Operating Systems
Internals and Design Principles

MINTH EDITHON

William Stallings

@ Pearson

OPERATING SYSTEMS

This page intentionally left blank

OPERATING SYSTEMS
INTERNALS AND DESIGN
PRINCIPLES

NINTH EDITION

GLoBAL EDITION

William Stallings

@ Pearson

Senior Vice President Courseware Portfolio Senior Manufacturing Controller, Global Editions: Trudy

Management: Marcia J. Horton Kimber
Director, Portfolio Management: Engineering, Computer Media Production Manager, Global Editions: Vikram
Science & Global Editions: Julian Partridge Kumar
Higher Ed Portfolio Management: Tracy Johnson Inventory Manager: Ann Lam
(Dunkelberger) Marketing Manager: Demetrius Hall
Acquisitions Editor, Global Editions: Sourabh Maheshwari Product Marketing Manager: Yvonne Vannatta
Portfolio Management Assistant: Kristy Alaura Marketing Assistant: Jon Bryant
Managing Content Producer: Scott Disanno Cover Designer: Lumina Datamatics
Content Producer: Robert Engelhardt Cover Art: Shai_Halud/Shutterstock
Project Editor, Global Editions: K.K. Neelakantan Full-Service Project Management: Bhanuprakash Sherla,
Web Developer: Steve Wright SPi Global

Rights and Permissions Manager: Ben Ferrini
Manufacturing Buyer, Higher Ed, Lake Side
Communications Inc (LSC): Maura Zaldivar-Garcia

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
page CL-1.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The right of William Stallings to be identified as the author of this work has been asserted by him in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Operating Systems: Internals and Design Principles, 9th Edition,
ISBN 978-0-13-467095-9, by William Stallings published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency
Ltd, Saffron House, 6—10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any

affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10987654321

ISBN 10: 1-292-21429-5
ISBN 13: 978-1-292-21429-0

Typeset by SPi Global

Printed and bound in Malaysia.

http://www.pearsonglobaleditions.com

For Tricia

This page intentionally left blank

CONTENTS

Online Chapters and Appendices 13
VideoNotes 15

Preface 17

About the Author 27

PART 1 BACKGROUND 29

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1A

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Computer System Overview 29

Basic Elements 30

Evolution of the Microprocessor 32

Instruction Execution 32

Interrupts 35

The Memory Hierarchy 46

Cache Memory 49

Direct Memory Access 53

Multiprocessor and Multicore Organization 54

Key Terms, Review Questions, and Problems 58
Performance Characteristics of Two-Level Memories 61

Operating System Overview 68

Operating System Objectives and Functions 69

The Evolution of Operating Systems 73

Major Achievements 83

Developments Leading to Modern Operating Systems 92
Fault Tolerance 95

OS Design Considerations for Multiprocessor and Multicore 98
Microsoft Windows Overview 101

Traditional UNIX Systems 108

Modern UNIX Systems 110

Linux 113

Android 118

Key Terms, Review Questions, and Problems 127

PART 2 PROCESSES 129

Chapter 3
3.1

3.2
3.3

Process Description and Control 129
What is a Process? 131

Process States 133
Process Description 148

8 CONTENTS

3.4
3.5
3.6
3.7
3.8

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Process Control 157

Execution of the Operating System 163

UNIX SVR4 Process Management 166

Summary 171

Key Terms, Review Questions, and Problems 171

Threads 176

Processes and Threads 177

Types of Threads 183

Multicore and Multithreading 190

Windows Process and Thread Management 195
Solaris Thread and SMP Management 202

Linux Process and Thread Management 206
Android Process and Thread Management 211
Mac OS X Grand Central Dispatch 215
Summary 217

Key Terms, Review Questions, and Problems 218

Concurrency: Mutual Exclusion
and Synchronization 223

Mutual Exclusion: Software Approaches 226
Principles of Concurrency 232

Mutual Exclusion: Hardware Support 241
Semaphores 244

Monitors 257

Message Passing 263

Readers/Writers Problem 270

Summary 274

Key Terms, Review Questions, and Problems 275

Concurrency: Deadlock and Starvation 289

Principles of Deadlock 290

Deadlock Prevention 299

Deadlock Avoidance 300

Deadlock Detection 306

An Integrated Deadlock Strategy 308

Dining Philosophers Problem 309

UNIX Concurrency Mechanisms 313

Linux Kernel Concurrency Mechanisms 315
Solaris Thread Synchronization Primitives 324
Windows Concurrency Mechanisms 326
Android Interprocess Communication 330
Summary 331

Key Terms, Review Questions, and Problems 332

CONTENTS

PART 3 MEMORY 339

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
7A

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Memory Management 339

Memory Management Requirements 340
Memory Partitioning 344

Paging 355

Segmentation 358

Summary 360

Key Terms, Review Questions, and Problems 360
Loading and Linking 363

Virtual Memory 370

Hardware and Control Structures 371

Operating System Software 388

UNIX and Solaris Memory Management 407
Linux Memory Management 413

Windows Memory Management 417

Android Memory Management 419

Summary 420

Key Terms, Review Questions, and Problems 421

PART 4 SCHEDULING 425

Chapter 9

9.1
9.2
9.3
9.4
9.5

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Uniprocessor Scheduling 425

Types of Processor Scheduling 426

Scheduling Algorithms 430

Traditional UNIX Scheduling 452

Summary 454

Key Terms, Review Questions, and Problems 455

Multiprocessor, Multicore, and Real-Time Scheduling 460

Multiprocessor and Multicore Scheduling 461
Real-Time Scheduling 474

Linux Scheduling 489

UNIX SVR4 Scheduling 492

UNIX FreeBSD Scheduling 494

Windows Scheduling 498

Summary 500

Key Terms, Review Questions, and Problems 500

PART 5 INPUT/OUTPUT AND FILES 505

Chapter 11

11.1
11.2
11.3

I/0 Management and Disk Scheduling 505

I/0O Devices 506
Organization of the I/O Function 508
Operating System Design Issues 511

10 CONTENTS

11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

1/0 Buftering 514

Disk Scheduling 517

RAID 524

Disk Cache 533

UNIX SVR4 1/0 537

Linux [/0 540

Windows I/0 544

Summary 546

Key Terms, Review Questions, and Problems 547

File Management 550

Overview 551

File Organization and Access 557
B-Trees 561

File Directories 564

File Sharing 569

Record Blocking 570

Secondary Storage Management 572
UNIX File Management 580

Linux Virtual File System 585
Windows File System 589

Android File Management 594
Summary 595

Key Terms, Review Questions, and Problems 596

PART 6 EMBEDDED SYSTEMS 599

Chapter 13

13.1
13.2
13.3
13.4
13.5

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

Embedded Operating Systems 599

Embedded Systems 600

Characteristics of Embedded Operating Systems 605
Embedded Linux 609

TinyOS 615

Key Terms, Review Questions, and Problems 625

Virtual Machines 627

Virtual Machine Concepts 628

Hypervisors 631

Container Virtualization 635

Processor Issues 642

Memory Management 644

I70O Management 645

VMware ESXi 647

Microsoft Hyper-V and Xen Variants 650

Java VM 651

Linux Vserver Virtual Machine Architecture 652
Summary 655

Key Terms, Review Questions, and Problems 655

CONTENTS

Chapter 15 Operating System Security 657

15.1 Intruders and Malicious Software 658

15.2 Buffer Overflow 662

15.3 Access Control 670

15.4 UNIX Access Control 678

15.5 Operating Systems Hardening 681

15.6 Security Maintenance 685

15.7 Windows Security 686

15.8 Summary 691

15.9 Key Terms, Review Questions, and Problems 692

Chapter 16 Cloud and IoT Operating Systems 695

16.1 Cloud Computing 696

16.2 Cloud Operating Systems 704

16.3 The Internet of Things 720

16.4 IoT Operating Systems 724

16.5 Key Terms and Review Questions 731

APPENDICES

Appendix A Topics in Concurrency A-1
Al Race Conditions and Semaphores A-2
A2 A Barbershop Problem A-9
A3 Problems A-14

Appendix B Programming and Operating System Projects B-1
B.1 Semaphore Projects B-2
B.2 File Systems Project B-3
B.3 0OS/161 B-3
B.4 Simulations B-4
B.5 Programming Projects B-4
B.6 Research Projects B-6
B.7 Reading/Report Assignments B-7
B.8 Writing Assignments B-7
B.9 Discussion Topics B-7
B.10 BACIB-7

References R-1
Credits CL-1

Index I-1

11

This page intentionally left blank

ONLINE CHAPTERS AND APPENDICES !

Chapter 17 Network Protocols

17.1 The Need for a Protocol Architecture 17-3

17.2 The TCP/IP Protocol Architecture 17-5

17.3 Sockets 17-12

17.4 Linux Networking 17-16

17.5 Summary 17-18

17.6 Key Terms, Review Questions, and Problems 17-18
17A The Trivial File Transfer Protocol 17-21

Chapter 18 Distributed Processing, Client/Server, and Clusters

18.1 Client/Server Computing 18-2

18.2 Distributed Message Passing 18-12

18.3 Remote Procedure Calls 18-16

18.4 Clusters 18-19

18.5 Windows Cluster Server 18-25

18.6 Beowulf and Linux Clusters 18-27

18.7 Summary 18-29

18.8 References 18-29

18.9 Key Terms, Review Questions, and Problems 18-30

Chapter 19 Distributed Process Management

19.1 Process Migration 19-2

19.2 Distributed Global States 19-9

19.3 Distributed Mutual Exclusion 19-14

19.4 Distributed Deadlock 19-23

19.5 Summary 19-35

19.6 References 19-35

19.7 Key Terms, Review Questions, and Problems 19-37

Chapter 20 Overview of Probability and Stochastic Processes

20.1 Probability 20-2

20.2 Random Variables 20-7

20.3 Elementary Concepts of Stochastic Processes 20-12
20.4 Problems 20-20

Chapter 21 Queueing Analysis

21.1 How Queues Behave—A Simple Example 21-3
21.2 Why Queueing Analysis? 21-8

Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book.

13

14 ONLINE CHAPTERS AND APPENDICES

21.3 Queueing Models 21-10

21.4 Single-Server Queues 21-17

21.5 Multiserver Queues 21-20

21.6 Examples 21-20

21.7 Queues With Priorities 21-26

21.8 Networks of Queues 21-27

21.9 Other Queueing Models 21-31
21.10 Estimating Model Parameters 21-32
21.11 References 21-35

21.12 Problems 21-35

Programming Project One Developing a Shell
Programming Project Two The HOST Dispatcher Shell
Appendix C Topics in Concurrency C-1

Appendix D Object-Oriented Design D-1

Appendix E Amdahl’s Law E-1

Appendix F Hash Tables F-1

Appendix G = Response Time G-1

Appendix H Queueing System Concepts H-1

Appendix I The Complexity of Algorithms I-1
Appendix J Disk Storage Devices J-1

Appendix K Cryptographic Algorithms K-1

Appendix L Standards Organizations L-1

Appendix M Sockets: A Programmer’s Introduction M-1
Appendix N The International Reference Alphabet N-1
Appendix O BACI: The Ben-Ari Concurrent Programming System O-1
Appendix P Procedure Control P-1

Appendix Q ECOS Q-1

Glossary

B VIDEONOTES

Locations of VideoNotes

http://www.pearsonglobaleditions.com/stallings

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.9
5.12

5.13
5.14
5.16

5.17
5.19

5.20
5.23
5.24
5.25

5.26

5.27
5.28

Chapter 6

6.9

6.12
6.13
6.14
6.18

Chapter 13
13.12

Concurrency: Mutual Exclusion and Synchronization 223

Mutual Exclusion Attempts 227

Dekker’s Algorithm 230

Peterson’s Algorithm for Two Processes 231

lustration of Mutual Exclusion 238

Hardware Support for Mutual Exclusion 242

A Definition of Semaphore Primitives 246

A Definition of Binary Semaphore Primitives 247

Mutual Exclusion Using Semaphores 249

An Incorrect Solution to the Infinite-Bufter Producer/Consumer Problem
Using Binary Semaphores 252

A Correct Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores 254

A Solution to the Infinite-Bufter Producer/Consumer Problem

Using Semaphores 255

A Solution to the Bounded-Buffer Producer/Consumer Problem
Using Semaphores 256

Two Possible Implementations of Semaphores 257

A Solution to the Bounded-Buffer Producer/Consumer Problem
Using a Monitor 260

Bounded-Buffer Monitor Code for Mesa Monitor 262

Mutual Exclusion Using Messages 268

A Solution to the Bounded-Buffer Producer/Consumer Problem Using Messages 269
A Solution to the Readers/Writers Problem Using Semaphore:

Readers Have Priority 271

A Solution to the Readers/Writers Problem Using Semaphore:

Writers Have Priority 273

A Solution to the Readers/Writers Problem Using Message Passing 274
An Application of Coroutines 277

Concurrency: Deadlock and Starvation 289

Deadlock Avoidance Logic 305

A First Solution to the Dining Philosophers Problem 311

A Second Solution to the Dining Philosophers Problem 311

A Solution to the Dining Philosophers Problem Using a Monitor 312
Another Solution to the Dining Philosophers Problem Using a Monitor 337

Embedded Operating Systems 599
Condition Variable Example Code 626

15

http://www.pearsonglobaleditions.com/stallings

This page intentionally left blank

PREFACE
WHAT’S NEW IN THE NINTH EDITION

Since the eighth edition of this book was published, the field of operating systems
has seen continuous innovations and improvements. In this new edition, I have tried
to capture these changes while maintaining a comprehensive coverage of the entire
field. To begin the process of revision, the eighth edition of this book was extensively
reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clari-
fied and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user friendliness, the
technical content of the book has been updated throughout to reflect the ongo-
ing changes in this exciting field, and the instructor and student support has been
expanded. The most noteworthy changes are as follows:

e Updated Linux coverage: The Linux material has been updated and expanded
to reflect changes in the Linux kernel since the eighth edition.

e Updated Android coverage: The Android material has been updated and
expanded to reflect changes in the Android kernel since the eighth edition.

e New Virtualization coverage: The chapter on virtual machines has been com-
pletely rewritten to provide better organization and an expanded and more
up-to-date treatment. In addition, a new section has been added on the use of
containers.

e New Cloud operating systems: New to this edition is the coverage of cloud
operating systems, including an overview of cloud computing, a discussion of
the principles and requirements for a cloud operating system, and a discussion
of a OpenStack, a popular open-source Cloud OS.

e New IoT operating systems: New to this edition is the coverage of operating
systems for the Internet of Things. The coverage includes an overview of the
10T, a discussion of the principles and requirements for an IoT operating sys-
tem, and a discussion of a RIOT, a popular open-source IoT OS.

e Updated and Expanded Embedded operating systems: This chapter has been
substantially revised and expanded including:

—The section on embedded systems has been expanded and now includes
discussions of microcontrollers and deeply embedded systems.

—The overview section on embedded OSs has been expanded and updated.

—The treatment of embedded Linux has been expanded, and a new discussion
of a popular embedded Linux system, uClinux, has been added.

¢ Concurrency: New projects have been added to the Projects Manual to better
help the student understand the principles of concurrency.

17

18 PREFACE

OBJECTIVES

This book is about the concepts, structure, and mechanisms of operating systems. Its
purpose is to present, as clearly and completely as possible, the nature and charac-
teristics of modern-day operating systems.

This task is challenging for several reasons. First, there is a tremendous range
and variety of computer systems for which operating systems are designed. These
include embedded systems, smart phones, single-user workstations and personal
computers, medium-sized shared systems, large mainframe and supercomputers,
and specialized machines such as real-time systems. The variety is not just con-
fined to the capacity and speed of machines, but in applications and system support
requirements. Second, the rapid pace of change that has always characterized com-
puter systems continues without respite. A number of key areas in operating system
design are of recent origin, and research into these and other new areas continues.

In spite of this variety and pace of change, certain fundamental concepts apply
consistently throughout. To be sure, the application of these concepts depends on
the current state of technology and the particular application requirements. The in-
tent of this book is to provide a thorough discussion of the fundamentals of operat-
ing system design, and to relate these to contemporary design issues and to current
directions in the development of operating systems.

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and imple-
mentation issues of contemporary operating systems. Accordingly, a purely concep-
tual or theoretical treatment would be inadequate. To illustrate the concepts and
to tie them to real-world design choices that must be made, four operating systems
have been chosen as running examples:

* Windows: A multitasking operating system for personal computers, worksta-
tions, servers, and mobile devices. This operating system incorporates many of
the latest developments in operating system technology. In addition, Windows
is one of the first important commercial operating systems to rely heavily on
object-oriented design principles. This book covers the technology used in the
most recent version of Windows, known as Windows 10.

e Android: Android is tailored for embedded devices, especially mobile phones.
Focusing on the unique requirements of the embedded environment, the book
provides details of Android internals.

e UNIX: A multiuser operating system, originally intended for minicomputers,
but implemented on a wide range of machines from powerful microcomput-
ers to supercomputers. Several flavors of UNIX are included as examples.
FreeBSD is a widely used system that incorporates many state-of-the-art fea-
tures. Solaris is a widely used commercial version of UNIX.

e Linux: An open-source version of UNIX that is widely used.

PREFACE 19

These systems were chosen because of their relevance and representativeness.
The discussion of the example systems is distributed throughout the text rather than
assembled as a single chapter or appendix. Thus, during the discussion of concur-
rency, the concurrency mechanisms of each example system are described, and the
motivation for the individual design choices is discussed. With this approach, the
design concepts discussed in a given chapter are immediately reinforced with real-
world examples. For convenience, all of the material for each of the example sys-
tems is also available as an online document.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one-semester or two-semester undergraduate course in operating
systems for computer science,computer engineering, and electrical engineering majors.
This edition is designed to support the recommendations of the current (December
2013) version of the ACM/IEEE Computer Science Curricula 2013 (CS2013). The
CS2013 curriculum recommendation includes Operating Systems (OS) as one of the
Knowledge Areas in the Computer Science Body of Knowledge. CS2013 divides all
course work into three categories: Core-Tier 1 (all topics should be included in the cur-
riculum), Core-Tier 2 (all or almost all topics should be included), and Elective (desir-
able to provide breadth and depth). In the OS area, CS2013 includes two Tier 1 topics,
four Tier 2 topics, and six Elective topics, each of which has a number of subtopics. This
text covers all of the topics and subtopics listed by CS2013 in these three categories.

Table P.1 shows the support for the OS Knowledge Areas provided in this text-
book. A detailed list of subtopics for each topic is available as the file CS2013-OS
.pdf at box.com/OS9%e.

PLAN OF THE TEXT

The book is divided into six parts:
1. Background

Processes

Memory

Scheduling
Input/Output and files

SANR U S O

Advanced topics (embedded OSs, virtual machines, OS security, and cloud and
10T operating systems)

The book includes a number of pedagogic features, including the use of anima-
tions and videonotes and numerous figures and tables to clarify the discussion. Each
chapter includes a list of key words, review questions, and homework problems.
The book also includes an extensive glossary, a list of frequently used acronyms,
and a bibliography. In addition, a test bank is available to instructors.

http://box.com/OS9e

20 PREFACE

Table P.1 Coverage of CS2013 Operating Systems (OSs) Knowledge Area

Topic

Coverage in Book

Overview of Operating Systems (Tier 1)

Chapter 2: Operating System Overview

Operating System Principles (Tier 1)

Chapter 1: Computer System Overview
Chapter 2: Operating System Overview

Concurrency (Tier 2)

Chapter 5: Mutual Exclusion and Synchronization
Chapter 6: Deadlock and Starvation

Appendix A: Topics in Concurrency

Chapter 18: Distributed Process Management

Scheduling and Dispatch (Tier 2)

Chapter 9: Uniprocessor Scheduling
Chapter 10: Multiprocessor and Real-Time
Scheduling

Memory Management (Tier 2)

Chapter 7: Memory Management
Chapter 8: Virtual Memory

Security and Protection (Tier 2)

Chapter 15: Operating System Security

Virtual Machines (Elective)

Chapter 14: Virtual Machines

Device Management (Elective)

Chapter 11: I/O Management and Disk Scheduling

File System (Elective)

Chapter 12: File Management

Real Time and Embedded Systems (Elective)

Chapter 10: Multiprocessor and Real-Time
Scheduling

Chapter 13: Embedded Operating Systems
Material on Android throughout the text

Fault Tolerance (Elective)

Section 2.5: Fault Tolerance

System Performance Evaluation (Elective)

Performance issues related to memory management,
scheduling, and other areas addressed throughout
the text

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool as possible for
this fundamental yet evolving subject. This goal is reflected both in the structure of
the book and in the supporting material. The text is accompanied by the following
supplementary material to aid the instructor:

¢ Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

e Projects manual: Suggested project assignments for all of the project catego-
ries listed in this Preface.

e PowerPoint slides: A set of slides covering all chapters, suitable for use in
lecturing.

e PDF files: Reproductions of all figures and tables from the book.
e Testbank: A chapter-by-chapter set of questions with a separate file of answers.

PREFACE 21

u * VideoNotes on concurrency: Professors perennially cite concurrency as per-

haps the most difficult concept in the field of operating systems for students to
grasp. The edition is accompanied by a number of VideoNotes lectures discuss-
ing the various concurrency algorithms defined in the book. This icon appears
next to each algorithm definition in the book to indicate that a VideoNote is
available:

VideoNote

e Sample syllabuses: The text contains more material that can be conveniently
covered in one semester. Accordingly, instructors are provided with several
sample syllabuses that guide the use of the text within limited time. These
samples are based on real-world experience by professors with the seventh
edition.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached through the publisher’s website http://
www.pearsonglobaleditions.com/stallings. To gain access to the IRC, please contact
your local Pearson sales representative.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of an OS course is a project or set of
projects by which the student gets hands-on experience to reinforce concepts from
the text. This book has incorporated a projects component in the course as a result
of an overwhelming support it received. In the online portion of the text, two major
programming projects are defined. In addition, the instructor’s support materials
available through Pearson not only includes guidance on how to assign and struc-
ture the various projects, but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can
assign work in the following areas:

* 0S/161 projects: Described later.

e Simulation projects: Described later.

* Semaphore projects: Designed to help students understand concurrency
concepts, including race conditions, starvation, and deadlock.

¢ Kernel projects: The IRC includes complete instructor support for two dif-
ferent sets of Linux kernel programming projects, as well as a set of kernel
programming projects for Android.

e Programming projects: Described below.

e Research projects: A series of research assignments that instruct the student to
research a particular topic on the Internet and write a report.

¢ Reading/report assignments: A list of papers that can be assigned for reading
and writing a report, plus suggested assignment wording.

* Writing assignments: A list of writing assignments to facilitate learning the
material.

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings

22 PREFACE

e Discussion topics: These topics can be used in a classroom, chat room, or mes-
sage board environment to explore certain areas in greater depth and to foster
student collaboration.

In addition, information is provided on a software package known as BACI that
serves as a framework for studying concurrency mechanisms.

This diverse set of projects and other student exercises enables the instructor
to use the book as one component in a rich and varied learning experience and to
tailor a course plan to meet the specific needs of the instructor and students. See
Appendix B in this book for details.

0S/161

This edition provides support for an active learning component based on OS/161.
OS/161 is an educational operating system that is becoming increasingly rec-
ognized as the preferred teaching platform for OS internals. It aims to strike a
balance between giving students experience in working on a real operating sys-
tem, and potentially overwhelming students with the complexity that exists
in a full-fledged operating system, such as Linux. Compared to most deployed
operating systems, OS/161 is quite small (approximately 20,000 lines of code and
comments), and therefore it is much easier to develop an understanding of the
entire code base.
The IRC includes:

1. A packaged set of html files that the instructor can upload to a course server
for student access.

2. A getting-started manual to be distributed to students to help them begin using
0OS/161.

3. A set of exercises using OS/161, to be distributed to students.
4. Model solutions to each exercise for the instructor’s use.

5. All of this will be cross-referenced with appropriate sections in the book, so the
student can read the textbook material then do the corresponding OS/161
project.

SIMULATIONS

The IRC provides support for assigning projects based on a set of seven simulations
that cover key areas of OS design. The student can use a set of simulation packages
to analyze OS design features. The simulators are written in Java and can be run
either locally as a Java application or online through a browser. The IRC includes
specific assignments to give to students, telling them specifically what they are to do
and what results are expected.

PREFACE 23

ANIMATIONS

This edition also incorporates animations. Animations provide a powerful tool for
understanding the complex mechanisms of a modern OS. A total of 53 animations
are used to illustrate key functions and algorithms in OS design. The animations are
used for Chapters 3,5,6,7,8,9,and 11.

PROGRAMMING PROJECTS

This edition provides support for programming projects. Two major programming
projects, one to build a shell, or command line interpreter, and one to build a process
dispatcher are described in the online portion of this textbook. The IRC provides
further information and step-by-step exercises for developing the programs.

As an alternative, the instructor can assign a more extensive series of pro-
jects that cover many of the principles in the book. The student is provided with
detailed instructions for doing each of the projects. In addition, there is a set of
homework problems, which involve questions related to each project for the
student to answer.

Finally, the project manual provided at the IRC includes a series of program-
ming projects that cover a broad range of topics and that can be implemented in any
suitable language on any platform.

ONLINE DOCUMENTS AND VIDEONOTES FOR STUDENTS

For this new edition, a substantial amount of original supporting material for stu-
dents has been made available online, at two online locations. The book’s website,
at http://www.pearsonglobaleditions.com/stallings (click on Student Resources
link), includes a list of relevant links organized by chapter and an errata sheet for
the book.

Purchasing this textbook new also grants the reader twelve months of access
to the Companion Website, which includes the following materials:

* Online chapters: To limit the size and cost of the book, 5 chapters of the book,
covering security, are provided in PDF format. The chapters are listed in this
book’s table of contents.

e Online appendices: There are numerous interesting topics that support mate-
rial found in the text, but whose inclusion is not warranted in the printed text.
A total of 15 online appendices cover these topics for the interested student.
The appendices are listed in this book’s table of contents.

* Homework problems and solutions: To aid the student in understanding the
material, a separate set of homework problems with solutions is available.

http://www.pearsonglobaleditions.com/stallings

24 PREFACE

e Animations: Animations provide a powerful tool for understanding the com-
plex mechanisms of a modern OS. A total of 53 animations are used to illus-

trate key functions and algorithms in OS design. The animations are used for
Chapters 3,5,6,7,8,9,and 11.

* VideoNotes: VideoNotes are step-by-step video tutorials specifically designed
to enhance the programming concepts presented in this textbook. The book is
accompanied by a number of VideoNotes lectures discussing the various con-
currency algorithms defined in the book.

To access the Premium Content site, click on the Companion website link at
www.pearsonglobaleditions.com/stallings and enter the student access code found
on the card in the front of the book.

ACKNOWLEDGMENTS

I would like to thank the following for their contributions. Rami Rosen contributed
most of the new material on Linux. Vineet Chadha made a major contribution to the
new chapter on virtual machines. Durgadoss Ramanathan provided the new mate-
rial on Android ART.

Through its multiple editions this book has benefited from review by hun-
dreds of instructors and professionals, who generously spared their precious time
and shared their expertise. Here 1 acknowledge those whose help contributed to
this latest edition.

The following instructors reviewed all or a large part of the manuscript for this
edition: Jiang Guo (California State University, Los Angeles), Euripides Montagne
(University of Central Florida), Kihong Park (Purdue University), Mohammad
Abdus Salam (Southern University and A&M College), Robert Marmorstein
(Longwood University), Christopher Diaz (Seton Hill University), and Barbara
Bracken (Wilkes University).

Thanks also to all those who provided detailed technical reviews of one
or more chapters: Nischay Anikar, Adri Jovin, Ron Munitz, Fatih Eyup Nar,
Atte Peltomaki, Durgadoss Ramanathan, Carlos Villavieja, Wei Wang, Serban
Constantinescu and Chen Yang.

Thanks also to those who provided detailed reviews of the example sys-
tems. Reviews of the Android material were provided by Kristopher Micinski,
Ron Munitz, Atte Peltomaki, Durgadoss Ramanathan, Manish Shakya, Samuel
Simon, Wei Wang, and Chen Yang. The Linux reviewers were Tigran Aivazian,
Kaiwan Billimoria, Peter Huewe, Manmohan Manoharan, Rami Rosen, Necha
Naik, and Hualing Yu. The Windows material was reviewed by Francisco Cotrina,
Sam Haidar, Christopher Kuleci, Benny Olsson, and Dave Probert. The RIOT ma-
terial was reviewed by Emmanuel Baccelli and Kaspar Schleiser, and OpenStack
was reviewed by Bob Callaway. Nick Garnett of eCosCentric reviewed the material
on eCos; and Philip Levis, one of the developers of TinyOS reviewed the material
on TinyOS. Sid Young reviewed the material on container virtualization.

http://www.pearsonglobaleditions.com/stallings

PREFACE 25

Andrew Peterson of the University of Toronto prepared the OS/161 supple-
ments for the IRC. James Craig Burley authored and recorded the VideoNotes.

Adam Critchley (University of Texas at San Antonio) developed the simula-
tion exercises. Matt Sparks (University of Illinois at Urbana-Champaign) adapted a
set of programming problems for use with this textbook.

Lawrie Brown of the Australian Defence Force Academy produced the mate-
rial on buffer overflow attacks. Ching-Kuang Shene (Michigan Tech University)
provided the examples used in the section on race conditions and reviewed the
section. Tracy Camp and Keith Hellman, both at the Colorado School of Mines,
developed a new set of homework problems. In addition, Fernando Ariel Gont con-
tributed a number of homework problems; he also provided detailed reviews of all
of the chapters.

I would also like to thank Bill Bynum (College of William and Mary) and
Tracy Camp (Colorado School of Mines) for contributing Appendix O; Steve Taylor
(Worcester Polytechnic Institute) for contributing the programming projects and
reading/report assignments in the instructor’s manual; and Professor Tan N. Nguyen
(George Mason University) for contributing the research projects in the instruction
manual. lan G. Graham (Griffith University) contributed the two programming
projects in the textbook. Oskars Rieksts (Kutztown University) generously allowed
me to make use of his lecture notes, quizzes, and projects.

Finally, I thank the many people responsible for the publication of this book,
all of whom did their usual excellent job. This includes the staff at Pearson, par-
ticularly my editor Tracy Johnson, her assistant Kristy Alaura, program manager
Carole Snyder, and project manager Bob Engelhardt. Thanks also to the marketing
and sales staffs at Pearson, without whose efforts this book would not be in front
of you.

ACKNOWLEDGMENTS FOR THE GLOBAL EDITION

Pearson would like to thank and acknowledge Moumita Mitra Manna (Bangabasi
College) for contributing to the Global Edition, and A. Kannamal (Coimbatore
Institute of Technology), Kumar Shashi Prabh (Shiv Nadar University), and Khyat
Sharma for reviewing the Global Edition.

This page intentionally left blank

ABOUT THE AUTHOR

Dr. William Stallings has authored 18 titles, and including the revised editions, over
40 books on computer security, computer networking, and computer architecture.
His writings have appeared in numerous publications, including the Proceedings of
the IEEE, ACM Computing Reviews and Cryptologia.

He has received the Best Computer Science textbook of the Year award 13
times from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical
manager, and an executive with several high-technology firms. He has designed
and implemented both TCP/IP-based and OSI-based protocol suites on a variety
of computers and operating systems, ranging from microcomputers to mainframes.
As a consultant, he has advised government agencies, computer and software ven-
dors, and major users on the design, selection, and use of networking software and
products.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety
of subjects of general interest to computer science students (and professionals). He
is a member of the editorial board of Cryptologia, a scholarly journal devoted to all
aspects of cryptology.

Dr. Stallings holds a Ph.D. from M.L.T. in Computer Science and a B.S. from
Notre Dame in electrical engineering.

27

http://ComputerScienceStudent.com

This page intentionally left blank

PART 1 Background

CoMPUTER SYSTEM OVERVIEW

1.1 Basic Elements
1.2 Evolution of the Microprocessor
1.3 Instruction Execution

1.4 Interrupts
Interrupts and the Instruction Cycle
Interrupt Processing
Multiple Interrupts

1.5 The Memory Hierarchy

1.6 Cache Memory
Motivation
Cache Principles
Cache Design

1.7 Direct Memory Access

1.8 Multiprocessor and Multicore Organization
Symmetric Multiprocessors
Multicore Computers

1.9 Key Terms, Review Questions, and Problems

APPENDIX 1A Performance Characteristics of Two-Level Memories
Locality
Operation of Two-Level Memory
Performance

29

30 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Describe the basic elements of a computer system and their interrelationship.
Explain the steps taken by a processor to execute an instruction.

Understand the concept of interrupts, and how and why a processor uses
interrupts.

List and describe the levels of a typical computer memory hierarchy.
Explain the basic characteristics of multiprocessor systems and multicore
computers.

Discuss the concept of locality and analyze the performance of a multilevel
memory hierarchy.

Understand the operation of a stack and its use to support procedure call
and return.

An operating system (OS) exploits the hardware resources of one or more processors
to provide a set of services to system users. The OS also manages secondary memory
and I/O (input/output) devices on behalf of its users. Accordingly, it is important to
have some understanding of the underlying computer system hardware before we
begin our examination of operating systems.

This chapter provides an overview of computer system hardware. In most areas,

the survey is brief, as it is assumed that the reader is familiar with this subject. How-
ever, several areas are covered in some detail because of their importance to topics
covered later in the book. Additional topics are covered in Appendix C. For a more
detailed treatment, see [STAL16a].

1.1 BASIC ELEMENTS

At a top level, a computer consists of processor, memory, and I/O components, with
one or more modules of each type. These components are interconnected in some
fashion to achieve the main function of the computer, which is to execute programs.
Thus, there are four main structural elements:

e Processor: Controls the operation of the computer and performs its data pro-

cessing functions. When there is only one processor, it is often referred to as the
central processing unit (CPU).

Main memory: Stores data and programs. This memory is typically volatile;
that is, when the computer is shut down, the contents of the memory are lost.
In contrast, the contents of disk memory are retained even when the computer
system is shut down. Main memory is also referred to as real memory or primary
memory.

1.1 / BASIC ELEMENTS 31

CPU Main memory

System .
bus .

