers/writers problem and the dining philosophers problem). In
this section, we illustrate the BACI system with three BACI programs. Our first
example illustrates the nondeterminism in the execution of concurrent processes in
the BACI system. Consider the following program:

const int m = 5;
int n;
void incr(char id)
{
 int i;
 for(i = 1; i <= m; i = i + 1)
 {
 n = n + 1;
 cout << id << ” n =” << n << ” i =”;
 cout << i << ” ” << id << endl;
 }
}
main()
{
 n = 0;
 cobegin {

Z20_STAL4290_09_GE_APPO.indd 5 4/18/17 7:35 AM

http://inside.mines.edu/fs_home/tcamp/baci/baci_index.html
http://inside.mines.edu/fs_home/tcamp/baci/baci_index.html

O-6   Appendix o / BACI: The Ben-Ari Concurrent Programming System

 incr(’A’); incr(’B’); incr(’C’);
 }
 cout << ”The sum is ” << n << endl;
}

Note in the preceding program that if each of the three processes created
(A, B, and C) executed sequentially, the output sum would be 15. Concurrent execu-
tion of the statement n = n + 1; however, can lead to different values of the output
sum. After we compiled the preceding program with BACI, we executed the PCODE
file with bainterp a number of times. Each execution produced output sums
between 9 and 15. One sample execution produced by the BACI interpreter is the
following.

Source file: incremen.cm Fri Aug 1 16:51:00 1997
CB n = 2 i =1 C n =2
A n = 2 i =1 i =1 A
CB
 n = 3 i = 2 C
A n = 4 i = 2 C n = 5 i = 3 C
A
B n = 6C i = 2 B
 n = 7 i = 4 C
A n = 8 i = 3 A
BC n = 10 n = 10 i = 5 C
A n = i = 311 i = 4 A
 B
A n = 12 i = B5 n = 13A
 i = 4 B
B n = 14 i = 5 B
The sum is 14

Special machine instructions are needed to synchronize the access of processes
to a common main memory. Mutual exclusion protocols, or synchronization primi-
tives, are then built on top of these special instructions. In BACI, the interpreter will
not interrupt a function defined as atomic with a context switch. This feature allows
users to implement these low-level special machine instructions. For example, the
following program is a BACI implementation of the testset function. A testset instruc-
tion tests the value of the function’s argument i. If the value of i is zero, the function
replaces it with 1 and returns true; otherwise, the function does not change the value
of i and returns false. As discussed in Section 5.2, special machine instructions (e.g.,
testset) allow more than one action to occur without interruption. BACI has an
atomic keyword defined for this purpose.

// Test and set instruction
//
atomic int testset(int& i)

Z20_STAL4290_09_GE_APPO.indd 6 4/18/17 7:35 AM

O.3 / EXAMPLES OF BACI PROGRAMS   O-7

{
 if (i == 0) {
 i = 1;
 return 1;
 }
 else
 return 0;
}

We can use testset to implement mutual exclusion protocols, as shown in the
following program. This program is a BACI implementation of a mutual exclusion
program based on the test and set instruction. The program assumes three concurrent
processes; each process requests mutual exclusion 10 times.

int bolt = 0;
const int RepeatCount = 10;
void proc(int id)
{
 int i = 0;
 while(i < RepeatCount) {
 while (testset(bolt)); // wait
 // enter critical section
 cout << id;
 // leave critical section
 bolt = 0;
 i++;
 }
}
main()
{
 cobegin {
 proc(0); proc(1); proc(2);
 }
}

The following two programs are a BACI solution to the bounded-buffer pro-
ducer/consumer problem with semaphores (see Figure 5.13). In this example, we have
two producers, three consumers, and a buffer size of five. We first list the program
details for this problem. We then list the included file that defines the bounded-buffer
implementation.

// A solution to the bounded-buffer producer/consumer
problem
// Stallings, Figure 5.13
// bring in the bounded-buffer machinery

Z20_STAL4290_09_GE_APPO.indd 7 4/18/17 7:35 AM

O-8   Appendix o / BACI: The Ben-Ari Concurrent Programming System

#include “boundedbuff.inc”
const int ValueRange = 20; // integers in 0..19 will be
 produced
semaphore to; // for exclusive access to terminal output
semaphore s; // mutual exclusion for the buffer
semaphore n; // # consumable items in the buffer
semaphore e; // # empty spaces in the buffer
int produce(char id)
{
 int tmp;
 tmp = random(ValueRange);
 wait(to);
 cout << “Producer ” << id << “ produces ” << tmp
 << endl;
 signal(to);
 return tmp;
}
void consume(char id, int i)
{
 wait(to);
 cout << “Consumer ” << id << “ consumes ” << i
 << endl;
 signal(to);
}
void producer(char id)
{
 int i;
 for (;;) {
 i = produce(id);
 wait(e);
 wait(s);
 append(i);
 signal(s);
 signal(n);
 }
}
void consumer(char id)
{
 int i;
 for (;;) {
 wait(n);
 wait(s);
 i = take();
 signal(s);

Z20_STAL4290_09_GE_APPO.indd 8 4/18/17 7:35 AM

O.3 / EXAMPLES OF BACI PROGRAMS   O-9

 signal(e);
 consume(id,i);
 }
}
main()
{
 initialsem(s,1);
 initialsem(n,0);
 initialsem(e,SizeOfBuffer);
 initialsem(to,1);
 cobegin {
 producer(’A’); producer(’B’);
 consumer(’x’); consumer(’y’); consumer(’z’);
 }
}

// boundedbuff.inc -- bounded buffer include file
const int SizeOfBuffer = 5;
int buffer[SizeOfBuffer];
int in = 0; // index of buffer to use for next append
int out = 0; // index of buffer to use for next take
void append(int v)
 // add v to the buffer
 // overrun is assumed to be taken care of
 // externally through semaphores or conditions
{
 buffer[in] = v;
 in = (in + 1) % SizeOfBuffer;
}
int take()
 // return an item from the buffer
 // underrun is assumed to be taken care of
 // externally through a semaphore or condition
{
 int tmp;
 tmp = buffer[out];
 out = (out + 1) % SizeOfBuffer;
 return tmp;
}

One sample execution of the preceding bounded-buffer solution in BACI is the
following.

Source file: semprodcons.cm Fri Aug 1 12:36:55 1997
Producer B produces 4

Z20_STAL4290_09_GE_APPO.indd 9 4/18/17 7:35 AM

O-10   Appendix o / BACI: The Ben-Ari Concurrent Programming System

Producer A produces 13
Producer B produces 12
Producer A produces 4
Producer B produces 17
Consumer x consumes 4
Consumer y consumes 13
Producer A produces 16
Producer B produces 11
Consumer z consumes 12
Consumer x consumes 4
Consumer y consumes 17
Producer B produces 6
...

	 O.4	 BACI PROJECTS

In this section, we discuss two general types of projects one can implement in BACI.
We first discuss projects that involve the implementation of low-level operations (e.g.,
special machine instructions that are used to synchronize the access of processes to
a common main memory). We then discuss projects that are built on top of these
low-level operations (e.g., classical synchronization problems). For more information
on these projects, see the project descriptions included in the BACI distribution. For
solutions to some of these projects, teachers should contact the authors. In addition
to the projects discussed in this section, many of the problems at the end of Chapter 5
and Appendix A can be implemented in BACI.

Implementation of Synchronization Primitives

Implementation of Machine Instructions  There are numerous machine
instructions that one can implement in BACI. For example, one can implement the
compare-and-swap or the exchange instruction discussed in Figure 5.2. The
implementation of these instructions should be based on an atomic function that
returns an int value. You can test your implementation of the machine instruction by
building a mutual exclusion protocol on top of your low-level operation.

Implementation of Fair Semaphores (FIFO)  The semaphore operation in
BACI is implemented with a random wake up order, which is how semaphores were
originally defined by Dijkstra. As discussed in Section 5.3, however, the fairest policy
is FIFO. One can implement semaphores with this FIFO wake up order in BACI.
At least the following four procedures should be defined in the implementation:

•	 CreateSemaphores() to initialize the program code

•	 InitSemaphore(int sem-index) to initialize the semaphore represented
by sem-index

•	 FIFOP(int sem-index)

•	 FIFOV(int sem-index)

Z20_STAL4290_09_GE_APPO.indd 10 4/18/17 7:35 AM

O.4 / BACI PROJECTS   O-11

This code needs to be written as a system implementation and, as such, should
handle all possible errors. In other words, the semaphore designer is responsible for
producing code that is robust in the presence of ignorant, stupid, or even malicious
use by the user community.

Semaphores, Monitors, and Implementations

There are many classical concurrent programming problems: the producer/consumer
problem, the dining philosophers, the reader/writer problem with different priorities,
the sleeping barber problem, and the cigarette smoker’s problem. All of these prob-
lems can be implemented in BACI. In this section, we discuss nonstandard sema-
phore/monitor projects that one can implement in BACI to further aid the
understanding of concurrency and synchronization concepts.

A’s and B’s and Semaphores  For the following program outline in BACI,

// global semaphore declarations here
void A()
{
 p()’s and v()’s ONLY
}
void B()
{
 p()’s and v()’s ONLY
}
main()
{
 // semaphore initialization here
 cobegin {
 A(); A(); A(); B(); B();
 }
}

complete the program using the least number of general semaphores, such that the
processes ALWAYS terminate in the order A (any copy), B (any copy), A (any copy),
A, B. Use the -t option of the interpreter to display process termination. (Many varia-
tions of this project exist. For example, have four concurrent processes terminated in
the order ABAA or eight concurrent processes terminated in the order
AABABABB.)

Using Binary Semaphores  Repeat the previous project using binary semaphores.
Evaluate why assignment and IF-THEN-ELSE statements are necessary in this
solution, although they were not necessary in solutions to the previous project. In
other words, explain why you cannot use only Ps and Vs in this case.

Busy Waiting versus Semaphores  Compare the performance of a solution to
mutual exclusion that uses busy waiting (e.g., the testset instruction) to a solution that
uses semaphores. For example, compare a semaphore solution and a testset solution

Z20_STAL4290_09_GE_APPO.indd 11 4/18/17 7:35 AM

O-12   Appendix o / BACI: The Ben-Ari Concurrent Programming System

to the ABAAB project discussed previously. In each case, use a large number of
executions (say, 1000) to obtain better statistics. Discuss your results, explaining why
one implementation is preferred over another.

Semaphores and Monitors  In the spirit of Problem 5.17, implement a monitor
using general semaphores, then implement a general semaphore using a monitor in
BACI.

General and Binary Semaphores  Prove that general semaphores and binary
semaphores are equally powerful, by implementing one type of semaphore with the
other type of semaphore and vice versa.

Time Ticks: A Monitor Project  Write a program containing a monitor
AlarmClock. The monitor must have an int variable theClock (initialized to zero)
and two functions:

•	 Tick(): This function increments theClock each time that it is called. It can
do other things, like signalc, if needed.

•	 int Alarm(int id, int delta): This function blocks the caller with
identifier id for at least delta ticks of theClock.