PC MAR

Instruction

e o 0 O —O

Instruction

IR MBR Instruction

I/O AR °

b
Data

I/0 BR
Data
Data

I/O module : _
1

= PC = Program counter

. IR Instruction register

> MAR Memory address register
Buffers MBR Memory buffer register
I/0 AR = Input/output address register
I/0 BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

¢ I/0 modules: Move data between the computer and its external environment.
The external environment consists of a variety of devices, including secondary
memory devices (e.g., disks), communications equipment, and terminals.

e System bus: Provides for communication among processors, main memaory,
and I/O modules.

Figure 1.1 depicts these top-level components. One of the processor’s functions
is to exchange data with memory. For this purpose, it typically makes use of two
internal (to the processor) registers: a memory address register (MAR), which speci-
fies the address in memory for the next read or write; and a memory buffer register
(MBR), which contains the data to be written into memory, or receives the data read
from memory. Similarly, an I/O address register (I/OAR) specifies a particular I/O
device. An I/O buffer register (I/OBR) is used for the exchange of data between an
I/0O module and the processor.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a bit pattern that can be interpreted as either

32 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

an instruction or data. An I/O module transfers data from external devices to proces-
sor and memory, and vice versa. It contains internal buffers for temporarily storing
data until they can be sent on.

1.2 EVOLUTION OF THE MICROPROCESSOR

The hardware revolution that brought about desktop and handheld computing was
the invention of the microprocessor, which contained a processor on a single chip.
Though originally much slower than multichip processors, microprocessors have
continually evolved to the point that they are now much faster for most computa-
tions due to the physics involved in moving information around in sub-nanosecond
timeframes.

Not only have microprocessors become the fastest general-purpose processors
available, they are now multiprocessors; each chip (called a socket) contains multiple
processors (called cores), each with multiple levels of large memory caches, and mul-
tiple logical processors sharing the execution units of each core. As of 2010, it is not
unusual for even a laptop to have 2 or 4 cores, each with 2 hardware threads, for a
total of 4 or 8 logical processors.

Although processors provide very good performance for most forms of com-
puting, there is increasing demand for numerical computation. Graphical Processing
Units (GPUs) provide efficient computation on arrays of data using Single-Instruction
Multiple Data (SIMD) techniques pioneered in supercomputers. GPUs are no lon-
ger used just for rendering advanced graphics, but they are also used for general
numerical processing, such as physics simulations for games or computations on
large spreadsheets. Simultaneously, the CPUs themselves are gaining the capability
of operating on arrays of data—with increasingly powerful vector units integrated into
the processor architecture of the x86 and AMD64 families.

Processors and GPUs are not the end of the computational story for the mod-
ern PC. Digital Signal Processors (DSPs) are also present for dealing with stream-
ing signals such as audio or video. DSPs used to be embedded in I/O devices, like
modems, but they are now becoming first-class computational devices, especially in
handhelds. Other specialized computational devices (fixed function units) co-exist
with the CPU to support other standard computations, such as encoding/decoding
speech and video (codecs), or providing support for encryption and security.

To satisfy the requirements of handheld devices, the classic microprocessor is
giving way to the System on a Chip (SoC), where not just the CPUs and caches are
on the same chip, but also many of the other components of the system, such as DSPs,
GPUs, I/0 devices (such as radios and codecs), and main memory.

1.3 INSTRUCTION EXECUTION

A program to be executed by a processor consists of a set of instructions stored in
memory. In its simplest form, instruction processing consists of two steps: The pro-
cessor reads (fetches) instructions from memory one at a time and executes each
instruction. Program execution consists of repeating the process of instruction fetch

1.3 / INSTRUCTION EXECUTION 33

Fetch stage Execute stage

(START) Fetch nf:xt) Exeche HALT
1nstruction 1struction

Figure 1.2 Basic Instruction Cycle

and instruction execution. Instruction execution may involve several operations and
depends on the nature of the instruction.

The processing required for a single instruction is called an instruction cycle.
Using a simplified two-step description, the instruction cycle is depicted in Figure 1.2.
The two steps are referred to as the fetch stage and the execute stage. Program execu-
tion halts only if the processor is turned off, some sort of unrecoverable error occurs,
or a program instruction that halts the processor is encountered.

At the beginning of each instruction cycle, the processor fetches an instruc-
tion from memory. Typically, the program counter (PC) holds the address of the
next instruction to be fetched. Unless instructed otherwise, the processor always
increments the PC after each instruction fetch so it will fetch the next instruction
in sequence (i.e., the instruction located at the next higher memory address). For
example, consider a simplified computer in which each instruction occupies one 16-bit
word of memory. Assume that the program counter is set to location 300. The proces-
sor will next fetch the instruction at location 300. On succeeding instruction cycles, it
will fetch instructions from locations 301, 302, 303, and so on. This sequence may be
altered, as explained subsequently.

The fetched instruction is loaded into the instruction register (IR). The instruc-
tion contains bits that specify the action the processor is to take. The processor inter-
prets the instruction and performs the required action. In general, these actions fall
into four categories:

* Processor-memory: Data may be transferred from processor to memory, or
from memory to processor.

¢ Processor-1/0: Data may be transferred to or from a peripheral device by trans-
ferring between the processor and an I/O module.

e Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

¢ Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor sets the
program counter to 182. Thus, on the next fetch stage, the instruction will be
fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical processor that includes the
characteristics listed in Figure 1.3. The processor contains a single data register, called

34 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

0 34 15
| Opcode | Address |

(a) Instruction format

[S | Magnitude |
(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes
Figure 1.3 Characteristics of a Hypothetical Machine

the accumulator (AC). Both instructions and data are 16 bits long, and memory is
organized as a sequence of 16-bit words. The instruction format provides 4 bits for
the opcode, allowing as many as 2* = 16 different opcodes (represented by a single
hexadecimal! digit). The opcode defines the operation the processor is to perform.
With the remaining 12 bits of the instruction format, up to 2'> = 4,096 (4K) words of
memory (denoted by three hexadecimal digits) can be directly addressed.

Figure 1.4 illustrates a partial program execution, showing the relevant portions
of memory and processor registers. The program fragment shown adds the contents of
the memory word at address 940 to the contents of the memory word at address 941
and stores the result in the latter location. Three instructions, which can be described
as three fetch and three execute stages, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the IR and the PC is incremented.
Note that this process involves the use of a memory address register (MAR)
and a memory buffer register (MBR). For simplicity, these intermediate regis-
ters are not shown.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded from memory. The remaining 12 bits (three hexadecimal digits) specify
the address, which is 940.

3. The next instruction (5941) is fetched from location 301 and the PC is incremented.

A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at ComputerScienceStudent.com.

http://ComputerScienceStudent.com

Fetch stage

1.4 / INTERRUPTS

Execute stage

Memory CPU registers Memory CPU registers
3001 9 40 3 0 0]PC 30001 9 40 3 0 1]PC
30159411> AC|301[5 9 4 1 000 3|AC
3022 9 41 194 0[IR[302]2 941 194 0]IR
940{0 0 0 3 940{0 0 0 3

94110 0 0 2 94110 0 0 2

Step 1 Step 2

Memory CPU registers Memory CPU registers
3001 9 40 3 0 1]PC 30001 9 40 3 0 2|PC
301159 41 000 3/AC|301|59 41 000 5[/AC
3022941-159411R3022941(5941-)IR
940[0 0 0 3 9%40[0 0 03] 3+2=5
941[0 0 0 2 941[0 0 0 2—7

Step 3 Step 4

Memory CPU registers Memory CPU registers
3001 9 40 3 0 2|PC 30001 9 40 3 0 3]PC
301159 41 000 5/AC|301|59 41 000 5[AC
30212 9 41 2 94 1[IR[302]2 9 41 294 1|IR
940{0 0 0 3 940{0 0 0 3

94110 0 0 2 941(0 0 0 5

Step 5 Step 6
Figure 1.4 Example of Program Execution (contents of

memory and registers in hexadecimal)

35

4. The old contents of the AC and the contents of location 941 are added, and the
result is stored in the AC.

5. The next instruction (2941) is fetched from location 302, and the PC is

incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch stage and an
execute stage, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer instruction cycles would be needed.
Most modern processors include instructions that contain more than one address.
Thus, the execution stage for a particular instruction may involve more than one
reference to memory. Also, instead of memory references, an instruction may specify

an I/O operation.

1.4 INTERRUPTS

Virtually all computers provide a mechanism by which other modules (I/O, memory)
may interrupt the normal sequencing of the processor. Table 1.1 lists the most com-
mon classes of interrupts.

36 CHAPTER 1/ COMPUTER SYSTEM OVERVIEW

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execu-
tion, such as arithmetic overflow, division by zero, attempt to execute an illegal
machine instruction, or reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to
perform certain functions on a regular basis.

/0 Generated by an I/O controller, to signal normal completion of an operation or
to signal a variety of error conditions.

Hardware failure | Generated by a failure, such as power failure or memory parity error.

Interrupts are provided primarily as a way to improve processor utilization.
For example, most I/O devices are much slower than the processor. Suppose that
the processor is transferring data to a printer using the instruction cycle scheme of
Figure 1.2. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
thousands or even millions of instruction cycles. Clearly, this is a very wasteful use
of the processor.

To give a specific example, consider a PC that operates at 1 GHz, which would
allow roughly 10” instructions per second.” A typical hard disk has a rotational speed
of 7200 revolutions per minute for a half-track rotation time of 4 ms, which is 4 mil-
lion times slower than the processor.

Figure 1.5a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. The solid vertical lines represent seg-
ments of code in a program. Code segments 1,2, and 3 refer to sequences of instruc-
tions that do not involve I/O.The WRITE calls are to an I/O routine that is a system
utility and will perform the actual I/O operation. The I/O program consists of three
sections:

e A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O
operation. This may include copying the data to be output into a special buffer
and preparing the parameters for a device command.

e The actual I/O command. Without the use of interrupts, once this command is
issued, the program must wait for the I/O device to perform the requested func-
tion (or periodically check the status of, or poll, the I/O device). The program
might wait by simply repeatedly performing a test operation to determine if
the I/O operation is done.

e A sequence of instructions, labeled 5 in the figure, to complete the opera-
tion. This may include setting a flag indicating the success or failure of the
operation.

The dashed line represents the path of execution followed by the processor; that
is, this line shows the sequence in which instructions are executed. Thus, after the first

2A discussion of the uses of numerical prefixes, such as giga and tera, is contained in a supporting document
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

http://ComputerScienceStudent.com

1.4 / INTERRUPTS 37

User 1/0
Program Program
1 ’1/’:
of + A |®
1 o |
B Ao A N S 170

*’ ,’ : :Command
WRITE 1+ 1
T 1 !

N S (O]

1 / S|

1 ! / \\v

1! / END
® !/

1/ 4

V7

] 5

W S
L V/

WRITE #
_ 1

1

1

1

1
@

1

1

1

1
.

WRITE

User 1/0
Program 4 Program
I ! A
1 URs
14 1
O | A |@
1 // 1 Y
—_ ‘I(,/"J"_I,,——’C 1/0 d
WRITE <~ I, A omman
—_ /
1 II,’
1
* V\ III
SN
N
I~
|\,(§ Vg Interrupt
1 I,l ¢ *' Handler
I SA
U AL
WRITE N O]
== T VAR AN
1,2 77 Y END
v, e
ls ,
v,
* »
1
1
!
i .
WRITE

User 1/0
Program Program
T 47 :I:

1 I -
¥
® ' Lty @
—1 : /// ’I_ly - 1/0
WRI E!;,—’, ! Command
—_— II /
L} 11!
1 Y
1 11
1 1!
® i/
[
! / A Interrupt
V1! Handler
1/ II - —7:
WRITEV:: A6
—_ 1 .]
1 1m7~<Y
|) END
1 !
n Jy
1 g0
O 1/
N
1/
17y
Ly
lvl
—— 1
WRITE F

(a) No interrupts

(b) Interrupts; short I/O wait

x = interrupt occurs during course of execution of user program

Figure 1.5 Program Flow of Control Without and With Interrupts

(c) Interrupts; long I/O wait

WRITE instruction is encountered, the user program is interrupted and execution
continues with the I/O program. After the I/O program execution is complete, execu-
tion resumes in the user program immediately following the WRITE instruction.
Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program is
stopped at the point of the WRITE call for some considerable period of time.

Interrupts and the Instruction Cycle

With interrupts, the processor can be engaged in executing other instructions while
an I/O operation is in progress. Consider the flow of control in Figure 1.5b. As before,
the user program reaches a point at which it makes a system call in the form of a
WRITE call. The I/O program that is invoked in this case consists only of the prepa-
ration code and the actual I/O command. After these few instructions have been
executed, control returns to the user program. Meanwhile, the external device is
busy accepting data from computer memory and printing it. This I/O operation is
conducted concurrently with the execution of instructions in the user program.
When the external device becomes ready to be serviced (that is, when it is
ready to accept more data from the processor) the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program; branching off to a routine to service

38 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

User program Interrupt handler
-
1 - @ @
2
. .
. .
. .
Interrupt ——— '
occurs here i+1
.
.
.
M

Figure 1.6 Transfer of Control via Interrupts

that particular I/O device (known as an interrupt handler); and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by ¥ in Figure 1.5b. Note that an interrupt can occur at any point in the
main program, not just at one specific instruction.

For the user program, an interrupt suspends the normal sequence of execution.
When the interrupt processing is completed, execution resumes (see Figure 1.6). Thus,
the user program does not have to contain any special code to accommodate inter-
rupts; the processor and the OS are responsible for suspending the user program,
then resuming it at the same point.

To accommodate interrupts, an interrupt stage is added to the instruction cycle,
as shown in Figure 1.7 (compare with Figure 1.2). In the interrupt stage, the proces-
sor checks to see if any interrupts have occurred, indicated by the presence of an

Fetch stage Execute stage Interrupt stage
Interrupts
disabled
Check for
< START) Eetch next _ Execu_te ~_ interrupt;
instruction instruction Interrupts | initiate interrupt
enabled handler

(HALT)

Figure 1.7 Instruction Cycle with Interrupts

1.4 / INTERRUPTS 39

interrupt signal. If no interrupts are pending, the processor proceeds to the fetch
stage and fetches the next instruction of the current program. If an interrupt is
pending, the processor suspends execution of the current program and executes an
interrupt-handler routine. The interrupt-handler routine is generally part of the OS.
Typically, this routine determines the nature of the interrupt and performs whatever
actions are needed. In the example we have been using, the handler determines
which I/O module generated the interrupt, and may branch to a program that will
write more data out to that I/O module. When the interrupt-handler routine is com-
pleted, the processor can resume execution of the user program at the point of
interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the
interrupt and to decide on the appropriate action. Nevertheless, because of the
relatively large amount of time that would be wasted by simply waiting on an I/O
operation, the processor can be employed much more efficiently with the use of
interrupts.

To appreciate the gain in efficiency, consider Figure 1.8, which is a timing dia-
gram based on the flow of control in Figures 1.5a and 1.5b. Figures 1.5b and 1.8 assume

Time

®

concurrent with

1/O operation;
processor executing

1/0O operation
processor waits

concurrent with

processor executing

1/O operation;
processor waits

I 1/O operation

o[ele[elejelele]o)

(b) With interrupts

®
]
| O |
©)
®
]
HON
®

(a) Without interrupts

Figure 1.8 Program Timing: Short I/O Wait

40 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

that the time required for the I/O operation is relatively short: less than the time to
complete the execution of instructions between write operations in the user program.
The more typical case, especially for a slow device such as a printer, is that the I/O
operation will take much more time than executing a sequence of user instructions.
Figure 1.5c indicates this state of affairs. In this case, the user program reaches the
second WRITE call before the I/O operation spawned by the first call is complete.
The result is that the user program is hung up at that point. When the preceding
I/0O operation is completed, this new WRITE call may be processed, and a new I/O
operation may be started. Figure 1.9 shows the timing for this situation with and
without the use of interrupts. We can see there is still a gain in efficiency, because

part of the time during which the I/O operation is underway overlaps with the execu-
tion of user instructions.

Time

1/0 operation;
processor waits

1/0 operation
concurrent with
processor executing;
then processor
waits

1/0 operation
concurrent with
processor executing;
then processor
waits

1/0 operation;
processor waits

ol ol
(4 (4)
B c
o B
0 NON
. (4)
ﬁ @
o n
©)

(b) With interrupts

(a) Without interrupts

Figure 1.9 Program Timing: Long I/0 Wait

1.4 / INTERRUPTS 41

Hardware Software

Device controller or
other system hardware
issues an interrupt

Save remainder of
process state
information

Processor finishes
execution of current

instruction
Process interrupt
Processor signals
acknowledgment
of interrupt
Restore process state
information
Processor pushes PSW
and PC onto control
stack
Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 1.10 Simple Interrupt Processing

Interrupt Processing

An interrupt triggers a number of events, both in the processor hardware and in
software. Figure 1.10 shows a typical sequence. When an I/O device completes an I/O
operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 1.7.

3. The processor tests for a pending interrupt request, determines there is one,
and sends an acknowledgment signal to the device that issued the interrupt. The
acknowledgment allows the device to remove its interrupt signal.

4. The processor next needs to prepare to transfer control to the interrupt routine.
To begin, it saves information needed to resume the current program at the
point of interrupt. The minimum information required is the program status
word? (PSW) and the location of the next instruction to be executed, which is

3The PSW contains status information about the currently running process, including memory usage infor-
mation, condition codes, and other status information such as an interrupt enable/disable bit and a kernel/
user-mode bit. See Appendix C for further discussion.

42 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

contained in the program counter (PC). These can be pushed onto a control
stack (see Appendix P).

The processor then loads the program counter with the entry location of the
interrupt-handling routine that will respond to this interrupt. Depending on
the computer architecture and OS design, there may be a single program, one
for each type of interrupt, or one for each device and each type of interrupt.
If there is more than one interrupt-handling routine, the processor must deter-
mine which one to invoke. This information may have been included in the
original interrupt signal, or the processor may have to issue a request to the
device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the next

instruction cycle, which begins with an instruction fetch. Because the instruction fetch
is determined by the contents of the program counter, control is transferred to the
interrupt-handler program. The execution of this program results in the following
operations:

6.

8.

9.

At this point, the program counter and PSW relating to the interrupted program
have been saved on the control stack. However, there is other information that
is considered part of the state of the executing program. In particular, the con-
tents of the processor registers need to be saved, because these registers may be
used by the interrupt handler. So all of these values, plus any other state infor-
mation, need to be saved. Typically, the interrupt handler will begin by saving
the contents of all registers on the stack. Other state information that must be
saved will be discussed in Chapter 3. Figure 1.11a shows a simple example. In
this case, a user program is interrupted after the instruction at location N. The
contents of all of the registers plus the address of the next instruction (N + 1),
a total of M words, are pushed onto the control stack. The stack pointer is
updated to point to the new top of stack, and the program counter is updated
to point to the beginning of the interrupt service routine.

The interrupt handler may now proceed to process the interrupt. This includes
an examination of status information relating to the I/O operation or other
event that caused an interrupt. It may also involve sending additional com-
mands or acknowledgments to the I/O device.

When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (see Figure 1.11b).

The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

It is important to save all of the state information about the interrupted pro-

gram for later resumption. This is because the interrupt is not a routine called from
the program. Rather, the interrupt can occur at any time, and therefore at any point
in the execution of a user program. Its occurrence is unpredictable.

1.4 / INTERRUPTS 43

T—M T—M
Y N+ 1
Control Control
stack stack
T T
Nl T
Program Program
counter counter
Y | Start | Yy | Start
Interrupt General Interrupt General
service registers service registers
routine routine
Y + L |Return Y + L |Return
Stack Stack
pointer pointer
Processor Processor
T—M T
N s N s
N+ 1 User’s N+ 1 User’s
program program
Main Main
memory memory
(a) Interrupt occurs after instruction (b) Return from interrupt

at location N

Figure 1.11 Changes in Memory and Registers for an Interrupt

Multiple Interrupts

So far, we have discussed the occurrence of a single interrupt. Suppose, however, that
one or more interrupts can occur while an interrupt is being processed. For example,
a program may be receiving data from a communications line, and printing results at
the same time. The printer will generate an interrupt every time it completes a print
operation. The communication line controller will generate an interrupt every time a
unit of data arrives. The unit could either be a single character or a block, depending
on the nature of the communications discipline. In any case, it is possible for a com-
munications interrupt to occur while a printer interrupt is being processed.

44 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means the processor ignores any new interrupt request signal. If an interrupt
occurs during this time, it generally remains pending and will be checked by the
processor after the processor has reenabled interrupts. Thus, if an interrupt occurs
when a user program is executing, then interrupts are disabled immediately. After
the interrupt-handler routine completes, interrupts are reenabled before resuming
the user program, and the processor checks to see if additional interrupts have
occurred. This approach is simple, as interrupts are handled in strict sequential
order (see Figure 1.12a).

Interrupt
User program handler X
E‘%\\:
= Interrupt
= handler Y
= =~
- ~C
(a) Sequential interrupt processing
Interrupt
User program handler X
/ =
\\:
Interrupt
handler Y

IIIIIIIIIIIIIIIIIIIIIIIIIfI\IIIIIIII

4IIIIIIIIII’

(b) Nested interrupt processing

Figure 1.12 Transfer of Control with Multiple Interrupts

1.4 / INTERRUPTS 45

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the com-
munications line, it may need to be absorbed rapidly to make room for more input. If
the first batch of input has not been processed before the second batch arrives, data
may be lost because the buffer on the I/O device may fill and overflow.

A second approach is to define priorities for interrupts and to allow an inter-
rupt of higher priority to cause a lower-priority interrupt handler to be interrupted
(see Figure 1.12b). As an example of this second approach, consider a system with
three I/O devices: a printer, a disk, and a communications line, with increasing pri-
orities of 2,4, and 5, respectively. Figure 1.13 illustrates a possible sequence. A user
program begins at t = 0. At ¢+ = 10, a printer interrupt occurs; user information
is placed on the control stack and execution continues at the printer interrupt
service routine (ISR). While this routine is still executing, at t = 15 a commu-
nications interrupt occurs. Because the communications line has higher priority
than the printer, the interrupt request is honored. The printer ISR is interrupted,
its state is pushed onto the stack, and execution continues at the communications
ISR. While this routine is executing, a disk interrupt occurs (¢ = 20). Because
this interrupt is of lower priority, it is simply held, and the communications ISR
runs to completion.

When the communications ISR is complete (¢ = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and transfers control to the disk ISR. Only when that routine is
complete (¢ = 35) is the printer ISR resumed. When that routine completes (1 = 40),
control finally returns to the user program.

Printer Communication
User program
interrupt service routine interrupt service routine
—t=0 — /_
- - " -
— Xy — W2 S —
Z 3 Z Z
=/ N | -
— — —
— \ —)
_ o —_ S 25) D151~()
- 0 - interrupt service routine
- N— S

{

Figure 1.13 Example Time Sequence of Multiple Interrupts

46 CHAPTER 1/ COMPUTER SYSTEM OVERVIEW

1.5 THE MEMORY HIERARCHY

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open-ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to keep
up with the processor. That is, as the processor is executing instructions, we would not
want it to have to pause waiting for instructions or operands. The final question must
also be considered. For a practical system, the cost of memory must be reasonable in
relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

e Faster access time, greater cost per bit
e Greater capacity, smaller cost per bit

e Greater capacity, slower access speed

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance require-
ments, the designer needs to use expensive, relatively lower-capacity memories with
fast access times.

The way out of this dilemma is to not rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 1.14. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit
b. Increasing capacity
c. Increasing access time

d. Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is the decreas-
ing frequency of access at lower levels. We will examine this concept in greater detail
later in this chapter when we discuss the cache, and when we discuss virtual memory
later in this book. A brief explanation is provided at this point.

Suppose the processor has access to two levels of memory. Level 1 contains
1000 bytes and has an access time of 0.1 us; level 2 contains 100,000 bytes and has
an access time of 1 us. Assume that if a byte to be accessed is in level 1, then the
processor accesses it directly. If it is in level 2, the byte is first transferred to level 1,
then accessed by the processor. For simplicity, we ignore the time required for the
processor to determine whether the byte is in level 1 or level 2. Figure 1.15 shows the
general shape of the curve that models this situation. The figure shows the average
access time to a two-level memory as a function of the hit ratio H, where H is defined

1.5 / THE MEMORY HIERARCHY 47

Figure 1.14 The Memory Hierarchy

T, + T,

T, —

Average access time

|
0 1

Fraction of accesses involving only level 1 (Hit ratio)

Figure 1.15 Performance of a Simple Two-Level
Memory

48 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

as the fraction of all memory accesses that are found in the faster memory (e.g., the
cache), T; is the access time to level 1, and 75 is the access time to level 2.4 As can be
seen, for high percentages of level 1 access, the average total access time is much
closer to that of level 1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache
(H = 0.95). Then, the average time to access a byte can be expressed as

(0.95)(0.1 us) + (0.05)(0.1 s + 1 pus) = 0.095 + 0.055 = 0.15 us

The result is close to the access time of the faster memory. So the strategy of
using two memory levels works in principle, but only if conditions (a) through (d)
in the preceding list apply. By employing a variety of technologies, a spectrum of
memory systems exists that satisfies conditions (a) through (c). Fortunately, condition
(d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENNG6S]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or subrou-
tine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data bytes. Over
a long period of time, the clusters in use change, but over a short period of time, the
processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2
memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have
to be swapped back to level 2 to make room for a new cluster coming in to level 1.
On average, however, most references will be to instructions and data contained in
level 1.

This principle can be applied across more than two levels of memory. The fast-
est, smallest, and most expensive type of memory consists of the registers internal to
the processor. Typically, a processor will contain a few dozen such registers, although
some processors contain hundreds of registers. Skipping down two levels, main
memory is the principal internal memory system of the computer. Each location in
main memory has a unique address, and most machine instructions refer to one or
more main memory addresses. Main memory is usually extended with a higher-speed,
smaller cache. The cache is not usually visible to the programmer or, indeed, to the
processor. It is a device for staging the movement of data between main memory and
processor registers to improve performance.

The three forms of memory just described are typically volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk, tape, and optical

“If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

1.6 / CACHE MEMORY 49

storage. External, nonvolatile memory is also referred to as secondary memory or
auxiliary memory. These are used to store program and data files, and are usually
visible to the programmer only in terms of files and records, as opposed to individual
bytes or words. A hard disk is also used to provide an extension to main memory
known as virtual memory, which will be discussed in Chapter 8.

Additional levels can be effectively added to the hierarchy in software. For
example, a portion of main memory can be used as a buffer to temporarily hold data
that are to be read out to disk. Such a technique, sometimes referred to as a disk
cache (to be examined in detail in Chapter 11), improves performance in two ways:

1. Disk writes are clustered. Instead of many small transfers of data, we have
a few large transfers of data. This improves disk performance and minimizes
processor involvement.

2. Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the software
cache rather than slowly from the disk.

Appendix 1A examines the performance implications of multilevel memory
structures.

1.6 CACHE MEMORY

Although cache memory is invisible to the OS, it interacts with other memory man-
agement hardware. Furthermore, many of the principles used in virtual memory
schemes (to be discussed in Chapter 8) are also applied in cache memory.

Motivation

On all instruction cycles, the processor accesses memory at least once, to fetch the
instruction, and often one or more additional times, to fetch operands and/or store
results. The rate at which the processor can execute instructions is clearly limited by
the memory cycle time (the time it takes to read one word from or write one word
to memory). This limitation has been a significant problem because of the persistent
mismatch between processor and main memory speeds. Over the years, processor
speed has consistently increased more rapidly than memory access speed. We are
faced with a trade-off among speed, cost, and size. Ideally, main memory should be
built with the same technology as that of the processor registers, giving memory
cycle times comparable to processor cycle times. This has always been too expensive
a strategy. The solution is to exploit the principle of locality by providing a small, fast
memory between the processor and main memory, namely the cache.

Cache Principles

Cache memory is intended to provide memory access time approaching that of the
fastest memories available, and at the same time support a large memory size that
has the price of less expensive types of semiconductor memories. The concept is
illustrated in Figure 1.16a. There is a relatively large and slow main memory together
with a smaller, faster cache memory. The cache contains a copy of a portion of main

50 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Block transfer

Word transfer —_—
f—/%
CPU Cache Main memory
Fast Slow

(a) Single cache

Level 1 Level 2 Level 3 Main

Ry (L1) cache (L2) cache (L3) cache memory

Fastest Fast Less Slow
fast

(b) Three-level cache organization

Figure 1.16 Cache and Main Memory

memory. When the processor attempts to read a byte or word of memory, a check
is made to determine if the byte or word is in the cache. If so, the byte or word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of bytes, is read into the cache then the byte or word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that many of
the near-future memory references will be to other bytes in the block.

Figure 1.16b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically larger
than the L2 cache.

Figure 1.17 depicts the structure of a cache/main memory system. Main memory
consists of up to 2" addressable words, with each word having a unique n-bit address.
For mapping purposes, this memory is considered to consist of a number of fixed-
length blocks of K words each. That is, there are M = 2"/K blocks. Cache consists of
C slots (also referred to as lines) of K words each, and the number of slots is consider-
ably less than the number of main memory blocks (C << M).> Some subset of the
blocks of main memory resides in the slots of the cache. If a word in a block of
memory that is not in the cache is read, that block is transferred to one of the slots
of the cache. Because there are more blocks than slots, an individual slot cannot be
uniquely and permanently dedicated to a particular block. Therefore, each slot
includes a tag that identifies which particular block is currently being stored. The tag
is usually some number of higher-order bits of the address, and refers to all addresses
that begin with that sequence of bits.

>The symbol << means much less than. Similarly, the symbol >> means much greater than.

1.6 / CACHE MEMORY 51

Line Memory
number Tag Block address
0 0
1 1
2 2 Block 0
o 3 (K words)
[]
~
Cc—1
Block length
(K words) > C
L]
(a) Cache °
Block M -1
2n — 1
- Word
length

(b) Main memory

Figure 1.17 Cache/Main Memory Structure

As a simple example, suppose we have a 6-bit address and a 2-bit tag. The tag 01
refers to the block of locations with the following addresses: 010000,010001, 010010,
010011, 010100, 010101, 010110, 010111, 011000, 011001, 011010, 011011, 011100,
011101,011110,011111.

Figure 1.18 illustrates the read operation. The processor generates the address,
RA, of a word to be read. If the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing that word is loaded into the cache, and
the word is delivered to the processor.

Cache Design

A detailed discussion of cache design is beyond the scope of this book. Key elements
are briefly summarized here. We will see that similar design issues must be addressed
in dealing with virtual memory and disk cache design. They fall into the following
categories:

e Cache size

e Block size

52 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

(START)

RA—read address

Receive address
RA from CPU

Is block No Access main
containing RA memory for block
in cache? containing RA

Yes

Fetch RA word Allocate cache

and deliver slot for main

to CPU memory block
Lot iein Deliver RA word
memory block
. to CPU
into cache slot

DONE

Figure 1.18 Cache Read Operation

Mapping function

Replacement algorithm

Write policy

Number of cache levels

We have already dealt with the issue of cache size. It turns out that reasonably
small caches can have a significant impact on performance. Another size issue is that
of block size: the unit of data exchanged between cache and main memory. Consider
beginning with a relatively small block size, then increasing the size. As the block size
increases, more useful data are brought into the cache with each block transfer. The
result will be that the hit ratio increases because of the principle of locality: the high
probability that data in the vicinity of a referenced word are likely to be referenced
in the near future. The hit ratio will begin to decrease, however, as the block becomes
even bigger, and the probability of using the newly fetched data becomes less than
the probability of reusing the data that have to be moved out of the cache to make
room for the new block.

When a new block of data is read into the cache, the mapping function deter-
mines which cache location the block will occupy. Two constraints affect the design

1.7 / DIRECT MEMORY ACCESS 53

of the mapping function. First, when one block is read in, another may have to be
replaced. We would like to do this in such a way as to minimize the probability that we
will replace a block that will be needed in the near future. The more flexible the map-
ping function, the more scope we have to design a replacement algorithm to maximize
the hit ratio. Second, the more flexible the mapping function, the more complex is the
circuitry required to search the cache to determine if a given block is in the cache.

The replacement algorithm chooses (within the constraints of the mapping
function) which block to replace when a new block is to be loaded into the cache
and the cache already has all slots filled with other blocks. We would like to replace
the block that is least likely to be needed again in the near future. Although it is
impossible to identify such a block, a reasonably effective strategy is to replace the
block that has been in the cache longest with no reference to it. This policy is referred
to as the least-recently-used (LRU) algorithm. Hardware mechanisms are needed to
identify the least-recently-used block.

If the contents of a block in the cache are altered, then it is necessary to write it
back to main memory before replacing it. The write policy dictates when the memory
write operation takes place. At one extreme, the writing can occur every time that
the block is updated. At the other extreme, the writing occurs only when the block
is replaced. The latter policy minimizes memory write operations, but leaves main
memory in an obsolete state. This can interfere with multiple-processor operation,
and with direct memory access by I/O hardware modules.

Finally, it is now commonplace to have multiple levels of cache, labeled L1
(cache closest to the processor), L2, and in many cases L3. A discussion of the perfor-
mance benefits of multiple cache levels is beyond our current scope (see [STAL16a]
for a discussion).

1.7 DIRECT MEMORY ACCESS

Three techniques are possible for I/O operations: programmed I/O, interrupt-driven
1/0O, and direct memory access (DMA). Before discussing DM A, we will briefly define
the other two techniques; see Appendix C for more detail.

When the processor is executing a program and encounters an instruction relat-
ing to I/O, it executes that instruction by issuing a command to the appropriate I/O
module. In the case of programmed 1/0, the I/O module performs the requested
action, then sets the appropriate bits in the I/O status register but takes no further
action to alert the processor. In particular, it does not interrupt the processor. Thus,
after the I/O instruction is invoked, the processor must take some active role in
determining when the I/O instruction is completed. For this purpose, the processor
periodically checks the status of the I/O module until it finds that the operation is
complete.

With programmed I/O, the processor has to wait a long time for the I/O module
of concern to be ready for either reception or transmission of more data. The pro-
cessor, while waiting, must repeatedly interrogate the status of the I/O module. As a
result, the performance level of the entire system is severely degraded.