The main program should have two functions as well:

•	 void Ticker(): This procedure calls Tick() in a repeat-forever loop.

•	 void Thread(int id, int myDelta): This function calls Alarm in a
repeat-forever loop.

You may endow the monitor with any other variables that it needs. The monitor
should be able to accommodate up to five simultaneous alarms.

A Problem of a Popular Baker  Due to the recent popularity of a bakery, almost
every customer needs to wait for service. To maintain service, the baker wants to
install a ticket system that will ensure customers are served in turn. Construct a BACI
implementation of this ticket system.

	 O.5	 ENHANCEMENTS TO THE BACI SYSTEM

We have enhanced the BACI System in several ways:

1.	 We have implemented the BACI system in Java (JavaBACI). This, along with
our original C implementation of BACI, is available from: http://inside.mines
.edu/fs_home/tcamp/baci/baci_index.html. The JavaBACI classes and source
files are stored in self-extracting Java .jar files. JavaBACI includes all BACI
applications: C and Pascal compilers, disassembler, archiver, linker, and com-
mand-line and GUI PCODE interpreters. The input, behavior, and output of
programs in JavaBACI are identical to the input, behavior, and output of pro-
grams in our C implementation of BACI; we note that, in JavaBACI, students

Z20_STAL4290_09_GE_APPO.indd 12 4/18/17 7:35 AM

http://inside.mines.edu/fs_home/tcamp/baci/baci_index.html
http://inside.mines.edu/fs_home/tcamp/baci/baci_index.html

O.5 / ENHANCEMENTS TO THE BACI SYSTEM   O-13

continue to write concurrency programs in C- - or Pascal (not Java). JavaBACI
will execute on any computer that has an installation of the Java Virtual
Machine.

2.	 We have added graphical user interfaces (GUIs) for JavaBACI and the UNIX
version of BACI in C. The windowing environments of these GUIs allow a user
to monitor all aspects of the execution of a BACI program; specifically, a user
can set and remove breakpoints (either by PCODE address or source line),
view variables values, runtime stacks, and process tables, and examine inter-
leaved PCODE execution. The BACI GUIs are available at the BACI GUI Web
site http://inside.mines.edu/fs_home/tcamp/baci/index_gui.html. For an alterna-
tive GUI, see below.

3.	 We have created a distributed version of BACI. Similar to concurrent programs,
it is difficult to prove the correctness of distributed programs without an imple-
mentation. Distributed BACI allows distributed programs to be easily imple-
mented. In addition to proving the correctness of a distributed program, one
can use distributed BACI to test the program’s performance. Distributed BACI
is available at the following website: http://inside.mines.edu/fs_home/tcamp
/baci/dbaci.html.

4.	 We have a PCODE disassembler that will provide the user with an annotated
listing of a PCODE file, showing the mnemonics for each PCODE instruction
and, if available, the corresponding program source that generated the instruc-
tion. This PCODE disassembler is included in the BACI System.

5.	 We have added the capability of separate compilation and external variables to
both compilers (C and Pascal). The BACI System includes an archiver and a
linker that enable the creation and use of libraries of BACI PCODE. For more
details, see the BACI Separate Compilation User’s Guide.

The BACI system has also been enhanced by others.

1.	 David Strite, an M.S. student who worked with Linda Null from the Pennsylvania
State University, created a BACI Debugger: A GUI Debugger for the BACI
System. This GUI is available at http://cs.hbg.psu.edu/~null/baci.

2.	 Using BACI and the BACI GUI from Pennsylvania State University, Moti Ben-
Ari from the Weizmann Institute of Science in Israel created an integrated
development environment for learning concurrent programming by simulating
concurrency called jBACI. jBACI is available at: https://code.google.com/
archive/p/jbaci/.

Z20_STAL4290_09_GE_APPO.indd 13 4/18/17 7:35 AM

http://inside.mines.edu/fs_home/tcamp/baci/index_gui.html
http://inside.mines.edu/fs_home/tcamp/baci/dbaci.html
http://cs.hbg.psu.edu/~null/baci
https://code.google.com/archive/p/jbaci/
http://inside.mines.edu/fs_home/tcamp/baci/dbaci.html
https://code.google.com/archive/p/jbaci/

P-1

Appendix P
Procedure Control

P.1	 Stack Implementation

P.2	 Procedure Calls and Returns

P.3	 Reentrant Procedures

Z21_STAL4290_09_GE_APPP.indd 1 4/18/17 7:37 AM

P-2   Appendix P / Procedure Control

A common technique for controlling the execution of procedure calls and returns
makes use of a stack. This appendix summarizes the basic properties of stacks and
looks at their use in procedure control.

	 P.1	 STACK IMPLEMENTATION

A stack is an ordered set of elements, only one of which (the most recently added)
can be accessed at a time. The point of access is called the top of the stack. The num-
ber of elements in the stack, or length of the stack, is variable. Items may only be
added to or deleted from the top of the stack. For this reason, a stack is also known
as a pushdown list or a last-in-first-out (LIFO) list.

The implementation of a stack requires that there be some set of locations used
to store the stack elements. A typical approach is illustrated in Figure P.1. A contigu-
ous block of locations is reserved in main memory (or virtual memory) for the stack.
Most of the time, the block is partially filled with stack elements and the remainder
is available for stack growth. Three addresses are needed for proper operation, and
these are often stored in processor registers:

•	 Stack pointer: Contains the address of the current top of the stack. If an item
is appended to (PUSH) or deleted from (POP) the stack, the pointer is decre-
mented or incremented to contain the address of the new top of the stack.

Figure P.1  Typical Stack Organization (full/descending)

Block
reserved
for stack

Main
memory

Processor
registers

Free

Stack
limit

Stack
pointer

Stack
base

In use

D
es

ce
nd

in
g

ad
dr

es
se

s

Z21_STAL4290_09_GE_APPP.indd 2 4/18/17 7:37 AM

P.2 / PROCEDURE CALLS AND RETURNS   P-3

•	 Stack base: Contains the address of the bottom location in the reserved block.
This is the first location to be used when an item is added to an empty stack. If
an attempt is made to POP an element when the stack is empty, an error is
reported.

•	 Stack limit: Contains the address of the other end, or top, of the reserved block.
If an attempt is made to PUSH an element when the stack is full, an error is
reported.

Traditionally, and on most processors today, the base of the stack is at the high-
address end of the reserved stack block, and the limit is at the low-address end. Thus,
the stack grows from higher addresses to lower addresses.

	 P.2	 PROCEDURE CALLS AND RETURNS

A common technique for managing procedure calls and returns makes use of a stack.
When the processor executes a call, it places (pushes) the return address on the stack.
When it executes a return, it uses the address on top of the stack and removes (pops)
that address from the stack. For the nested procedures of Figure P.2, Figure P.3 illus-
trates the use of a stack.

It is also often necessary to pass parameters with a procedure call. These could
be passed in registers. Another possibility is to store the parameters in memory just

Figure P.2  Nested Procedures

CALL Proc1

Main Memory

Main
Program

Procedure
Proc1

Procedure
Proc2

Addresses

4000

4100
4101

4500

4800

4600
4601

4650
4651

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns (b) Execution sequence

Z21_STAL4290_09_GE_APPP.indd 3 4/18/17 7:37 AM

P-4   Appendix P / Procedure Control

after the Call instruction. In this case, the return must be to the location following the
parameters. Both of these approaches have drawbacks. If registers are used, the called
program and the calling program must be written to assure that the registers are used
properly. The storing of parameters in memory makes it difficult to exchange a vari-
able number of parameters.

A more flexible approach to parameter passing is the stack. When the processor
executes a call, it not only stacks the return address, it stacks parameters to be passed
to the called procedure. The called procedure can access the parameters from the
stack. Upon return, return parameters can also be placed on the stack, under the
return address. The entire set of parameters, including return address, that is stored
for a procedure invocation is referred to as a stack frame.

An example is provided in Figure P.4. The example refers to procedure P in
which the local variables x1 and x2 are declared, and procedure Q, which can be called
by P and in which the local variables y1 and y2 are declared. The first item stored in
each stack frame is a pointer to the beginning of the previous frame. This is needed
if the number or length of parameters to be stacked is variable. Next is stored the
return point for the procedure that corresponds to this stack frame. Finally, space is
allocated at the top of the stack frame for local variables. These local variables can
be used for parameter passing. For example, suppose when P calls Q, it passes one
parameter value. This value could be stored in variable y1. Thus, in a high-level lan-
guage, there would be an instruction in the P routine that looks like this:

CALL Q(y1)

When this call is executed, a new stack frame is created for Q (see Figure P.4b), which
includes a pointer to the stack frame for P, the return address to P, and two local

Figure P.3  Use of Stack to Implement Nested Procedures of Figure P.2

•

(a) Initial stack
contents

•
4101

(b) After
CALL Proc1

•
4101

4601

(c) Initial
CALL Proc2

•
4101

(d) After
RETURN

•
4101

4651

(e) After
CALL Proc2

•
4101

(f) After
RETURN

•

(g) After
RETURN

Z21_STAL4290_09_GE_APPP.indd 4 4/18/17 7:37 AM

P.3 / REENTRANT PROCEDURES   P-5

variables for Q, one of which is initialized to the passed parameter value from P. The
other local variable, y2, is simply a local variable used by Q in its calculations. The need
to include such local variables in the stack frame is discussed in the next subsection.

	 P.3	 REENTRANT PROCEDURES

A useful concept, particularly in a system that supports multiple users at the same
time, is that of the reentrant procedure. A reentrant procedure is one in which a single
copy of the program code can be shared by multiple users during the same period of
time. Reentrancy has two key aspects: The program code cannot modify itself and the
local data for each user must be stored separately. A reentrant procedure can be
interrupted and called by an interrupting program and still execute correctly upon
return to the procedure. In a shared system, reentrancy allows more efficient use of
main memory: One copy of the program code is kept in main memory, but more than
one application can call the procedure.

Thus, a reentrant procedure must have a permanent part (the instructions that
make up the procedure) and a temporary part (a pointer back to the calling program
as well as memory for local variables used by the program). Each execution instance,
called activation, of a procedure will execute the code in the permanent part but must
have its own copy of local variables and parameters. The temporary part associated
with a particular activation is referred to as an activation record.

The most convenient way to support reentrant procedures is by means of a
stack. When a reentrant procedure is called, the activation record of the procedure
can be stored on the stack. Thus, the activation record becomes part of the stack frame
that is created on procedure call.