An alternative, known as interrupt-driven I/0, is for the processor to issue an
I/O command to a module then go on to do some other useful work. The I/O module

54 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

will then interrupt the processor to request service when it is ready to exchange data
with the processor. The processor then executes the data transfer, as before, and
resumes its former processing.

Interrupt-driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the processor.
Thus, both of these forms of I/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

2. The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA). The DMA function can be performed by
a separate module on the system bus, or it can be incorporated into an I/O module.
In either case, the technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module by sending the
following information:

e Whether a read or write is requested

e The address of the I/O device involved

e The starting location in memory to read data from or write data to
e The number of words to be read or written

The processor then continues with other work. It has delegated this I/O opera-
tion to the DMA module, and that module will take care of it. The DMA module
transfers the entire block of data, one word at a time, directly to or from memory
without going through the processor. When the transfer is complete, the DMA mod-
ule sends an interrupt signal to the processor. Thus, the processor is involved only at
the beginning and end of the transfer.

The DMA module needs to take control of the bus to transfer data to and
from memory. Because of this competition for bus usage, there may be times when
the processor needs the bus and must wait for the DMA module. Note this is not
an interrupt; the processor does not save a context and do something else. Rather,
the processor pauses for one bus cycle (the time it takes to transfer one word across
the bus). The overall effect is to cause the processor to execute more slowly dur-
ing a DMA transfer when processor access to the bus is required. Nevertheless, for
a multiple-word I/O transfer, DMA is far more efficient than interrupt-driven or
programmed 1/O.

1.8 MULTIPROCESSOR AND MULTICORE ORGANIZATION

Traditionally, the computer has been viewed as a sequential machine. Most com-
puter programming languages require the programmer to specify algorithms as
sequences of instructions. A processor executes programs by executing machine
instructions in sequence and one at a time. Each instruction is executed in

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 55

a sequence of operations (fetch instruction, fetch operands, perform operation,
store results).

This view of the computer has never been entirely true. At the micro-
operation level, multiple control signals are generated at the same time. Instruction
pipelining, at least to the extent of overlapping fetch and execute operations, has
been around for a long time. Both of these are examples of performing functions
in parallel.

As computer technology has evolved and as the cost of computer hardware has
dropped, computer designers have sought more and more opportunities for paral-
lelism, usually to improve performance and, in some cases, to improve reliability. In
this book, we will examine three approaches to providing parallelism by replicating
processors: symmetric multiprocessors (SMPs), multicore computers, and clusters.
SMPs and multicore computers are discussed in this section; clusters will be examined
in Chapter 16.

Symmetric Multiprocessors

DEFINITION An SMP can be defined as a stand-alone computer system with the
following characteristics:

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory
access time is approximately the same for each processor.

3. All processors share access to I/O devices, either through the same channels or
through different channels that provide paths to the same device.

4. All processors can perform the same functions (hence the term symmetric).

5. The system is controlled by an integrated operating system that provides inter-
action between processors and their programs at the job, task, file, and data
element levels.

Points 1 to 4 should be self-explanatory. Point 5 illustrates one of the contrasts
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SMP, individual
data elements can constitute the level of interaction, and there can be a high degree
of cooperation between processes.

An SMP organization has a number of potential advantages over a uniprocessor
organization, including the following:

e Performance: If the work to be done by a computer can be organized such that
some portions of the work can be done in parallel, then a system with multiple
processors will yield greater performance than one with a single processor of
the same type.

e Availability: In a symmetric multiprocessor, because all processors can perform
the same functions, the failure of a single processor does not halt the machine.
Instead, the system can continue to function at reduced performance.

56 CHAPTER 1/ COMPUTER SYSTEM OVERVIEW

e Incremental growth: A user can enhance the performance of a system by adding
an additional processor.

e Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

Itis important to note these are potential, rather than guaranteed, benefits. The oper-
ating system must provide tools and functions to exploit the parallelism in an SMP
system.

An attractive feature of an SMP is that the existence of multiple processors is
transparent to the user. The operating system takes care of scheduling of tasks on
individual processors, and of synchronization among processors.

OraGanizatioN Figure 1.19 illustrates the general organization of an SMP. There are
multiple processors, each of which contains its own control unit, arithmetic-logic unit,
and registers. Each processor typically has two dedicated levels of cache, designated
L1 and L2. As Figure 1.19 indicates, each processor and its dedicated caches are
housed on a separate chip. Each processor has access to a shared main memory
and the I/O devices through some form of interconnection mechanism; a shared
bus is a common facility. The processors can communicate with each other through

CHIP CHIP CHIP
Processor | * | *| Processor |, ° o o o . ’| Processor
Ll cache | . . " .| Llcache| .~ .| Llcache |’
L2 cache |- - 7| L2cache| - © | L2cache| -

System bus
e adlzioter
memory /0 P
subsystem
1/0
adapter
1/0
adapter

Figure 1.19 Symmetric Multiprocessor Organization

1.8 / MULTIPROCESSOR AND MULTICORE ORGANIZATION 57

memory (messages and status information left in shared address spaces). It may also
be possible for processors to exchange signals directly. The memory is often organized
so multiple simultaneous accesses to separate blocks of memory are possible.

In modern computers, processors generally have at least one level of cache
memory that is private to the processor. This use of cache introduces some new design
considerations. Because each local cache contains an image of a portion of main
memory, if a word is altered in one cache, it could conceivably invalidate a word in
another cache. To prevent this, the other processors must be alerted that an update
has taken place. This problem is known as the cache coherence problem, and is typi-
cally addressed in hardware rather than by the OS.°

Multicore Computers

A multicore computer, also known as a chip multiprocessor, combines two or more
processors (called cores) on a single piece of silicon (called a die). Typically, each
core consists of all of the components of an independent processor, such as registers,
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In
addition to the multiple cores, contemporary multicore chips also include L2 cache
and, in some cases, L3 cache.

The motivation for the development of multicore computers can be summed
up as follows. For decades, microprocessor systems have experienced a steady, usually
exponential, increase in performance. This is partly due to hardware trends, such as an
increase in clock frequency and the ability to put cache memory closer to the processor
because of the increasing miniaturization of microcomputer components. Performance
has also been improved by the increased complexity of processor design to exploit
parallelism in instruction execution and memory access. In brief, designers have come
up against practical limits in the ability to achieve greater performance by means of
more complex processors. Designers have found that the best way to improve perfor-
mance to take advantage of advances in hardware is to put multiple processors and
a substantial amount of cache memory on a single chip. A detailed discussion of the
rationale for this trend is beyond our current scope, but is summarized in Appendix C.

An example of a multicore system is the Intel Core 17-5960X, which includes
six x86 processors, each with a dedicated L2 cache, and with a shared L3 cache (see
Figure 1.20a). One mechanism Intel uses to make its caches more effective is prefetch-
ing, in which the hardware examines memory access patterns and attempts to fill the
caches speculatively with data that’s likely to be requested soon. Figure 1.20b shows
the physical layout of the 5960X in its chip.

The Core i17-5960X chip supports two forms of external communications to
other chips. The DDR4 memory controller brings the memory controller for the
DDR (double data rate) main memory onto the chip. The interface supports four
channels that are 8§ bytes wide for a total bus width of 256 bits, for an aggregate data
rate of up to 64 GB/s. With the memory controller on the chip, the Front Side Bus is
eliminated. The PCI Express is a peripheral bus and enables high-speed communi-
cations among connected processor chips. The PCI Express link operates at 8 GT/s
(transfers per second). At 40 bits per transfer, that adds up to 40 GB/s.

oA description of hardware-based cache coherency schemes is provided in [STAL16a].

58 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Core 0 Core 1 Core 6 Core 7
32kB|32kB| |32 kB|32kB ¢ 32kB|32kB| [32kB|32kB
L1-1|L1-D L1-1|L1-D L1-1|L1-D L1-1|L1-D

256 kB 256 kB 256 kB 256 kB

L2 Cache L2 Cache L2 Cache L2 Cache
20 MB
L3 Cache
DDR4 Memory
Controllers G B

boro i

4 x 8B @ 2.133 GT/s 40 lanes @ 8 GT/s

(a) Block diagram

(b) Physical layout on chip
Figure 1.20 Intel Core i7-5960X Block Diagram

1.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
address register instruction cycle programmed I/O
auxiliary memory instruction register register
block interrupt replacement algorithm
cache memory interrupt-driven I/O secondary memory
cache slot I/O module slot
central processing unit locality of reference spatial locality
chip multiprocessor main memory stack

data register

memory hierarchy

stack frame

direct memory access (DMA) | miss stack pointer

hit multicore system bus

hit ratio multiprocessor temporal locality
input/output processor

instruction program counter

1.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 59

Review Questions

1.1. List and briefly define the four main elements of a computer.

1.2. Define the two main categories of processor registers.

1.3. In general terms, what are the four distinct actions that a machine instruction can
specify?

1.4. What is an interrupt?

1.5. How can multiple interrupts be serviced by setting priorities?

1.6. What characteristics are observed while going up the memory hierarchy?

1.7. What are the trade-offs that determine the size of the cache memory?

1.8. What is the difference between a multiprocessor and a multicore system?

1.9. What is the distinction between spatial locality and temporal locality?

1.10. In general, what are the strategies for exploiting spatial locality and temporal
locality?
Problems
1.1. Suppose the hypothetical processor of Figure 1.3 also has two I/O instructions:
0011 = Load AC from I/O
0100 = SUB from AC
In these cases, the 12-bit address identifies a particular external device. Show the pro-
gram execution (using the format of Figure 1.4) for the following program:
1. Load AC from device 7
2. SUB from AC contents of memory location 880.
3. Store AC to memory location 881.
Assume that the next value retrieved from device 7 is 6 and that location 880 contains
a value of 5.

1.2. The program execution of Figure 1.4 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

1.3. Consider a hypothetical 64-bit microprocessor having 64-bit instructions composed
of two fields. The first 4 bytes contain the opcode, and the remainder an immediate
operand or an operand address.

a. What is the maximum directly addressable memory capacity?

b. What ideal size of microprocessor address buses should be used? How will system
speed be affected for data buses of 64 bits, 32 bits and 16 bits?

¢. How many bits should the instruction register contain if the instruction register is
to contain only the opcode, and how many if the instruction register is to contain
the whole instruction?

1.4. Consider a hypothetical microprocessor generating a 16-bit address (e.g., assume

the program counter and the address registers are 16 bits wide) and having a 16-bit

data bus.

a. What is the maximum memory address space that the processor can access directly
if it is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access directly
if it is connected to an “8-bit memory”?

c¢. What architectural features will allow this microprocessor to access a separate
“I/O space™?

d. If an input and an output instruction can specify an 8-bit I/O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports?
Explain.

60 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

Consider a 64-bit microprocessor, with a 32-bit external data bus, driven by a 16 MHz
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across
the bus that this microprocessor can sustain in bytes/s? To increase its performance,
would it be better to make its external data bus 64 bits or to double the external
clock frequency supplied to the microprocessor? State any other assumptions you
make and explain. Hint: Determine the number of bytes that can be transferred per
bus cycle.

Consider a computer system that contains an I/O module controlling a simple
keyboard/printer Teletype. The following registers are contained in the CPU and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit
IEN: Interrupt Enable, 1 bit

Keystroke input from the Teletype and output to the printer are controlled by the I/O

module. The Teletype is able to encode an alphanumeric symbol to an 8-bit word and

decode an 8-bit word into an alphanumeric symbol. The Input flag is set when an 8-bit
word enters the input register from the Teletype. The Output flag is set when a word is
printed.

a. Describe how the CPU, using the first four registers listed in this problem, can
achieve I/0O with the Teletype.

b. Describe how the function can be performed more efficiently by also
employing IEN.

In virtually all systems that include DMA modules, DMA access to main memory is

given higher priority than processor access to main memory. Why?

A DMA module is transferring characters to main memory from an external device

transmitting at 10800 bits per second (bps). The processor can fetch instructions at the

rate of 1 million instructions per second. By how much will the processor be slowed
down due to the DMA activity?

A computer consists of a CPU and an I/O device D connected to main memory M via

a shared bus with a data bus width of one word. The CPU can execute a maximum of

106 instructions per second. An average instruction requires five processor cycles, three

of which use the memory bus. A memory read or write operation uses one processor

cycle. Suppose that the CPU is continuously executing “background” programs that
require 95% of its instruction execution rate but not any I/O instructions. Assume that
one processor cycle equals one bus cycle. Now suppose that very large blocks of data

are to be transferred between M and D.

a. If programmed I/O is used and each one-word I/O transfer requires the CPU to
execute two instructions, estimate the maximum I/O data transfer rate, in words
per second, possible through D.

b. Estimate the same rate if DMA transfer is used.

Consider the following code:

for (i = 0; i < 20; i++)
for (7 = 0; j < 10; Jj++)
ali]l = afil * J

a. Give one example of the spatial locality in the code.

b. Give one example of the temporal locality in the code.

Extend Equations (1.1) and (1.2) in Appendix 1A to 3-level memory hierarchies.

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 61

1.12. Consider a memory system with cache having the following parameters:

Sc = 32KB Cc = 0.1cents/bytes T¢ = 10ns
Sm = 256 MB Cm = 0.0001 cents/bytes Tm = 100 ns

a. What was the total cost prior to addition of cache?
b. What is the total cost after addition of cache?

¢. Whatis the percentage decrease in time due to inclusion of cache with respect to a
system without cache memory considering a cache hit ratio of 0.85?

1.13. Suppose that a large file is being accessed by a computer memory system comprising
of a cache and a main memory. The cache access time is 60 ns. Time to access main
memory (including cache access) is 300 ns. The file can be opened either in read or in
write mode. A write operation involves accessing both main memory and the cache
(write-through cache). A read operation accesses either only the cache or both the
cache and main memory depending upon whether the access word is found in the
cache or not. It is estimated that read operations comprise of 80% of all operations.
If the cache hit ratio for read operations is 0.9, what is the average access time of this
system?

1.14. Suppose a stack is to be used by the processor to manage procedure calls and returns. Can
the program counter be eliminated by using the top of the stack as a program counter?

APPENDIX 1A PERFORMANCE CHARACTERISTICS

OF TWO-LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture exploits a property known as locality to provide improved performance over
a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, imple-
mented in hardware and typically invisible to the OS. Accordingly, this mechanism
is not pursued in this book. However, there are two other instances of a two-level
memory approach that also exploit the property of locality and that are, at least par-
tially, implemented in the OS: virtual memory and the disk cache (Table 1.2). These
two topics are explored in Chapters 8 and 11, respectively. In this appendix, we will
look at some of the performance characteristics of two-level memories that are com-
mon to all three approaches.

Table 1.2 Characteristics of Two-Level Memories

Main Memory Virtual Memory

Cache (Paging) Disk Cache
Typical access time ratios 5:1 10% 1 10% 1
Memory management Implemented by special Combination of hardware System software
system hardware and system software
Typical block size 4 to 128 bytes 64 to 4096 bytes 64 to 4096 bytes
Access of processor to Direct access Indirect access Indirect access
second level

62 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

Locality

The basis for the performance advantage of a two-level memory is the principle of
locality, referred to in Section 1.5. This principle states that memory references tend
to cluster. Over a long period of time, the clusters in use change; but over a short
period of time, the processor is primarily working with fixed clusters of memory
references.

Intuitively, the principle of locality makes sense. Consider the following line of
reasoning:

1. Except for branch and call instructions, which constitute only a small fraction
of all program instructions, program execution is sequential. Hence, in most
cases, the next instruction to be fetched immediately follows the last instruc-
tion fetched.

2. Itisrare to have a long uninterrupted sequence of procedure calls followed by
the corresponding sequence of returns. Rather, a program remains confined to a
rather narrow window of procedure-invocation depth. Thus, over a short period
of time, references to instructions tend to be localized to a few procedures.

3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is therefore
confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

This line of reasoning has been confirmed in many studies. With reference to
point (1), a variety of studies have analyzed the behavior of high-level language
programs. Table 1.3 includes key results, measuring the appearance of various
statement types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth [KNUT71], examined a col-
lection of FORTRAN programs used as student exercises. Tanenbaum [TANE78]
published measurements collected from over 300 procedures used in OS programs
and written in a language that supports structured programming (SAL). Patterson
and Sequin [PATTS82] analyzed a set of measurements taken from compilers and

Table 1.3 Relative Dynamic Frequency of High-Level Language Operations

Study [HUCKS3] [KNUT71] [PATTS2] [TANE78]
Language Pascal FORTRAN Pascal C SAL
Workload Scientific Student System System System

Assign 74 67 45 38 42
Loop 4 3 5 3 4
Call 1 3 15 12 12
IF 20 11 29 43 36
GOTO 2 9 - 3 -
Other - 7 6 1 6

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 63

programs for typesetting, computer-aided design (CAD), sorting, and file comparison.
The programming languages C and Pascal were studied. Huck [HUCKS3] analyzed
four programs intended to represent a mix of general-purpose scientific comput-
ing, including fast Fourier transform and the integration of systems of differential
equations. There is good agreement in the results of this mixture of languages and
applications that branching and call instructions represent only a fraction of state-
ments executed during the lifetime of a program. Thus, these studies confirm assertion
(1), from the preceding list.

With respect to assertion (2), studies reported in [PATTS85] provide confirma-
tion. This is illustrated in Figure 1.21, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined.
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen, the executing program can remain within
a stationary window for long periods of time. A study by the same analysts of C and
Pascal programs showed that a window of depth 8 would only need to shift on less
than 1% of the calls or returns [TAMIS3].

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution to involve a number of
memory locations that are clustered. This reflects the tendency of a processor to
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data.
Temporal locality refers to the tendency for a processor to access memory locations
that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
tion and data values in cache memory, and by exploiting a cache hierarchy. Spatial
locality is generally exploited by using larger cache blocks, and by incorporating

Time
(in units of calls/returns)

Return

Call

Nesting
depth

Figure 1.21 Example Call-Return Behavior of a Program

64 CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

prefetching mechanisms (fetching items whose use is expected) into the cache control
logic. Recently, there has been considerable research on refining these techniques to
achieve greater performance, but the basic strategies remain the same.

Operation of Two-Level Memory

The locality property can be exploited in the formation of a two-level memory. The
upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the
lower-level memory (M2). M1 is used as temporary storage for part of the contents
of the larger M2. When a memory reference is made, an attempt is made to access
the item in M1. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to M1, and the access then takes place via M1.
Because of locality, once a block is brought into M1, there should be a number of
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory but also the probability that a given reference
can be found in M1. We have

T,=HXTi+(—-H X(T1} +T,)
T+ (1 —-H XT (1.1
where

T, = average (system) access time

T, = access time of M1 (e.g., cache, disk cache)

T, = access time of M2 (e.g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

Figure 1.15 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a two-level mem-
ory mechanism. First, consider cost. We have

CiS; + GS,
s Sy + S, (12
C, = average cost per bit for the combined two-level memory
C; = average cost per bit of upper-level memory M1
C, = average cost per bit of lower-level memory M2
S = size of M1
S, = size of M2

We would like C; = C,. Given that C; >> (,, this requires §; << §,. Figure 1.22
shows the relationship.’

"Note both axes use a log scale. A basic review of log scales is in the math refresher document on the
Computer Science Student Resource Site at ComputerScienceStudent.com.

http://ComputerScienceStudent.com

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 65

1000 —
=
5
6_
5_
44
37 (C,/C,) = 1000
2_
<
8"3 1008_:
- 7
w 6_
5 5 -
T 4
g 3
=
E 5 (C,/Cy) = 100
S
4
2
= 10 o
> %:
[~ P
5_
49 (C)/Cy) = 10
3_
2_\&
1 T T III T T T T T T III T T 1 1 1 1 T
567809, 2 3 4 5 6789, 2 3 45 678 1000

Relative size of two levels (S,/S;)

Figure 1.22 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

Next, consider access time. For a two-level memory to provide a significant
performance improvement, we need to have 7, approximately equal to 77 T; = T;.
Given that T} is much less than T, T, >> Tj, a hit ratio of close to 1 is needed.

So, we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of M1 that satisfies both
requirements to a reasonable extent? We can answer this question with a series of
subquestions:

e What value of hit ratio is needed to satisfy the performance requirement?
e What size of M1 will assure the needed hit ratio?
e Does this size satisty the cost requirement?
To get at this, consider the quantity 77/7;, which is referred to as the access efficiency.

It is a measure of how close average access time (7;) is to M1 access time (7;). From
Equation (1.1),
T 1
L (1.3)
Ts [
1+0-H) =
T,

In Figure 1.23, we plot 71/T; as a function of the hit ratio H, with the quantity 75/7; as
a parameter. A hit ratio in the range of 0.8 to 0.9 would seem to be needed to satisfy
the performance requirement.

66

Access efficiency = T/T;

CHAPTER 1 / COMPUTER SYSTEM OVERVIEW

0.01

0.001

I I I I |
0.0 0.2 0.4 0.6 0.8 1.0

Hit ratio = H

Figure 1.23 Access Efficiency as a Function of Hit Ratio (r = T2/T1)

We can now phrase the question about relative memory size more exactly. Is
a hit ratio of 0.8 or higher reasonable for §; << §,? This will depend on a number
of factors, including the nature of the software being executed and the details of the
design of the two-level memory. The main determinant is, of course, the degree of
locality. Figure 1.24 suggests the effect of locality on the hit ratio. Clearly, if M1 is the
same size as M2, then the hit ratio will be 1.0: All of the items in M2 are also stored
in M1. Now suppose there is no locality; that is, references are completely random.
In that case, the hit ratio should be a strictly linear function of the relative memory
size. For example, if M1 is half the size of M2, then at any time half of the items from
M2 are also in M1, and the hit ratio will be 0.5. In practice, however, there is some
degree of locality in the references. The effects of moderate and strong locality are
indicated in the figure.

So, if there is strong locality, it is possible to achieve high values of hit ratio even
with relatively small upper-level memory size. For example, numerous studies have
shown that rather small cache sizes will yield a hit ratio above 0.75 regardless of the
size of main memory ([AGARS9], [PRZYS8S8], [STRES3], and [SMIT82]). A cache in
the range of 1K to 128K words is generally adequate, whereas main memory is now
typically in the gigabyte range. When we consider virtual memory and disk cache, we
will cite other studies that confirm the same phenomenon, namely that a relatively
small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the two
memories satisfy the cost requirement? The answer is clearly yes. If we need only a

APPENDIX 1A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 67

1.0
0.8 — Strong
locality
0.6 — Moderate
° locality
£
=
047 No locality
0.2
0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Relative memory size (S,/S5)

Figure 1.24 Hit Ratio as a Function of Relative Memory Size

relatively small upper-level memory to achieve good performance, then the average
cost per bit of the two levels of memory will approach that of the cheaper lower-level
memory. Please note that with L2 cache (or even L2 and L3 caches) involved, analysis
is much more complex. See [PEIR99] and [HAND?9S] for discussions.

OPERATING SYSTEM OVERVIEW

68

2.1 Operating System Objectives and Functions
The Operating System as a User/Computer Interface
The Operating System as Resource Manager
Ease of Evolution of an Operating System

2.2 The Evolution of Operating Systems
Serial Processing
Simple Batch Systems
Multiprogrammed Batch Systems
Time-Sharing Systems

2.3 Major Achievements
The Process
Memory Management
Information Protection and Security
Scheduling and Resource Management

2.4 Developments Leading to Modern Operating Systems

2.5 Fault Tolerance
Fundamental Concepts
Faults
Operating System Mechanisms

2.6 OS Design Considerations for Multiprocessor and Multicore
Symmetric Multiprocessor OS Considerations
Multicore OS Considerations

2.7 Microsoft Windows Overview
Background
Architecture
Client/Server Model
Threads and SMP
Windows Objects

2.8 Traditional Unix Systems
History
Description

2.9 Modern Unix Systems
System V Release 4 (SVR4)
BSD
Solaris 11

2.10 Linux
History
Modular Structure
Kernel Components

2.11 Android
Android Software Architecture
Android Runtime
Android System Architecture
Activities
Power Management
2.12 Key Terms, Review Questions, and Problems

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 69

LEARNING OBJECTIVES

After studying this chapter, you should be able to:
e Summarize, at a top level, the key functions of an operating system (OS).

e Discuss the evolution of operating systems for early simple batch systems to
modern complex systems.

e Give a brief explanation of each of the major achievements in OS research,
as defined in Section 2.3.

e Discuss the key design areas that have been instrumental in the development
of modern operating systems.

e Define and discuss virtual machines and virtualization.

e Understand the OS design issues raised by the introduction of multiproces-
sor and multicore organization.

e Understand the basic structure of Windows.

e Describe the essential elements of a traditional UNIX system.
e Explain the new features found in modern UNIX systems.

e Discuss Linux and its relationship to UNIX.

We begin our study of operating systems (OSs) with a brief history. This history
is itself interesting, and also serves the purpose of providing an overview of OS prin-
ciples. The first section examines the objectives and functions of operating systems.
Then, we will look at how operating systems have evolved from primitive batch sys-
tems to sophisticated multitasking, multiuser systems. The remainder of the chapter
will look at the history and general characteristics of the two operating systems that
serve as examples throughout this book.

OPERATING SYSTEM OBJECTIVES AND FUNCTIONS

An OS is a program that controls the execution of application programs, and acts as
an interface between applications and the computer hardware. It can be thought of
as having three objectives:

¢ Convenience: An OS makes a computer more convenient to use.

e Efficiency: An OS allows the computer system resources to be used in an effi-
cient manner.

e Ability to evolve: An OS should be constructed in such a way as to permit the
effective development, testing, and introduction of new system functions with-
out interfering with service.

Let us examine these three aspects of an OS in turn.

70 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

The Operating System as a User/Computer Interface

The hardware and software used in providing applications to a user can be viewed
in a layered fashion, as depicted in Figure 2.1. The user of those applications (the
end user) generally is not concerned with the details of computer hardware. Thus,
the end user views a computer system in terms of a set of applications. An applica-
tion can be expressed in a programming language, and is developed by an applica-
tion programmer. If one were to develop an application program as a set of machine
instructions that is completely responsible for controlling the computer hardware,
one would be faced with an overwhelmingly complex undertaking. To ease this
chore, a set of system programs is provided. Some of these programs are referred
to as utilities, or library programs. These implement frequently used functions that
assist in program creation, the management of files, and the control of I/O devices.
A programmer will make use of these facilities in developing an application, and
the application, while it is running, will invoke the utilities to perform certain func-
tions. The most important collection of system programs comprises the OS.The OS
masks the details of the hardware from the programmer, and provides the program-
mer with a convenient interface for using the system. It acts as a mediator, making
it easier for the programmer and for application programs to access and use those
facilities and services.
Briefly, the OS typically provides services in the following areas:

e Program development: The OS provides a variety of facilities and services, such
as editors and debuggers, to assist the programmer in creating programs. Typi-
cally, these services are in the form of utility programs that, while not strictly
part of the core of the OS, are supplied with the OS, and are referred to as
application program development tools.

e Program execution: A number of steps need to be performed to execute a pro-
gram. Instructions and data must be loaded into main memory, I/O devices and

L Application programs
Application PP LAt
programming interface . .
Application Libraries/utilities Software
binary interface
Operating system
Instruction set
architecture
Execution hardware
System int t Memory
ystem interconnec T e
(bus) Hardware
1/O devices Main
B memo
networking Y

Figure 2.1 Computer Hardware and Software Structure

2.1 / OPERATING SYSTEM OBJECTIVES AND FUNCTIONS 71

files must be initialized, and other resources must be prepared. The OS handles
these scheduling duties for the user.

Access to I/O devices: Each I/0O device requires its own peculiar set of instruc-
tions or control signals for operation. The OS provides a uniform interface that
hides these details so programmers can access such devices using simple reads
and writes.

Controlled access to files: For file access, the OS must reflect a detailed under-
standing of not only the nature of the I/O device (disk drive, tape drive), but
also the structure of the data contained in the files on the storage medium. In
the case of a system with multiple users, the OS may provide protection mecha-
nisms to control access to the files.

System access: For shared or public systems, the OS controls access to the sys-
tem as a whole and to specific system resources. The access function must pro-
vide protection of resources and data from unauthorized users, and must resolve
conflicts for resource contention.

Error detection and response: A variety of errors can occur while a computer
system is running. These include internal and external hardware errors (such as
a memory error, or a device failure or malfunction), and various software errors,
(such as division by zero, attempt to access forbidden memory location, and inabil-
ity of the OS to grant the request of an application). In each case, the OS must
provide a response that clears the error condition with the least impact on running
applications. The response may range from ending the program that caused the
error, to retrying the operation, or simply reporting the error to the application.

Accounting: A good OS will collect usage statistics for various resources and
monitor performance parameters such as response time. On any system, this
information is useful in anticipating the need for future enhancements and in
tuning the system to improve performance. On a multiuser system, the informa-
tion can be used for billing purposes.

Figure 2.1 also indicates three key interfaces in a typical computer system:

Instruction set architecture (ISA): The ISA defines the repertoire of machine
language instructions that a computer can follow. This interface is the boundary
between hardware and software. Note both application programs and utilities
may access the ISA directly. For these programs, a subset of the instruction
repertoire is available (user ISA). The OS has access to additional machine
language instructions that deal with managing system resources (system ISA).

Application binary interface (ABI): The ABI defines a standard for binary
portability across programs. The ABI defines the system call interface to the
operating system, and the hardware resources and services available in a system
through the user ISA.

Application programming interface (API): The API gives a program access
to the hardware resources and services available in a system through the user
ISA supplemented with high-level language (HLL) library calls. Any system
calls are usually performed through libraries. Using an API enables applica-
tion software to be ported easily, through recompilation, to other systems that
support the same API.

72 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

The Operating System as Resource Manager

The OS is responsible for controlling the use of a computer’s resources, such as 1/O,
main and secondary memory, and processor execution time. But this control is exer-
cised in a curious way. Normally, we think of a control mechanism as something
external to that which is controlled, or at least as something that is a distinct and
separate part of that which is controlled. (For example, a residential heating system
is controlled by a thermostat, which is separate from the heat-generation and heat-
distribution apparatus.) This is not the case with the OS, which as a control mecha-
nism is unusual in two respects:

e The OS functions in the same way as ordinary computer software; that is, it is a
program or suite of programs executed by the processor.

e The OS frequently relinquishes control, and must depend on the processor to
allow it to regain control.

Like other computer programs, the OS consists of instructions executed by the
processor. While executing, the OS decides how processor time is to be allocated
and which computer resources are available for use. But in order for the processor
to act on these decisions, it must cease executing the OS program and execute other
programs. Thus, the OS relinquishes control for the processor to do some “useful”
work, then resumes control long enough to prepare the processor to do the next piece
of work. The mechanisms involved in all this should become clear as the chapter
proceeds.

Figure 2.2 suggests the main resources that are managed by the OS. A por-
tion of the OS is in main memory. This includes the kernel, or nucleus, which
contains the most frequently used functions in the OS and, at a given time, other
portions of the OS currently in use. The remainder of main memory contains user
and utility programs and data. The OS and the memory management hardware
in the processor jointly control the allocation of main memory, as we shall see.
The OS decides when an I/O device can be used by a program in execution, and
controls access to and use of files. The processor itself is a resource, and the OS
must determine how much processor time is to be devoted to the execution of a
particular user program.

Ease of Evolution of an Operating System
A major OS will evolve over time for a number of reasons:

e Hardware upgrades plus new types of hardware: For example, early versions of
UNIX and the Macintosh OS did not employ a paging mechanism because they
were run on processors without paging hardware.! Subsequent versions of these
operating systems were modified to exploit paging capabilities. Also, the use of
graphics terminals and page-mode terminals instead of line-at-a-time scroll
mode terminals affects OS design. For example, a graphics terminal typically
allows the user to view several applications at the same time through “windows”
on the screen. This requires more sophisticated support in the OS.

!Paging will be introduced briefly later in this chapter, and will be discussed in detail in Chapter 7.

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 73

Computer system

Memory I/O devices
Operating 1/0O controller O E;i;gg;srhs
system ’
so);tware digital cameras,
1/0 controller O etc.
L] L]
Programs ° o
and data ° i
1/O controller

Processor LI] Processor

Storage

OS
Programs

Data

Figure 2.2 The Operating System as Resource Manager

e New services: In response to user demand or in response to the needs of system
managers, the OS expands to offer new services. For example, if it is found to
be difficult to maintain good performance for users with existing tools, new
measurement and control tools may be added to the OS.

¢ Fixes: Any OS has faults. These are discovered over the course of time and fixes
are made. Of course, the fix may introduce new faults.

The need to regularly update an OS places certain requirements on its design.
An obvious statement is that the system should be modular in construction, with
clearly defined interfaces between the modules, and that it should be well docu-
mented. For large programs, such as the typical contemporary OS, what might be
referred to as straightforward modularization is inadequate [DENNS80a]. That is,
much more must be done than simply partitioning a program into modules. We will
return to this topic later in this chapter.

2.2 THE EVOLUTION OF OPERATING SYSTEMS

In attempting to understand the key requirements for an OS and the significance
of the major features of a contemporary OS, it is useful to consider how operating
systems have evolved over the years.

74 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Serial Processing

With the earliest computers, from the late 1940s to the mid-1950s, the program-
mer interacted directly with the computer hardware; there was no OS. These
computers were run from a console consisting of display lights, toggle switches,
some form of input device, and a printer. Programs in machine code were loaded
via the input device (e.g., a card reader). If an error halted the program, the
error condition was indicated by the lights. If the program proceeded to a normal
completion, the output appeared on the printer. These early systems presented
two main problems:

¢ Scheduling: Most installations used a hardcopy sign-up sheet to reserve com-
puter time. Typically, a user could sign up for a block of time in multiples of a
half hour or so. A user might sign up for an hour and finish in 45 minutes; this
would result in wasted computer processing time. On the other hand, the user
might run into problems, not finish in the allotted time, and be forced to stop
before resolving the problem.

e Setup time: A single program, called a job, could involve loading the compiler
plus the high-level language program (source program) into memory, saving
the compiled program (object program), then loading and linking together
the object program and common functions. Each of these steps could involve
mounting or dismounting tapes or setting up card decks. If an error occurred,
the hapless user typically had to go back to the beginning of the setup sequence.
Thus, a considerable amount of time was spent just in setting up the program
to run.