Figure P.4  Stack Frame Growth Using Sample Procedures P and Q

Previous frame
pointer

Return address

top of
stack pointer

x1

x2

P:
current
frame
pointer

(a) P is active (b) P has called Q

top of
stack pointer

y2

y1

x2

x1

P:

Q: current
frame
pointer

Previous frame
pointer

Return address

Previous frame
pointer

Return address

Z21_STAL4290_09_GE_APPP.indd 5 4/18/17 7:37 AM

Q-1

Appendix Q
eCos

Q.1	 Configurability

Q.2	 Ecos Components
Hardware Abstraction Layer (HAL)
eCos Kernel
I/O System
Standard C Libraries

Q.3	 Ecos Scheduler
Bitmap Scheduler
Multilevel Queue Scheduler

Q.4	 Ecos Thread Synchronization
Mutexes
Semaphores
Condition Variables
Event Flags
Mailboxes
Spinlocks

Z22_STAL4290_09_GE_APPQ.indd 1 4/18/17 7:36 AM

Q-2   Appendix Q / eCos

The Embedded Configurable Operating System (eCos) is an open source, royalty-
free, real-time OS intended for embedded applications. The system is targeted at
high-performance small embedded systems. For such systems, an embedded form of
Linux or other commercial OS would not provide the streamlined software required.
The eCos software has been implemented on a wide variety of processor platforms,
including Intel IA32, PowerPC, SPARC, ARM, CalmRISC, MIPS, and NEC V8xx.
It is one of the most widely used embedded operating systems. It is implemented
in C/C++.

	 Q.1	 CONFIGURABILITY

An embedded OS that is flexible enough to be used in a wide variety of embedded
applications and on a wide variety of embedded platforms must provide more func-
tionality than will be needed for any particular application and platform. For exam-
ple, many real-time operating systems support task switching, concurrency controls,
and a variety of priority scheduling mechanisms. A relatively simple embedded sys-
tem would not need all these features.

The challenge is to provide an efficient, user-friendly mechanism for configur-
ing selected components and for enabling and disabling particular features within
components. The eCos configuration tool, which runs on Windows or Linux, is used
to configure an eCos package to run on a target embedded system. The complete
eCos package is structured hierarchically, making it easy (using the configuration
tool) to assemble a target configuration. At a top level, eCos consists of a number of
components, and the configuration user may select only those components needed
for the target application. For example, a system might have a particular serial I/O
device. The configuration user would select serial I/O for this configuration, then
select one or more specific I/O devices to be supported. The configuration tool would
include the minimum necessary software for that support. The configuration user can
also select specific parameters, such as default data rate and the size of I/O buffers
to be used.

This configuration process can be extended down to finer levels of detail, even
to the level of individual lines of code. For example, the configuration tool provides
the option of including or omitting a priority inheritance protocol.

Figure Q.1 shows the top level of the eCos configuration tool as seen by the tool
user. Each of the items on the list in the left-hand window can be selected or dese-
lected. When an item is highlighted, the lower right-hand window provides a descrip-
tion, and the upper right-hand window provides a link to further documentation plus
additional information about the highlighted item. Items on the list can be expanded
to provide a finer-grained menu of options. Figure Q.2 illustrates an expansion of the
eCos kernel option. In this figure, note exception handling has been selected for
inclusion, but SMP (symmetric multiprocessing) has been omitted. In general, com-
ponents and individual options can be selected or omitted. In some cases, individual
values can be set; for example, a minimum acceptable stack size is an integer value
that can be set or left to a default value.

Z22_STAL4290_09_GE_APPQ.indd 2 4/18/17 7:36 AM

Q.1 / CONFIGURABILITY   Q-3

Figure Q.1 � eCos Configuration Tool - Top Level. Courtesy of eCosCentric Limited. Used
with permission.

Figure Q.2 � eCos Configuration Tool - Kernel Details. Courtesy of eCosCentric Limited.
Used with permission.

Z22_STAL4290_09_GE_APPQ.indd 3 4/18/17 7:36 AM

Q-4   Appendix Q / eCos

Figure Q.3 shows a typical example of the overall process of creating the binary
image to execute in the embedded system. This process is run on a source system, such
as a Windows or Linux platform, and the executable image is destined to execute on a
target embedded system, such as a sensor in an industrial environment. At the highest
software level is the application source code for the particular embedded application.
This code is independent of eCos but makes use of application programming interfaces
(API) to sit on top of the eCos software. There may be only one version of the applica-
tion source code, or there may be variations for different versions of the target embed-
ded platform. In this example, the GNU make utility is used to selectively determine
which pieces of a program need to be compiled or recompiled (in the case of a modified
version of the source code) and issues the commands to recompile them. The GNU
cross compiler, executing on the source platform, then generates the binary executable
code for the target embedded platform. The GNU linker links the application object
code with the code generated by the eCos configuration tool. This latter set of software
includes selected portions of the eCos kernel plus selected software for the target
embedded system. The result can then be loaded into the target system.

	 Q.2	 eCOS COMPONENTS

A key design requirement for eCos is portability to different architectures and plat-
forms with minimal effort. To meet this requirement, eCos consists of a layered set
of components (see Figure Q.4).

Hardware Abstraction Layer (HAL)

At the bottom is the hardware abstraction layer (HAL). The HAL is software that
presents a consistent API to the upper layers and maps upper-layer operations onto
a specific hardware platform. Thus, the HAL is different for each hardware

Figure Q.3  Loading an eCos Configuration

GNU make utility

Executable
file

—eCos kernel libraries
—target architecture
 libraries

GNU cross compiler

GNU linker

Application
source code

Z22_STAL4290_09_GE_APPQ.indd 4 4/18/17 7:36 AM

Q.2 / eCOS COMPONENTS   Q-5

platform. Figure Q.5 is an example that demonstrates how the HAL abstracts hard-
ware-specific implementations for the same API call on two different platforms. As
this example shows, the call from an upper layer to enable interrupts is the same on
both platforms, but the C code implementation of the function is specific to each
platform.

Figure Q.4  eCos Layered Structure

Hardware abstraction layer

Kernel

I/O system (device drivers)

Standard C library

User application code

Figure Q.5  Two Implementations of HAL_ENABLE_INTERRUPTS() Macro

1 #define HAL_ENABLE_INTERRUPTS() \
2 asm volatile (\
3 “mrs r3, cpsr;” \
4 “bic r3, r3, #0xC0;” \
5 “mrs cpsr, r3;” \
6 : \
7 : \
8 : “r3” \
9); \

(a) ARM architecture

1 #define HAL_ENABLE_INTERRUPTS() \
2 CYG_MACRO_START \
3 cyg_uint32 tmp1, tmp2 \
4 asm volatile (\
5 “mfmsr %0;” \
6 “ori %1,%1,0x800;” \
7 “r1wimi %0,%1,0,16,16;” \
8 “mtmsr %0;” \
9 : “=r” (tmp1), “=r” (tmp2)); \
10 CYG_MACRO_END \

(b) PowerPC architecture

Z22_STAL4290_09_GE_APPQ.indd 5 4/18/17 7:36 AM

Q-6   Appendix Q / eCos

The HAL is implemented as three separate modules:

•	 Architecture: Defines the processor family type. This module contains the code
necessary for processor startup, interrupt delivery, context switching, and other
functionality specific to the instruction set architecture of that processor
family.

•	 Variant: Supports the features of the specific processor in the family. An exam-
ple of a supported feature is an on-chip module such as a memory management
unit (MMU).

•	 Platform: Extends the HAL support to tightly coupled peripherals such as
interrupt controllers and timer devices. This module defines the platform or
board that includes the selected processor architecture and variant. It includes
code for startup, chip selection configuration, interrupt controllers, and timer
devices.

Note the HAL interface can be directly used by any of the upper layers, promot-
ing efficient code.

eCos Kernel

The eCos kernel was designed to satisfy four main objectives:

•	 Low interrupt latency: The time it takes to respond to an interrupt and begin
executing an ISR.

•	 Low task switching latency: The time it takes from when a thread becomes
available to when actual execution begins.

•	 Small memory footprint: Memory resources for both program and data are kept
to a minimum by allowing all components to configure memory as needed.

•	 Deterministic behavior: Throughout all aspect of execution, the kernels perfor-
mance must be predictable and bounded to meet real-time application
requirements.

The eCos kernel provides the core functionality needed for developing multi-
threaded applications:

1.	 The ability to create new threads in the system, either during startup or when
the system is already running

2.	 Control over the various threads in the system: for example, manipulating their
priorities

3.	 A choice of schedulers, determining which thread should currently be
running

4.	 A range of synchronization primitives, allowing threads to interact and share
data safely

5.	 Integration with the system’s support for interrupts and exceptions

Some functionality that is typically included in the kernel of an OS is not
included in the eCos kernel. For example, memory allocation is handled by a separate
package. Similarly, each device driver is a separate package. Various packages are

Z22_STAL4290_09_GE_APPQ.indd 6 4/18/17 7:36 AM

Q.2 / eCOS COMPONENTS   Q-7

combined and configured using the eCos configuration technology to meet the
requirements of the application. This makes for a lean kernel. Further, the minimal
nature of the kernel means that for some embedded platforms, the eCos kernel is not
used at all. Simple single-threaded applications can be run directly on HAL. Such
configurations can incorporate needed C library functions and device drivers, but
avoid the space and time overhead of the kernel.

There are two different techniques for utilizing kernel functions in eCos. One
way to employ kernel functionality is by using the C API of kernel. Examples of such
functions are cyg_thread_create and cyg_mutex_lock. These functions can
be invoked directly from application code. On the other hand, kernel functions can
also be invoked by using compatibility packages for existing API’s, for example,
POSIX threads or μITRON. The compatibility packages allow application code to
call standard functions like pthread_create, and those functions are implemented
using the basic functions provided by the eCos kernel. Code sharing and reusability
of already developed code is easily achieved by use of compatibility packages.

I/O System

The eCos I/O system is a framework for supporting device drivers. A variety of driv-
ers for a variety of platforms are provided in the eCos configuration package. These
include drivers for serial devices, Ethernet, flash memory interfaces, and various I/O
interconnects such as PCI (Peripheral Component Interconnect) and USB (Universal
Serial Bus). In addition, users can develop their own device drivers.

The principal objective for the I/O system is efficiency, with no unnecessary
software layering or extraneous functionality. Device drivers provide the necessary
functions for input, output, buffering, and device control.

As mentioned, device drivers and other higher-layer software may be imple-
mented directly on the HAL if this is appropriate. If specialized kernel-type functions
are needed, then the device driver is implemented using kernel APIs. The kernel
provides a three-level interrupt model:

•	 Interrupt service routines (ISRs): Invoked in response to a hardware interrupt.
Hardware interrupts are delivered with minimal intervention to an ISR. The HAL
decodes the hardware source of the interrupt and calls the ISR of the attached
interrupt object. This ISR may manipulate the hardware but is only allowed to
make a restricted set of calls on the driver API. When it returns, an ISR may
request that its deferred service routine (DSR) should be scheduled to run.

•	 Deferred service routines (DSRs): Invoked in response to a request by an ISR.
A DSR will be run when it is safe to do so without interfering with the sched-
uler. Most of the time the DSR will run immediately after the ISR, but if the
current thread is in the scheduler, it will be delayed until the thread is finished.
A DSR is allowed to make a larger set of driver API calls, including, in particu-
lar, being able to call cyg_drv_cond_signal() to wake up waiting threads.

•	 Threads: The clients of the driver. Threads are able to make all API calls and in
particular are allowed to wait on mutexes and condition variables.