This mode of operation could be termed serial processing, reflecting the fact that
users have access to the computer in series. Over time, various system software tools
were developed to attempt to make serial processing more efficient. These include
libraries of common functions, linkers, loaders, debuggers, and I/O driver routines
that were available as common software for all users.

Simple Batch Systems

Early computers were very expensive, and therefore it was important to maxi-
mize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

To improve utilization, the concept of a batch OS was developed. It appears
that the first batch OS (and the first OS of any kind) was developed in the mid-1950s
by General Motors for use on an IBM 701 [WEIZS81]. The concept was subsequently
refined and implemented on the IBM 704 by a number of IBM customers. By the
early 1960s, a number of vendors had developed batch operating systems for their
computer systems. IBSYS, the IBM OS for the 7090/7094 computers, is particularly
notable because of its widespread influence on other systems.

The central idea behind the simple batch-processing scheme is the use of a
piece of software known as the monitor. With this type of OS, the user no longer has
direct access to the processor. Instead, the user submits the job on cards or tape to a

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 75

Interrupt
processing

Device
drivers

Monitor
Job

sequencing

Control language
interpreter

Boundary

User
program
area

Figure 2.3 Memory Layout for a Resident Monitor

computer operator, who batches the jobs together sequentially and places the entire
batch on an input device, for use by the monitor. Each program is constructed to
branch back to the monitor when it completes processing, at which point the monitor
automatically begins loading the next program.

To understand how this scheme works, let us look at it from two points of view:
that of the monitor, and that of the processor.

e Monitor point of view: The monitor controls the sequence of events. For this
to be so, much of the monitor must always be in main memory and available
for execution (see Figure 2.3). That portion is referred to as the resident moni-
tor. The rest of the monitor consists of utilities and common functions that
are loaded as subroutines to the user program at the beginning of any job that
requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job
is placed in the user program area, and control is passed to this job. When the
job is completed, it returns control to the monitor, which immediately reads
in the next job. The results of each job are sent to an output device, such as a
printer, for delivery to the user.

e Processor point of view: At a certain point, the processor is executing instruc-
tions from the portion of main memory containing the monitor. These instruc-
tions cause the next job to be read into another portion of main memory. Once
a job has been read in, the processor will encounter a branch instruction in
the monitor that instructs the processor to continue execution at the start of

76 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

the user program. The processor will then execute the instructions in the user
program until it encounters an ending or error condition. Either event causes
the processor to fetch its next instruction from the monitor program. Thus the
phrase “control is passed to a job” simply means the processor is now fetching
and executing instructions in a user program, and “control is returned to the
monitor” means the processor is now fetching and executing instructions from
the monitor program.

The monitor performs a scheduling function: a batch of jobs is queued up, and
jobs are executed as rapidly as possible, with no intervening idle time. The monitor
improves job setup time as well. With each job, instructions are included in a primitive
form of job control language (JCL). This is a special type of programming language
used to provide instructions to the monitor. A simple example is that of a user sub-
mitting a program written in the programming language FORTRAN plus some data
to be used by the program. All FORTRAN instructions and data are on a separate
punched card or a separate record on tape. In addition to FORTRAN and data lines,
the job includes job control instructions, which are denoted by the beginning $. The
overall format of the job looks like this:

$JOB
SFTN

. FORTRAN instructions

SLOAD
SRUN

. Data

SEND

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate language compiler from its mass storage (usually tape). The compiler translates
the user’s program into object code, which is stored in memory or mass storage. If
it is stored in memory, the operation is referred to as “compile, load, and go.” If it is
stored on tape, then the $LOAD instruction is required. This instruction is read by the
monitor, which regains control after the compile operation. The monitor invokes the
loader, which loads the object program into memory (in place of the compiler) and
transfers control to it. In this manner, a large segment of main memory can be shared
among different subsystems, although only one such subsystem could be executing
at a time.

During the execution of the user program, any input instruction causes one line
of data to be read. The input instruction in the user program causes an input routine
that is part of the OS to be invoked. The input routine checks to make sure that the
program does not accidentally read in a JCL line. If this happens, an error occurs and
control transfers to the monitor. At the completion of the user job, the monitor will

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 77

scan the input lines until it encounters the next JCL instruction. Thus, the system is
protected against a program with too many or too few data lines.

The monitor, or batch OS, is simply a computer program. It relies on the abil-
ity of the processor to fetch instructions from various portions of main memory to
alternately seize and relinquish control. Certain other hardware features are also
desirable:

* Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The
monitor would then abort the job, print out an error message, and load in the
next job.

e Timer: A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires, the user pro-
gram is stopped, and control returns to the monitor.

e Privileged instructions: Certain machine level instructions are designated as
privileged and can be executed only by the monitor. If the processor encounters
such an instruction while executing a user program, an error occurs causing con-
trol to be transferred to the monitor. Among the privileged instructions are I/O
instructions, so that the monitor retains control of all I/O devices. This prevents,
for example, a user program from accidentally reading job control instructions
from the next job. If a user program wishes to perform I/O, it must request that
the monitor perform the operation for it.

e Interrupts: Early computer models did not have this capability. This feature
gives the OS more flexibility in relinquishing control to, and regaining control
from, user programs.

Considerations of memory protection and privileged instructions lead to the
concept of modes of operation. A user program executes in a user mode, in which
certain areas of memory are protected from the user’s use, and in which certain
instructions may not be executed. The monitor executes in a system mode, or what
has come to be called kernel mode, in which privileged instructions may be executed,
and in which protected areas of memory may be accessed.

Of course, an OS can be built without these features. But computer vendors
quickly learned that the results were chaos, and so even relatively primitive batch
operating systems were provided with these hardware features.

With a batch OS, processor time alternates between execution of user programs
and execution of the monitor. There have been two sacrifices: Some main memory is
now given over to the monitors and some processor time is consumed by the monitor.
Both of these are forms of overhead. Despite this overhead, the simple batch system
improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by a simple batch OS, the proces-
sor is often idle. The problem is I/O devices are slow compared to the processor.

78 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Read one record from file 15 ws
Execute 100 instructions 1 us

Write one record to file 15 s
Total 31 s

1
Percent CPU utilization = 31 = 0.032 = 32%

Figure 2.4 System Ultilization Example

Figure 2.4 details a representative calculation. The calculation concerns a program
that processes a file of records and performs, on average, 100 machine instructions
per record. In this example, the computer spends over 96% of its time waiting for I/O
devices to finish transferring data to and from the file. Figure 2.5a illustrates this situ-
ation, where we have a single program, referred to as uniprogramming. The processor

Program A Run Wait Run Wait

Time

(a) Uniprogramming

Program A Run Wait Run Wait
Program B Wait | Run Wait Run Wait
. Ri Ri . Ri Ri .
Combined Kn]131n Wait Xn]131n Wait
Time

(b) Multiprogramming with two programs

Program A Run Wait Run Wait

Program B Wait | Run Wait Run Wait

Program C Wait Run Wait Run Wait

Combined Rxn Rl;m Rém Wait RAun R];m Rén Wait
Time

(c) Multiprogramming with three programs

Figure 2.5 Multiprogramming Example

Table 2.1 Sample Program Execution Attributes

2.2 / THE EVOLUTION OF OPERATING SYSTEMS

79

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy 1/0 Heavy 1/0
Duration 5 min 15 min 10 min
Memory required 50 M 100 M 75M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

spends a certain amount of time executing, until it reaches an I/O instruction. It must
then wait until that I/O instruction concludes before proceeding.

This inefficiency is not necessary. We know there must be enough memory to
hold the OS (resident monitor) and one user program. Suppose there is room for the
OS and two user programs. When one job needs to wait for I/O, the processor can
switch to the other job, which is likely not waiting for I/O (see Figure 2.5b). Further-
more, we might expand memory to hold three, four, or more programs and switch
among all of them (see Figure 2.5c). The approach is known as multiprogramming,
or multitasking. It is the central theme of modern operating systems.

To illustrate the benefit of multiprogramming, we give a simple example. Con-
sider a computer with 250 Mbytes of available memory (not used by the OS), a disk,
a terminal, and a printer. Three programs, JOB1, JOB2, and JOB3, are submitted for
execution at the same time, with the attributes listed in Table 2.1. We assume minimal
processor requirements for JOB2 and JOB3, and continuous disk and printer use by
JOB3. For a simple batch environment, these jobs will be executed in sequence. Thus,
JOBI1 completes in 5 minutes. JOB2 must wait until the 5 minutes are over, then com-
pletes 15 minutes after that. JOB3 begins after 20 minutes and completes at 30 minutes
from the time it was initially submitted. The average resource utilization, throughput,
and response times are shown in the uniprogramming column of Table 2.2. Device-
by-device utilization is illustrated in Figure 2.6a. It is evident that there is gross unde-
rutilization for all resources when averaged over the required 30-minute time period.

Now suppose the jobs are run concurrently under a multiprogramming OS.
Because there is little resource contention between the jobs, all three can run in

Table 2.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use 20% 40%
Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

80

Memory |-

CPU

Disk |

CHAPTER 2 / OPERATING SYSTEM OVERVIEW

100% 100%
CPU
0% 0%
100%
Memory
0% 0%
100% 100%
Disk
0% 0%

Terminal Terminal [
"""" - 0% 0%
______________________________ 100%
Printer | é Printer
"------I ------- I--------I ------- I I 0% I E— 0%
I ‘I T T T T ‘I < > T
Job history | JOB1 JOB2 JOB3 | Job history | JOBI
T T T T T JOB2
0 5 10 15 20 25 30 ~ 10rR2
minutes J OF3 T
time 0 5 . 10 15
minutes e
(a) Uniprogramming (b) Multiprogramming

Figure 2.6 Utilization Histograms

nearly minimum time while coexisting with the others in the computer (assuming
JOB2 and JOB3 are allotted enough processor time to keep their input and output
operations active). JOB1 will still require 5 minutes to complete, but at the end of that
time, JOB2 will be one-third finished and JOB3 half-finished. All three jobs will have
finished within 15 minutes. The improvement is evident when examining the multi-
programming column of Table 2.2, obtained from the histogram shown in Figure 2.6b.

As with a simple batch system, a multiprogramming batch system must rely
on certain computer hardware features. The most notable additional feature that is
useful for multiprogramming is the hardware that supports I/O interrupts and DMA
(direct memory access). With interrupt-driven I/O or DMA, the processor can issue
an I/O command for one job and proceed with the execution of another job while
the I/O is carried out by the device controller. When the I/O operation is complete,
the processor is interrupted and control is passed to an interrupt-handling program
in the OS.The OS will then pass control to another job after the interrupt is handled.

Multiprogramming operating systems are fairly sophisticated compared to
single-program, or uniprogramming, systems. To have several jobs ready to run, they
must be kept in main memory, requiring some form of memory management. In addi-
tion, if several jobs are ready to run, the processor must decide which one to run, and
this decision requires an algorithm for scheduling. These concepts will be discussed
later in this chapter.

2.2 / THE EVOLUTION OF OPERATING SYSTEMS 81

Time-Sharing Systems

With the use of multiprogramming, batch processing can be quite efficient. However,
for many jobs, it is desirable to provide a mode in which the user interacts directly
with the computer. Indeed, for some jobs, such as transaction processing, an interac-
tive mode is essential.

Today, the requirement for an interactive computing facility can be, and often
is, met by the use of a dedicated personal computer or workstation. That option was
not available in the 1960s, when most computers were big and costly. Instead, time
sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs
at a time, multiprogramming can also be used to handle multiple interactive jobs. In
this latter case, the technique is referred to as time sharing, because processor time
is shared among multiple users. In a time-sharing system, multiple users simultane-
ously access the system through terminals, with the OS interleaving the execution of
each user program in a short burst or quantum of computation. Thus, if there are n
users actively requesting service at one time, each user will only see on the average
1/n of the effective computer capacity, not counting OS overhead. However, given
the relatively slow human reaction time, the response time on a properly designed
system should be similar to that on a dedicated computer.

Both batch processing and time sharing use multiprogramming. The key differ-
ences are listed in Table 2.3.

One of the first time-sharing operating systems to be developed was the Com-
patible Time-Sharing System (CTSS) [CORB62], developed at MIT by a group
known as Project MAC (Machine-Aided Cognition, or Multiple-Access Comput-
ers). The system was first developed for the IBM 709 in 1961 and later ported to
IBM 7094.

Compared to later systems, CTSS is primitive. The system ran on a computer
with 32,000 36-bit words of main memory, with the resident monitor consuming 5,000
of those. When control was to be assigned to an interactive user, the user’s program
and data were loaded into the remaining 27000 words of main memory. A program
was always loaded to start at the location of the 5,000th word; this simplified both
the monitor and memory management. A system clock generated interrupts at a rate
of approximately one every 0.2 seconds. At each clock interrupt, the OS regained
control and could assign the processor to another user. This technique is known as
time slicing. Thus, at regular time intervals, the current user would be preempted and
another user loaded in. To preserve the old user program status for later resumption,
the old user programs and data were written out to disk before the new user pro-
grams and data were read in. Subsequently, the old user program code and data were
restored in main memory when that program was next given a turn.

Table 2.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language commands Commands entered at the
operating system provided with the job terminal

82 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

0 0 0
Monitor Monitor Monitor
5000 5000 5000
10000 1083
JOB 1
JOB 2
20000 (JOB 2)
Free 25000 25000
Free Free
32000 32000 32000
(a) (b) (©
0 - 0 - 0 -
Monitor Monitor Monitor
5000 5000 5000
OB 1 JOB 4
15000 B 2
JOB 1) 1o
20000 20000
JOB 2) JOB 2)
25000 25000 25000
Free Free Free
32000 32000 32000

(d) (e) ®
Figure 2.7 CTSS Operation

To minimize disk traffic, user memory was only written out when the incoming
program would overwrite it. This principle is illustrated in Figure 2.7 Assume there
are four interactive users with the following memory requirements, in words:
JOB1:15,000
JOB2:20,000
JOB3:5,000
JOB4:10,000

Initially, the monitor loads JOB1 and transfers control to it (Figure 2.7a). Later,
the monitor decides to transfer control to JOB2. Because JOB2 requires more mem-
ory than JOB1,JOB1 must be written out first, and then JOB2 can be loaded (Figure
2.7b). Next, JOB3 is loaded in to be run. However, because JOB3 is smaller than
JOB2, a portion of JOB2 can remain in memory, reducing disk write time (Figure
2.7¢). Later, the monitor decides to transfer control back to JOB1. An additional por-
tion of JOB2 must be written out when JOBI is loaded back into memory (Figure
2.7d). When JOB4 is loaded, part of JOB1 and the portion of JOB2 remaining in
memory are retained (Figure 2.7e). At this point, if either JOB1 or JOB2 is activated,
only a partial load will be required. In this example, it is JOB2 that runs next. This
requires that JOB4 and the remaining resident portion of JOB1 be written out, and
the missing portion of JOB2 be read in (Figure 2.7f).

The CTSS approach is primitive compared to present-day time sharing, but
it was effective. It was extremely simple, which minimized the size of the monitor.
Because a job was always loaded into the same locations in memory, there was no
need for relocation techniques at load time (discussed subsequently). The technique

2.3 / MAJOR ACHIEVEMENTS 83

of only writing out what was necessary minimized disk activity. Running on the 7094,
CTSS supported a maximum of 32 users.

Time sharing and multiprogramming raise a host of new problems for the OS. If
multiple jobs are in memory, then they must be protected from interfering with each
other by, for example, modifying each other’s data. With multiple interactive users,
the file system must be protected so only authorized users have access to a particular
file. The contention for resources, such as printers and mass storage devices, must
be handled. These and other problems, with possible solutions, will be encountered
throughout this text.

2.3 MAJOR ACHIEVEMENTS

Operating systems are among the most complex pieces of software ever developed.
This reflects the challenge of trying to meet the difficult and in some cases competing
objectives of convenience, efficiency, and ability to evolve. [DENNS8Oa] proposes that
there have been four major theoretical advances in the development of operating
systems:

e Processes
* Memory management
e Information protection and security
* Scheduling and resource management
Each advance is characterized by principles, or abstractions, developed to
meet difficult practical problems. Taken together, these four areas span many of
the key design and implementation issues of modern operating systems. The brief

review of these four areas in this section serves as an overview of much of the rest
of the text.

The Process

Central to the design of operating systems is the concept of process. This term was
first used by the designers of Multics in the 1960s [DALEG6S]. It is a somewhat
more general term than job. Many definitions have been given for the term process,
including:

e A program in execution.

* An instance of a program running on a computer.

e The entity that can be assigned to and executed on a processor.

* A unit of activity characterized by a single sequential thread of execution, a

current state, and an associated set of system resources.

This concept should become clearer as we proceed.

Three major lines of computer system development created problems in tim-
ing and synchronization that contributed to the development of the concept of the
process: multiprogramming batch operation, time-sharing, and real-time transaction
systems. As we have seen, multiprogramming was designed to keep the processor

84 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

and I/O devices, including storage devices, simultaneously busy to achieve maximum
efficiency. The key mechanism is this: In response to signals indicating the completion
of I/O transactions, the processor is switched among the various programs residing
in main memory.

A second line of development was general-purpose time sharing. Here, the key
design objective is to be responsive to the needs of the individual user and yet, for
cost reasons, be able to support many users simultaneously. These goals are compat-
ible because of the relatively slow reaction time of the user. For example, if a typical
user needs an average of 2 seconds of processing time per minute, then close to 30
such users should be able to share the same system without noticeable interference.
Of course, OS overhead must be factored into such calculations.

A third important line of development has been real-time transaction process-
ing systems. In this case, a number of users are entering queries or updates against a
database. An example is an airline reservation system. The key difference between
the transaction processing system and the time-sharing system is that the former
is limited to one or a few applications, whereas users of a time-sharing system can
engage in program development, job execution, and the use of various applications.
In both cases, system response time is paramount.

The principal tool available to system programmers in developing the early
multiprogramming and multiuser interactive systems was the interrupt. The activity
of any job could be suspended by the occurrence of a defined event, such as an I/O
completion. The processor would save some sort of context (e.g., program counter
and other registers) and branch to an interrupt-handling routine which would deter-
mine the nature of the interrupt, process the interrupt, then resume user processing
with the interrupted job or some other job.

The design of the system software to coordinate these various activities turned
out to be remarkably difficult. With many jobs in progress at any one time, each of
which involved numerous steps to be performed in sequence, it became impossible
to analyze all of the possible combinations of sequences of events. In the absence of
some systematic means of coordination and cooperation among activities, program-
mers resorted to ad hoc methods based on their understanding of the environment
that the OS had to control. These efforts were vulnerable to subtle programming
errors whose effects could be observed only when certain relatively rare sequences
of actions occurred. These errors were difficult to diagnose, because they needed to
be distinguished from application software errors and hardware errors. Even when
the error was detected, it was difficult to determine the cause, because the precise
conditions under which the errors appeared were very hard to reproduce. In general
terms, there are four main causes of such errors [DENNS80a]:

e Improper synchronization: It is often the case that a routine must be suspended
awaiting an event elsewhere in the system. For example, a program that initiates
an I/O read must wait until the data are available in a buffer before proceeding.
In such cases, a signal from some other routine is required. Improper design
of the signaling mechanism can result in signals being lost or duplicate signals
being received.

e Failed mutual exclusion: It is often the case that more than one user or program
will attempt to make use of a shared resource at the same time. For example,

2.3 / MAJOR ACHIEVEMENTS 85

two users may attempt to edit the same file at the same time. If these accesses
are not controlled, an error can occur. There must be some sort of mutual exclu-
sion mechanism that permits only one routine at a time to perform an update
against the file. The implementation of such mutual exclusion is difficult to
verify as being correct under all possible sequences of events.

* Nondeterminate program operation: The results of a particular program nor-
mally should depend only on the input to that program, and not on the activities
of other programs in a shared system. But when programs share memory, and
their execution is interleaved by the processor, they may interfere with each
other by overwriting common memory areas in unpredictable ways. Thus, the
order in which various programs are scheduled may affect the outcome of any
particular program.

e Deadlocks: It is possible for two or more programs to be hung up waiting for
each other. For example, two programs may each require two I/O devices to per-
form some operation (e.g., disk to tape copy). One of the programs has seized
control of one of the devices, and the other program has control of the other
device. Each is waiting for the other program to release the desired resource.
Such a deadlock may depend on the chance timing of resource allocation and
release.

What is needed to tackle these problems is a systematic way to monitor and
control the various programs executing on the processor. The concept of the process
provides the foundation. We can think of a process as consisting of three components:

1. An executable program
2. The associated data needed by the program (variables, work space, buffers, etc.)
3. The execution context of the program

This last element is essential. The execution context, or process state, is the
internal data by which the OS is able to supervise and control the process. This inter-
nal information is separated from the process, because the OS has information not
permitted to the process. The context includes all of the information the OS needs
to manage the process, and the processor needs to execute the process properly. The
context includes the contents of the various processor registers, such as the program
counter and data registers. It also includes information of use to the OS, such as the
priority of the process and whether the process is waiting for the completion of a
particular I/O event.

Figure 2.8 indicates a way in which processes may be managed. Two processes,
A and B, exist in portions of main memory. That is, a block of memory is allocated to
each process that contains the program, data, and context information. Each process
is recorded in a process list built and maintained by the OS. The process list contains
one entry for each process, which includes a pointer to the location of the block
of memory that contains the process. The entry may also include part or all of the
execution context of the process. The remainder of the execution context is stored
elsewhere, perhaps with the process itself (as indicated in Figure 2.8) or frequently in
a separate region of memory. The process index register contains the index into the
process list of the process currently controlling the processor. The program counter

86 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Main Processor
memory registers
Process index
PC =
i
Process Base [b |
list) limit
]
1
L]
Other B
registers o
1
Context
Process Data
A
Program
(code)
b
Context
Process Data
B h
Program
(code)

Figure 2.8 Typical Process Implementation

points to the next instruction in that process to be executed. The base and limit reg-
isters define the region in memory occupied by the process: The base register is the
starting address of the region of memory, and the limit is the size of the region (in
bytes or words). The program counter and all data references are interpreted relative
to the base register and must not exceed the value in the limit register. This prevents
interprocess interference.

In Figure 2.8, the process index register indicates that process B is executing.
Process A was previously executing but has been temporarily interrupted. The con-
tents of all the registers at the moment of A’s interruption were recorded in its execu-
tion context. Later, the OS can perform a process switch and resume the execution
of process A. The process switch consists of saving the context of B and restoring
the context of A. When the program counter is loaded with a value pointing into A’s
program area, process A will automatically resume execution.

Thus, the process is realized as a data structure. A process can either be execut-
ing or awaiting execution. The entire state of the process at any instant is contained in
its context. This structure allows the development of powerful techniques for ensuring

2.3 / MAJOR ACHIEVEMENTS 87

coordination and cooperation among processes. New features can be designed and
incorporated into the OS (e.g., priority) by expanding the context to include any
new information needed to support the feature. Throughout this book, we will see a
number of examples where this process structure is employed to solve the problems
raised by multiprogramming and resource sharing.

A final point, which we introduce briefly here, is the concept of thread. In
essence, a single process, which is assigned certain resources, can be broken up into
multiple, concurrent threads that execute cooperatively to perform the work of the
process. This introduces a new level of parallel activity to be managed by the hard-
ware and software.

Memory Management

The needs of users can be met best by a computing environment that supports modu-
lar programming and the flexible use of data. System managers need efficient and
orderly control of storage allocation. The OS, to satisfy these requirements, has five
principal storage management responsibilities:

1. Process isolation: The OS must prevent independent processes from interfering
with each other’s memory, both data and instructions.

2. Automatic allocation and management: Programs should be dynamically allo-
cated across the memory hierarchy as required. Allocation should be transpar-
ent to the programmer. Thus, the programmer is relieved of concerns relating
to memory limitations, and the OS can achieve efficiency by assigning memory
to jobs only as needed.

3. Support of modular programming: Programmers should be able to define pro-
gram modules, and to dynamically create, destroy, and alter the size of modules.

4. Protection and access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory space
of another. This is desirable when sharing is needed by particular applications.
At other times, it threatens the integrity of programs and even of the OS itself.
The OS must allow portions of memory to be accessible in various ways by
various users.

5. Long-term storage: Many application programs require means for storing infor-
mation for extended periods of time, after the computer has been powered down.

Typically, operating systems meet these requirements with virtual memory and
file system facilities. The file system implements a long-term store, with information
stored in named objects called files. The file is a convenient concept for the program-
mer, and is a useful unit of access control and protection for the OS.

Virtual memory is a facility that allows programs to address memory from a
logical point of view, without regard to the amount of main memory physically avail-
able. Virtual memory was conceived to meet the requirement of having multiple user
jobs concurrently reside in main memory, so there would not be a hiatus between
the execution of successive processes while one process was written out to secondary
store and the successor process was read in. Because processes vary in size, if the pro-
cessor switches among a number of processes, it is difficult to pack them compactly

88 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

into main memory. Paging systems were introduced, which allow processes to be
comprised of a number of fixed-size blocks, called pages. A program references a
word by means of a virtual address consisting of a page number and an offset within
the page. Each page of a process may be located anywhere in main memory. The pag-
ing system provides for a dynamic mapping between the virtual address used in the
program and a real address, or physical address, in main memory.

With dynamic mapping hardware available, the next logical step was to eliminate
the requirement that all pages of a process simultaneously reside in main memory.
All the pages of a process are maintained on disk. When a process is executing, some
of its pages are in main memory. If reference is made to a page that is not in main
memory, the memory management hardware detects this and, in coordination with
the OS, arranges for the missing page to be loaded. Such a scheme is referred to as
virtual memory and is depicted in Figure 2.9.

A0 | A2
0 0
AS
1 1
2 2
B.O| B.1 | B2 | B3
3 3
4 4
5 5
6 6
A7
A9 7 User
3 program
B
9
A8
10
User
program
A
B.5 | B.6
v
Main memory Disk
Main memory consists of a Secondary memory (disk) can
number of fixed-length frames, hold many fixed-length pages. A
each equal to the size of a page. user program consists of some
For a program to execute, some number of pages. Pages of all
or all of its pages must be in programs plus the OS are on
main memory. disk, as are files.

Figure 2.9 Virtual Memory Concepts

2.3 / MAJOR ACHIEVEMENTS 89

Real
Memory address
Processor management
Virtual unit
address .
Main
memory
Disk
address
Secondary

memory

Figure 2.10 Virtual Memory Addressing

The processor hardware, together with the OS, provides the user with a “virtual
processor” that has access to a virtual memory. This memory may be a linear address
space or a collection of segments, which are variable-length blocks of contiguous
addresses. In either case, programming language instructions can reference program
and data locations in the virtual memory area. Process isolation can be achieved by
giving each process a unique, nonoverlapping virtual memory. Memory sharing can be
achieved by overlapping portions of two virtual memory spaces. Files are maintained
in a long-term store. Files and portions of files may be copied into the virtual memory
for manipulation by programs.

Figure 2.10 highlights the addressing concerns in a virtual memory scheme.
Storage consists of directly addressable (by machine instructions) main memory,
and lower-speed auxiliary memory that is accessed indirectly by loading blocks into
main memory. Address translation hardware (a memory management unit) is inter-
posed between the processor and memory. Programs reference locations using virtual
addresses, which are mapped into real main memory addresses. If a reference is made
to a virtual address not in real memory, then a portion of the contents of real memory
is swapped out to auxiliary memory and the desired block of data is swapped in. Dur-
ing this activity, the process that generated the address reference must be suspended.
The OS designer needs to develop an address translation mechanism that generates
little overhead, and a storage allocation policy that minimizes the traffic between
memory levels.

Information Protection and Security

The growth in the use of time-sharing systems and, more recently, computer net-
works has brought with it a growth in concern for the protection of information. The
nature of the threat that concerns an organization will vary greatly depending on the
circumstances. However, there are some general-purpose tools that can be built into

90 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

computers and operating systems that support a variety of protection and security
mechanisms. In general, we are concerned with the problem of controlling access to
computer systems and the information stored in them.

Much of the work in security and protection as it relates to operating systems
can be roughly grouped into four categories:

1. Availability: Concerned with protecting the system against interruption.

2. Confidentiality: Assures that users cannot read data for which access is
unauthorized.

3. Data integrity: Protection of data from unauthorized modification.

4. Authenticity: Concerned with the proper verification of the identity of users
and the validity of messages or data.

Scheduling and Resource Management

A key responsibility of the OS is to manage the various resources available to it (main
memory space, I/O devices, processors) and to schedule their use by the various active
processes. Any resource allocation and scheduling policy must consider three factors:

1. Fairness: Typically, we would like all processes that are competing for the use
of a particular resource to be given approximately equal and fair access to that
resource. This is especially so for jobs of the same class, that is, jobs of similar
demands.

2. Differential responsiveness: On the other hand, the OS may need to discrimi-
nate among different classes of jobs with different service requirements. The
OS should attempt to make allocation and scheduling decisions to meet the
total set of requirements. The OS should also make these decisions dynamically.
For example, if a process is waiting for the use of an I/O device, the OS may
wish to schedule that process for execution as soon as possible; the process can
then immediately use the device, then release it for later demands from other
processes.

3. Efficiency: The OS should attempt to maximize throughput, minimize response
time, and, in the case of time sharing, accommodate as many users as possible.
These criteria conflict; finding the right balance for a particular situation is an
ongoing problem for OS research.

Scheduling and resource management are essentially operations-research
problems and the mathematical results of that discipline can be applied. In addition,
measurement of system activity is important to be able to monitor performance and
make adjustments.

Figure 2.11 suggests the major elements of the OS involved in the scheduling
of processes and the allocation of resources in a multiprogramming environment.
The OS maintains a number of queues, each of which is simply a list of processes
waiting for some resource. The short-term queue consists of processes that are in
main memory (or at least an essential minimum portion of each is in main mem-
ory) and are ready to run as soon as the processor is made available. Any one of
these processes could use the processor next. It is up to the short-term scheduler,

2.3 / MAJOR ACHIEVEMENTS 91

Operating system
| |
Service call Service []
from process call []
P handler (code) I I
[|
| |
[]
[|
| |
[|
Interrupt Long- Short- 1/0
from process I term term queues
nterrupt queue queue
Interrupt handler (code)
from 1/0
Short-term
scheduler
(code)

Pass control
to process

Figure 2.11 Key Elements of an Operating System for Multiprogramming

or dispatcher, to pick one. A common strategy is to give each process in the queue
some time in turn; this is referred to as a round-robin technique. In effect, the
round-robin technique employs a circular queue. Another strategy is to assign prior-
ity levels to the various processes, with the scheduler selecting processes in priority
order.

The long-term queue is a list of new jobs waiting to use the processor. The OS
adds jobs to the system by transferring a process from the long-term queue to the
short-term queue. At that time, a portion of main memory must be allocated to the
incoming process. Thus, the OS must be sure that it does not overcommit memory or
processing time by admitting too many processes to the system. There is an I/O queue
for each I/O device. More than one process may request the use of the same I/O
device. All processes waiting to use each device are lined up in that device’s queue.
Again, the OS must determine which process to assign to an available I/O device.

The OS receives control of the processor at the interrupt handler if an inter-
rupt occurs. A process may specifically invoke some OS service, such as an 1/0 device
handler, by means of a service call. In this case, a service call handler is the entry point
into the OS. In any case, once the interrupt or service call is handled, the short-term
scheduler is invoked to pick a process for execution.

The foregoing is a functional description; details and modular design of this
portion of the OS will differ in various systems. Much of the research and develop-
ment effort in operating systems has been directed at picking algorithms and data
structures for this function that provide fairness, differential responsiveness, and
efficiency.

92 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.4 DEVELOPMENTS LEADING TO MODERN OPERATING

SYSTEMS

Over the years, there has been a gradual evolution of OS structure and capabilities.
However, in recent years, a number of new design elements have been introduced
into both new operating systems and new releases of existing operating systems that
create a major change in the nature of operating systems. These modern operating
systems respond to new developments in hardware, new applications, and new secu-
rity threats. Among the key hardware drivers are multiprocessor systems, greatly
increased processor speed, high-speed network attachments, and increasing size and
variety of memory storage devices. In the application arena, multimedia applications,
Internet and Web access, and client/server computing have influenced OS design.
With respect to security, Internet access to computers has greatly increased the poten-
tial threat, and increasingly sophisticated attacks (such as viruses, worms, and hacking
techniques) have had a profound impact on OS design.

The rate of change in the demands on operating systems requires not just modi-
fications and enhancements to existing architectures, but new ways of organizing the
OS. A wide range of different approaches and design elements has been tried in both
experimental and commercial operating systems, but much of the work fits into the
following categories:

e Microkernel architecture
Multithreading
e Symmetric multiprocessing

Distributed operating systems

Object-oriented design

Until recently, most operating systems featured a large monolithic kernel. Most
of what is thought of as OS functionality is provided in these large kernels, including
scheduling, file system, networking, device drivers, memory management, and more.
Typically, a monolithic kernel is implemented as a single process, with all elements
sharing the same address space. A microkernel architecture assigns only a few essen-
tial functions to the kernel, including address space management, interprocess com-
munication (IPC), and basic scheduling. Other OS services are provided by processes,
sometimes called servers, that run in user mode and are treated like any other appli-
cation by the microkernel. This approach decouples kernel and server development.
Servers may be customized to specific application or environment requirements.
The microkernel approach simplifies implementation, provides flexibility, and is well
suited to a distributed environment. In essence, a microkernel interacts with local
and remote server processes in the same way, facilitating construction of distributed
systems.

Multithreading is a technique in which a process, executing an application, is
divided into threads that can run concurrently. We can make the following distinction:

e Thread: A dispatchable unit of work. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a

2.4 / DEVELOPMENTS LEADING TO MODERN OPERATING SYSTEMS 93

stack (to enable subroutine branching). A thread executes sequentially and is
interruptible so the processor can turn to another thread.

e Process: A collection of one or more threads and associated system resources
(such as memory containing both code and data, open files, and devices). This
corresponds closely to the concept of a program in execution. By breaking a
single application into multiple threads, the programmer has great control over
the modularity of the application and the timing of application-related events.

Multithreading is useful for applications that perform a number of essentially
independent tasks that do not need to be serialized. An example is a database server
that listens for and processes numerous client requests. With multiple threads run-
ning within the same process, switching back and forth among threads involves less
processor overhead than a major process switch between different processes. Threads
are also useful for structuring processes that are part of the OS kernel, as will be
described in subsequent chapters.

Symmetric multiprocessing (SMP) is a term that refers to a computer hardware
architecture (described in Chapter 1) and also to the OS behavior that exploits that
architecture. The OS of an SMP schedules processes or threads across all of the pro-
cessors. SMP has a number of potential advantages over uniprocessor architecture,
including the following:

e Performance: If the work to be done by a computer can be organized so some
portions of the work can be done in parallel, then a system with multiple pro-
cessors will yield greater performance than one with a single processor of the
same type. This is illustrated in Figure 2.12. With multiprogramming, only one
process can execute at a time; meanwhile, all other processes are waiting for
the processor. With multiprocessing, more than one process can be running
simultaneously, each on a different processor.

 Availability: In a symmetric multiprocessor, because all processors can perform
the same functions, the failure of a single processor does not halt the system.
Instead, the system can continue to function at reduced performance.

e Incremental growth: A user can enhance the performance of a system by adding
an additional processor.

¢ Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the
system.

It is important to note that these are potential, rather than guaranteed, benefits.
The OS must provide tools and functions to exploit the parallelism in an SMP
system.

Multithreading and SMP are often discussed together, but the two are indepen-
dent facilities. Even on a uniprocessor system, multithreading is useful for structuring
applications and kernel processes. An SMP system is useful even for nonthreaded
processes, because several processes can run in parallel. However, the two facilities
complement each other, and can be used effectively together.

An attractive feature of an SMP is that the existence of multiple processors
is transparent to the user. The OS takes care of scheduling of threads or processes

94 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Time

Process 1 [| [I I]

Process 2 [| I [|

Process 3 [| |

(a) Interleaving (multiprogramming; one processor)

Process 1 [I [I []

Process 2 [I [|

Process 3 [[]

(b) Interleaving and overlapping (multiprocessing; two processors)

[Blocked I Running

Figure 2.12 Multiprogramming and Multiprocessing

on individual processors and of synchronization among processors. This book dis-
cusses the scheduling and synchronization mechanisms used to provide the single-
system appearance to the user. A different problem is to provide the appearance
of a single system for a cluster of separate computers—a multicomputer system.
In this case, we are dealing with a collection of computers, each with its own main
memory, secondary memory, and other I/O modules. A distributed operating sys-
tem provides the illusion of a single main memory space and a single secondary
memory space, plus other unified access facilities, such as a distributed file system.
Although clusters are becoming increasingly popular, and there are many cluster
products on the market, the state of the art for distributed operating systems lags
behind that of uniprocessor and SMP operating systems. We will examine such
systems in Part Eight.

Another innovation in OS design is the use of object-oriented technologies.
Object-oriented design lends discipline to the process of adding modular exten-
sions to a small kernel. At the OS level, an object-based structure enables program-
mers to customize an OS without disrupting system integrity. Object orientation
also eases the development of distributed tools and full-blown distributed operat-
ing systems.

2.5 / FAULT TOLERANCE 95

2.5 FAULT TOLERANCE

Fault tolerance refers to the ability of a system or component to continue nor-
mal operation despite the presence of hardware or software faults. This typically
involves some degree of redundancy. Fault tolerance is intended to increase the
reliability of a system. Typically, increased fault tolerance (and therefore increased
reliability) comes with a cost, either in financial terms or performance, or both.
Thus, the extent adoption of fault tolerance measures must be determined by how
critical the resource is.

Fundamental Concepts

The three basic measures of the quality of the operation of a system that relate to
fault tolerance are reliability, mean time to failure (MTTF), and availability. These
concepts were developed with specific reference to hardware faults, but apply more
generally to hardware and software faults.

The reliability R(¢) of a system is defined as the probability of its correct opera-
tion up to time ¢ given that the system was operating correctly at time ¢+ = 0. For
computer systems and operating systems, the term correct operation means the cor-
rect execution of a set of programs, and the protection of data from unintended
modification. The mean time to failure (MTTF) is defined as

MTTF = / OcR(t)
0

The mean time to repair (MTTR) is the average time it takes to repair or
replace a faulty element. Figure 2.13 illustrates the relationship between MTTF and
MTTR.

The availability of a system or service is defined as the fraction of time the sys-
tem is available to service users’ requests. Equivalently, availability is the probability
that an entity is operating correctly under given conditions at a given instant of time.
The time during which the system is not available is called downtime; the time during

A
B1 B2 B3
Up
Down >
—— - —_— <
Al A2 A3
+ + + +
MTTF = B1 I;Z B3 MTTR = Al 132 A3

Figure 2.13 System Operational States

96 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Table 2.4 Availability Classes

Class Availability Annual Downtime
Continuous 1.0 0

Fault tolerant 0.99999 5 minutes
Fault resilient 0.9999 53 minutes
High availability 0.999 8.3 hours
Normal availability 0.99-0.995 44-87 hours

which the system is available is called uptime. The availability A of a system can be
expressed as follows:
_ MTTF

MTTF + MTTR

A

Table 2.4 shows some commonly identified availability levels and the corre-
sponding annual downtime.

Often, the mean uptime, which is MTTFE, is a better indicator than availability.
A small downtime and a small uptime combination may result in a high availability
measure, but the users may not be able to get any service if the uptime is less than
the time required to complete a service.

Faults

The IEEE Standards Dictionary defines a fault as an erroneous hardware or software
state resulting from component failure, operator error, physical interference from the
environment, design error, program error, or data structure error. The standard also
states that a fault manifests itself as (1) a defect in a hardware device or component;
for example, a short circuit or broken wire, or (2) an incorrect step, process, or data
definition in a computer program.

We can group faults into the following categories:

e Permanent: A fault that, after it occurs, is always present. The fault persists
until the faulty component is replaced or repaired. Examples include disk head
crashes, software bugs, and a burnt-out communications component.

e Temporary: A fault that is not present all the time for all operating conditions.
Temporary faults can be further classified as follows:

—Transient: A fault that occurs only once. Examples include bit transmission
errors due to an impulse noise, power supply disturbances, and radiation that
alters a memory bit.

— Intermittent: A fault that occurs at multiple, unpredictable times. An example
of an intermittent fault is one caused by a loose connection.

In general, fault tolerance is built into a system by adding redundancy. Methods
of redundancy include the following:

e Spatial (physical) redundancy: Physical redundancy involves the use of mul-
tiple components that either perform the same function simultaneously, or are

2.5 / FAULT TOLERANCE 97

configured so one component is available as a backup in case of the failure of
another component. An example of the former is the use of multiple parallel
circuitry with the majority result produced as output. An example of the latter
is a backup name server on the Internet.

e Temporal redundancy: Temporal redundancy involves repeating a function or
operation when an error is detected. This approach is effective with temporary
faults, but not useful for permanent faults. An example is the retransmission of
a block of data when an error is detected, such as is done with data link control
protocols.

¢ Information redundancy: Information redundancy provides fault tolerance by
replicating or coding data in such a way that bit errors can be both detected
and corrected. An example is the error-control coding circuitry used with mem-
ory systems, and error-correction techniques used with RAID disks, as will be
described in subsequent chapters.

Operating System Mechanisms

A number of techniques can be incorporated into OS software to support fault toler-
ance. A number of examples will be evident throughout the book. The following list
provides examples:

e Process isolation: As was mentioned earlier in this chapter, processes are gener-
ally isolated from one another in terms of main memory, file access, and flow of
execution. The structure provided by the OS for managing processes provides
a certain level of protection for other processes from a process that produces
a fault.

e Concurrency controls: Chapters 5 and 6 will discuss some of the difficulties and
faults that can occur when processes communicate or cooperate. These chapters
will also discuss techniques used to ensure correct operation and to recover
from fault conditions, such as deadlock.

e Virtual machines: Virtual machines, as will be discussed in Chapter 14, pro-
vide a greater degree of application isolation and hence fault isolation. Virtual
machines can also be used to provide redundancy, with one virtual machine
serving as a backup for another.

¢ Checkpoints and rollbacks: A checkpoint is a copy of an application’s state
saved in some storage that is immune to the failures under consideration. A
rollback restarts the execution from a previously saved checkpoint. When a
failure occurs, the application’s state is rolled back to the previous checkpoint
and restarted from there. This technique can be used to recover from transient
as well as permanent hardware failures, and certain types of software failures.
Database and transaction processing systems typically have such capabilities
built in.

A much wider array of techniques could be discussed, but a full treatment of
OS fault tolerance is beyond our current scope.

98 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.6 OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR
AND MULTICORE

Symmetric Multiprocessor OS Considerations

In an SMP system, the kernel can execute on any processor, and typically each proces-
sor does self-scheduling from the pool of available processes or threads. The kernel
can be constructed as multiple processes or multiple threads, allowing portions of the
kernel to execute in parallel. The SMP approach complicates the OS.The OS designer
must deal with the complexity due to sharing resources (such as data structures)
and coordinating actions (such as accessing devices) from multiple parts of the OS
executing at the same time. Techniques must be employed to resolve and synchronize
claims to resources.

An SMP operating system manages processor and other computer resources so
the user may view the system in the same fashion as a multiprogramming uniproces-
sor system. A user may construct applications that use multiple processes or multiple
threads within processes without regard to whether a single processor or multiple
processors will be available. Thus, a multiprocessor OS must provide all the func-
tionality of a multiprogramming system, plus additional features to accommodate
multiple processors. The key design issues include the following:

e Simultaneous concurrent processes or threads: Kernel routines need to be reen-
trant to allow several processors to execute the same kernel code simultane-
ously. With multiple processors executing the same or different parts of the
kernel, kernel tables and management structures must be managed properly to
avoid data corruption or invalid operations.

¢ Scheduling: Any processor may perform scheduling, which complicates the task
of enforcing a scheduling policy and assuring that corruption of the sched-
uler data structures is avoided. If kernel-level multithreading is used, then the
opportunity exists to schedule multiple threads from the same process simul-
taneously on multiple processors. Multiprocessor scheduling will be examined
in Chapter 10.

e Synchronization: With multiple active processes having potential access to
shared address spaces or shared I/O resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering. A common synchronization mechanism used in
multiprocessor operating systems is locks, and will be described in Chapter 5.

° Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor computers, and will be discussed in
Part Three. In addition, the OS needs to exploit the available hardware paral-
lelism to achieve the best performance. The paging mechanisms on different
processors must be coordinated to enforce consistency when several proces-
sors share a page or segment and to decide on page replacement. The reuse of
physical pages is the biggest problem of concern; that is, it must be guaranteed
that a physical page can no longer be accessed with its old contents before the
page is put to a new use.

2.6 / OS DESIGN CONSIDERATIONS FOR MULTIPROCESSOR AND MULTICORE 99

e Reliability and fault tolerance: The OS should provide graceful degradation
in the face of processor failure. The scheduler and other portions of the OS
must recognize the loss of a processor and restructure management tables
accordingly.

Because multiprocessor OS design issues generally involve extensions to solu-
tions to multiprogramming uniprocessor design problems, we do not treat multi-
processor operating systems separately. Rather, specific multiprocessor issues are
addressed in the proper context throughout this book.

Multicore OS Considerations

The considerations for multicore systems include all the design issues discussed so
far in this section for SMP systems. But additional concerns arise. The issue is one of
the scale of the potential parallelism. Current multicore vendors offer systems with
ten or more cores on a single chip. With each succeeding processor technology gen-
eration, the number of cores and the amount of shared and dedicated cache memory
increases, so we are now entering the era of “many-core” systems.

The design challenge for a many-core multicore system is to efficiently har-
ness the multicore processing power and intelligently manage the substantial on-chip
resources. A central concern is how to match the inherent parallelism of a many-core
system with the performance requirements of applications. The potential for paral-
lelism in fact exists at three levels in contemporary multicore system. First, there is
hardware parallelism within each core processor, known as instruction level parallel-
ism, which may or may not be exploited by application programmers and compilers.
Second, there is the potential for multiprogramming and multithreaded execution
within each processor. Finally, there is the potential for a single application to execute
in concurrent processes or threads across multiple cores. Without strong and effective
OS support for the last two types of parallelism just mentioned, hardware resources
will not be efficiently used.

In essence, since the advent of multicore technology, OS designers have been
struggling with the problem of how best to extract parallelism from computing work-
loads. A variety of approaches are being explored for next-generation operating sys-
tems. We will introduce two general strategies in this section, and will consider some
details in later chapters.

PARALLELISM WITHIN APPLICATIONS Most applications can, in principle, be
subdivided into multiple tasks that can execute in parallel, with these tasks then
being implemented as multiple processes, perhaps each with multiple threads. The
difficulty is that the developer must decide how to split up the application work into
independently executable tasks. That is, the developer must decide what pieces can
or should be executed asynchronously or in parallel. It is primarily the compiler and
the programming language features that support the parallel programming design
process. But the OS can support this design process, at minimum, by efficiently
allocating resources among parallel tasks as defined by the developer.

One of the most effective initiatives to support developers is Grand Central
Dispatch (GCD), implemented in the latest release of the UNIX-based Mac OS X
and the i0OS operating systems. GCD is a multicore support capability. It does not

100 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

help the developer decide how to break up a task or application into separate con-
current parts. But once a developer has identified something that can be split off
into a separate task, GCD makes it as easy and noninvasive as possible to actually
do so.

In essence, GCD is a thread pool mechanism, in which the OS maps tasks onto
threads representing an available degree of concurrency (plus threads for blocking
on I/O). Windows also has a thread pool mechanism (since 2000), and thread pools
have been heavily used in server applications for years. What is new in GCD is the
extension to programming languages to allow anonymous functions (called blocks) as
a way of specifying tasks. GCD is hence not a major evolutionary step. Nevertheless,
it is a new and valuable tool for exploiting the available parallelism of a multicore
system.

One of Apple’s slogans for GCD is “islands of serialization in a sea of concur-
rency.” That captures the practical reality of adding more concurrency to run-of-the-
mill desktop applications. Those islands are what isolate developers from the thorny
problems of simultaneous data access, deadlock, and other pitfalls of multithreading.
Developers are encouraged to identify functions of their applications that would be
better executed off the main thread, even if they are made up of several sequential
or otherwise partially interdependent tasks. GCD makes it easy to break off the
entire unit of work while maintaining the existing order and dependencies between
subtasks. In later chapters, we will look at some of the details of GCD.

VIRTUAL MACHINE APPROACH An alternative approach is to recognize that with
the ever-increasing number of cores on a chip, the attempt to multiprogram individual
cores to support multiple applications may be a misplaced use of resources [JACK10].
If instead, we allow one or more cores to be dedicated to a particular process, then
leave the processor alone to devote its efforts to that process, we avoid much of the
overhead of task switching and scheduling decisions. The multicore OS could then
act as a hypervisor that makes a high-level decision to allocate cores to applications,
but does little in the way of resource allocation beyond that.

The reasoning behind this approach is as follows. In the early days of computing,
one program was run on a single processor. With multiprogramming, each application
is given the illusion that it is running on a dedicated processor. Multiprogramming
is based on the concept of a process, which is an abstraction of an execution envi-
ronment. To manage processes, the OS requires protected space, free from user and
program interference. For this purpose, the distinction between kernel mode and user
mode was developed. In effect, kernel mode and user mode abstracted the processor
into two processors. With all these virtual processors, however, come struggles over
who gets the attention of the real processor. The overhead of switching between all
these processors starts to grow to the point where responsiveness suffers, especially
when multiple cores are introduced. But with many-core systems, we can consider
dropping the distinction between kernel and user mode. In this approach, the OS
acts more like a hypervisor. The programs themselves take on many of the duties of
resource management. The OS assigns an application, a processor and some memory,
and the program itself, using metadata generated by the compiler, would best know
how to use these resources.

2.7

2.7 / MICROSOFT WINDOWS OVERVIEW 101

MICROSOFT WINDOWS OVERVIEW

Background

Microsoft initially used the name Windows in 1985, for an operating environ-
ment extension to the primitive MS-DOS operating system, which was a success-
ful OS used on early personal computers. This Windows/MS-DOS combination
was ultimately replaced by a new version of Windows, known as Windows NT,
first released in 1993, and intended for laptop and desktop systems. Although
the basic internal architecture has remained roughly the same since Windows
NT, the OS has continued to evolve with new functions and features. The latest
release at the time of this writing is Windows 10. Windows 10 incorporates fea-
tures from the preceding desktop/laptop release, Windows 8.1, as well as from
versions of Windows intended for mobile devices for the Internet of Things
(IoT). Windows 10 also incorporates software from the Xbox One system. The
resulting unified Windows 10 supports desktops, laptops, smart phones, tablets,
and Xbox One.

Architecture

Figure 2.14 illustrates the overall structure of Windows. As with virtually all operating
systems, Windows separates application-oriented software from the core OS software.
The latter, which includes the Executive, the Kernel, device drivers, and the hardware
abstraction layer, runs in kernel mode. Kernel-mode software has access to system
data and to the hardware. The remaining software, running in user mode, has limited
access to system data.

OPERATING SYSTEM ORGANIZATION Windows has a highly modular architecture.
Each system function is managed by just one component of the OS. The rest of the
OS and all applications access that function through the responsible component
using standard interfaces. Key system data can only be accessed through the
appropriate function. In principle, any module can be removed, upgraded, or
replaced without rewriting the entire system or its standard application program
interfaces (APIs).
The kernel-mode components of Windows are the following:

e Executive: Contains the core OS services, such as memory management, process
and thread management, security, I/O, and interprocess communication.

e Kernel: Controls execution of the processors. The Kernel manages thread
scheduling, process switching, exception and interrupt handling, and multipro-
cessor synchronization. Unlike the rest of the Executive and the user levels, the
Kernel’s own code does not run in threads.

e Hardware abstraction layer (HAL): Maps between generic hardware com-
mands and responses and those unique to a specific platform. It isolates the OS
from platform-specific hardware differences. The HAL makes each comput-
er’s system bus, direct memory access (DMA) controller, interrupt controller,

102 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Service processes .
P Applications

System support
processes

Service control

SVChost.exe Environment

manager Task
Lsass Winmgmt.exe o e subsystems
gmt. Windows
Winlogon Spooler explorer POSIX
)) User
Session Services.exe application
manager -
2 Subsytem DLLs Win32
------- LT §
1
' NtdlLdll
System :
threads (1 | 11 _____ I I Usermode . -
Kernel mode
System service dispatcher
(Kernel-mode callable interfaces)
Win32 USER,
1/0 manager GDI
E @] o) & = o) g 3
& & 2 g g 5 Fls Q| 38
2] o) = £ = =4 (=] & g I
< e 3 o a 5 = =0 V] =N
. Z ¢ =) 2 |o< E 182 |2R2|exu
PSS g | 2 (82| 8 [2a| 2 |85 |8 |22
and file b % gs| 28 |82 | § R é Graphics
system 5 E & CE, % 5 2 é S £ drivers
drivers ® @ = @
Kernel |
Hardware abstraction layer (HAL) |
Lsass = local security authentication server Colored area indicates Executive

POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link library

Figure 2.14 Windows Internals Architecture [RUSS11]

system timers, and memory controller look the same to the Executive and
kernel components. It also delivers the support needed for SMP, explained
subsequently.

e Device drivers: Dynamic libraries that extend the functionality of the Execu-
tive. These include hardware device drivers that translate user I/O function
calls into specific hardware device I/O requests, and software components for
implementing file systems, network protocols, and any other system extensions
that need to run in kernel mode.

* Windowing and graphics system: Implements the GUI functions, such as deal-
ing with windows, user interface controls, and drawing.

2.7 / MICROSOFT WINDOWS OVERVIEW 103

The Windows Executive includes components for specific system functions and

provides an API for user-mode software. Following is a brief description of each of
the Executive modules:

I/0 manager: Provides a framework through which I/O devices are accessible
to applications, and is responsible for dispatching to the appropriate device
drivers for further processing. The I/O manager implements all the Windows
I/O APIs and enforces security and naming for devices, network protocols,
and file systems (using the object manager). Windows I/O will be discussed
in Chapter 11.

Cache manager: Improves the performance of file-based I/O by causing recently
referenced file data to reside in main memory for quick access, and by deferring
disk writes by holding the updates in memory for a short time before sending
them to the disk in more efficient batches.

Object manager: Creates, manages, and deletes Windows Executive objects that
are used to represent resources such as processes, threads, and synchronization
objects. It enforces uniform rules for retaining, naming, and setting the security
of objects. The object manager also creates the entries in each process’s handle
table, which consist of access control information and a pointer to the object.
Windows objects will be discussed later in this section.

Plug-and-play manager: Determines which drivers are required to support a
particular device and loads those drivers.

Power manager: Coordinates power management among various devices and
can be configured to reduce power consumption by shutting down idle devices,
putting the processor to sleep, and even writing all of memory to disk and shut-
ting off power to the entire system.

Security reference monitor: Enforces access-validation and audit-generation
rules. The Windows object-oriented model allows for a consistent and uniform
view of security, right down to the fundamental entities that make up the Execu-
tive. Thus, Windows uses the same routines for access validation and for audit
checks for all protected objects, including files, processes, address spaces, and
1/O devices. Windows security will be discussed in Chapter 15.

Virtual memory manager: Manages virtual addresses, physical memory, and
the paging files on disk. Controls the memory management hardware and data
structures which map virtual addresses in the process’s address space to physical
pages in the computer’s memory. Windows virtual memory management will
be described in Chapter 8.

Process/thread manager: Creates, manages, and deletes process and thread
objects. Windows process and thread management will be described in Chapter 4.

Configuration manager: Responsible for implementing and managing the sys-
tem registry, which is the repository for both system-wide and per-user settings
of various parameters.

104 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

e Advanced local procedure call (ALPC) facility: Implements an efficient cross-
process procedure call mechanism for communication between local processes
implementing services and subsystems. Similar to the remote procedure call
(RPC) facility used for distributed processing.

USER-MoDE PROCESSES Windows supports four basic types of user-mode processes:

1. Special system processes: User-mode services needed to manage the system,
such as the session manager, the authentication subsystem, the service manager,
and the logon process.

2. Service processes: The printer spooler, the event logger, user-mode components
that cooperate with device drivers, various network services, and many others.
Services are used by both Microsoft and external software developers to extend
system functionality, as they are the only way to run background user-mode
activity on a Windows system.

3. Environment subsystems: Provide different OS personalities (environments).
The supported subsystems are Win32 and POSIX. Each environment
subsystem includes a subsystem process shared among all applications using
the subsystem and dynamic link libraries (DLLs) that convert the user appli-
cation calls to ALPC calls on the subsystem process, and/or native Windows
calls.

4. User applications: Executables (EXEs) and DLLs that provide the functional-
ity users run to make use of the system. EXEs and DLLs are generally targeted
at a specific environment subsystem; although some of the programs that are
provided as part of the OS use the native system interfaces (NT API). There is
also support for running 32-bit programs on 64-bit systems.

Windows is structured to support applications written for multiple OS per-
sonalities. Windows provides this support using a common set of kernel-mode
components that underlie the OS environment subsystems. The implementation of
each environment subsystem includes a separate process, which contains the shared
data structures, privileges, and Executive object handles needed to implement a
particular personality. The process is started by the Windows Session Manager
when the first application of that type is started. The subsystem process runs as a
system user, so the Executive will protect its address space from processes run by
ordinary users.

An environment subsystem provides a graphical or command-line user inter-
face that defines the look and feel of the OS for a user. In addition, each subsys-
tem provides the API for that particular environment. This means that applications
created for a particular operating environment need only be recompiled to run on
Windows. Because the OS interface that applications see is the same as that for which
they were written, the source code does not need to be modified.

Client/Server Model

The Windows OS services, the environment subsystems, and the applications are
structured using the client/server computing model, which is a common model for

2.7 / MICROSOFT WINDOWS OVERVIEW 105

distributed computing and will be discussed in Part Six. This same architecture can be
adopted for use internally to a single system, as is the case with Windows.

The native NT API is a set of kernel-based services which provide the core
abstractions used by the system, such as processes, threads, virtual memory, I/O, and
communication. Windows provides a far richer set of services by using the client/
server model to implement functionality in user-mode processes. Both the environ-
ment subsystems and the Windows user-mode services are implemented as processes
that communicate with clients via RPC. Each server process waits for a request from
a client for one of its services (e.g., memory services, process creation services, or
networking services). A client, which can be an application program or another server
program, requests a service by sending a message. The message is routed through the
Executive to the appropriate server. The server performs the requested operation
and returns the results or status information by means of another message, which is
routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

e It simplifies the Executive. It is possible to construct a variety of APIs imple-
mented in user-mode servers without any conflicts or duplications in the Execu-
tive. New APIs can be added easily.

e It improves reliability. Each new server runs outside of the kernel, with its
own partition of memory, protected from other servers. A single server can fail
without crashing or corrupting the rest of the OS.

e It provides a uniform means for applications to communicate with services
via RPCs without restricting flexibility. The message-passing process is hidden
from the client applications by function stubs, which are small pieces of code
which wrap the RPC call. When an application makes an API call to an envi-
ronment subsystem or a service, the stub in the client application packages the
parameters for the call and sends them as a message to the server process that
implements the call.

e It provides a suitable base for distributed computing. Typically, distributed
computing makes use of a client/server model, with remote procedure calls
implemented using distributed client and server modules and the exchange of
messages between clients and servers. With Windows, a local server can pass
a message on to a remote server for processing on behalf of local client appli-
cations. Clients need not know whether a request is being serviced locally or
remotely. Indeed, whether a request is serviced locally or remotely can change
dynamically, based on current load conditions and on dynamic configuration
changes.

Threads and SMP

Two important characteristics of Windows are its support for threads and for symmet-
ric multiprocessing (SMP), both of which were introduced in Section 2.4. [RUSS11]
lists the following features of Windows that support threads and SMP:

e OS routines can run on any available processor, and different routines can
execute simultaneously on different processors.

106 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

e Windows supports the use of multiple threads of execution within a single pro-
cess. Multiple threads within the same process may execute on different proces-
sors simultaneously.

e Server processes may use multiple threads to process requests from more than
one client simultaneously.

e Windows provides mechanisms for sharing data and resources between pro-
cesses and flexible interprocess communication capabilities.

Windows Objects

Though the core of Windows is written in C, the design principles followed draw
heavily on the concepts of object-oriented design. This approach facilitates the shar-
ing of resources and data among processes, and the protection of resources from
unauthorized access. Among the key object-oriented concepts used by Windows are
the following:

e Encapsulation: An object consists of one or more items of data, called attri-
butes,and one or more procedures that may be performed on those data, called
services. The only way to access the data in an object is by invoking one of
the object’s services. Thus, the data in the object can easily be protected from
unauthorized use and from incorrect use (e.g., trying to execute a nonexecut-
able piece of data).

e Object class and instance: An object class is a template that lists the attributes
and services of an object, and defines certain object characteristics. The OS
can create specific instances of an object class as needed. For example, there is
a single process object class and one process object for every currently active
process. This approach simplifies object creation and management.

e Inheritance: Although the implementation is hand coded, the Executive uses
inheritance to extend object classes by adding new features. Every Executive
class is based on a base class which specifies virtual methods that support cre-
ating, naming, securing, and deleting objects. Dispatcher objects are Executive
objects that inherit the properties of an event object, so they can use common
synchronization methods. Other specific object types, such as the device class,
allow classes for specific devices to inherit from the base class, and add addi-
tional data and methods.

e Polymorphism: Internally, Windows uses a common set of API functions to
manipulate objects of any type; this is a feature of polymorphism, as defined in
Appendix D. However, Windows is not completely polymorphic because there
are many APIs that are specific to a single object type.

The reader unfamiliar with object-oriented concepts should review Appendix D.
Not all entities in Windows are objects. Objects are used in cases where data are
intended for user-mode access, or when data access is shared or restricted. Among
the entities represented by objects are files, processes, threads, semaphores, timers, and
graphical windows. Windows creates and manages all types of objects in a uniform way,
via the object manager. The object manager is responsible for creating and destroying
objects on behalf of applications, and for granting access to an object’s services and data.

2.7 / MICROSOFT WINDOWS OVERVIEW 107

Each object within the Executive, sometimes referred to as a kernel object
(to distinguish from user-level objects not of concern to the Executive), exists as a
memory block allocated by the kernel and is directly accessible only by kernel-mode
components. Some elements of the data structure are common to all object types (e.g.,
object name, security parameters, usage count), while other elements are specific to
a particular object type (e.g., a thread object’s priority). Because these object data
structures are in the part of each process’s address space accessible only by the kernel,
it is impossible for an application to reference these data structures and read or write
them directly. Instead, applications manipulate objects indirectly through the set of
object manipulation functions supported by the Executive. When an object is created,
the application that requested the creation receives back a handle for the object. In
essence, a handle is an index into a per-process Executive table containing a pointer
to the referenced object. This handle can then be used by any thread within the same
process to invoke Win32 functions that work with objects, or can be duplicated into
other processes.

Objects may have security information associated with them, in the form of a
Security Descriptor (SD). This security information can be used to restrict access to
the object based on contents of a token object which describes a particular user. For
example, a process may create a named semaphore object with the intent that only
certain users should be able to open and use that semaphore. The SD for the sema-
phore object can list those users that are allowed (or denied) access to the semaphore
object along with the sort of access permitted (read, write, change, etc.).

In Windows, objects may be either named or unnamed. When a process cre-
ates an unnamed object, the object manager returns a handle to that object, and the
handle is the only way to refer to it. Handles can be inherited by child processes or
duplicated between processes. Named objects are also given a name that other unre-
lated processes can use to obtain a handle to the object. For example, if process A
wishes to synchronize with process B, it could create a named event object and pass
the name of the event to B. Process B could then open and use that event object.
However, if process A simply wished to use the event to synchronize two threads
within itself, it would create an unnamed event object, because there is no need for
other processes to be able to use that event.

There are two categories of objects used by Windows for synchronizing the use
of the processor:

e Dispatcher objects: The subset of Executive objects which threads can wait on
to control the dispatching and synchronization of thread-based system opera-
tions. These will be described in Chapter 6.

* Control objects: Used by the Kernel component to manage the operation of
the processor in areas not managed by normal thread scheduling. Table 2.5 lists
the Kernel control objects.

Windows is not a full-blown object-oriented OS. It is not implemented in an
object-oriented language. Data structures that reside completely within one Execu-
tive component are not represented as objects. Nevertheless, Windows illustrates the
power of object-oriented technology and represents the increasing trend toward the
use of this technology in OS design.

108 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Table 2.5 Windows Kernel Control Objects

Asynchronous procedure call | Used to break into the execution of a specified thread and to cause a proce-
dure to be called in a specified processor mode.

Deferred procedure call Used to postpone interrupt processing to avoid delaying hardware interrupts.
Also used to implement timers and interprocessor communication.

Interrupt Used to connect an interrupt source to an interrupt service routine by means
of an entry in an Interrupt Dispatch Table (IDT). Each processor has an IDT
that is used to dispatch interrupts that occur on that processor.

Process Represents the virtual address space and control information necessary for
the execution of a set of thread objects. A process contains a pointer to an
address map, a list of ready threads containing thread objects, a list of threads
belonging to the process, the total accumulated time for all threads executing
within the process, and a base priority.

Thread Represents thread objects, including scheduling priority and quantum, and
which processors the thread may run on.

Profile Used to measure the distribution of run time within a block of code. Both
user and system codes can be profiled.

2.8 TRADITIONAL UNIX SYSTEMS

History

UNIX was initially developed at Bell Labs and became operational on a PDP-7
in 1970. Work on UNIX at Bell Labs, and later elsewhere, produced a series of ver-
sions of UNIX. The first notable milestone was porting the UNIX system from the
PDP-7 to the PDP-11. This was the first hint that UNIX would be an OS for all
computers. The next important milestone was the rewriting of UNIX in the program-
ming language C. This was an unheard-of strategy at the time. It was generally felt
that something as complex as an OS, which must deal with time-critical events, had
to be written exclusively in assembly language. Reasons for this attitude include the
following:

e Memory (both RAM and secondary store) was small and expensive by today’s
standards, so effective use was important. This included various techniques for
overlaying memory with different code and data segments, and self-modifying
code.

e Even though compilers had been available since the 1950s, the computer indus-
try was generally skeptical of the quality of automatically generated code. With
resource capacity small, efficient code, both in terms of time and space, was
essential.

¢ Processor and bus speeds were relatively slow, so saving clock cycles could make
a substantial difference in execution time.

The C implementation demonstrated the advantages of using a high-level
language for most if not all of the system code. Today, virtually all UNIX implemen-
tations are written in C.

2.8 / TRADITIONAL UNIX SYSTEMS 109

These early versions of UNIX were popular within Bell Labs. In 1974, the
UNIX system was described in a technical journal for the first time [RITC74]. This
spurred great interest in the system. Licenses for UNIX were provided to commercial
institutions as well as universities. The first widely available version outside Bell Labs
was Version 6, in 1976. The follow-on Version 7 released in 1978, is the ancestor of
most modern UNIX systems. The most important of the non-AT&T systems to be
developed was done at the University of California at Berkeley, called UNIX BSD
(Berkeley Software Distribution), running first on PDP and then on VAX comput-
ers. AT&T continued to develop and refine the system. By 1982, Bell Labs had com-
bined several AT&T variants of UNIX into a single system, marketed commercially
as UNIX System III. A number of features was later added to the OS to produce
UNIX System V.

Description

The classic UNIX architecture can be pictured as in three levels: hardware, kernel,
and user. The OS is often called the system kernel, or simply the kernel, to emphasize
its isolation from the user and applications. It interacts directly with the hardware. It is
the UNIX kernel that we will be concerned with in our use of UNIX as an example in
this book. UNIX also comes equipped with a number of user services and interfaces
that are considered part of the system. These can be grouped into the shell, which
supports system calls from applications, other interface software, and the components
of the C compiler (compiler, assembler, loader). The level above this consists of user
applications and the user interface to the C compiler.