Tables Q.1 and Q.2 show the device driver interface to the kernel. These tables
give a good feel for the type of functionality available in the kernel to support device

Z22_STAL4290_09_GE_APPQ.indd 7 4/18/17 7:36 AM

Q-8   Appendix Q / eCos

Table Q.1  Device Driver Interface to the eCos Kernel: Concurrency

cyg_drv_spinlock_init Initialize a spinlock in a locked or unlocked state.

cyg_drv_spinlock_destroy Destroy a spinlock that is no longer of use.

cyg_drv_spinlock_spin Claim a spinlock, waiting in a busy loop until it is available.

cyg_drv_spinlock_clear Clear a spinlock. This clears the spinlock and
allows another CPU to claim it. If there is more than one CPU waiting in cyg_drv_
spinlock_spin, then just one of them will be allowed to proceed.

cyg_drv_spinlock_test Inspect the state of the spinlock. If the spinlock is not
locked, then the result is TRUE. If it is locked then the result will be FALSE.

cyg_drv_spinlock_spin_intsave This function behaves like cyg_drv_
spinlock_spin except that it also disables interrupts before attempting to claim the
lock. The current interrupt enable state is saved in *istate. Interrupts remain disabled
once the spinlock has been claimed and must be restored by calling cyg_drv_
spinlock_clear_intsave. Device drivers should use this function to claim and
release spinlocks rather than the non-_intsave() variants, to ensure proper exclu-
sion with code running on both other CPUs and this CPU.

cyg_drv_mutex_init Initialize a mutex.

cyg_drv_mutex_destroy Destroy a mutex. The mutex should be unlocked and there
should be no threads waiting to lock it when this call is made.

cyg_drv_mutex_lock Attempt to lock the mutex pointed to by the mutex argument.
If the mutex is already locked by another thread, then this thread will wait until that
thread is finished. If the result from this function is FALSE, then the thread was broken
out of its wait by some other thread. In this case the mutex will not have been locked.

cyg_drv_mutex_trylock Attempt to lock the mutex pointed to by the mutex
argument without waiting. If the mutex is already locked by some other thread then this
function returns FALSE. If the function can lock the mutex without waiting, then
TRUE is returned.

cyg_drv_mutex_unlock Unlock the mutex pointed to by the mutex argument. If
there are any threads waiting to claim the lock, one of them is woken up to try and
claim it.

cyg_drv_mutex_release Release all threads waiting on the mutex.

cyg_drv_cond_init Initialize a condition variable associated with a mutex. A thread
may only wait on this condition variable when it has already locked the associated mutex.
Waiting will cause the mutex to be unlocked, and when the thread is reawakened, it will
automatically claim the mutex before continuing.

cyg_drv_cond_destroy Destroy the condition variable.

cyg_drv_cond_wait Wait for a signal on a condition variable.

cyg_drv_cond_signal Signal a condition variable. If there are any threads waiting on
this variable, at least one of them will all be awakened.

cyg_drv_cond_broadcast Signal a condition variable. If there are any threads
waiting on this variable, they will all be awakened.

Z22_STAL4290_09_GE_APPQ.indd 8 4/18/17 7:36 AM

Q.2 / eCOS COMPONENTS   Q-9

Table Q.2  Device Driver Interface to the eCos Kernel: Interrupts

cyg_drv_isr_lock Disable delivery of interrupts, preventing all ISRs running.
This function maintains a counter of the number of times it is called.

cyg_drv_isr_unlock Reenable delivery of interrupts, allowing ISRs to run. This
function decrements the counter maintained by cyg_drv_isr_lock, and only
reallows interrupts when it goes to zero.

cyg_ISR_t Define ISR.

cyg_drv_dsr_lock Disable scheduling of DSRs. This function maintains a counter of
the number of times it has been called.

cyg_drv_dsr_unlock Reenable scheduling of DSRs. This function decrements the
counter incremented by cyg_drv_dsr_lock. DSRs are only allowed to be delivered
when the counter goes to zero.

cyg_DSR_t Define DSR prototype.

cyg_drv_interrupt_create Create an interrupt object and returns a handle to it.

cyg_drv_interrupt_delete Detach the interrupt from the vector and free the
memory for reuse.

cyg_drv_interrupt_attach Attach an interrupt to a vector so that interrupts will
be delivered to the ISR when the interrupt occurs.

cyg_drv_interrupt_detach Detach the interrupt from the vector so that interrupts
will no longer be delivered to the ISR.

cyg_drv_interrupt_mask Program the interrupt controller to stop delivery of
interrupts on the given vector.

cyg_drv_interrupt_mask_intunsafe Program the interrupt controller to stop
delivery of interrupts on the given vector. This version differs from cyg_drv_
interrupt_mask in not being interrupt safe. So in situations where, for example,
interrupts are already known to be disabled, this may be called to avoid the extra
overhead.

cyg_drv_interrupt_unmask, cyg_drv_interrupt_unmask_intunsafe
Program the interrupt controller to reallow delivery of interrupts on the given vector.

cyg_drv_interrupt_acknowledge Perform any processing required at the
interrupt controller and in the CPU to cancel the current interrupt request.

cyg_drv_interrupt_configure Program the interrupt controller with the
characteristics of the interrupt source.

cyg_drv_interrupt_level Program the interrupt controller to deliver the given
interrupt at the supplied priority level.

cyg_drv_interrupt_set_cpu On multiprocessor systems, this function causes all
interrupts on the given vector to be routed to the specified CPU. Subsequently, all such
interrupts will be handled by that CPU.

cyg_drv_interrupt_get_cpu On multiprocessor systems, this function returns the
ID of the CPU to which interrupts on the given vector are currently being delivered.

Z22_STAL4290_09_GE_APPQ.indd 9 4/18/17 7:36 AM

Q-10   Appendix Q / eCos

drivers. Note the device driver interface can be configured for one or more of the
following concurrency mechanisms: spinlocks, condition variables, and mutexes.
These are described in a subsequent portion of this discussion.

Standard C Libraries

A complete Standard C run-time library is provided. Also included is a complete
math run-time library for high-level mathematics functions, including a complete
IEEE-754 floating-point library for those platforms without hardware floating
points.

	 Q.3	 eCOS SCHEDULER

The eCos kernel can be configured to provide one of two scheduler designs: the bit-
map scheduler and a multilevel queue scheduler. The configuration user selects the
appropriate scheduler for the environment and the application. The bitmap scheduler
provides efficient scheduling for a system with a small number of threads that may
be active at any point in time. The multiqueue scheduler is appropriate if the number
of threads is dynamic or if it is desirable to have multiple threads at the same priority
level. The multilevel scheduler is also needed if time slicing is desired.

Bitmap Scheduler

A bitmap scheduler supports multiple priority levels, but only one thread can exist
at each priority level at any given time. Scheduling decisions are quite simple with
this scheduler (see Figure Q.6a). When a blocked thread become ready to run, it may
preempt a thread of lower priority. When a running thread suspends, the ready thread
with the highest priority is dispatched. A thread can be suspended because it is
blocked on a synchronization primitive, because it is interrupted, or because it relin-
quishes control. Because there is only one thread, at most, at each priority level, the
scheduler does not have to make a decision as to which thread at a given priority level
should be dispatched next.

The bitmap scheduler is configured with 8, 16, or 32 priority levels. A simple
bitmap is kept of the threads that are ready to execute. The scheduler need only to
determine the position of the most significant one bit in the bitmap to make a sched-
uling decision.

Multilevel Queue Scheduler

As with the bitmap scheduler, the multilevel queue scheduler supports up to 32 prior-
ity levels. The multilevel queue scheduler allows for multiple active threads at each
priority level, limited only by system resources.

Figure Q.6b illustrates the nature of the multilevel queue scheduler. A data
structure represents the number of ready threads at each priority level. When a
blocked thread become ready to run, it may preempt a thread of lower priority.
As with the bitmap scheduler, a running thread may be blocked on a synchroniza-
tion primitive, because it is interrupted, or because it relinquishes control. When

Z22_STAL4290_09_GE_APPQ.indd 10 4/18/17 7:36 AM

Q.3 / eCOS SCHEDULER   Q-11

Figure Q.6  eCos Scheduler Options

Multilevel Scheduling Queue

Thread C

Thread AThread BMinimum priority 0

Maximum priority 31

Thread C

Preemption

Time slice Deschedule

Deschedule

Thread C

Thread A Thread B

(b) Multilevel queue scheduler thread operation

Thread A

Bitmap
Scheduling Queue

Thread C

Thread A
Thread B

Minimum priority 0

Maximum priority 31

Thread C

Preemption

Deschedule

Deschedule

Thread C

Thread A

Thread B

(a) Bitmap scheduler thread operation

Z22_STAL4290_09_GE_APPQ.indd 11 4/18/17 7:36 AM

Q-12   Appendix Q / eCos

a thread is blocked, the scheduler must first determine if one or more threads at
the same priority level as the blocked thread is ready. If so, the scheduler chooses
the one at the front of the queue. Otherwise, the scheduler looks for the next high-
est priority level with one or more ready threads and dispatches one of these
threads.

In addition, the multilevel queue scheduler can be configured for time slicing.
Thus, if a thread is running and there is one or more ready threads at the same priority
level, the scheduler will suspend the running thread after one time slice and choose
the next thread in the queue at that priority level. This is a round-robin policy within
one priority level. Not all applications require time slicing. For example, an applica-
tion may contain only threads that block regularly for some other reason. For these
applications, the user can disable time slicing, which reduces the overhead associated
with timer interrupts.

	 Q.4	 eCOS THREAD SYNCHRONIZATION

The eCos kernel can be configured to include one or more of six different thread
synchronization mechanisms. These include the classic synchronization mechanisms:
mutexes, semaphores, and condition variables. In addition, eCos supports two syn-
chronization/communication mechanisms that are common in real-time systems,
namely event flags and mailboxes. Finally, the eCos kernel supports spinlocks, which
are useful in SMP (symmetric multiprocessing) systems.

Mutexes

The mutex (mutual exclusion lock) was introduced in Chapter 6. Recall that a mutex
is used to enforce mutually exclusive access to a resource, allowing only one thread
at a time to gain access. The mutex has only two states: locked and unlocked. This is
similar to a binary semaphore: When a mutex is locked by one thread, any other
thread attempting to lock the mutex is blocked; when the mutex is unlocked, then
one of the threads blocked on this mutex is unblocked and allowed to lock the mutex
and gain access to the resource.

The mutex differs from a binary semaphore in two respects. First, the thread
that locks the mutex must be the one to unlock it. In contrast, it is possible for one
thread to lock a binary semaphore and for another to unlock it. The other difference
is that a mutex provides protection against priority inversion, whereas a semaphore
does not.

The eCos kernel can be configured to support either a priority inheritance
protocol or a priority ceiling protocol. These are described in Chapter 10.

Semaphores

The eCos kernel provides support for a counting semaphore. Recall from Chapter
5 that a counting semaphore is an integer value used for signaling among threads.
The cyg_semaphore_init is used to initialize a semaphore. The cyg_sema-
phore_post command increments the semaphore count when an event occurs. If

Z22_STAL4290_09_GE_APPQ.indd 12 4/18/17 7:36 AM

Q.4 / eCOS THREAD SYNCHRONIZATION   Q-13

the new count is less than or equal to zero, then a thread is waiting on this sema-
phore and is awakened. The cyg_semaphore_wait function checks the value of
a semaphore count. If the count is zero, the thread calling this function will wait for
the semaphore. If the count is nonzero, the count is decremented and the thread
continues.

Counting semaphores are suited to enabling threads to wait until an event has
occurred. The event may be generated by a producer thread, or by a DSR in response
to a hardware interrupt. Associated with each semaphore is an integer counter that
keeps track of the number of events that have not yet been processed. If this counter
is zero, an attempt by a consumer thread to wait on the semaphore will block until
some other thread or a DSR posts a new event to the semaphore. If the counter is
greater than zero, then an attempt to wait on the semaphore will consume one event
(in other words decrement the counter) and return immediately. Posting to a sema-
phore will wake up the first thread that is currently waiting, which will then resume
inside the semaphore wait operation and decrement the counter again.

Another use of semaphores is for certain forms of resource management. The
counter would correspond to how many of a certain type of resource are currently
available, with threads waiting on the semaphore to claim a resource and posting to
release the resource again. In practice, condition variables are usually much better
suited for operations like this.

Condition Variables

A condition variable is used to block a thread until a particular condition is true.
Condition variables are used with mutexes to allow multiple threads to access shared
data. They can be used to implement monitors of the type discussed in Chapter 6 (e.g.,
Figure 6.14). The basic commands are as follows:

cyg_cond_wait Causes the current thread to wait on the specified condition
variable and simultaneously unlocks the mutex attached to the condition variable.

cyg_cond_signal Wakes up one of the threads waiting on this condition
variable, causing that thread to become the owner of the mutex.

cyg_cond_broadcast Wakes up all the threads waiting on this condition
variable. Each thread that was waiting on the condition variable becomes the owner
of the mutex when it runs.

In eCos, condition variables are typically used in conjunction with mutexes to
implement long-term waits for some condition to become true. Consider the follow-
ing example. Figure Q.7 defines a set of functions to control access to a pool of
resources using mutexes. The mutex is used to make the allocation and freeing of
resources from a pool atomic. The function res_t res_allocate checks to see if
one or more units of a resource are available and, if so, takes one unit. This operation
is protected by a mutex so no other thread can check or alter the resource pool while
this thread has control of the mutex. The function res_free(res_t res) enables
a thread to release one unit of a resource that it had previously acquired. Again, this
operation is made atomic by a mutex.

In this example, if a thread attempts to access a resource and none are available,
the function returns RES_NONE. Suppose, however, we want the thread to be blocked
and wait for a resource to become available, rather than returning RES_NONE.

Z22_STAL4290_09_GE_APPQ.indd 13 4/18/17 7:36 AM

Q-14   Appendix Q / eCos

Figure Q.8 accomplishes this with the use of a condition variable associated with the
mutex. When res_allocate detects that there are no resources, it calls cyg_cond_
wait. This latter function unlocks the mutex and puts the calling thread to sleep on
the condition variable. When res_free is eventually called, it puts a resource back
into the pool and calls cyg_cond_signal to wake up any thread waiting on the
condition variable. When the waiting thread eventually gets to run again, it will relock
the mutex before returning from cyg_cond_wait.

There are two significant features of this example, and of the use of condition
variables in general. First, the mutex unlock and wait in cyg_cond_wait are atomic:
No other thread can run between the unlock and the wait. If this were not the case,
then a call to res_free by some other thread would release the resource, but the
call to cyg_cond_signal would be lost, and the first thread would end up waiting
when there were resources available.

Figure Q.7  Controlling Access to a Pool of Resources Using Mutexes

cyg_mutex_t res_lock;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)
{
 cyg_mutex_init(&res_lock);
 <fill pool with resources>
}
res_t res_allocate(void)
{
 res_t res;
 cyg_mutex_lock(&res_lock); // lock the mutex
 if(res_count == 0) // check for free resource
 res =RES_NONE; // return RES_NONE if none
 else {
 res_count--; // allocate a resources
 res =res_pool[res_count];
}
 cyg_mutex_unlock(&res_lock); // unlock the mutex
 return res;
}
void res_free(res_t res)
{
 cyg_mutex_lock(&res_lock); // lock the mutex
 res_pool[res_count] =res; // free the resource
 res_count++;
 cyg_mutex_unlock(&res_lock); // unlock the mutex
}

Z22_STAL4290_09_GE_APPQ.indd 14 4/18/17 7:36 AM

Q.4 / eCOS THREAD SYNCHRONIZATION   Q-15

The second feature is that the call to cyg_cond_wait is in a while loop and
not a simple if statement. This is because of the need to relock the mutex in cyg_
cond_wait when the signaled thread reawakens. If there are other threads already
queued to claim the lock, then this thread must wait. Depending on the scheduler
and the queue order, many other threads may have entered the critical section before
this one gets to run. So the condition that it was waiting for may have been rendered
false. Using a loop around all condition variable wait operations is the only way to
guarantee that the condition being waited for is still true after waiting.

Event Flags

An event flag is a 32-bit word used as a synchronization mechanism. Application code
may associate a different event with each bit in a flag. A thread can wait for either a
single event or a combination of events by checking one or multiple bits in the

Figure Q.8  Controlling Access to a Pool of Resources Using Mutexes and Condition Variables

cyg_mutex_t res_lock;
cyg_cond_t res_wait;
res_t res_pool[RES_MAX];
int res_count =RES_MAX;
void res_init(void)
{
 cyg_mutex_init(&res_lock);
 cyg_cond_init(&res_wait, &res_lock);
 <fill pool with resources>
}
res_t res_allocate(void)
{
 res_t res;
 cyg_mutex_lock(&res_lock); // lock the mutex
 while(res_count == 0) // wait for a resources
 cyg_cond_wait(&res_wait);
 res_count--; // allocate a resource
 res =res_pool[res_count];
 cyg_mutex_unlock(&res_lock); // unlock the mutex
 return res;
}
void res_free(res_t res)
{
 cyg_mutex_lock(&res_lock); // lock the mutex
 res_pool[res_count] =res; // free the resource
 res_count++;
 cyg_cond_signal(&res_wait); �// �wake up any waiting

allocators
 cyg_mutex_unlock(&res_lock); // unlock the mutex
}

Z22_STAL4290_09_GE_APPQ.indd 15 4/18/17 7:36 AM

Q-16   Appendix Q / eCos

corresponding flag. The thread is blocked until all of the required bits are set (AND)
or until at least one of the bits is set (OR). A signaling thread can set or reset bits
based on specific conditions or events so that the appropriate thread is unblocked.
For example, bit 0 could represent completion of a specific I/O operation, making
data available, and bit 1 could indicate that the user has pressed a start button. A
producer thread or DSR could set these two bits, and a consumer thread waiting on
these two events will be woken up.

A thread can wait on one or more events using the cyg_flag_wait command,
which takes three arguments: a particular event flag, a combination of bit positions
in the flag, and a mode parameter. The mode parameter specifies whether the thread
will block until all the bits are set (AND) or until at least one of the bits is set (OR).
The mode parameter may also specify that when the wait succeeds, the entire event
flag is cleared (set to all zeros).

Mailboxes

Mailboxes, also called message boxes, are an eCos synchronization mechanism that
provides a means for two threads to exchange information. Section 5.5 provides a
general discussion of message-passing synchronization. Here, we look at the specifics
of the eCos version.

The eCos mailbox mechanism can be configured for blocking or nonblocking
on both the send and receive side. The maximum size of the message queue associated
with a given mailbox can also be configured.

The send message primitive, called put, includes two arguments: a handle to the
mailbox and a pointer for the message itself. There are three variants to this
primitive:

cyg_mbox_put If there is a spare slot in the mailbox, then the new message is
placed there; if there is a waiting thread, it will be woken up so it can receive the mes-
sage. If the mailbox is currently full, cyg_mbox_put blocks until there has been a
corresponding get operation and a slot is available.

cyg_mbox_timed_put Same as cyg_mbox_put if there is a spare slot. Other
wise, the function will wait a specified time limit and place the message if a slot becomes
available. If the time limit expires, the operation returns false. Thus, cyg_mbox_
timed_put is blocking only for less than or equal to a specified time interval.

cyg_mbox_tryput This is a nonblocking version, which returns true if the
message is sent successfully and false if the mailbox is full.

Similarly, there are three variants to the get primitive.
cyg_mbox_get If there is a pending message in the specified mailbox, cyg_

mbox_get returns with the message that was put into the mailbox. Otherwise this
function blocks until there is a put operation.

cyg_mbox_timed_get Immediately returns a message if one is available.
Otherwise, the function will wait until either a message is available or until a number
of clock ticks have occurred. If the time limit expires, the operation returns a null
pointer. Thus, cyg_mbox_timed_get is blocking only for less than or equal to a
specified time interval.

cyg_mbox_tryget This is a nonblocking version, which returns a message if
one is available and a null pointer if the mailbox is empty.

Z22_STAL4290_09_GE_APPQ.indd 16 4/18/17 7:36 AM

Q.4 / eCOS THREAD SYNCHRONIZATION   Q-17

Spinlocks

A spinlock is a flag that a thread can check before executing a particular piece of
code. Recall from our discussion of Linux spinlocks in Chapter 6 the basic operation
of the spinlock: Only one thread at a time can acquire a spinlock. Any other thread
attempting to acquire the same lock will keep trying (spinning) until it can acquire
the lock. In essence, a spinlock is built on an integer location in memory that is
checked by each thread before it enters its critical section. If the value is 0, the thread
sets the value to 1 and enters its critical section. If the value is nonzero, the thread
continually checks the value until it is zero.

A spinlock should not be used on a single-processor system, which is why it is
compiled away on Linux. As an example of the danger, consider a uniprocessor sys-
tem with preemptive scheduling, in which a higher-priority thread attempts to acquire
a spinlock already held by a lower-priority thread. The lower-priority thread cannot
execute so as to finish its work and release the spinlock, because the higher-priority
thread preempts it. The higher-priority thread can execute but is stuck checking the
spinlock. As a result, the higher-priority thread will just loop forever and the lower-
priority thread will never get another chance to run and release the spinlock. On an
SMP system, the current owner of a spinlock can continue running on a different
processor.

Z22_STAL4290_09_GE_APPQ.indd 17 4/18/17 7:36 AM

GL-1

access method  The method that is used to find a file, a record, or a set of records.
address space  The range of addresses available to a computer program.
address translator  A functional unit that transforms virtual addresses to real

addresses.
application programming interface (API)  A standardized library of programming

tools used by software developers to write applications that are compatible
with a specific operating system or graphic user interface.

asynchronous operation  An operation that occurs without a regular or predict-
able time relationship to a specified event, for example, the calling of an error
diagnostic routine that may receive control at any time during the execution of
a computer program.

base address  An address that is used as the origin in the calculation of addresses in
the execution of a computer program.

batch processing  Pertaining to the technique of executing a set of computer pro-
grams such that each is completed before the next program of the set is started.