A look at the kernel is provided in Figure 2.15. User programs can invoke OS
services either directly, or through library programs. The system call interface is the
boundary with the user and allows higher-level software to gain access to specific
kernel functions. At the other end, the OS contains primitive routines that interact
directly with the hardware. Between these two interfaces, the system is divided into
two main parts: one concerned with process control, and the other concerned with file
management and I/O. The process control subsystem is responsible for memory man-
agement, the scheduling and dispatching of processes, and the synchronization and
interprocess communication of processes. The file system exchanges data between
memory and external devices either as a stream of characters or in blocks. To achieve
this, a variety of device drivers are used. For block-oriented transfers, a disk cache
approach is used: A system buffer in main memory is interposed between the user
address space and the external device.

The description in this subsection has dealt with what might be termed tra-
ditional UNIX systems; [VAHA96] uses this term to refer to System V Release 3
(SVR3),4.3BSD, and earlier versions. The following general statements may be made
about a traditional UNIX system. It is designed to run on a single processor, and lacks
the ability to protect its data structures from concurrent access by multiple processors.
Its kernel is not very versatile, supporting a single type of file system, process schedul-
ing policy, and executable file format. The traditional UNIX kernel is not designed to
be extensible and has few facilities for code reuse. The result is that, as new features
were added to the various UNIX versions, much new code had to be added, yielding
a bloated and unmodular kernel.

110 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

User programs

R S | Libraries

. User level

| System call interface

Inter-process
communication
File subsystem
= Process
control
subsystem Scheduler
Buffer cache Memory
1t management
Character Block
Device drivers
j Kernel level

| Hardware control |

| Hardware level |

Figure 2.15 Traditional UNIX Architecture

2.9 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each pro-
viding some useful features. There was a need to produce a new implementation that
unified many of the important innovations, added other modern OS design features,
and produced a more modular architecture. Typical of the modern UNIX kernel is
the architecture depicted in Figure 2.16. There is a small core of facilities, written in
a modular fashion, that provide functions and services needed by a number of OS
processes. Each of the outer circles represents functions and an interface that may
be implemented in a variety of ways.
We now turn to some examples of modern UNIX systems (see Figure 2.17).

System V Release 4 (SVR4)

SVR4, developed jointly by AT&T and Sun Microsystems, combines features from
SVR3,4.3BSD, Microsoft Xenix System V, and SunOS. It was almost a total rewrite
of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,

2.9 / MODERN UNIX SYSTEMS 111

coff

NFS
File mappings

FFS

Device Virtual vnode/vfs
i memory interface
Mmappings framework §5fs
Anonymous
mappings RES
Common
facilities
Disk driver Time-sharing

Block
device
switch

processes

Scheduler
framework

System
processes

Tape driver

Network tty
driver driver

Figure 2.16 Modern UNIX Kernel

dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers, and was
developed to provide a uniform platform for commercial UNIX deployment. It has
succeeded in this objective and is perhaps the most important UNIX variant. It incor-
porates most of the important features ever developed on any UNIX system and does
so in an integrated, commercially viable fashion. SVR4 runs on processors ranging
from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a
key role in the development of OS design theory. 4.xBSD is widely used in academic
installations and has served as the basis of a number of commercial UNIX products.
It is probably safe to say that BSD is responsible for much of the popularity of UNIX,
and that most enhancements to UNIX first appeared in BSD versions.

112 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

—— | FreeBSD 11.0

—>| NetBSD 70
. .

: : L [OpenBsD 6.0
1 1 | p

Family

BSD

>/ SunOS 414]

; ; NextStep 3.3 0S X (now macOS) 10.12

———>[BSD (Berkeley Software Distribution) 4.4

Linux 4.7

Research Unix (Bell Labs) 10.5 |

—>| Commercial Unix (AT&T) | UnixWare (Univel/SCO)
E . I Solaris (Sun/Oracle) 113

—>| H[I’-UX 11iv3
> AIX (IBM) 7.2

Systém \%
Family

1970 1980 1990 2000 2010 2016
Figure 2.17 UNIX Family Tree

4.4BSD was the final version of BSD to be released by Berkeley, with the design
and implementation organization subsequently dissolved. It is a major upgrade to
4.3BSD and includes a new virtual memory system, changes in the kernel structure,
and a long list of other feature enhancements.

There are several widely used, open-source versions of BSD. FreeBSD
is popular for Internet-based servers and firewalls and is used in a number of
embedded systems. NetBSD is available for many platforms, including large-
scale server systems, desktop systems, and handheld devices, and is often used in
embedded systems. OpenBSD is an open-source OS that places special emphasis
on security.

The latest version of the Macintosh OS, originally known as OS X and now
called MacOS, is based on FreeBSD 5.0 and the Mach 3.0 microkernel.

Solaris 11

Solaris is Oracle’s SVR4-based UNIX release, with the latest version being 11. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is one the most widely used and most suc-
cessful commercial UNIX implementations.

2.10 / LINUX 113

2.10 LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture. Linus
Torvalds, a Finnish student of computer science, wrote the initial version. Torvalds
posted an early version of Linux on the Internet in 1991. Since then, a number of peo-
ple, collaborating over the Internet, have contributed to the development of Linux, all
under the control of Torvalds. Because Linux is free and the source code is available,
it became an early alternative to other UNIX workstations, such as those offered by
Sun Microsystems and IBM. Today, Linux is a full-featured UNIX system that runs
on virtually all platforms.

Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable, plat-
form-independent software that is free, high quality, and embraced by the user com-
munity. FSF’s GNU project? provides tools for software developers, and the GNU
Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools in devel-
oping his kernel, which he then released under the GPL. Thus, the Linux distributions
that you see today are the product of FSF’s GNU project, Torvald’s individual effort,
and the efforts of many collaborators all over the world.

In addition to its use by many individual developers, Linux has now made sig-
nificant penetration into the corporate world. This is not only because of the free
software, but also because of the quality of the Linux kernel. Many talented devel-
opers have contributed to the current version, resulting in a technically impressive
product. Moreover, Linux is highly modular and easily configured. This makes it easy
to squeeze optimal performance from a variety of hardware platforms. Plus, with the
source code available, vendors can tweak applications and utilities to meet specific
requirements. There are also commercial companies such as Red Hat and Canonical,
which provide highly professional and reliable support for their Linux-based distribu-
tions for long periods of time. Throughout this book, we will provide details of Linux
kernel internals based on Linux kernel 4.7, released in 2016.

A large part of the success of the Linux Operating System is due to its develop-
ment model. Code contributions are handled by one main mailing list, called LKML
(Linux Kernel Mailing List). Apart from it, there are many other mailing lists, each
dedicated to a Linux kernel subsystem (like the netdev mailing list for networking,
the linux-pci for the PCI subsystem, the linux-acpi for the ACPI subsystem, and a
great many more). The patches which are sent to these mailing lists should adhere to
strict rules (primarily the Linux Kernel coding style conventions), and are reviewed
by developers all over the world who are subscribed to these mailing lists. Anyone
can send patches to these mailing lists; statistics (for example, those published in
the lwn.net site from time to time) show that many patches are sent by develop-
ers from famous commercial companies like Intel, Red Hat, Google, Samsung, and
others. Also, many maintainers are employees of commercial companies (like David

2 GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.

114 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Miller, the network maintainer, who works for Red Hat). Many times such patches
are fixed according to feedback and discussions over the mailing list, and are resent
and reviewed again. Eventually, the maintainer decides whether to accept or reject
patches; and each subsystem maintainer from time to time sends a pull request of
his tree to the main kernel tree, which is handled by Linus Torvalds. Linus himself
releases a new kernel version in about every 7-10 weeks, and each such release has
about 5-8 release candidates (RC) versions.

We should mention that it is interesting to try to understand why other open-
source operating systems, such as various flavors of BSD or OpenSolaris, did not have
the success and popularity which Linux has; there can be many reasons for that, and
for sure, the openness of the development model of Linux contributed to its popular-
ity and success. But this topic is out of the scope of this book.

Modular Structure

Most UNIX kernels are monolithic. Recall from earlier in this chapter, a monolithic
kernel is one that includes virtually all of the OS functionality in one large block of
code that runs as a single process with a single address space. All the functional com-
ponents of the kernel have access to all of its internal data structures and routines.
If changes are made to any portion of a typical monolithic OS, all the modules and
routines must be relinked and reinstalled, and the system rebooted, before the changes
can take effect. As a result, any modification, such as adding a new device driver or file
system function, is difficult. This problem is especially acute for Linux, for which devel-
opment is global and done by a loosely associated group of independent developers.

Although Linux does not use a microkernel approach, it achieves many of the
potential advantages of this approach by means of its particular modular architec-
ture. Linux is structured as a collection of modules, a number of which can be auto-
matically loaded and unloaded on demand. These relatively independent blocks are
referred to as loadable modules [GOYE99]. In essence, a module is an object file
whose code can be linked to and unlinked from the kernel at runtime. Typically, a
module implements some specific function, such as a file system, a device driver, or
some other feature of the kernel’s upper layer. A module does not execute as its own
process or thread, although it can create kernel threads for various purposes as neces-
sary. Rather, a module is executed in kernel mode on behalf of the current process.

Thus, although Linux may be considered monolithic, its modular structure over-
comes some of the difficulties in developing and evolving the kernel. The Linux
loadable modules have two important characteristics:

1. Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing. A module can also be
unlinked and removed from memory at any time.

2. Stackable modules: The modules are arranged in a hierarchy. Individual mod-
ules serve as libraries when they are referenced by client modules higher up in
the hierarchy, and as clients when they reference modules further down.

Dynamic linking facilitates configuration and saves kernel memory [FRAN97].
In Linux, a user program or user can explicitly load and unload kernel modules using
the insmod or modprobe and rmmod commands. The kernel itself monitors the need

2.10 / LINUX 115

Module Module
*next *next
*name *name

version

version

srcversion

srcversion

num_gpl_syms

num_gpl_syms

num_syms num_syms
num_exentries num_exentries
- FAT - VFAT
syms syms
state state
extable extable
° °
o kernel_symbol o symbol_table
O value O value
*name *name
value value
*name *name
° °
° °
° °
value value
*name *name

Figure 2.18 Example List of Linux Kernel Modules

for particular functions, and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

1.

2.

Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.

The kernel can make sure that needed modules are present, refraining from
unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

Figure 2.18 is an example that illustrates the structures used by Linux to man-

age modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables: the module
table and the symbol table (kernel_symbol). The module table includes the following
elements:

*name: The module name

refent: Module counter. The counter is incremented when an operation involv-
ing the module’s functions is started and decremented when the operation
terminates.

num_syms: Number of exported symbols.
*syms: Pointer to this module’s symbol table.

The symbol table lists symbols that are defined in this module and used elsewhere.

116 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Kernel Components

Figure 2.19, taken from [MOSB02], shows the main components of a typical Linux
kernel implementation. The figure shows several processes running on top of the ker-
nel. Each box indicates a separate process, while each squiggly line with an arrowhead
represents a thread of execution. The kernel itself consists of an interacting collection
of components, with arrows indicating the main interactions. The underlying hard-
ware is also depicted as a set of components with arrows indicating which kernel com-
ponents use or control which hardware components. All of the kernel components,
of course, execute on the processor. For simplicity, these relationships are not shown.
Briefly, the principal kernel components are the following:

e Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.6 gives
a few examples of signals.

e System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: file system, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous. Table 2.7 defines a few
examples in each category.

¢ Processes and scheduler: Creates, manages, and schedules processes.

e Virtual memory: Allocates and manages virtual memory for processes.

©
5
q St
2
=]

Signals System calls

Processes \ \
and scheduler File Network
! systems protocols —_
Virtual g
memory l l f 2
Char device Block device Network
drivers drivers device drivers
\ / —
Traps and Physical it
faults memory
~—

ks Bl edende Atk ---;Z ------ \ ---k ----------- o
- :
CPU System Terminal Disk Network interface Z
memory controller E

Figure 2.19 Linux Kernel Components

2.10 / LINUX 117

Table 2.6 Some Linux Signals

SIGHUP
SIGQUIT
SIGTRAP
SIGBUS
SIGKILL
SIGSEGV
SIGPIPT
SIGTERM
SIGCHLD

Terminal hangup SIGCONT Continue

Keyboard quit SIGTSTP Keyboard stop

Trace trap SIGTTOU Terminal write

Bus error SIGXCPU CPU limit exceeded
Kill signal SIGVTALRM Virtual alarm clock
Segmentation violation SIGWINCH Window size unchanged
Broken pipe SIGPWR Power failure
Termination SIGRTMIN First real-time signal
Child status unchanged SIGRTMAX Last real-time signal

¢ File systems: Provide a global, hierarchical namespace for files, directories, and
other file-related objects and provide file system functions.

* Network protocols: Support the Sockets interface to users for the TCP/IP pro-
tocol suite.

Table 2.7 Some Linux System Calls

File System Related
close Close a file descriptor.
link Make a new name for a file.
open Open and possibly create a file or device.
read Read from file descriptor.
write Write to file descriptor.

Process Related

execve Execute program.
exit Terminate the calling process.
getpid Get process identification.
setuid Set user identity of the current process.
ptrace Provide a means by which a parent process may observe and control the execution

of another process, and examine and change its core image and registers.

Scheduling Related

sched_getparam
sched_get_priority max
sched_setscheduler
sched_rr_get_interval

sched_yield

Set the scheduling parameters associated with the scheduling policy for the process
identified by pid.

Return the maximum priority value that can be used with the scheduling algorithm
identified by policy.

Set both the scheduling policy (e.g., FIFO) and the associated parameters for the
process pid.

Write into the timespec structure pointed to by the parameter to the round-robin
time quantum for the process pid.

A process can relinquish the processor voluntarily without blocking via this system
call. The process will then be moved to the end of the queue for its static priority
and a new process gets to run.

118 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Table 2.7 (Continued)

Interprocess Communication (IPC) Related

msgrey A message buffer structure is allocated to receive a message. The system call
then reads a message from the message queue specified by msqid into the newly
created message buffer.
semctl Perform the control operation specified by cmd on the semaphore set semid.
semop Perform operations on selected members of the semaphore set semid.
shmat Attach the shared memory segment identified by semid to the data segment of the
calling process.
shmctl Allow the user to receive information on a shared memory segment; set the owner,
group, and permissions of a shared memory segment; or destroy a segment.
Socket (networking) Related
bind Assign the local IP address and port for a socket. Return 0 for success or —1 for error.
connect Establish a connection between the given socket and the remote socket associated
with sockaddr.
gethostname Return local host name.
send Send the bytes contained in buffer pointed to by *msg over the given socket.
setsockopt Set the options on a socket.
Miscellaneous
fsync Copy all in-core parts of a file to disk, and wait until the device reports that all parts
are on stable storage.
time Return the time in seconds since January 1, 1970.
vhangup Simulate a hangup on the current terminal. This call arranges for other users to

have a “clean” tty at login time.

Character device drivers: Manage devices that require the kernel to send or
receive data one byte at a time, such as terminals, modems, and printers.

Block device drivers: Manage devices that read and write data in blocks, such
as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).

Network device drivers: Manage network interface cards and communications
ports that connect to network devices, such as bridges and routers.

Traps and faults: Handle traps and faults generated by the processor, such as
a memory fault.

Physical memory: Manages the pool of page frames in real memory and allo-
cates pages for virtual memory.

Interrupts Handle interrupts from peripheral devices.

2.11 ANDROID

The Android operating system is a Linux-based system originally designed for mobile
phones. It is the most popular mobile OS by a wide margin: Android handsets outsell
Apple’s iPhones globally by about 4 to 1 [MORRI16]. But, this is just one element in

2.11 / ANDROID 119

the increasing dominance of Android. Increasingly, it is the OS behind virtually any
device with a computer chip other than servers and PCs. Android is a widely used
OS for the Internet of things.

Initial Android OS development was done by Android, Inc., which was bought
by Google in 2005. The first commercial version, Android 1.0, was released in 2008.
As of this writing, the most recent version is Android 7.0 (Nougat). Android has an
active community of developers and enthusiasts who use the Android Open Source
Project (AOSP) source code to develop and distribute their own modified versions
of the operating system. The open-source nature of Android has been the key to its
success.

Android Software Architecture

Android is defined as a software stack that includes a modified version of the Linux
kernel, middleware, and key applications. Figure 2.20 shows the Android software
architecture in some detail. Thus, Android should be viewed as a complete software
stack, not just an OS.

AppLIcATIONS All the applications with which the user interacts directly are part
of the application layer. This includes a core set of general-purpose applications,
such as an e-mail client, SMS program, calendar, maps, browser, contacts, and other
applications commonly standard with any mobile device. Applications are typically
implemented in Java. A key goal of the open-source Android architecture is to make
it easy for developers to implement new applications for specific devices and specific
end-user requirements. Using Java enables developers to be relieved of hardware-
specific considerations and idiosyncrasies, as well as tap into Java’s higher-level
language features, such as predefined classes. Figure 2.20 shows examples of the types
of base applications found on the Android platform.

APPLICATION FRAMEWORK The Application Framework layer provides high-level
building blocks, accessible through standardized APIs, that programmers use to
create new apps. The architecture is designed to simplify the reuse of components.
Some of the key Application Framework components are:

e Activity Manager: Manages lifecycle of applications. It is responsible for start-
ing, pausing, and resuming the various applications.

* Window Manager: Java abstraction of the underlying Surface Manager. The
Surface Manager handles the frame buffer interaction and low-level drawing,
whereas the Window Manager provides a layer on top of it, to allow applica-
tions to declare their client area and use features like the status bar.

e Package Manager: Installs and removes applications.
e Telephony Manager: Allows interaction with phone, SMS, and MMS services.

e Content Providers: These functions encapsulate application data that need to
be shared between applications, such as contacts.

e Resource Manager: Manages application resources, such as localized strings
and bitmaps.

120 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Calculator

System Libraries

E-mail

XMPP Service

[Surface Manager] [Media Framework] [SQLite]

Core Libraries

[OpenGL/ES] [FreeType] [LibWebCore]

[SGL] [SSL] [Libc]

Linux Kernel

[Display Driver] [Camera Driver] [Bluetooth Driver] [Flaslll)rl\i/{,ir:lory] [Bing;eirv(elrl:' ©)]

. . Power
Audio Drivers] [Management]

Android Runtime (ART)

Y

[USB Driver] [Keypad Driver] [WiFi Driver]

Implementation:

. Applications, Application Framework: Java

|:| - System Libraries, Android Runtime: C and C++

|:| Linux Kernel: C

Figure 2.20 Android Software Architecture

e View System: Provides the user interface (UT) primitives, such as buttons, list-
boxes, date pickers, and other controls, as well as UI Events (such as touch and
gestures).

¢ Location Manager: Allows developers to tap into location-based services,
whether by GPS, cell tower IDs, or local Wi-Fi databases. (recognized Wi-Fi
hotspots and their status)

¢ Notification Manager: Manages events, such as arriving messages and
appointments.

e XMPP: Provides standardized messaging (also, Chat) functions between
applications.

SysTEM LIBRARIES The layer below the Application Framework consists of two
parts: System Libraries, and Android Runtime. The System Libraries component is

2.11 / ANDROID 121

a collection of useful system functions, written in C or C++ and used by various
components of the Android system. They are called from the application framework
and applications through a Java interface. These features are exposed to developers
through the Android application framework. Some of the key system libraries include
the following:

e Surface Manager: Android uses a compositing window manager similar to Vista
or Compiz, but it is much simpler. Instead of drawing directly to the screen
buffer, your drawing commands go into off-screen bitmaps that are then com-
bined with other bitmaps to form the screen content the user sees. This lets the
system create all sorts of interesting effects, such as see-through windows and
fancy transitions.

* OpenGL: OpenGL (Open Graphics Library) is a cross-language, multi-
platform API for rendering 2D and 3D computer graphics. OpenGL/ES
(OpenGL for embedded systems) is a subset of OpenGL designed for embed-
ded systems.

* Media Framework: The Media Framework supports video recording and
playing in many formats, including AAC, AVC (H.264), H.263, MP3, and
MPEG-4.

e SQL Database: Android includes a lightweight SQLite database engine for
storing persistent data. SQLite is discussed in a subsequent section.

* Browser Engine: For fast display of HTML content, Android uses the WebKit
library, which is essentially the same library used in Safari and iPhone. It was
also the library used for the Google Chrome browser until Google switched
to Blink.

¢ Bionic LibC: This is a stripped-down version of the standard C system library,
tuned for embedded Linux-based devices. The interface is the standard Java
Native Interface (JNI).

Linux KERNEL The OS kernel for Android is similar to, but not identical with, the
standard Linux kernel distribution. One noteworthy change is the Android kernel
lacks drivers not applicable in mobile environments, making the kernel smaller. In
addition, Android enhances the Linux kernel with features that are tailored to the
mobile environment, and generally not as useful or applicable on a desktop or laptop
platform.

Android relies on its Linux kernel for core system services such as security,
memory management, process management, network stack, and driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the
software stack, and enables Android to use the wide range of hardware drivers that
Linux supports.

Android Runtime

Most operating systems used on mobile devices, such as iOS and Windows, use soft-
ware that is compiled directly to the specific hardware platform. In contrast, most
Android software is mapped into a bytecode format, which is then transformed into

122 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

native instructions on the device itself. Earlier releases of Android used a scheme
known as Dalvik. However, Dalvik has a number of limitations in terms of scaling up
to larger memories and multicore architectures, so more recent releases of Android
rely on a scheme known as Android runtime (ART). ART is fully compatible with
Dalvik’s existing bytecode format, dex (Dalvik Executable), so application develop-
ers do not need to change their coding to be executable under ART. We will first look
at Dalvik, then examine ART.

THE DaLvIK VIRTUAL MACHINE The Dalvik VM (DVM) executes files in the
.dex format, a format that is optimized for efficient storage and memory-mappable
execution. The VM can run classes compiled by a Java language compiler that
have been transformed into its native format using the included “dx” tool. The VM
runs on top of Linux kernel, which it relies on for underlying functionality (such
as threading and low-level memory management). The Dalvik core class library is
intended to provide a familiar development base for those used to programming
with Java Standard Edition, but it is geared specifically to the needs of a small
mobile device.

Each Android application runs in its own process, with its own instance of the
Dalvik VM. Dalvik has been written so a device can efficiently run multiple VMs
efficiently.

THE DEx FiLE FormMAT The DVM runs applications and code written in Java. A
standard Java compiler turns source code (written as text files) into bytecode. The
bytecode is then compiled into a .dex file that the DVM can read and use. In essence,
class files are converted into .dex files (much like a .jar file if one were using the
standard Java VM) and then read and executed by the DVM. Duplicate data used
in class files are included only once in the .dex file, which saves space and uses less
overhead. The executable files can be modified again when an application is installed
to make things even more optimized for mobile.

ANDROID RUNTIME CONCEPTS ART is the current application runtime used by
Android, introduced with Android version 4.4 (KitKat). When Android was designed
initially, it was designed for single core (with minimal multithreading support in
hardware) and low-memory devices, for which Dalvik seemed a suitable runtime.
However, in recent times, the devices that run Android have multicore processors
and more memory (at a relatively cheaper cost), which made Google to re-think the
runtime design to provide developers and users a richer experience by making use
of the available high-end hardware.

For both Dalvik and ART, all Android applications written in Java are com-
piled to dex bytecode. While Dalvik uses dex bytecode format for portability, it
has to be converted (compiled) to machine code to be actually run by a processor.
The Dalvik runtime did this conversion from dex bytecode to native machine code
when the application ran, and this process was called JIT (just-in-time) compilation.
Because JIT compiles only a part of the code, it has a smaller memory footprint
and uses less physical space on the device. (Only the dex files are stored in the
permanent storage as opposed to the actual machine code.) Dalvik identifies the

2.11 / ANDROID 123

section of code that runs frequently and caches the compiled code for this once, so
the subsequent executions of this section of code are faster. The pages of physical
memory that store the cached code are not swappable/pageable, so this also adds
a bit to the memory pressure if the system is already in such a state. Even with
these optimizations, Dalvik has to do JIT-compilation every time the app is run,
which consumes a considerable amount of processor resources. Note the processor
is not only being used for actually running the app, but also for converting the dex
bytecode to native code, thereby draining more power. This processor usage was
also the reason for poor user interface experience in some heavy usage applications
when they start.

To overcome some of these issues, and to make more effective use of the
available high-end hardware, Android introduced ART. ART also executes dex
bytecode but instead of compiling the bytecode at runtime, ART compiles the
bytecode to native machine code during install time of the app. This is called ahead-
of-time (AOT) compilation. ART uses the “dex20at” tool to do this compilation
at install time. The output of the tool is a file that is then executed when the appli-
cation runs.

Figure 2.21 shows the life cycle of an APK, an application package that
comes from the developer to the user. The cycle begins with source code being
compiled into .dex format and combined with any appropriate support code to
form an APK. On the user side, the received APK is unpacked. The resources
and native code are generally installed directly into the application directory. The
.dex code, however, requires further processing, both in the case of Dalvik and
of ART. In Dalvik, a function called dexopt is applied to the dex file to produce
an optimized version of dex (odex) referred to as quickened dex; the objective is
to make the dex code execute more quickly on the dex interpreter. In ART, the
dex2oat function does the same sort of optimization as dexopt; it also com-
piles the dex code to produce native code on the target device. The output of the
dex2oat function is an Executable and Linkable Format (ELF) file, which runs
directly without an interpreter.

ADVANTAGES AND DISADVANTAGES The benefits of using ART include the following:

e Reduces startup time of applications as native code is directly executed.
e Improves battery life because processor usage for JIT is avoided.

e Lesser RAM footprint is required for the application to run (as there is no
storage required for JIT cache). Moreover, because there is no JIT code cache,
which is non-pageable, this provides flexibility of RAM usage when there is a
low-memory scenario.

e There are a number of Garbage Collection optimizations and debug enhance-
ments that went into ART.
Some potential disadvantages of ART:

e Because the conversion from bytecode to native code is done at install time,
application installation takes more time. For Android developers who load an
app a number of times during testing, this time may be noticeable.

124 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Resources &
native code

Package
zip
Source > o o o — > dex file APK
install
Resources &
native code
dex file
dex & native code
Dexopt dex2oat _ e
Quickened dex~_ __ odex -7 - Install
R ELF file (<~
Dalvik e ART |
] |
Libraries
Y Y L

Davik | Naive | | ART | Naiive |

Figure 2.21 The Life Cycle of an APK

e On the first fresh boot or first boot after factory reset, all applications installed
on a device are compiled to native code using dex2opt. Therefore, the first boot
can take significantly longer (in the order of 3-5 seconds) to reach Home Screen
compared to Dalvik.

e The native code thus generated is stored on internal storage that requires a
significant amount of additional internal storage space.

Android System Architecture

It is useful to illustrate Android from the perspective of an application developer,
as shown in Figure 2.22. This system architecture is a simplified abstraction of the
software architecture shown in Figure 2.20. Viewed in this fashion, Android consists
of the following layers:

e Applications and Framework: Application developers are primarily concerned
with this layer and the APIs that allow access to lower-layer services.

e Binder IPC: The Binder Inter-Process Communication mechanism allows the
application framework to cross process boundaries and call into the Android
system services code. This basically allows high-level framework APIs to inter-
act with Android’s system services.

2.11 / ANDROID 125

Media Server System Server

service

Camera . Activit
service Other media manageyr Other. SYStng
services services
- managers

Android Runtime (ART)

manager

[AudioFlinger] MediaPlayer] Search service Window

Hardware Abstraction Layer (HAL)

Camera HAL Audio HAL Graphics HAL
Other HALSs
Linux Kernel
. Audio driver . .
Camera driver Display drivers
[] [(ALSA, 0SS, etc)] [Py] Other drivers

Figure 2.22 Android System Architecture

¢ Android System Services: Most of the functionality exposed through the appli-
cation framework APIs invokes system services that in turn access the underly-
ing hardware and kernel functions. Services can be seen as being organized in
two groups: Media services deal with playing and recording media and system
services handle system-level functionalities such as power management, loca-
tion management, and notification management.

e Hardware Abstraction Layer (HAL): The HAL provides a standard interface
to kernel-layer device drivers, so upper-layer code need not be concerned
with the details of the implementation of specific drivers and hardware. The
HAL is virtually unchanged from that in a standard Linux distribution. This

126 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

layer is used to abstract the device-specific capabilities (which are supported
by hardware and exposed by the Kernel) from the user space. The user space
could either be Android’s Services or Applications. The purpose of HAL is to
keep the user space consistent with respect to various devices. Also, vendors
can make their own enhancements and put it in their HAL layer without
impacting the user space. An example for this is the HwC (Hardware Com-
poser), which is a vendor-specific HAL implementation that understands
the rendering capabilities of the underlying hardware. Surface manager
seamlessly works with various implementations of the HwC from different
vendors.

e Linux Kernel: Linux kernel is tailored to meet the demands of a mobile
environment.

Activities

An activity is a single visual user interface component, including objects such as
menu selections, icons, and checkboxes. Every screen in an application is an exten-
sion of the Activity class. Activities use Views to form graphical user interfaces
that display information and respond to user actions. We will discuss Activities
in Chapter 4.

Power Management

Android adds two features to the Linux kernel to enhance the ability to perform
power management: alarms, and wakelocks.

The Alarms capability is implemented in the Linux kernel, and is visible to the
app developer through the AlarmManager in the RunTime core libraries. Through
the AlarmManager, an app can request a timed wake-up service. The Alarms facility
is implemented in the kernel so an alarm can trigger even if the system is in sleep
mode. This allows the system to go into sleep mode, saving power, even though there
is a process that requires a wake up.

The wakelock facility prevents an Android system from entering into sleep
mode. An application can hold one of the following wakelocks:

¢ Full_ Wake_Lock: Processor on, full screen brightness, keyboard bright
e Partial_Wake_Lock: Processor on, screen off, keyboard off
¢ Screen_Dim_Wake_Lock: Processor on, screen dim, keyboard off
e Screen_Bright Wake_Lock: Processor on, screen bright, keyboard off
These locks are requested through the API whenever an application requires
one of the managed peripherals to remain powered on. If no wakelock exists, which
locks the device, then it is powered off to conserve battery life.
These kernel objects are made visible to apps in user space by means of /sys/

power/wavelock files. The wake_lock and wake_unlock files can be used to define
and toggle a lock by writing to the corresponding file.

2.12 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 127

2.12 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
batch processing monolithic kernel scheduling
batch system multiprogrammed batch serial processing
execution context system state
distributed operating system multiprogramming symmetric multiprocessing
downtime multitasking (SMP)
fault multithreading task
interrupt nucleus thread
job object-oriented design time sharing
job control language (JCL) operating system time-sharing system
kernel physical address time slicing
kernel mode privileged instruction uniprogramming
loadable modules process uptime
mean time to failure (MTTF) process state user mode
mean time to repair (MTTR) real address virtual address
memory management reliability virtual machine
microkernel resident monitor virtual memory
monitor round-robin

Review Questions

2.1. What are three objectives of an OS design?

2.2. What is the kernel of an OS?

2.3. What is multiprogramming?

2.4. Whatis a process?

2.5. How is the execution context of a process used by the OS?

2.6. List and briefly explain five storage management responsibilities of a typical OS.

2.7. What is time slicing?

2.8. Describe the round-robin scheduling technique.

2.9. Explain the difference between a monolithic kernel and a microkernel.
2.10. What is multithreading?
2.11. What do you understand by a distributed operating system?

Problems

2.1. Suppose we have four jobs in a computer system, in the order JOB1, JOB2, JOB3
and JOB4. JOBI1 requires 8 s of CPU time and 8 s of I/O time; JOB2 requires 4 s of
CPU time and 14 s of disk time; JOB3 requires 6 s of CPU time; and, JOB4 requires
4 s of CPU time and 16 s of printer time. Define the following quantities for system
utilization:

® Turnaround time = actual time to complete a job
® Throughput = average number of jobs completed per time period T
® Processor utilization = percentage of time that the processor is active (not waiting)

128 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

2.2,

2.3.

24.

2.5.

2.6.

Compute these quantities (with illustrations if needed) in each of the following systems:

a. A uniprogramming system, whereby each job executes to completion before the
next job can start its execution.

b. A multiprogramming system that follows a simple round-robin scheduling. Each
process gets 2 s of CPU time turn-wise in a circular manner

In a batch operating system, three jobs are submitted for execution. Each job involves
an I/O activity, CPU time and another I/O activity of the same time span as the first.
Job JOBI1 requires a total of 23 ms, with 3 ms CPU time; JOB2 requires a total time
of 29 ms with 5 ms CPU time; JOB3 requires a total time of 14 ms with 4 ms CPU
time. Illustrate their execution and find CPU utilization for uniprogramming and
multiprogramming systems.

Contrast the scheduling policies you might use when trying to optimize a time-sharing
system with those you would use to optimize a multiprogrammed batch system.

A computer system boots and starts a user application when an interrupt occurs.
In which modes does the operating system work in this scenario?

In IBM’s mainframe OS, OS/390, one of the major modules in the kernel is the System
Resource Manager. This module is responsible for the allocation of resources among
address spaces (processes). The SRM gives OS/390 a degree of sophistication unique
among operating systems. No other mainframe OS, and certainly no other type of
OS, can match the functions performed by SRM. The concept of resource includes
processor, real memory, and I/O channels. SRM accumulates statistics pertaining to
utilization of processor, channel, and various key data structures. Its purpose is to
provide optimum performance based on performance monitoring and analysis. The
installation sets forth various performance objectives, and these serve as guidance
to the SRM, which dynamically modifies installation and job performance charac-
teristics based on system utilization. In turn, the SRM provides reports that enable
the trained operator to refine the configuration and parameter settings to improve
user service.

This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
approximately 20 times per second, and inspects each and every page frame. If the page
has not been referenced or changed, a counter is incremented by 1. Over time, SRM
averages these numbers to determine the average number of seconds that a page frame
in the system goes untouched. What might be the purpose of this, and what action
might SRM take?