Beowulf  Defines a class of clustered computing that focuses on minimizing the
price-to-performance ratio of the overall system without compromising its abil-
ity to perform the computation work for which it is being built. Most Beowulf
systems are implemented on Linux computers.

binary semaphore  A semaphore that takes on only the values 0 and 1. A binary
semaphore allows only one process or thread to have access to a shared critical
resource at a time.

block  (1) A collection of contiguous records that are recorded as a unit; the units
are separated by interblock gaps. (2) A group of bits that are transmitted as a
unit.

B-tree  A technique for organizing indexes. In order to keep access time to a mini-
mum, it stores the data keys in a balanced hierarchy that continually realigns
itself as items are inserted and deleted. Thus, all nodes always have a similar
number of keys.

busy waiting  The repeated execution of a loop of code while waiting for an event
to occur.

cache memory  A memory that is smaller and faster than main memory and that is
interposed between the processor and main memory. The cache acts as a buffer
for recently used memory locations.

central processing unit (CPU)  That portion of a computer that fetches and exe-
cutes instructions. It consists of an Arithmetic and Logic Unit (ALU), a control
unit, and registers. Often simply referred to as a processor.

chained list  A list in which data items may be dispersed but in which each item
contains an identifier for locating the next item.

client  A process that requests services by sending messages to server processes.

Glossary

Z23_STAL4290_09_GE_GLOS.indd 1 4/18/17 7:36 AM

GL-2   Glossary

cluster  A group of interconnected, whole computers working together as a unified
computing resource that can create the illusion of being one machine. The term
whole computer means a system that can run on its own, apart from the cluster.

communications architecture  The hardware and software structure that imple-
ments the communications function.

compaction  A technique used when memory is divided into variable-size parti-
tions. From time to time, the operating system shifts the partitions so they are
contiguous and so all of the free memory is together in one block. See external
fragmentation.

concurrent  Pertaining to processes or threads that take place within a common
interval of time during which they may have to alternately share common
resources.

consumable resource  A resource that can be created (produced) and destroyed
(consumed). When a resource is acquired by a process, the resource ceases to
exist. Examples of consumable resources are interrupts, signals, messages, and
information in I/O buffers.

critical section  In an asynchronous procedure of a computer program, a part
that cannot be executed simultaneously with an associated critical section of
another asynchronous procedure. See mutual exclusion.

database  A collection of interrelated data, often with controlled redundancy, orga-
nized according to a schema to serve one or more applications; the data are
stored so they can be used by different programs without concern for the data
structure or organization. A common approach is used to add new data, and to
modify and retrieve existing data.

deadlock  (1) An impasse that occurs when multiple processes are waiting for the
availability of a resource that will not become available because it is being
held by another process that is in a similar wait state. (2) An impasse that
occurs when multiple processes are waiting for an action by or a response from
another process that is in a similar wait state.

deadlock avoidance  A dynamic technique that examines each new resource
request for deadlock. If the new request could lead to a deadlock, then the
request is denied.

deadlock detection  A technique in which requested resources are always granted
when available. Periodically, the operating system tests for deadlock.

deadlock prevention  A technique that guarantees that a deadlock will not occur.
Prevention is achieved by assuring that one of the necessary conditions for
deadlock is not met.

demand paging  The transfer of a page from secondary memory to main memory
storage at the moment of need. Compare prepaging.

device driver  An operating system module (usually in the kernel) that deals
directly with a device or I/O module.

direct access  The capability to obtain data from a storage device or to enter data
into a storage device in a sequence independent of their relative position, by
means of addresses that indicate the physical location of the data.

Z23_STAL4290_09_GE_GLOS.indd 2 4/18/17 7:36 AM

Glossary   GL-3

direct memory access (DMA)  A form of I/O in which a special module, called a
DMA module, controls the exchange of data between main memory and an
I/O device. The processor sends a request for the transfer of a block of data
to the DMA module, and is interrupted only after the entire block has been
transferred.

disabled interrupt  A condition, usually created by the operating system, during
which the processor will ignore interrupt request signals of a specified class.

disk allocation table  A table that indicates which blocks on secondary storage are
free and available for allocation to files.

disk cache  A buffer, usually kept in main memory, that functions as a cache of disk
blocks between disk memory and the rest of main memory.

dispatch  To allocate time on a processor to jobs or tasks that are ready for execution.
distributed operating system  A common operating system shared by a network of

computers. The distributed operating system provides support for interprocess
communication, process migration, mutual exclusion, and the prevention or
detection of deadlock.

dynamic relocation  A process that assigns new absolute addresses to a computer
program during execution so the program may be executed from a different
area of main storage.

enabled interrupt  A condition, usually created by the operating system, during
which the processor will respond to interrupt request signals of a specified
class.

encryption  The conversion of plain text or data into unintelligible form by means
of a reversible mathematical computation.

execution context  Same as process state.
external fragmentation  Occurs when memory is divided into variable-size parti-

tions corresponding to the blocks of data assigned to the memory (e.g., seg-
ments in main memory). As segments are moved into and out of the memory,
gaps will occur between the occupied portions of memory.

field  (1) Defined logical data that are part of a record. (2) The elementary unit of
a record that may contain a data item, a data aggregate, a pointer, or a link.

file  A set of related records treated as a unit.
file allocation table (FAT)  A table that indicates the physical location on second-

ary storage of the space allocated to a file. There is one file allocation table for
each file.

file management system  A set of system software that provides services to users
and applications in the use of files, including file access, directory maintenance,
and access control.

file organization  The physical order of records in a file, as determined by the access
method used to store and retrieve them.

first-come-first-served (FCFS)  Same as FIFO.
first-in-first-out (FIFO)  A queueing technique in which the next item to be

retrieved is the item that has been in the queue for the longest time.

Z23_STAL4290_09_GE_GLOS.indd 3 4/18/17 7:36 AM

GL-4   Glossary

frame  In paged virtual storage, a fixed-length block of main memory that is used to
hold one page of virtual memory.

gang scheduling  The scheduling of a set of related threads to run on a set of proces-
sors at the same time, on a one-to-one basis.

hash file  A file in which records are accessed according to the values of a key field.
Hashing is used to locate a record on the basis of its key value.

hashing  The selection of a storage location for an item of data by calculating the
address as a function of the contents of the data. This technique complicates
the storage allocation function but results in rapid random retrieval.

hit ratio  In a two-level memory, the fraction of all memory accesses that are found
in the faster memory (e.g., the cache).

indexed access  Pertaining to the organization and accessing of the records of a stor-
age structure through a separate index to the locations of the stored records.

indexed file  A file in which records are accessed according to the value of key
fields. An index is required that indicates the location of each record on the
basis of each key value.

indexed sequential access  Pertaining to the organization and accessing of the
records of a storage structure through an index of the keys that are stored in
arbitrarily partitioned sequential files.

indexed sequential file  A file in which records are ordered according to the values
of a key field. The main file is supplemented with an index file that contains
a partial list of key values; the index provides a lookup capability to quickly
reach the vicinity of a desired record.

instruction cycle  The time period during which one instruction is fetched from mem-
ory and executed when a computer is given an instruction in machine language.

internal fragmentation  Occurs when memory is divided into fixed-size partitions
(e.g., page frames in main memory, physical blocks on disk). If a block of data
is assigned to one or more partitions, then there may be wasted space in the
last partition. This will occur if the last portion of data is smaller than the last
partition.

interrupt  A suspension of a process, such as the execution of a computer program,
caused by an event external to that process and performed in such a way that
the process can be resumed.

interrupt handler  A routine, generally part of the operating system. When an
interrupt occurs, control is transferred to the corresponding interrupt handler,
which takes some action in response to the condition that caused the interrupt.

job  A set of computational steps packaged to run as a unit.
job control language (JCL)  A problem-oriented language that is designed to

express statements in a job that are used to identify the job or to describe its
requirements to an operating system.

kernel  A portion of the operating system that includes the most heavily used por-
tions of software. Generally, the kernel is maintained permanently in main
memory. The kernel runs in a privileged mode and responds to calls from pro-
cesses and interrupts from devices.

Z23_STAL4290_09_GE_GLOS.indd 4 4/18/17 7:36 AM

Glossary   GL-5

kernel mode  A privileged mode of execution reserved for the kernel of the oper-
ating system. Typically, kernel mode allows access to regions of main memory
that are unavailable to processes executing in a less-privileged mode, and also
enables execution of certain machine instructions that are restricted to the ker-
nel mode. Also referred to as system mode or privileged mode.

last-in-first-out (LIFO)  A queueing technique in which the next item to be
retrieved is the item most recently placed in the queue.

lightweight process  A thread.
livelock  A condition in which two or more processes continuously change their

state in response to changes in the other process(es) without doing any useful
work. This is similar to deadlock in that no progress is made, but it differs in
that neither process is blocked or waiting for anything.

locality of reference  The tendency of a processor to access the same set of memory
locations repetitively over a short period of time.

logical address  A reference to a memory location independent of the current
assignment of data to memory. A translation must be made to a physical
address before the memory access can be achieved.

logical record  A record independent of its physical environment; portions of one
logical record may be located in different physical records or several logical
records or parts of logical records may be located in one physical record.

macrokernel  A large operating system core that provides a wide range of services.
mailbox  A data structure shared among a number of processes that is used as a

queue for messages. Messages are sent to the mailbox and retrieved from the
mailbox rather than passing directly from sender to receiver.

main memory  Memory that is internal to the computer system, is program address-
able, and can be loaded into registers for subsequent execution or processing.

malicious software  Any software designed to cause damage to or use up the
resources of a target computer. Malicious software (malware) is frequently
concealed within or masquerades as legitimate software. In some cases, it
spreads itself to other computers via e-mail or infected disks. Types of mali-
cious software include viruses, Trojan horses, worms, and hidden software for
launching denial-of-service attacks.

memory cycle time  The time it takes to read one word from or write one word
to memory. This is the inverse of the rate at which words can be read from or
written to memory.

memory partitioning  The subdividing of storage into independent sections.
message  A block of information that may be exchanged between processes as a

means of communication.
microkernel  A small, privileged operating system core that provides process

scheduling, memory management, and communication services and relies on
other processes to perform some of the functions traditionally associated with
the operating system kernel.

mode switch  A hardware operation that occurs that causes the processor to exe-
cute in a different mode (kernel or process). When the mode switches from

Z23_STAL4290_09_GE_GLOS.indd 5 4/18/17 7:36 AM

GL-6   Glossary

process to kernel, the program counter, processor status word, and other reg-
isters are saved. When the mode switches from kernel to process, this informa-
tion is restored.

monitor  A programming language construct that encapsulates variables, access pro-
cedures, and initialization code within an abstract data type. The monitor’s vari-
able may only be accessed via its access procedures and only one process may be
actively accessing the monitor at any one time. The access procedures are critical
sections. A monitor may have a queue of processes that are waiting to access it.

monolithic kernel  A large kernel containing virtually the complete operating sys-
tem, including scheduling, file system, device drivers, and memory manage-
ment. All the functional components of the kernel have access to all of its
internal data structures and routines. Typically, a monolithic kernel is imple-
mented as a single process, with all elements sharing the same address space.

multilevel security  A capability that enforces access control across multiple levels
of classification of data.

multiprocessing  A mode of operation that provides for parallel processing by two
or more processors of a multiprocessor.

multiprocessor  A computer with two or more processors that have common access
to a main storage.

multiprogramming  A mode of operation that provides for the interleaved execu-
tion of two or more computer programs by a single processor. The same as
multitasking, using different terminology.

multiprogramming level  The number of processes that are partially or fully resi-
dent in main memory.

multithreading  Multitasking within a single program. It allows multiple streams of
instructions (threads) to execute concurrently within the same program, each
stream processing a different transaction or message. Each stream is a “sub-
process,” and the operating system typically cooperates with the application to
handle the threads.

multitasking  A mode of operation that provides for the concurrent performance
or interleaved execution of two or more computer tasks. The same as multipro-
gramming, using different terminology.

mutex  A programming flag used to grab and release an object. When data are
acquired that cannot be shared or processing is started that cannot be per-
formed simultaneously elsewhere in the system, the mutex is set to “lock,”
which blocks other attempts to use it. The mutex is set to “unlock” when the
data are no longer needed or the routine is finished. Similar to a binary sema-
phore. A key difference between the two is that the process that locks the
mutex (sets the value to zero) must be the one to unlock it (sets the value to 1).
In contrast, it is possible for one process to lock a binary semaphore and for
another to unlock it.

mutual exclusion  A condition in which there is a set of processes, only one of which
is able to access a given resource or perform a given function at any time. See
critical section.