A multiprocessor with ten processors has 24 attached tape drives. There are a large

number of jobs submitted to the system that each require a maximum of six tape drives

to complete execution. Assume that each job starts running with only four tape drives
for a long period before requiring the other two tape drives for a short period toward
the end of its operation. Also assume an endless supply of such jobs.

a. Assume the scheduler in the OS will not start a job unless there are six tape drives
available. When a job is started, six drives are assigned immediately and are not
released until the job finishes. What is the maximum number of jobs that can be
in progress at once? What are the maximum and minimum number of tape drives
that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

PART 2 Processes

ProcEess DESCRIPTION
AND CONTROL

3.1 What Is a Process?
Background
Processes and Process Control Blocks

3.2 Process States
A Two-State Process Model
The Creation and Termination of Processes
A Five-State Model
Suspended Processes

3.3 Process Description
Operating System Control Structures
Process Control Structures

3.4 Process Control
Modes of Execution
Process Creation
Process Switching

3.5 Execution of the Operating System
Nonprocess Kernel
Execution within User Processes
Process-Based Operating System

3.6 UNIX SVR4 Process Management
Process States
Process Description
Process Control

3.7 Summary

3.8 Key Terms, Review Questions, and Problems

129

130 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

e Define the term process and explain the relationship between processes and
process control blocks.

e Explain the concept of a process state and discuss the state transitions the
processes undergo.

e List and describe the purpose of the data structures and data structure
elements used by an OS to manage processes.

e Assess the requirements for process control by the OS.
e Understand the issues involved in the execution of OS code.
e Describe the process management scheme for UNIX SVR4.

All multiprogramming operating systems, from single-user systems such as Windows
for end users to mainframe systems such as IBM’s mainframe operating system
z/OS which can support thousands of users, are built around the concept of the pro-
cess. Most requirements that the OS must meet can be expressed with reference to
processes:

e The OS must interleave the execution of multiple processes, to maximize pro-
cessor utilization while providing reasonable response time.

e The OS must allocate resources to processes in conformance with a specific
policy (e.g., certain functions or applications are of higher priority) while at the
same time avoiding deadlock.!

e The OS may be required to support interprocess communication and user cre-
ation of processes, both of which may aid in the structuring of applications.

We begin with an examination of the way in which the OS represents and
controls processes. Then, the chapter discusses process states, which characterize the
behavior of processes. We will then look at the data structures that the OS uses to
manage processes. These include data structures to represent the state of each process
and data structures that record other characteristics of processes that the OS needs
to achieve its objectives. Next, we will look at the ways in which the OS uses these
data structures to control process execution. Finally, we will discuss process man-
agement in UNIX SVR4. Chapter 4 will provide more modern examples of process
management.

This chapter occasionally refers to virtual memory. Much of the time, we can
ignore this concept in dealing with processes, but at certain points in the discus-
sion, virtual memory considerations are pertinent. Virtual memory was previewed
in Chapter 2 and will be discussed in detail in Chapter 8.

'Deadlock will be examined in Chapter 6. As a simple example, deadlock occurs if two processes need the
same two resources to continue and each has ownership of one. Unless some action is taken, each process
will wait indefinitely for the missing resource.

3.1 / WHAT IS A PROCESS? 131

3.1 WHAT IS A PROCESS?

Background

Before defining the term process, it is useful to summarize some of the concepts
introduced in Chapters 1 and 2:

1. A computer platform consists of a collection of hardware resources, such as the
processor, main memory, I/O modules, timers, disk drives, and so on.

2. Computer applications are developed to perform some task. Typically, they
accept input from the outside world, perform some processing, and generate
output.

3. Itisinefficient for applications to be written directly for a given hardware plat-
form. The principal reasons for this are as follows:

a. Numerous applications can be developed for the same platform. Thus, it
makes sense to develop common routines for accessing the computer’s
resources.

b. The processor itself provides only limited support for multiprogramming.
Software is needed to manage the sharing of the processor and other
resources by multiple applications at the same time.

c¢. When multiple applications are active at the same time, it is necessary to
protect the data, I/O use, and other resource use of each application from
the others.

4. The OS was developed to provide a convenient, feature-rich, secure, and consis-
tent interface for applications to use. The OS is a layer of software between the
applications and the computer hardware (see Figure 2.1) that supports applica-
tions and utilities.

5. We can think of the OS as providing a uniform, abstract representation of
resources that can be requested and accessed by applications. Resources include
main memory, network interfaces, file systems, and so on. Once the OS has cre-
ated these resource abstractions for applications to use, it must also manage their
use. For example, an OS may permit resource sharing and resource protection.

Now that we have the concepts of applications, system software, and resources,
we are in a position to discuss how the OS can, in an orderly fashion, manage the
execution of applications such that:

e Resources are made available to multiple applications.

e The physical processor is switched among multiple applications so all will
appear to be progressing.

e The processor and I/O devices can be used efficiently.
The approach taken by all modern operating systems is to rely on a model in

which the execution of an application corresponds to the existence of one or more
processes.

132 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Processes and Process Control Blocks

Recall from Chapter 2 that we suggested several definitions of the term process,
including:

e A program in execution.
* An instance of a program running on a computer.
e The entity that can be assigned to and executed on a processor.

e A unit of activity characterized by the execution of a sequence of instructions,
a current state, and an associated set of system resources.

We can also think of a process as an entity that consists of a number of elements.
Two essential elements of a process are program code (which may be shared with
other processes that are executing the same program) and a set of data associated
with that code. Let us suppose the processor begins to execute this program code,
and we refer to this executing entity as a process. At any given point in time, while
the program is executing, this process can be uniquely characterized by a number of
elements, including the following:

e Identifier: A unique identifier associated with this process, to distinguish it from
all other processes.

e State: If the process is currently executing, it is in the running state.
e Priority: Priority level relative to other processes.

e Program counter: The address of the next instruction in the program to be
executed.

e Memory pointers: Include pointers to the program code and data associated
with this process, plus any memory blocks shared with other processes.

e Context data: These are data that are present in registers in the processor while
the process is executing.

e 1/0 status information: Includes outstanding I/O requests, /O devices assigned
to this process, a list of files in use by the process, and so on.

e Accounting information: May include the amount of processor time and clock
time used, time limits, account numbers, and so on.

The information in the preceding list is stored in a data structure, typically
called a process control block (see Figure 3.1), that is created and managed by the
OS. The significant point about the process control block is that it contains sufficient
information so it is possible to interrupt a running process and later resume execu-
tion as if the interruption had not occurred. The process control block is the key tool
that enables the OS to support multiple processes and to provide for multiprocess-
ing. When a process is interrupted, the current values of the program counter and
the processor registers (context data) are saved in the appropriate fields of the cor-
responding process control block, and the state of the process is changed to some
other value, such as blocked or ready (described subsequently). The OS is now free to
put some other process in the running state. The program counter and context data
for this process are loaded into the processor registers, and this process now begins
to execute.

3.2 / PROCESS STATES 133

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0 status
information

Accounting
information

Figure 3.1 Simplified Process Control Block

Thus, we can say that a process consists of program code and associated data
plus a process control block. For a single-processor computer, at any given time, at
most one process is executing and that process is in the running state.

3.2 PROCESS STATES

As just discussed, for a program to be executed, a process, or task, is created for
that program. From the processor’s point of view, it executes instructions from its
repertoire in some sequence dictated by the changing values in the program counter
register. Over time, the program counter may refer to code in different programs that
are part of different processes. From the point of view of an individual program, its
execution involves a sequence of instructions within that program.

We can characterize the behavior of an individual process by listing the
sequence of instructions that execute for that process. Such a listing is referred to as
a trace of the process. We can characterize behavior of the processor by showing how
the traces of the various processes are interleaved.

Let us consider a very simple example. Figure 3.2 shows a memory layout of three
processes. To simplify the discussion, we assume no use of virtual memory; thus all three
processes are represented by programs that are fully loaded in main memory. In addi-
tion, there is a small dispatcher program that switches the processor from one process

134 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Address Main memory Program counter
0 [8000 ¢ |

100
Dispatcher

5000
Process A

8000
Process B

12000
Process C

Figure 3.2 Snapshot of Example Execution (Figure 3.4) at Instruction Cycle 13

5000 8000 12000
5001 8001 12001
5002 8002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011

(a) Trace of process A (b) Trace of process B (c¢) Trace of process C

5000 = Starting address of program of process A
8000 = Starting address of program of process B
12000 = Starting address of program of process C

Figure 3.3 Traces of Processes of Figure 3.2

to another. Figure 3.3 shows the traces of each of the processes during the early part
of their execution. The first 12 instructions executed in processes A and C are shown.
Process B executes four instructions, and we assume the fourth instruction invokes an
1/O operation for which the process must wait.

3.2 / PROCESS STATES 135

Now let us view these traces from the processor’s point of view. Figure 3.4 shows
the interleaved traces resulting from the first 52 instruction cycles (for convenience,
the instruction cycles are numbered). In this figure, the shaded areas represent code
executed by the dispatcher. The same sequence of instructions is executed by the
dispatcher in each instance because the same functionality of the dispatcher is being
executed. We assume the OS only allows a process to continue execution for a maxi-
mum of six instruction cycles, after which it is interrupted; this prevents any single
process from monopolizing processor time. As Figure 3.4 shows, the first six instruc-
tions of process A are executed, followed by a time-out and the execution of some

1 5000 27 12004

2 5001 28 12005

3 5002 e Time-out

4 5003 29 100

5 5004 30 101

6 5005 31 102

--------------------- Time-out 30 103

7 100 33 104

8 101 34 105

9 102 35 5006

10]103 36 5007

11 1104 37 5008

12 105 38 5009

13 8000 39 5010

14 8001 40 5011

15 8002 e Time-out

16 8003 41 100

--------------------- I/O request 42 101

17 100 43 102

18 101 44 103

19 102 45 104

20 103 46 105

21 104 47 12006

22 105 48 12007

23 12000 49 12008

24 12001 50 12009

25 12002 51 12010

26 12003 52 12011
--------------------- Time-out

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;

first and third columns count instruction cycles;

second and fourth columns show address of instruction being executed.

Figure 3.4 Combined Trace of Processes of Figure 3.2

136 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

code in the dispatcher, which executes six instructions before turning control to pro-
cess B.2 After four instructions are executed, process B requests an 1/O action for
which it must wait. Therefore, the processor stops executing process B and moves on,
via the dispatcher, to process C. After a time-out, the processor moves back to process
A. When this process times out, process B is still waiting for the I/O operation to
complete, so the dispatcher moves on to process C again.

A Two-State Process Model

The operating system’s principal responsibility is controlling the execution of pro-
cesses; this includes determining the interleaving pattern for execution and allocating
resources to processes. The first step in designing an OS to control processes is to
describe the behavior that we would like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time,
a process is either being executed by a processor, or it isn’t. In this model, a process
may be in one of the two states: Running or Not Running, as shown in Figure 3.5a.
When the OS creates a new process, it creates a process control block for the process
and enters that process into the system in the Not Running state. The process exists,
is known to the OS, and is waiting for an opportunity to execute. From time to time,
the currently running process will be interrupted, and the dispatcher portion of the
OS will select some other process to run. The former process moves from the Run-
ning state to the Not Running state, and one of the other processes moves to the
Running state.

Dispatch

Enter

Pause
(a) State transition diagram

Queue

Enter Dispatch Exit
—_— Processor [————>

Pause

(b) Queueing diagram

Figure 3.5 Two-State Process Model

The small number of instructions executed for the processes and the dispatcher are unrealistically low;
they are used in this simplified example to clarify the discussion.

3.2 / PROCESS STATES 137

From this simple model, we can already begin to appreciate some of the design
elements of the OS. Each process must be represented in some way so the OS can
keep track of it. That is, there must be some information relating to each process,
including current state and location in memorys; this is the process control block.
Processes that are not running must be kept in some sort of queue, waiting their turn
to execute. Figure 3.5b suggests a structure. There is a single queue in which each
entry is a pointer to the process control block of a particular process. Alternatively,
the queue may consist of a linked list of data blocks, in which each block represents
one process. We will explore this latter implementation subsequently.

We can describe the behavior of the dispatcher in terms of this queueing
diagram. A process that is interrupted is transferred to the queue of waiting pro-
cesses. Alternatively, if the process has completed or aborted, it is discarded (exits
the system). In either case, the dispatcher takes another process from the queue to
execute.

The Creation and Termination of Processes

Before refining our simple two-state model, it will be useful to discuss the creation
and termination of processes; ultimately, and regardless of the model of process
behavior that is used, the life of a process is bounded by its creation and termination.

PROCESS CREATION When a new process is to be added to those currently being
managed, the OS builds the data structures used to manage the process, and allocates
address space in main memory to the process. We will describe these data structures
in Section 3.3. These actions constitute the creation of a new process.

Four common events lead to the creation of a process, as indicated in Table 3.1.
In a batch environment, a process is created in response to the submission of a job.
In an interactive environment, a process is created when a new user attempts to log
on. In both cases, the OS is responsible for the creation of the new process. An OS
may also create a process on behalf of an application. For example, if a user requests
that a file be printed, the OS can create a process that will manage the printing. The
requesting process can thus proceed independently of the time required to complete
the printing task.

Traditionally, the OS created all processes in a way that was transparent to the
user or application program, and this is still commonly found with many contemporary

Table 3.1 Reasons for Process Creation

New batch job The OS is provided with a batch job control stream, usually on tape or
disk. When the OS is prepared to take on new work, it will read the next
sequence of job control commands.

Interactive log-on A user at a terminal logs on to the system.

Created by OS to provide a service | The OS can create a process to perform a function on behalf of a user
program, without the user having to wait (e.g., a process to control
printing).

Spawned by existing process For purposes of modularity or to exploit parallelism, a user program can
dictate the creation of a number of processes.

138 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

operating systems. However, it can be useful to allow one process to cause the cre-
ation of another. For example, an application process may generate another process
to receive data that the application is generating, and to organize those data into a
form suitable for later analysis. The new process runs in parallel to the original pro-
cess and is activated from time to time when new data are available. This arrangement
can be very useful in structuring the application. As another example, a server pro-
cess (e.g., print server, file server) may generate a new process for each request that
it handles. When the OS creates a process at the explicit request of another process,
the action is referred to as process spawning.

When one process spawns another, the former is referred to as the parent
process, and the spawned process is referred to as the child process. Typically, the
“related” processes need to communicate and cooperate with each other. Achieving
this cooperation is a difficult task for the programmer; this topic will be discussed in
Chapter 5.

PROCESS TERMINATION Table 3.2 summarizes typical reasons for process termination.
Any computer system must provide a means for a process to indicate its completion.
A batch job should include a Halt instruction or an explicit OS service call for
termination. In the former case, the Halt instruction will generate an interrupt to
alert the OS that a process has completed. For an interactive application, the action
of the user will indicate when the process is completed. For example, in a time-sharing
system, the process for a particular user is to be terminated when the user logs off or
turns off his or her terminal. On a personal computer or workstation, a user may quit
an application (e.g., word processing or spreadsheet). All of these actions ultimately
result in a service request to the OS to terminate the requesting process.

Additionally, a number of error and fault conditions can lead to the termination
of a process. Table 3.2 lists some of the more commonly recognized conditions.’

Finally, in some operating systems, a process may be terminated by the process
that created it, or when the parent process is itself terminated.

A Five-State Model

If all processes were always ready to execute, then the queueing discipline suggested
by Figure 3.5b would be effective. The queue is a first-in-first-out list and the pro-
cessor operates in round-robin fashion on the available processes (each process in
the queue is given a certain amount of time, in turn, to execute and then returned
to the queue, unless blocked). However, even with the simple example that we have
described, this implementation is inadequate: Some processes in the Not Running
state are ready to execute, while others are blocked, waiting for an I/O operation
to complete. Thus, using a single queue, the dispatcher could not just select the
process at the oldest end of the queue. Rather, the dispatcher would have to scan
the list looking for the process that is not blocked and that has been in the queue
the longest.

3A forgiving operating system might, in some cases, allow the user to recover from a fault without termi-
nating the process. For example, if a user requests access to a file and that access is denied, the operating
system might simply inform the user that access is denied and allow the process to proceed.

3.2 / PROCESS STATES 139

Table 3.2 Reasons for Process Termination

Normal completion The process executes an OS service call to indicate that it has completed
running.
Time limit exceeded The process has run longer than the specified total time limit. There are a

number of possibilities for the type of time that is measured. These include
total elapsed time (“wall clock time”), amount of time spent executing, and, in
the case of an interactive process, the amount of time since the user last pro-
vided any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to
use, or it tries to use it in an improper fashion, such as writing to a read-only
file.

Arithmetic error The process tries a prohibited computation (such as division by zero) or tries
to store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event
to occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure

to read or write after a specified maximum number of tries (when, for exam-
ple, a defective area is encountered on a tape), or invalid operation (such as
reading from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention | For some reason, the operator or the operating system has terminated the pro-
cess (e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate
all of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

A more natural way to handle this situation is to split the Not Running state
into two states: Ready and Blocked. This is shown in Figure 3.6. For good measure,
we have added two additional states that will prove useful. The five states in this new
diagram are as follows:

1. Running: The process that is currently being executed. For this chapter, we will
assume a computer with a single processor, so at most, one process at a time
can be in this state.

2. Ready: A process that is prepared to execute when given the opportunity.

3. Blocked/Waiting:* A process that cannot execute until some event occurs, such
as the completion of an I/O operation.

4Waizing is a frequently used alternative term for Blocked as a process state. Generally, we will use Blocked,
but the terms are interchangeable.

140 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Dispatch

). Qi

Time-out

Release

Event

occurs Event

wait

Figure 3.6 Five-State Process Model

4. New: A process that has just been created but has not yet been admitted to the
pool of executable processes by the OS. Typically, a new process has not yet
been loaded into main memory, although its process control block has been
created.

5. Exit: A process that has been released from the pool of executable processes by
the OS, either because it halted or because it aborted for some reason.

The New and Exit states are useful constructs for process management. The
New state corresponds to a process that has just been defined. For example, if a new
user attempts to log on to a time-sharing system, or a new batch job is submitted for
execution, the OS can define a new process in two stages. First, the OS performs the
necessary housekeeping chores. An identifier is associated with the process. Any
tables that will be needed to manage the process are allocated and built. At this point,
the process is in the New state. This means that the OS has performed the necessary
actions to create the process, but has not committed itself to the execution of the
process. For example, the OS may limit the number of processes that may be in the
system for reasons of performance or main memory limitation. While a process is in
the new state, information concerning the process that is needed by the OS is main-
tained in control tables in main memory. However, the process itself is not in main
memory. That is, the code of the program to be executed is not in main memory, and
no space has been allocated for the data associated with that program. While the
process is in the New state, the program remains in secondary storage, typically disk
storage.’

Similarly, a process exits a system in two stages. First, a process is terminated
when it reaches a natural completion point, when it aborts due to an unrecoverable
error, or when another process with the appropriate authority causes the process to
abort. Termination moves the process to the Exit state. At this point, the process is

3In the discussion in this paragraph, we ignore the concept of virtual memory. In systems that support vir-
tual memory, when a process moves from New to Ready, its program code and data are loaded into virtual
memory. Virtual memory was briefly discussed in Chapter 2 and will be examined in detail in Chapter 8.

3.2 / PROCESS STATES 141

no longer eligible for execution. The tables and other information associated with the
job are temporarily preserved by the OS, which provides time for auxiliary or support
programs to extract any needed information. For example, an accounting program
may need to record the processor time and other resources utilized by the process
for billing purposes. A utility program may need to extract information about the his-
tory of the process for purposes related to performance or utilization analysis. Once
these programs have extracted the needed information, the OS no longer needs to
maintain any data relating to the process, and the process is deleted from the system.

Figure 3.6 indicates the types of events that lead to each state transition for a
process; the possible transitions are as follows:

e Null - New: A new process is created to execute a program. This event occurs
for any of the reasons listed in Table 3.1.

e New — Ready: The OS will move a process from the New state to the Ready
state when it is prepared to take on an additional process. Most systems set
some limit based on the number of existing processes or the amount of virtual
memory committed to existing processes. This limit assures there are not so
many active processes as to degrade performance.

e Ready — Running: When it is time to select a process to run, the OS chooses
one of the processes in the Ready state. This is the job of the scheduler or dis-
patcher. Scheduling is explored in Part Four.

e Running — Exit: The currently running process is terminated by the OS if the
process indicates that it has completed or if it aborts. See Table 3.2.

* Running — Ready: The most common reason for this transition is that the
running process has reached the maximum allowable time for uninterrupted
execution; virtually all multiprogramming operating systems impose this type
of time discipline. There are several other alternative causes for this transition,
which are not implemented in all operating systems. Of particular importance
is the case in which the OS assigns different levels of priority to different pro-
cesses. Suppose, for example, process A is running at a given priority level, and
process B, at a higher priority level, is blocked. If the OS learns that the event
upon which process B has been waiting has occurred, this moving B to a ready
state, then it can interrupt process A and dispatch process B. We say that the
OS has preempted process A.®Finally,a process may voluntarily release control
of the processor. An example is a background process that periodically per-
forms some accounting or maintenance function.

° Running — Blocked: A process is put in the Blocked state if it requests some-
thing for which it must wait. A request to the OS is usually in the form of a
system service call; that is, a call from the running program to a procedure that is
part of the operating system code. For example, a process may request a service
from the OS that the OS is not prepared to perform immediately. It can request

%In general, the term preemption is defined to be the reclaiming of a resource from a process before the
process has finished using it. In this case, the resource is the processor itself. The process is executing and
could continue to execute, but is preempted so another process can be executed.

142 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

aresource, such as a file or a shared section of virtual memory, that is not imme-
diately available. Or the process may initiate an action, such as an I/O opera-
tion, that must be completed before the process can continue. When processes
communicate with each other, a process may be blocked when it is waiting for
another process to provide data, or waiting for a message from another process.

e Blocked — Ready: A process in the Blocked state is moved to the Ready state
when the event for which it has been waiting occurs.

e Ready — Exit: For clarity, this transition is not shown on the state diagram.
In some systems, a parent may terminate a child process at any time. Also,
if a parent terminates, all child processes associated with that parent may be
terminated.

e Blocked — Exit: The comments under the preceding item apply.

Returning to our simple example, Figure 3.7 shows the transition of each pro-
cess among the states. Figure 3.8a suggests the way in which a queueing discipline
might be implemented with two queues: a Ready queue and a Blocked queue. As
each process is admitted to the system, it is placed in the Ready queue. When it is time
for the OS to choose another process to run, it selects one from the Ready queue. In
the absence of any priority scheme, this can be a simple first-in-first-out queue. When
a running process is removed from execution, it is either terminated or placed in the
Ready or Blocked queue, depending on the circumstances. Finally, when an event
occurs, any process in the Blocked queue that has been waiting on that event only is
moved to the Ready queue.

This latter arrangement means that, when an event occurs, the OS must scan the
entire blocked queue, searching for those processes waiting on that event. In a large
OS, there could be hundreds or even thousands of processes in that queue. Therefore,
it would be more efficient to have a number of queues, one for each event. Then, when
the event occurs, the entire list of processes in the appropriate queue can be moved
to the Ready state (see Figure 3.8b).

Process A | | | | |

- -

Process C | | | | |

Dispatcher | | | I:I I:I

0 5 10 15 20 25 30 35 40 45 50

I:I = Running I:I = Ready - = Blocked

Figure 3.7 Process States for the Trace of Figure 3.4

3.2 / PROCESS STATES 143

Ready queue Release

Admit Dispatch

Time-out

Blocked queue
occurs

(a) Single blocked queue

Release

Ready queue

Admit Dispatch]
Time-out —|

Event 1 queue

Event 1 Event 1 wait
occurs

Event 2 queue

Event 2 Event 2 wait
occurs

.

°

°
Event n queue

Event n Event n wait
occurs

(b) Multiple blocked queues

Figure 3.8 Queueing Model for Figure 3.6

One final refinement: If the dispatching of processes is dictated by a priority
scheme, then it would be convenient to have a number of Ready queues, one for each
priority level. The OS could then readily determine which is the highest-priority ready
process that has been waiting the longest.

Suspended Processes

THE NEED FOR SWAPPING The three principal states just described (Ready, Running,
and Blocked) provide a systematic way of modeling the behavior of processes and
guide the implementation of the OS. Some operating systems are constructed using
just these three states.

However, there is good justification for adding other states to the model. To
see the benefit of these new states, consider a system that does not employ virtual
memory. Each process to be executed must be loaded fully into main memory.
Thus, in Figure 3.8b, all of the processes in all of the queues must be resident in
main memory.

144 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Recall that the reason for all of this elaborate machinery is that I/O activities
are much slower than computation, and therefore the processor in a uniprogramming
system is idle most of the time. But the arrangement of Figure 3.8b does not entirely
solve the problem. It is true that, in this case, memory holds multiple processes and
the processor can move to another process when one process is blocked. But the
processor is so much faster than I/O that it will be common for all of the processes in
memory to be waiting for I/O. Thus, even with multiprogramming, a processor could
be idle most of the time.

What to do? Main memory could be expanded to accommodate more pro-
cesses. But there are two flaws in this approach. First, there is a cost associated with
main memory, which, though small on a per-byte basis, begins to add up as we get into
the gigabytes of storage. Second, the appetite of programs for memory has grown as
fast as the cost of memory has dropped. So larger memory results in larger processes,
not more processes.

Another solution is swapping, which involves moving part or all of a process from
main memory to disk. When none of the processes in main memory is in the Ready state,
the OS swaps one of the blocked processes out on to disk into a suspend queue. This is a
queue of existing processes that have been temporarily kicked out of main memory, or
suspended. The OS then brings in another process from the suspend queue or it honors
a new-process request. Execution then continues with the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential for
making the problem worse, not better. But because disk I/O is generally the fastest
1/O on a system (e.g.,compared to tape or printer I/O), swapping will usually enhance
performance.

With the use of swapping as just described, one other state must be added to
our process behavior model (see Figure 3.9a): the Suspend state. When all of the pro-
cesses in main memory are in the Blocked state, the OS can suspend one process by
putting it in the Suspend state and transferring it to disk. The space that is freed in
main memory can then be used to bring in another process.

When the OS has performed a swapping-out operation, it has two choices for
selecting a process to bring into main memory: It can admit a newly created process,
or it can bring in a previously suspended process. It would appear that the preference
should be to bring in a previously suspended process, to provide it with service rather
than increasing the total load on the system.

But this line of reasoning presents a difficulty. All of the processes that have
been suspended were in the Blocked state at the time of suspension. It clearly would
not do any good to bring a blocked process back into main memory, because it is still
not ready for execution. Recognize, however, that each process in the Suspend state
was originally blocked on a particular event. When that event occurs, the process is
not blocked and is potentially available for execution.

Therefore, we need to rethink this aspect of the design. There are two indepen-
dent concepts here: whether a process is waiting on an event (blocked or not), and
whether a process has been swapped out of main memory (suspended or not). To
accommodate this 2 X 2 combination, we need four states:

1. Ready: The process is in main memory and available for execution.
2. Blocked: The process is in main memory and awaiting an event.

3.2 / PROCESS STATES 145

Dispatch

Release

occurs

(a) With one Suspend state

Release

Suspend

Event
occurs
occurs

Activate

Suspend
(b) With two Suspend states

Figure 3.9 Process State Transition Diagram with Suspend States

3. Blocked/Suspend: The process is in secondary memory and awaiting an event.

4. Ready/Suspend: The process is in secondary memory but is available for execu-
tion as soon as it is loaded into main memory.

Before looking at a state transition diagram that encompasses the two new sus-
pend states, one other point should be mentioned. The discussion so far has assumed
that virtual memory is not in use, and that a process is either all in main memory
or all out of main memory. With a virtual memory scheme, it is possible to execute
a process that is only partially in main memory. If reference is made to a process
address that is not in main memory, then the appropriate portion of the process can
be brought in. The use of virtual memory would appear to eliminate the need for
explicit swapping, because any desired address in any desired process can be moved

146 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

in or out of main memory by the memory management hardware of the processor.
However, as we shall see in Chapter 8, the performance of a virtual memory system
can collapse if there is a sufficiently large number of active processes, all of which
are partially in main memory. Therefore, even in a virtual memory system, the OS
will need to swap out processes explicitly and completely from time to time in the
interests of performance.

Let us look now, in Figure 3.9b, at the state transition model that we have devel-
oped. (The dashed lines in the figure indicate possible but not necessary transitions.)
Important new transitions are the following:

¢ Blocked — Blocked/Suspend: If there are no ready processes, then at least one
blocked process is swapped out to make room for another process that is not
blocked. This transition can be made even if there are ready processes available.
In particular, if the OS determines that the currently running process, or a ready
process that it would like to dispatch, requires more main memory to maintain
adequate performance, a blocked process will be suspended.

* Blocked/Suspend — Ready/Suspend: A process in the Blocked/Suspend state
is moved to the Ready/Suspend state when the event for which it has been wait-
ing occurs. Note this requires that the state information concerning suspended
processes must be accessible to the OS.

* Ready/Suspend — Ready: When there are no ready processes in main mem-
ory, the OS will need to bring one in to continue execution. In addition, it
might be the case that a process in the Ready/Suspend state has higher priority
than any of the processes in the Ready state. In that case, the OS designer may
dictate that it is more important to get at the higher-priority process than to
minimize swapping.

* Ready — Ready/Suspend: Normally, the OS would prefer to suspend a
blocked process rather than a ready one, because the ready process can now
be executed, whereas the blocked process is taking up main memory space and
cannot be executed. However, it may be necessary to suspend a ready process if
that is the only way to free up a sufficiently large block of main memory. Also,
the OS may choose to suspend a lower—priority ready process rather than a
higher—priority blocked process if it believes that the blocked process will be
ready soon.

Several other transitions that are worth considering are the following:

e New — Ready/Suspend and New — Ready: When a new process is created, it
can either be added to the Ready queue or the Ready/Suspend queue. In either
case, the OS must create a process control block and allocate an address space
to the process. It might be preferable for the OS to perform these housekeep-
ing duties at an early time, so it can maintain a large pool of processes that are
not blocked. With this strategy, there would often be insufficient room in main
memory for a new process; hence the use of the (New — Ready/Suspend)
transition. On the other hand, we could argue that a just-in-time philosophy
of creating processes as late as possible reduces OS overhead, and allows that
OS to perform the process creation duties at a time when the system is clogged
with blocked processes anyway.

3.2 / PROCESS STATES 147

* Blocked/Suspend — Blocked: Inclusion of this transition may seem to be poor
design. After all, if a process is not ready to execute and is not already in main
memory, what is the point of bringing it in? But consider the following scenario:
A process terminates, freeing up some main memory. There is a process in the
(Blocked/Suspend) queue with a higher priority than any of the processes in
the (Ready/Suspend) queue and the OS has reason to believe that the block-
ing event for that process will occur soon. Under these circumstances, it would
seem reasonable to bring a blocked process into main memory in preference
to a ready process.

* Running — Ready/Suspend: Normally, a running process is moved to the
Ready state when its time allocation expires. If, however, the OS is preempting
the process because a higher-priority process on the Blocked/Suspend queue
has just become unblocked, the OS could move the running process directly to
the (Ready/Suspend) queue and free some main memory.

e Any State — Exit: Typically, a process terminates while it is running, either
because it has completed or because of some fatal fault condition. However, in
some operating systems, a process may be terminated by the process that cre-
ated it or when the parent process is itself terminated. If this is allowed, then a
process in any state can be moved to the Exit state.

OTHER USES oF SUSPENSION So far, we have equated the concept of a suspended
process with that of a process that is not in main memory. A process that is not in
main memory is not immediately available for execution, whether or not it is awaiting
an event.

We can generalize the concept of a suspended process. Let us define a sus-
pended process as having the following characteristics:

1. The process is not immediately available for execution.

2. The process may or may not be waiting on an event. If it is, this blocked condi-
tion is independent of the suspend condition, and occurrence of the blocking
event does not enable the process to be executed immediately.

3. The process was placed in a suspended state by an agent: either itself, a parent
process, or the OS, for the purpose of preventing its execution.

4. The process may not be removed from this state until the agent explicitly orders
the removal.

Table 3.3 lists some reasons for the suspension of a process. One reason we
have discussed is to provide memory space either to bring in a Ready/Suspended
process or to increase the memory allocated to other Ready processes. The OS may
have other motivations for suspending a process. For example, an auditing or trac-
ing process may be employed to monitor activity on the system; the process may
be used to record the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. The OS,
under operator control, may turn this process on and off from time to time. If the
OS detects or suspects a problem, it may suspend a process. One example of this
is deadlock, which will be discussed in Chapter 6. As another example, a problem

148 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.3 Reasons for Process Suspension

Swapping

The OS needs to release sufficient main memory to bring in a process that is
ready to execute.

Other OS reason

The OS may suspend a background or utility process or a process that is sus-
pected of causing a problem.

Interactive user request

A user may wish to suspend execution of a program for purposes of debugging or
in connection with the use of a resource.

Timing

A process may be executed periodically (e.g., an accounting or system monitoring
process) and may be suspended while waiting for the next time interval.

Parent process request

A parent process may wish to suspend execution of a descendent to exam-
ine or modify the suspended process, or to coordinate the activity of various
descendants.

is detected on a communications line, and the operator has the OS suspend the
process that is using the line while some tests are run.

Another set of reasons concerns the actions of an interactive user. For example,
if a user suspects a bug in the program, he or she may debug the program by sus-
pending its execution, examining and modifying the program or data, and resuming
execution. Or there may be a background process that is collecting trace or account-
ing statistics, which the user may wish to be able to turn on and off.

Timing considerations may also lead to a swapping decision. For example, if a
process is to be activated periodically but is idle most of the time, then it should be
swapped out between uses. A program that monitors utilization or user activity is an

example.

Finally, a parent process may wish to suspend a descendant process. For exam-
ple, process A may spawn process B to perform a file read. Subsequently, process B
encounters an error in the file read procedure and reports this to process A. Process
A suspends process B to investigate the cause.

In all of these cases, the activation of a suspended process is requested by the
agent that initially requested the suspension.

3.3 PROCESS DESCRIPTION

The OS controls events within the computer system. It schedules and dispatches pro-
cesses for execution by the processor, allocates resources to processes, and responds
to requests by user processes for basic services. Fundamentally, we can think of the
OS as that entity that manages the use of system resources by processes.