Z23_STAL4290_09_GE_GLOS.indd 6 4/18/17 7:36 AM

Glossary   GL-7

nonprivileged state  An execution context that does not allow sensitive hardware
instructions to be executed, such as the halt instruction and I/O instructions.

nonuniform memory access (NUMA) multiprocessor  A shared-memory multi-
processor in which the access time from a given processor to a word in memory
varies with the location of the memory word.

object request broker  An entity in an object-oriented system that acts as an inter-
mediary for requests sent from a client to a server.

operating system  Software that controls the execution of programs and provides
services such as resource allocation, scheduling, input/output control, and data
management.

page  In virtual storage, a fixed-length block that has a virtual address and is trans-
ferred as a unit between main memory and secondary memory.

page fault  Occurs when the page containing a referenced word is not in main
memory. This causes an interrupt and requires the proper page be brought into
main memory.

page frame  A fixed-size contiguous block of main memory used to hold a page.
paging  The transfer of pages between main memory and secondary memory.
physical address  The absolute location of a unit of data in memory (e.g., word or

byte in main memory, block on secondary memory).
pipe  A circular buffer allowing two processes to communicate on the producer–

consumer model. Thus, it is a first-in-first-out queue, written by one process
and read by another. In some systems, the pipe is generalized to allow any item
in the queue to be selected for consumption.

preemption  Reclaiming a resource from a process before the process has finished
using it.

prepaging  The retrieval of pages other than the one demanded by a page fault. The
hope is that the additional pages will be needed in the near future, conserving
disk I/O. Compare demand paging.

priority inversion  A circumstance in which the operating system forces a higher-
priority task to wait for a lower-priority task.

privileged instruction  An instruction that can be executed only in a specific mode,
usually by a supervisory program.

privileged mode  Same as kernel mode.
process  A program in execution. A process is controlled and scheduled by the

operating system. Same as task.
process control block  The manifestation of a process in an operating system. It is

a data structure containing information about the characteristics and state of
the process.

process descriptor  Same as process control block.
process image  All of the ingredients of a process, including program, data, stack,

and process control block.
process migration  The transfer of a sufficient amount of the state of a process from

one machine to another for the process to execute on the target machine.

Z23_STAL4290_09_GE_GLOS.indd 7 4/18/17 7:36 AM

GL-8   Glossary

process spawning  The creation of a new process by another process.
process state  All of the information the operating system needs to manage a pro-

cess and the processor needs to properly execute the process. The process state
includes the contents of the various processor registers, such as the program
counter and data registers; it also includes information of use to the operating
system, such as the priority of the process and whether the process is waiting
for the completion of a particular I/O event. Same as execution context.

process switch  An operation that switches the processor from one process to
another by saving all the process control block, registers, and other information
for the first and replacing them with the process information for the second.

processor  In a computer, a functional unit that interprets and executes instruc-
tions. A processor consists of at least an instruction control unit and an arith-
metic unit.

program counter  Instruction address register.
program status word (PSW)  A register or set of registers that contains condition

codes, execution mode, and other status information that reflects the state of
a process.

programmed I/O  A form of I/O in which the CPU issues an I/O command to
an I/O module and must then wait for the operation to be complete before
proceeding.

race condition  Situation in which multiple processes access and manipulate shared
data with the outcome dependent on the relative timing of the processes.

real address  A physical address in main memory.
real-time system  An operating system that must schedule and manage real-time

tasks.
real-time task  A task that is executed in connection with some process or func-

tion or set of events external to the computer system, and must meet one
or more deadlines to interact effectively and correctly with the external
environment.

record  A group of data elements treated as a unit.
reentrant procedure  A routine that may be entered before the completion of a

prior execution of the same routine and execute correctly.
registers  High-speed memory internal to the CPU. Some registers are user visible;

that is, available to the programmer via the machine instruction set. Other reg-
isters are used only by the CPU, for control purposes.

relative address  An address calculated as a displacement from a base address.
remote procedure call (RPC)  A technique by which two programs on different

machines interact using procedure call/return syntax and semantics. Both the
called and calling program behave as if the partner program were running on
the same machine.

rendezvous  In message passing, a condition in which both the sender and receiver
of a message are blocked until the message is delivered.

resident set  That portion of a process that is actually in main memory at a given
time. Compare working set.

Z23_STAL4290_09_GE_GLOS.indd 8 4/18/17 7:36 AM

Glossary   GL-9

response time  In a data system, the elapsed time between the end of transmission
of an enquiry message and the beginning of the receipt of a response message,
measured at the enquiry terminal.

reusable resource  A resource that can be safely used by only one process at a time
and is not depleted by that use. Processes obtain reusable resource units that
they later release for reuse by other processes. Examples of reusable resources
include processors, I/O channels, main and secondary memory, devices, and
data structures such as files, databases, and semaphores.

round robin  A scheduling algorithm in which processes are activated in a fixed
cyclic order; that is, all processes are in a circular queue. A process that cannot
proceed because it is waiting for some event (e.g., termination of a child pro-
cess or an input/output operation) returns control to the scheduler.

scheduling  To select jobs or tasks that are to be dispatched. In some operating
systems, other units of work, such as input/output operations, may also be
scheduled.

secondary memory  Memory located outside the computer system itself; that is, it
cannot be processed directly by the processor. It must first be copied into main
memory. Examples include disk and tape.

segment  In virtual memory, a block that has a virtual address. The blocks of a
program may be of unequal length, and may even be of dynamically varying
lengths.

segmentation  The division of a program or application into segments as part of a
virtual memory scheme.

semaphore  An integer value used for signaling among processes. Only three oper-
ations may be performed on a semaphore, all of which are atomic: initialize,
decrement, and increment. Depending on the exact definition of the sema-
phore, the decrement operation may result in the blocking of a process, and the
increment operation may result in the unblocking of a process. Also known as
a counting semaphore or a general semaphore.

sequential access  The capability to enter data into a storage device or a data
medium in the same sequence as the data are ordered, or to obtain data in the
same order as they were entered.

sequential file  A file in which records are ordered according to the values of one
or more key fields and processed in the same sequence from the beginning of
the file.

server  (1) A process that responds to request from clients via messages. (2) In a
network, a data station that provides facilities to other stations; for example, a
file server, a print server, and a mail server.

session  A collection of one or more processes that represents a single interactive
user application or operating system function. All keyboard and mouse input is
directed to the foreground session, and all output from the foreground session
is directed to the display screen.

shell  The portion of the operating system that interprets interactive user commands
and job control language commands. It functions as an interface between the
user and the operating system.

Z23_STAL4290_09_GE_GLOS.indd 9 4/18/17 7:36 AM

GL-10   Glossary

spin lock  Mutual exclusion mechanism in which a process executes in an infinite
loop waiting for the value of a lock variable to indicate availability.

spooling  The use of secondary memory as buffer storage to reduce processing
delays when transferring data between peripheral equipment and the proces-
sors of a computer.

stack  An ordered list in which items are appended to and deleted from the same
end of the list, known as the top. That is, the next item appended to the list is
put on the top, and the next item to be removed from the list is the item that
has been in the list the shortest time. This method is characterized as last in
first out.

starvation  A condition in which a process is indefinitely delayed because other
processes are always given preference.

strong semaphore  A semaphore in which all processes waiting on the same sema-
phore are queued and will eventually proceed in the same order as they exe-
cuted the wait (P) operations (FIFO order).

swapping  A process that interchanges the contents of an area of main storage with
the contents of an area in secondary memory.

symmetric multiprocessing (SMP)  A form of multiprocessing that allows the oper-
ating system to execute on any available processor or on several available pro-
cessors simultaneously.

synchronous operation  An operation that occurs regularly or predictably with
respect to the occurrence of a specified event in another process, for example,
the calling of an input/output routine that receives control at a precoded loca-
tion in a computer program.

synchronization  Situation in which two or more processes coordinate their activi-
ties based on a condition.

system bus  A bus used to interconnect major computer components (CPU, mem-
ory, I/O).

system mode  Same as kernel mode.
task  Same as process.
thrashing  A phenomenon in virtual memory schemes, in which the processor

spends most of its time swapping pieces rather than executing instructions.
thread  A dispatchable unit of work. It includes a processor context (which includes

the program counter and stack pointer) and its own data area for a stack (to
enable subroutine branching). A thread executes sequentially and is interrupt-
ible so the processor can turn to another thread. A process may consist of mul-
tiple threads.

thread switch  The act of switching processor control from one thread to another
within the same process.

time sharing  The concurrent use of a device by a number of users.
time slice  The maximum amount of time that a process can execute before being

interrupted.
time slicing  A mode of operation in which two or more processes are assigned

quanta of time on the same processor.

Z23_STAL4290_09_GE_GLOS.indd 10 4/18/17 7:36 AM

Glossary   GL-11

trace  A sequence of instructions that are executed when a process is running.
translation lookaside buffer (TLB)  A high-speed cache used to hold recently ref-

erenced page table entries as part of a paged virtual memory scheme. The TLB
reduces the frequency of access to main memory to retrieve page table entries.

trap  An unprogrammed conditional jump to a specified address that is automatically
activated by hardware; the location from which the jump was made is recorded.

trap door  Secret undocumented entry point into a program, used to grant access
without normal methods of access authentication.

Trojan horse  A computer program that appears to have a useful function, but also
has a hidden and potentially malicious function that evades security mecha-
nisms, sometimes by exploiting legitimate authorizations of a system entity
that invokes the Trojan horse program.

trusted system  A computer and operating system that can be verified to imple-
ment a given security policy.

user mode  The least-privileged mode of execution. Certain regions of main mem-
ory and certain machine instructions cannot be used in this mode.

virtual address  The address of a storage location in virtual memory.
virtual machine  One instance of an operating system along with one or more appli-

cations running in an isolated partition within the computer. It enables differ-
ent operating systems to run in the same computer at the same time as well as
prevents applications from interfering with each other.

virtual memory  The storage space that may be regarded as addressable main stor-
age by the user of a computer system in which virtual addresses are mapped
into real addresses. The size of virtual storage is limited by the addressing
scheme of the computer system and by the amount of secondary memory
available and not by the actual number of main storage locations.

virus  Software that, when executed, tries to replicate itself into other executable
code; when it succeeds the code is said to be infected. When the infected code
is executed, the virus also executes.

weak semaphore  A semaphore in which all processes waiting on the same semaphore
proceed in an unspecified order (i.e., the order is unknown or indeterminate).

word  An ordered set of bytes or bits that is the normal unit in which information
may be stored, transmitted, or operated on within a given computer. Typically,
if a processor has a fixed-length instruction set, then the instruction length
equals the word length.

working set  The working set with parameter Δ for a process at virtual time t, W(t, Δ)
is the set of pages of that process that have been referenced in the last Δ time
units. Compare resident set.

worm  A destructive program that replicates itself throughout a single computer or
across a network, both wired and wireless. It can do damage by sheer reproduc-
tion, consuming internal disk and memory resources within a single computer
or by exhausting network bandwidth. It can also deposit a Trojan that turns a
computer into a zombie for spam and other malicious purposes. Very often, the
terms “worm” and “virus” are used synonymously; however, worm implies an
automatic method for reproducing itself in other computers.

Z23_STAL4290_09_GE_GLOS.indd 11 4/18/17 7:36 AM

	Cover
	Title Page
	Copyright Page
	Contents
	Online Chapters and Appendices
	VideoNotes
	Preface
	About the Author
	PART 1 BACKGROUND
	Chapter 1 Computer System Overview
	1.1 Basic Elements
	1.2 Evolution of the Microprocessor
	1.3 Instruction Execution
	1.4 Interrupts
	1.5 The Memory Hierarchy
	1.6 Cache Memory
	1.7 Direct Memory Access
	1.8 Multiprocessor and Multicore Organization
	1.9 Key Terms, Review Questions, and Problems
	1A Performance Characteristics of Two-Level Memories

	Chapter 2 Operating System Overview
	2.1 Operating System Objectives and Functions
	2.2 The Evolution of Operating Systems
	2.3 Major Achievements
	2.4 Developments Leading to Modern Operating Systems
	2.5 Fault Tolerance
	2.6 OS Design Considerations for Multiprocessor and Multicore
	2.7 Microsoft Windows Overview
	2.8 Traditional UNIX Systems
	2.9 Modern UNIX Systems
	2.10 Linux
	2.11 Android
	2.12 Key Terms, Review Questions, and Problems

	PART 2 PROCESSES
	Chapter 3 Process Description and Control
	3.1 What is a Process?
	3.2 Process States
	3.3 Process Description
	3.4 Process Control
	3.5 Execution of the Operating System
	3.6 UNIX SVR4 Process Management
	3.7 Summary
	3.8 Key Terms, Review Questions, and Problems

	Chapter 4 Threads
	4.1 Processes and Threads
	4.2 Types of Threads
	4.3 Multicore and Multithreading
	4.4 Windows Process and Thread Management
	4.5 Solaris Thread and SMP Management
	4.6 Linux Process and Thread Management
	4.7 Android Process and Thread Management
	4.8 Mac OS X Grand Central Dispatch
	4.9 Summary
	4.10 Key Terms, Review Questions, and Problems

	Chapter 5 Concurrency: Mutual Exclusion and Synchronization
	5.1 Mutual Exclusion: Software Approaches
	5.2 Principles of Concurrency
	5.3 Mutual Exclusion: Hardware Support
	5.4 Semaphores
	5.5 Monitors
	5.6 Message Passing
	5.7 Readers/Writers Problem
	5.8 Summary
	5.9 Key Terms, Review Questions, and Problems

	Chapter 6 Concurrency: Deadlock and Starvation
	6.1 Principles of Deadlock
	6.2 Deadlock Prevention
	6.3 Deadlock Avoidance
	6.4 Deadlock Detection
	6.5 An Integrated Deadlock Strategy
	6.6 Dining Philosophers Problem
	6.7 UNIX Concurrency Mechanisms
	6.8 Linux Kernel Concurrency Mechanisms
	6.9 Solaris Thread Synchronization Primitives
	6.10 Windows Concurrency Mechanisms
	6.11 Android Interprocess Communication
	6.12 Summary
	6.13 Key Terms, Review Questions, and Problems

	PART 3 MEMORY
	Chapter 7 Memory Management
	7.1 Memory Management Requirements
	7.2 Memory Partitioning
	7.3 Paging
	7.4 Segmentation
	7.5 Summary
	7.6 Key Terms, Review Questions, and Problems
	7A Loading and Linking

	Chapter 8 Virtual Memory
	8.1 Hardware and Control Structures
	8.2 Operating System Software
	8.3 UNIX and Solaris Memory Management
	8.4 Linux Memory Management
	8.5 Windows Memory Management
	8.6 Android Memory Management
	8.7 Summary
	8.8 Key Terms, Review Questions, and Problems

	PART 4 SCHEDULING
	Chapter 9 Uniprocessor Scheduling
	9.1 Types of Processor Scheduling
	9.2 Scheduling Algorithms
	9.3 Traditional UNIX Scheduling
	9.4 Summary
	9.5 Key Terms, Review Questions, and Problems

	Chapter 10 Multiprocessor, Multicore, and Real-Time Scheduling
	10.1 Multiprocessor and Multicore Scheduling
	10.2 Real-Time Scheduling
	10.3 Linux Scheduling
	10.4 UNIX SVR4 Scheduling
	10.5 UNIX FreeBSD Scheduling
	10.6 Windows Scheduling
	10.7 Summary
	10.8 Key Terms, Review Questions, and Problems

	PART 5 INPUT/OUTPUT AND FILES
	Chapter 11 I/O Management and Disk Scheduling
	11.1 I/O Devices
	11.2 Organization of the I/O Function
	11.3 Operating System Design Issues
	11.4 I/O Buffering
	11.5 Disk Scheduling
	11.6 RAID
	11.7 Disk Cache
	11.8 UNIX SVR4 I/O
	11.9 Linux I/O
	11.10 Windows I/O
	11.11 Summary
	11.12 Key Terms, Review Questions, and Problems

	Chapter 12 File Management
	12.1 Overview
	12.2 File Organization and Access
	12.3 B-Trees
	12.4 File Directories
	12.5 File Sharing
	12.6 Record Blocking
	12.7 Secondary Storage Management
	12.8 UNIX File Management
	12.9 Linux Virtual File System
	12.10 Windows File System
	12.11 Android File Management
	12.12 Summary
	12.13 Key Terms, Review Questions, and Problems

	PART 6 EMBEDDED SYSTEMS
	Chapter 13 Embedded Operating Systems
	13.1 Embedded Systems
	13.2 Characteristics of Embedded Operating Systems
	13.3 Embedded Linux
	13.4 TinyOS
	13.5 Key Terms, Review Questions, and Problems

	Chapter 14 Virtual Machines
	14.1 Virtual Machine Concepts
	14.2 Hypervisors
	14.3 Container Virtualization
	14.4 Processor Issues
	14.5 Memory Management
	14.6 I/O Management
	14.7 VMware ESXi
	14.8 Microsoft Hyper-V and Xen Variants
	14.9 Java VM
	14.10 Linux Vserver Virtual Machine Architecture
	14.11 Summary
	14.12 Key Terms, Review Questions, and Problems

	Chapter 15 Operating System Security
	15.1 Intruders and Malicious Software
	15.2 Buffer Overflow
	15.3 Access Control
	15.4 UNIX Access Control
	15.5 Operating Systems Hardening
	15.6 Security Maintenance
	15.7 Windows Security
	15.8 Summary
	15.9 Key Terms, Review Questions, and Problems

	Chapter 16 Cloud and IoT Operating Systems
	16.1 Cloud Computing
	16.2 Cloud Operating Systems
	16.3 The Internet of Things
	16.4 IoT Operating Systems
	16.5 Key Terms and Review Questions

	APPENDICES
	Appendix A Topics in Concurrency
	A.1 Race Conditions and Semaphores
	A.2 A Barbershop Problem
	A.3 Problems

	Appendix B Programming and Operating System Projects
	B.1 Semaphore Projects
	B.2 File Systems Project
	B.3 OS/161
	B.4 Simulations
	B.5 Programming Projects
	B.6 Research Projects
	B.7 Reading/Report Assignments
	B.8 Writing Assignments
	B.9 Discussion Topics
	B.10 BACI

	References
	Credits
	Index
	ONLINE CHAPTERS AND APPENDICES
	Chapter 17 Network Protocols
	17.1 The Need for a Protocol Architecture
	17.2 The TCP/IP Protocol Architecture
	17.3 Sockets
	17.4 Linux Networking
	17.5 Summary
	17.6 Key Terms, Review Questions, and Problems
	17A The Trivial File Transfer Protocol

	Chapter 18 Distributed Processing, Client/Server, and Clusters
	18.1 Client/Server Computing
	18.2 Distributed Message Passing
	18.3 Remote Procedure Calls
	18.4 Clusters
	18.5 Windows Cluster Server
	18.6 Beowulf and Linux Clusters
	18.7 Summary
	18.8 References
	18.9 Key Terms, Review Questions, and Problems

	Chapter 19 Distributed Process Management
	19.1 Process Migration
	19.2 Distributed Global States
	19.3 Distributed Mutual Exclusion
	19.4 Distributed Deadlock
	19.5 Summary
	19.6 References
	19.7 Key Terms, Review Questions, and Problems

	Chapter 20 Overview of Probability and Stochastic Processes
	20.1 Probability
	20.2 Random Variables
	20.3 Elementary Concepts of Stochastic Processes
	20.4 Problems

	Chapter 21 Queueing Analysis
	21.1 How Queues Behave—A Simple Example
	21.2 Why Queueing Analysis?
	21.3 Queueing Models
	21.4 Single-Server Queues
	21.5 Multiserver Queues
	21.6 Examples
	21.7 Queues With Priorities
	21.8 Networks of Queues
	21.9 Other Queueing Models
	21.10 Estimating Model Parameters
	21.11 References
	21.12 Problems

	Programming Project One Developing a Shell
	Programming Project Two The HOST Dispatcher Shell
	Appendix C Topics in Concurrency
	Appendix D Object-Oriented Design
	Appendix E Amdahl’s Law
	Appendix F Hash Tables
	Appendix G Response Time
	Appendix H Queueing System Concepts
	Appendix I The Complexity of Algorithms
	Appendix J Disk Storage Devices
	Appendix K Cryptographic Algorithms
	Appendix L Standards Organizations
	Appendix M Sockets: A Programmer’s Introduction
	Appendix N The International Reference Alphabet
	Appendix O BACI: The Ben-Ari Concurrent Programming System
	Appendix P Procedure Control
	Appendix Q ECOS
	Glossary