This concept is illustrated in Figure 3.10. In a multiprogramming environment,
there are a number of processes (Py, ... , P,) that have been created and exist in
virtual memory. Each process, during the course of its execution, needs access to
certain system resources, including the processor, I/O devices, and main memory. In
the figure, process P; is running; at least part of the process is in main memory, and
it has control of two I/O devices. Process P, is also in main memory, but is blocked
waiting for an I/O device allocated to P;. Process P, has been swapped out and is
therefore suspended.

3.3 / PROCESS DESCRIPTION 149

Virtual
memory
Computer
resources
Processor 1/0 1/0 /0 i
memory

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

We will explore the details of the management of these resources by the OS
on behalf of the processes in later chapters. Here we are concerned with a more
fundamental question: What information does the OS need to control processes and
manage resources for them?

Operating System Control Structures

If the OS is to manage processes and resources, it must have information about the
current status of each process and resource. The universal approach to providing this
information is straightforward: The OS constructs and maintains tables of informa-
tion about each entity that it is managing. A general idea of the scope of this effort
is indicated in Figure 3.11, which shows four different types of tables maintained by
the OS: memory, I/O, file, and process. Although the details will differ from one OS
to another, fundamentally, all operating systems maintain information in these four
categories.

Memory tables are used to keep track of both main (real) and secondary (vir-
tual) memory. Some of main memory is reserved for use by the OS; the remainder is
available for use by processes. Processes are maintained on secondary memory using
some sort of virtual memory or simple swapping mechanism. The memory tables
must include the following information:

¢ The allocation of main memory to processes

e The allocation of secondary memory to processes

e Any protection attributes of blocks of main or virtual memory, such as which
processes may access certain shared memory regions

Any information needed to manage virtual memory

We will examine the information structures for memory management in detail
in Part Three.

I/0O tables are used by the OS to manage the I/O devices and channels of the
computer system. At any given time, an I/O device may be available or assigned to a
particular process. If an I/O operation is in progress, the OS needs to know the status
of the I/O operation and the location in main memory being used as the source or
destination of the I/O transfer. I/O management will be examined in Chapter 11.

The OS may also maintain file tables. These tables provide information about
the existence of files, their location on secondary memory, their current status, and

150 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process
image
Memory tables
Process
Memory 1
Devices I/0 tables
Files
Processes —> File tables
Primary process table
Process 1
Process 2
Process
Process 3 image
Process

°
o
°

Process n

Figure 3.11 General Structure of Operating System Control Tables

n

other attributes. Much, if not all, of this information may be maintained and used by
a file management system, in which case the OS has little or no knowledge of files.
In other operating systems, much of the detail of file management is managed by the
OS itself. This topic will be explored in Chapter 12.

Finally, the OS must maintain process tables to manage processes. The remain-
der of this section is devoted to an examination of the required process tables. Before
proceeding to this discussion, two additional points should be made. First, although
Figure 3.11 shows four distinct sets of tables, it should be clear that these tables must
be linked or cross-referenced in some fashion. Memory, I/O, and files are managed
on behalf of processes, so there must be some reference to these resources, directly
or indirectly, in the process tables. The files referred to in the file tables are acces-
sible via an I/O device and will, at some times, be in main or virtual memory. The
tables themselves must be accessible by the OS, and therefore are subject to memory
management.

Second, how does the OS know to create the tables in the first place? Clearly,
the OS must have some knowledge of the basic environment, such as how much main
memory exists, what are the I/O devices and what are their identifiers, and so on. This is
an issue of configuration. That is, when the OS is initialized, it must have access to some
configuration data that define the basic environment, and these data must be created
outside the OS, with human assistance or by some autoconfiguration software.

3.3 / PROCESS DESCRIPTION 151

Process Control Structures

Consider what the OS must know if it is to manage and control a process. First, it
must know where the process is located; second, it must know the attributes of the
process that are necessary for its management (e.g., process ID and process state).

PROCESS LocAaTion Before we can deal with the questions of where a process is
located or what its attributes are, we need to address an even more fundamental
question: What is the physical manifestation of a process? At a minimum, a process
must include a program or set of programs to be executed. Associated with these
programs is a set of data locations for local and global variables and any defined
constants. Thus, a process will consist of at least sufficient memory to hold the
programs and data of that process. In addition, the execution of a program typically
involves a stack (see Appendix P) that is used to keep track of procedure calls and
parameter passing between procedures. Finally, each process has associated with it a
number of attributes that are used by the OS for process control. Typically, the
collection of attributes is referred to as a process control block.” We can refer to this
collection of program, data, stack, and attributes as the process image (see Table 3.4).

The location of a process image will depend on the memory management
scheme being used. In the simplest case, the process image is maintained as a contigu-
ous, or continuous, block of memory. This block is maintained in secondary memory,
usually disk. So that the OS can manage the process, at least a small portion of its
image must be maintained in main memory. To execute the process, the entire process
image must be loaded into main memory, or at least virtual memory. Thus, the OS
needs to know the location of each process on disk and, for each such process that is
in main memory, the location of that process in main memory. We saw a slightly more
complex variation on this scheme with the CTSS OS in Chapter 2. With CTSS, when
a process is swapped out, part of the process image may remain in main memory.
Thus, the OS must keep track of which portions of the image of each process are still
in main memory.

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and programs that may be
modified.

User Program
The program to be executed.

Stack
Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is used to store param-
eters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the OS to control the process (see Table 3.5).

7Other commonly used names for this data structure are task control block, process descriptor, and task
descriptor.

152 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Modern operating systems presume paging hardware that allows noncontiguous
physical memory to support partially resident processes.® At any given time, a portion
of a process image may be in main memory, with the remainder in secondary mem-
ory.” Therefore, process tables maintained by the OS must show the location of each
page of each process image.

Figure 3.11 depicts the structure of the location information in the following
way. There is a primary process table with one entry for each process. Each entry
contains, at least, a pointer to a process image. If the process image contains mul-
tiple blocks, this information is contained directly in the primary process table or is
available by cross-reference to entries in memory tables. Of course, this depiction is
generic; a particular OS will have its own way of organizing the location information.

PROCESS ATTRIBUTES A sophisticated multiprogramming system requires a great
deal of information about each process. As was explained, this information can be
considered to reside in a process control block. Different systems will organize this
information in different ways, and several examples of this appear at the end of this
chapter and the next. For now, let us simply explore the type of information that
might be of use to an OS without considering in any detail how that information is
organized.

Table 3.5 lists the typical categories of information required by the OS for each
process. You may be somewhat surprised at the quantity of information required.
As you gain a greater appreciation of the responsibilities of the OS, this list should
appear more reasonable.

We can group the process control block information into three general
categories:

1. Process identification
2. Processor state information

3. Process control information

With respect to process identification, in virtually all operating systems, each
process is assigned a unique numeric identifier, which may simply be an index into
the primary process table (see Figure 3.11); otherwise there must be a mapping
that allows the OS to locate the appropriate tables based on the process identifier.
This identifier is useful in several ways. Many of the other tables controlled by the
OS may use process identifiers to cross-reference process tables. For example, the
memory tables may be organized so as to provide a map of main memory with
an indication of which process is assigned to each region. Similar references will
appear in I/O and file tables. When processes communicate with one another, the

8A brief overview of the concepts of pages, segments, and virtual memory is provided in the subsection
on memory management in Section 2.3.

This brief discussion slides over some details. In particular, in a system that uses virtual memory, all of
the process image for an active process is always in secondary memory. When a portion of the image is
loaded into main memory, it is copied rather than moved. Thus, the secondary memory retains a copy of
all segments and/or pages. However, if the main memory portion of the image is modified, the secondary
copy will be out of date until the main memory portion is copied back onto disk.

3.3 / PROCESS DESCRIPTION 153

Table 3.5 Typical Elements of a Process Control Block

Process Identification
Identifiers
Numeric identifiers that may be stored with the process control block include

e Identifier of this process.
e Identifier of the process that created this process (parent process).
e User identifier.

Processor State Information
User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC imple-
mentations have over 100.
Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor. These
include:

¢ Program counter: Contains the address of the next instruction to be fetched.

¢ Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal,
overflow).

o Status information: Includes interrupt enabled/disabled flags, execution mode.

Stack Pointers

Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the
stack.

Process Control Information
Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of
information include:

e Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, wait-
ing, halted).

e Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest allowable).

¢ Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

e Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring

A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent—child
(creator—created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.

Interprocess Communication

Various flags, signals, and messages may be associated with communication between two independent pro-
cesses. Some or all of this information may be maintained in the process control block.

Process Privileges

Processes are granted privileges in terms of the memory that may be accessed and the types of instructions
that may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management

This section may include pointers to segment and/or page tables that describe the virtual memory assigned to
this process.

Resource Ownership and Utilization

Resources controlled by the process may be indicated, such as opened files. A history of utilization of the pro-
cessor or other resources may also be included; this information may be needed by the scheduler.

154 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

process identifier informs the OS of the destination of a particular communication.
When processes are allowed to create other processes, identifiers indicate the par-
ent and descendants of each process.

In addition to these process identifiers, a process may be assigned a user identi-
fier that indicates the user responsible for the job.

Processor state information consists of the contents of processor registers.
While a process is running, of course, the information is in the registers. When a pro-
cess is interrupted, all of this register information must be saved so it can be restored
when the process resumes execution. The nature and number of registers involved
depend on the design of the processor. Typically, the register set will include user-
visible registers, control and status registers, and stack pointers. These are described
in Chapter 1.

Of particular note, all processor designs include a register or set of registers,
often known as the program status word (PSW), that contains status information.
The PSW typically contains condition codes plus other status information. A good
example of a processor status word is that on Intel x86 processors, referred to as the
EFLAGS register (shown in Figure 3.12 and Table 3.6). This structure is used by any
OS (including UNIX and Windows) running on an x86 processor.

The third major category of information in the process control block can be
called, for want of a better name, process control information. This is the additional
information needed by the OS to control and coordinate the various active processes.
The last part of Table 3.5 indicates the scope of this information. As we examine the
details of operating system functionality in succeeding chapters, the need for the
various items on this list should become clear.

Figure 3.13 suggests the structure of process images in virtual memory. Each pro-
cess image consists of a process control block, a user stack, the private address space of
the process, and any other address space that the process shares with other processes. In

31302928272625242322212019 181716151413 1211109 8 7 6 5 4 3 2 1 0

I
\0\4
1 A|VIR],IN|] O [O|D|I|T|S|Z|,|A|,]|P]|,|C
OOOOOOOOOODIICMFOTPFFFFFFOFOFIF
P|F
L
XID = Identification flag CDF = Direction flag
X VIP = Virtual interrupt pending XIF = Interrupt enable flag
X VIF = Virtual interrupt flag X TF = Trap flag
X AC = Alignment check S SF = Sign flag
X VM = Virtual 8086 mode SZF = Zero flag
XRF = Resume flag S AF = Auxiliary carry flag
XNT = Nested task flag S PF = Parity flag
X IOPL = 1/O privilege level S CF = Carry flag

SOF = Overflow flag

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag
Shaded bits are reserved

Figure 3.12 x86 EFLAGS Register

3.3 / PROCESS DESCRIPTION 155

Table 3.6 x86 EFLAGS Register Bits

Status Flags (condition codes)
AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the AL
register.
CF (Carry flag)
Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation; also modi-
fied by some of the shift and rotate operations.

OF (Overflow flag)

Indicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)

Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.
SF (Sign flag)

Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)
Indicates that the result of an arithmetic or logic operation is 0.

Control Flag

DF (Direction flag)
Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and DI
(for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

System Flags (should not be modified by application programs)

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)

If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
information about the vendor, family, and model.

RF (Resume flag)

Allows the programmer to disable debug exceptions so the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/0O privilege level)

When set, it causes the processor to generate an exception on all accesses to I/O devices during protected
mode operation.

IF (Interrupt enable flag)

When set, the processor will recognize external interrupts.

TF (Trap flag)

When set, it causes an interrupt after the execution of each instruction. This is used for debugging.

NT (Nested task flag)

Indicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)
Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor runs
as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of IF.

156 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Process Process
identification identification identification
Process
Processor state Processor state Processor state L control
information information information block

Process control
information

User stack

Private user
address space
(programs, data)

Process control
information

User stack

Private user
address space
(programs, data)

Process control
information

User stack

Private user
address space
(programs, data)

| I | | I

| | | | I

| | | | |

Shared address X : Shared address X : Shared address X

space ! X space ! X space !

I I] I I

| I | | |

S b _____1! b _____1!
Process 1 Process 2 Process n

Figure 3.13 User Processes in Virtual Memory

the figure, each process image appears as a contiguous range of addresses. In an actual
implementation, this may not be the case; it will depend on the memory management
scheme and the way in which control structures are organized by the OS.

As indicated in Table 3.5, the process control block may contain structuring
information, including pointers that allow the linking of process control blocks.
Thus, the queues that were described in the preceding section could be implemented
as linked lists of process control blocks. For example, the queueing structure of
Figure 3.8a could be implemented as suggested in Figure 3.14.

THE ROLE OF THE PROCESS CONTROL Brock The process control block is the
most important data structure in an OS. Each process control block contains all of
the information about a process that is needed by the OS. The blocks are read and/or
modified by virtually every module in the OS, including those involved with scheduling,
resource allocation, interrupt processing, and performance monitoring and analysis. One
can say that the set of process control blocks defines the state of the OS.

This brings up an important design issue. A number of routines within the OS
will need access to information in process control blocks. The provision of direct
access to these tables is not difficult. Each process is equipped with a unique ID, and
this can be used as an index into a table of pointers to the process control blocks.
The difficulty is not access but rather protection. Two problems present themselves:

e A bug in a single routine, such as an interrupt handler, could damage process
control blocks, which could destroy the system’s ability to manage the affected
processes.

3.4 / PROCESS CONTROL 157

Process
control block
Running
Ready
Blocked —

Figure 3.14 Process List Structures

¢ A design change in the structure or semantics of the process control block could
affect a number of modules in the OS.

These problems can be addressed by requiring all routines in the OS to go
through a handler routine, the only job of which is to protect process control blocks,
and which is the sole arbiter for reading and writing these blocks. The trade-off in
the use of such a routine involves performance issues and the degree to which the
remainder of the system software can be trusted to be correct.

3.4 PROCESS CONTROL

Modes of Execution

Before continuing with our discussion of the way in which the OS manages processes,
we need to distinguish between the mode of processor execution normally associated
with the OS and that normally associated with user programs. Most processors sup-
port at least two modes of execution. Certain instructions can only be executed in
the more-privileged mode. These would include reading or altering a control register,
such as the PSW, primitive I/O instructions, and instructions that relate to memory
management. In addition, certain regions of memory can only be accessed in the
more-privileged mode.

158 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.7 Typical Functions of an Operating System Kernel

Process Management

e Process creation and termination

e Process scheduling and dispatching

e Process switching

e Process synchronization and support for interprocess communication
e Management of process control blocks

Memory Management

¢ Allocation of address space to processes
e Swapping
¢ Page and segment management

I/0 Management

¢ Buffer management
e Allocation of I/O channels and devices to processes

Support Functions
e Interrupt handling
e Accounting
* Monitoring

The less-privileged mode is often referred to as the user mode, because
user programs typically would execute in this mode. The more-privileged mode
is referred to as the system mode, control mode, or kernel mode. This last term
refers to the kernel of the OS, which is that portion of the OS that encompasses
the important system functions. Table 3.7 lists the functions typically found in the
kernel of an OS.

The reason for using two modes should be clear. It is necessary to protect the
OS and key operating system tables, such as process control blocks, from interfer-
ence by user programs. In the kernel mode, the software has complete control of the
processor and all its instructions, registers, and memory. This level of control is not
necessary, and for safety is not desirable for user programs.

Two questions arise: How does the processor know in which mode it is to be
executing, and how is the mode changed? Regarding the first question, typically
there is a bit in the PSW that indicates the mode of execution. This bit is changed
in response to certain events. Typically, when a user makes a call to an operating
system service or when an interrupt triggers execution of an operating system
routine, the mode is set to the kernel mode and, upon return from the service to
the user process, the mode is set to user mode. As an example, consider the Intel
Itanium processor, which implements the 64-bit IA-64 architecture. The processor
has a processor status register (PSR) that includes a 2-bit CPL (current privilege
level) field. Level 0 is the most privileged level, while level 3 is the least privileged
level. Most operating systems, such as Linux, use level 0 for the kernel and one
other level for user mode. When an interrupt occurs, the processor clears most
of the bits in the psr, including the CPL field. This automatically sets the CPL to

3.4 / PROCESS CONTROL 159

level 0. At the end of the interrupt-handling routine, the final instruction that is
executed is IRT (interrupt return). This instruction causes the processor to restore
the PSR of the interrupted program, which restores the privilege level of that pro-
gram. A similar sequence occurs when an application places a system call. For the
Itanium, an application places a system call by placing the system call identifier and
the system call arguments in a predefined area, then executing a special instruc-
tion that has the effect of interrupting execution at the user level and transferring
control to the kernel.

Process Creation

In Section 3.2, we discussed the events that lead to the creation of a new process. Hav-
ing discussed the data structures associated with a process, we are now in a position
to describe briefly the steps involved in actually creating the process.

Once the OS decides, for whatever reason (see Table 3.1), to create a new pro-
cess, it can proceed as follows:

1. Assign a unique process identifier to the new process. At this time, a new entry
is added to the primary process table, which contains one entry per process.

2. Allocate space for the process. This includes all elements of the process image.
Thus, the OS must know how much space is needed for the private user address
space (programs and data) and the user stack. These values can be assigned by
default based on the type of process, or they can be set based on user request
at job creation time. If a process is spawned by another process, the parent
process can pass the needed values to the OS as part of the process creation
request. If any existing address space is to be shared by this new process, the
appropriate linkages must be set up. Finally, space for a process control block
must be allocated.

3. Initialize the process control block. The process identification portion contains
the ID of this process plus other appropriate IDs, such as that of the parent
process. The processor state information portion will typically be initialized
with most entries zero, except for the program counter (set to the program entry
point) and system stack pointers (set to define the process stack boundaries).
The process control information portion is initialized based on standard default
values plus attributes that have been requested for this process. For example,
the process state would typically be initialized to Ready or Ready/Suspend. The
priority may be set by default to the lowest priority unless an explicit request
is made for a higher priority. Initially, the process may own no resources (I/O
devices, files) unless there is an explicit request for these, or unless they are
inherited from the parent.

4. Set the appropriate linkages. For example, if the OS maintains each scheduling
queue as a linked list, then the new process must be put in the Ready or Ready/
Suspend list.

5. Create or expand other data structures. For example, the OS may maintain
an accounting file on each process to be used subsequently for billing and/or
performance assessment purposes.

160 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Switching

On the face of it, the function of process switching would seem to be straightforward.
At some time, a running process is interrupted, and the OS assigns another process
to the Running state and turns control over to that process. However, several design
issues are raised. First, what events trigger a process switch? Another issue is that we
must recognize the distinction between mode switching and process switching. Finally,
what must the OS do to the various data structures under its control to achieve a
process switch?

WHEN 1O SWITcH PROCESSES A process switch may occur any time that the OS has
gained control from the currently running process. Table 3.8 suggests the possible
events that may give control to the OS.

First, let us consider system interrupts. Actually, we can distinguish, as many
systems do, two kinds of system interrupts, one of which is simply referred to as an
interrupt, and the other as a trap. The former is due to some sort of event that is
external to and independent of the currently running process, such as the completion
of an I/O operation. The latter relates to an error or exception condition generated
within the currently running process, such as an illegal file access attempt. With an
ordinary interrupt, control is first transferred to an interrupt handler, which does
some basic housekeeping and then branches to an OS routine that is concerned with
the particular type of interrupt that has occurred. Examples include the following:

¢ Clock interrupt: The OS determines whether the currently running process has
been executing for the maximum allowable unit of time, referred to as a time
slice. That is, a time slice is the maximum amount of time that a process can
execute before being interrupted. If so, this process must be switched to a Ready
state and another process dispatched.

e 1/0 interrupt: The OS determines what I/O action has occurred. If the I/O
action constitutes an event for which one or more processes are waiting, then
the OS moves all of the corresponding blocked processes to the Ready state
(and Blocked/Suspend processes to the Ready/Suspend state). The OS must
then decide whether to resume execution of the process currently in the Run-
ning state, or to preempt that process for a higher-priority Ready process.

* Memory fault: The processor encounters a virtual memory address reference
for a word that is not in main memory. The OS must bring in the block (page
or segment) of memory containing the reference from secondary memory

Table 3.8 Mechanisms for Interrupting the Execution of a Process

current instruction

Mechanism Cause Use

Interrupt External to the execution of the cur- Reaction to an asynchronous external
rent instruction event

Trap Associated with the execution of the Handling of an error or an exception

condition

Supervisor call

Explicit request

Call to an operating system function

3.4 / PROCESS CONTROL 161

to main memory. After the I/O request is issued to bring in the block of
memory, the process with the memory fault is placed in a blocked state; the
OS then performs a process switch to resume execution of another process.
After the desired block is brought into memory, that process is placed in
the Ready state.

With a trap, the OS determines if the error or exception condition is fatal. If so,
then the currently running process is moved to the Exit state and a process switch
occurs. If not, then the action of the OS will depend on the nature of the error and the
design of the OS. It may attempt some recovery procedure or simply notify the user.
It may perform a process switch or resume the currently running process.

Finally, the OS may be activated by a supervisor call from the program being
executed. For example, a user process is running and an instruction is executed that
requests an I/O operation, such as a file open. This call results in a transfer to a routine
that is part of the operating system code. The use of a system call may place the user
process in the Blocked state.

Mobpke SwircHING In Chapter 1, we discussed the inclusion of an interrupt stage as
part of the instruction cycle. Recall that, in the interrupt stage, the processor checks
to see if any interrupts are pending, indicated by the presence of an interrupt signal.
If no interrupts are pending, the processor proceeds to the fetch stage and fetches
the next instruction of the current program in the current process. If an interrupt is
pending, the processor does the following:

1. It sets the program counter to the starting address of an interrupt-handler
program.

2. It switches from user mode to kernel mode so the interrupt processing code
may include privileged instructions.

The processor now proceeds to the fetch stage and fetches the first instruction of the
interrupt-handler program, which will service the interrupt. At this point, typically,
the context of the process that has been interrupted is saved into that process control
block of the interrupted program.

One question that may now occur to you is, What constitutes the context that is
saved? The answer is that it must include any information that may be altered by the
execution of the interrupt handler, and that will be needed to resume the program
that was interrupted. Thus, the portion of the process control block that was referred
to as processor state information must be saved. This includes the program counter,
other processor registers, and stack information.

Does anything else need to be done? That depends on what happens next. The
interrupt handler is typically a short program that performs a few basic tasks related
to an interrupt. For example, it resets the flag or indicator that signals the presence of
an interrupt. It may send an acknowledgment to the entity that issued the interrupt,
such as an I/O module. And it may do some basic housekeeping relating to the effects
of the event that caused the interrupt. For example, if the interrupt relates to an I/O
event, the interrupt handler will check for an error condition. If an error has occurred,
the interrupt handler may send a signal to the process that originally requested the
I/0O operation. If the interrupt is by the clock, then the handler will hand control over

162 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

to the dispatcher, which will want to pass control to another process because the time
slice allotted to the currently running process has expired.

What about the other information in the process control block? If this inter-
rupt is to be followed by a switch to another process, then some work will need
to be done. However, in most operating systems, the occurrence of an interrupt
does not necessarily mean a process switch. It is possible that, after the interrupt
handler has executed, the currently running process will resume execution. In that
case, all that is necessary is to save the processor state information when the inter-
rupt occurs and restore that information when control is returned to the program
that was running. Typically, the saving and restoring functions are performed in
hardware.

CHANGE oF PROCESS STATE 1t is clear, then, that the mode switch is a concept
distinct from that of the process switch.'” A mode switch may occur without changing
the state of the process that is currently in the Running state. In that case, the context
saving and subsequent restoral involve little overhead. However, if the currently
running process is to be moved to another state (Ready, Blocked, etc.), then the OS
must make substantial changes in its environment. The steps involved in a full process
switch are as follows:

1. Save the context of the processor, including program counter and other
registers.

2. Update the process control block of the process that is currently in the Running
state. This includes changing the state of the process to one of the other states
(Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields must also be
updated, including the reason for leaving the Running state and accounting
information.

3. Move the process control block of this process to the appropriate queue (Ready;
Blocked on Event i; Ready/Suspend).

4. Select another process for execution; this topic will be explored in Part Four.

5. Update the process control block of the process selected. This includes changing
the state of this process to Running.

6. Update memory management data structures. This may be required, depending
on how address translation is managed; this topic will be explored in Part Three.

7. Restore the context of the processor to that which existed at the time the
selected process was last switched out of the Running state, by loading in the
previous values of the program counter and other registers.

Thus, the process switch, which involves a state change, requires more effort than a
mode switch.

19The term context switch is often found in OS literature and textbooks. Unfortunately, although most of
the literature uses this term to mean what is here called a process switch, other sources use it to mean a
mode switch or even a thread switch (defined in the next chapter). To avoid ambiguity, the term is not
used in this book.

3.5 / EXECUTION OF THE OPERATING SYSTEM 163

3.5 EXECUTION OF THE OPERATING SYSTEM

In Chapter 2, we pointed out two intriguing facts about operating systems:

e The OS functions in the same way as ordinary computer software, in the sense
that the OS is a set of programs executed by the processor.

e The OS frequently relinquishes control and depends on the processor to restore
control to the OS.

If the OS is just a collection of programs, and if it is executed by the proces-
sor just like any other program, is the OS a process? If so, how is it controlled?
These interesting questions have inspired a number of design approaches. Figure 3.15
illustrates a range of approaches that are found in various contemporary operating
systems.

Nonprocess Kernel

One traditional approach, common on many older operating systems, is to execute
the kernel of the OS outside of any process (see Figure 3.15a). With this approach,
when the currently running process is interrupted or issues a supervisor call, the
mode context of this process is saved and control is passed to the kernel. The OS has
its own region of memory to use and its own system stack for controlling procedure
calls and returns. The OS can perform any desired functions and restore the context

o] [e

Kernel

(a) Separate kernel

Process-switching functions

(b) OS functions execute within user processes

Process-switching functions

(c) OS functions execute as separate processes

Figure 3.15 Relationship between Operating System
and User Processes

164 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

of the interrupted process, which causes execution to resume in the interrupted user
process. Alternatively, the OS can complete the function of saving the environment of
the process and proceed to schedule and dispatch another process. Whether this hap-
pens depends on the reason for the interruption and the circumstances at the time.

In any case, the key point here is that the concept of process is considered to
apply only to user programs. The operating system code is executed as a separate
entity that operates in privileged mode.

Execution within User Processes

An alternative that is common with operating systems on smaller computers (PCs,
workstations) is to execute virtually all OS software in the context of a user process.
The view is that the OS is primarily a collection of routines the user calls to perform
various functions, executed within the environment of the user’s process. This is illus-
trated in Figure 3.15b. At any given point, the OS is managing » process images. Each
image includes not only the regions illustrated in Figure 3.13 but also program, data,
and stack areas for kernel programs.

Figure 3.16 suggests a typical process image structure for this strategy. A sepa-
rate kernel stack is used to manage calls/returns while the process is in kernel mode.

Process
identification
Processor state Process control
information block

Process control
information

User stack

Private user
address space
(programs, data)

Kernel stack

I

|

Shared address :
space :
|

|

Figure 3.16 Process Image: Operating
System Executes within
User Space

3.5 / EXECUTION OF THE OPERATING SYSTEM 165

Operating system code and data are in the shared address space and are shared by
all user processes.

When an interrupt, trap, or supervisor call occurs, the processor is placed in
kernel mode and control is passed to the OS. To pass control from a user program
to the OS, the mode context is saved and a mode switch takes place to an operating
system routine. However, execution continues within the current user process. Thus,
a process switch is not performed, just a mode switch within the same process.

If the OS, upon completion of its work, determines that the current process
should continue to run, then a mode switch resumes the interrupted program within
the current process. This is one of the key advantages of this approach: A user
program has been interrupted to employ some operating system routine, and then
resumed, and all of this has occurred without incurring the penalty of two process
switches. If, however, it is determined that a process switch is to occur rather than
returning to the previously executing program, then control is passed to a process-
switching routine. This routine may or may not execute in the current process,
depending on system design. At some point, however, the current process has to be
placed in a nonrunning state, and another process designated as the running pro-
cess. During this phase, it is logically most convenient to view execution as taking
place outside of all processes.

In a way, this view of the OS is remarkable. Simply put, at certain points in time,
a process will save its state information, choose another process to run from among
those that are ready, and relinquish control to that process. The reason this is not an
arbitrary and indeed chaotic situation is that during the critical time, the code that
is executed in the user process is shared operating system code and not user code.
Because of the concept of user mode and kernel mode, the user cannot tamper with
or interfere with the operating system routines, even though they are executing in
the user’s process environment. This further reminds us that there is a distinction
between the concepts of process and program, and that the relationship between the
two is not one-to-one. Within a process, both a user program and operating system
programs may execute, and the operating system programs that execute in the various
user processes are identical.

Process-Based Operating System

Another alternative, illustrated in Figure 3.15c,is to implement the OS as a collection
of system processes. As in the other options, the software that is part of the kernel
executes in a kernel mode. In this case, however, major kernel functions are organized
as separate processes. Again, there may be a small amount of process-switching code
that is executed outside of any process.

This approach has several advantages. It imposes a program design discipline
that encourages the use of a modular OS with minimal, clean interfaces between the
modules. In addition, some noncritical operating system functions are conveniently
implemented as separate processes. For example, we mentioned earlier a monitor
program that records the level of utilization of various resources (processor, memory,
channels) and the rate of progress of the user processes in the system. Because this
program does not provide a particular service to any active process, it can only be
invoked by the OS. As a process, the function can run at an assigned priority level and

166 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

be interleaved with other processes under dispatcher control. Finally, implementing
the OS as a set of processes is useful in a multiprocessor or multicomputer environ-
ment, in which some of the operating system services can be shipped out to dedicated
processors, improving performance.

3.6 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly
visible to the user. UNIX follows the model of Figure 3.15b, in which most of the OS
executes within the environment of a user process. UNIX uses two categories of pro-
cesses: system processes, and user processes. System processes run in kernel mode and
execute operating system code to perform administrative and housekeeping func-
tions, such as allocation of memory and process swapping. User processes operate
in user mode to execute user programs and utilities, and in kernel mode to execute
instructions that belong to the kernel. A user process enters kernel mode by issuing
a system call, when an exception (fault) is generated, or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX SVR4 operating system;
these are listed in Table 3.9, and a state transition diagram is shown in Figure 3.17
(based on the figure in [BACHS86]). This figure is similar to Figure 3.9b, with the two
UNIX sleeping states corresponding to the two blocked states. The differences are
as follows:

e UNIX employs two Running states to indicate whether the process is executing
in user mode or kernel mode.

e A distinction is made between the two states: (Ready to Run, in Memory) and
(Preempted). These are essentially the same state, as indicated by the dotted

Table 3.9 UNIX Process States

User Running Executing in user mode.

Kernel Running Executing in kernel mode.

Ready to Run, in Ready to run as soon as the kernel schedules it.

Memory

Asleep in Memory Unable to execute until an event occurs; process is in main memory (a blocked state).
Ready to Run, Process is ready to run, but the swapper must swap the process into main memory
Swapped before the kernel can schedule it to execute.

Sleeping, Swapped The process is awaiting an event and has been swapped to secondary storage (a

blocked state).

Preempted Process is returning from kernel to user mode, but the kernel preempts it and does a
process switch to schedule another process.

Created Process is newly created and not yet ready to run.

Zombie Process no longer exists, but it leaves a record for its parent process to collect.

3.6 / UNIX SVR4 PROCESS MANAGEMENT 167

Not enough memory

Return .
(swapping system only)

to user

Preempt
Swap out

Reschedule
process

Swap in
System call,
interrupt

Interrupt,
interrupt return

Swap out

Figure 3.17 UNIX Process State Transition Diagram

line joining them. The distinction is made to emphasize the way in which the
Preempted state is entered. When a process is running in kernel mode (as a
result of a supervisor call, clock interrupt, or I/O interrupt), there will come a
time when the kernel has completed its work and is ready to return control to
the user program. At this point, the kernel may decide to preempt the current
process in favor of one that is ready and of higher priority. In that case, the cur-
rent process moves to the Preempted state. However, for purposes of dispatch-
ing, those processes in the Preempted state and those in the (Ready to Run, in
Memory) state form one queue.

Preemption can only occur when a process is about to move from kernel mode
to user mode. While a process is running in kernel mode, it may not be preempted.
This makes UNIX unsuitable for real-time processing. Chapter 10 will discuss the
requirements for real-time processing.

Two processes are unique in UNIX. Process 0 is a special process that is created
when the system boots; in effect, it is predefined as a data structure loaded at boot
time. It is the swapper process. In addition, process 0 spawns process 1, referred to as
the init process; all other processes in the system have process 1 as an ancestor. When
a new interactive user logs on to the system, it is process 1 that creates a user process

168 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

for that user. Subsequently, the user process can create child processes in a branch-
ing tree, so any particular application can consist of a number of related processes.

Process Description

A process in UNIX is a rather complex set of data structures that provide the OS
with all of the information necessary to manage and dispatch processes. Table 3.10
summarizes the elements of the process image, which are organized into three parts:
user-level context, register context, and system-level context.

The user-level context contains the basic elements of a user’s program and can
be generated directly from a compiled object file. The user’s program is separated into
text and data areas; the text area is read-only and is intended to hold the program’s
instructions. While the process is executing, the processor uses the user stack area for
procedure calls and returns and parameter passing. The shared memory area is a data
area that is shared with other processes. There is only one physical copy of a shared
memory area, but, by the use of virtual memory, it appears to each sharing process
that the shared memory region is in its address space. When a process is not running,
the processor status information is stored in the register context area.

The system-level context contains the remaining information that the OS
needs to manage the process. It consists of a static part, which is fixed in size and

Table 3.10 UNIX Process Image

User-Level Context

Process text
Process data
User stack

Shared memory

Executable machine instructions of the program
Data accessible by the program of this process
Contains the arguments, local variables, and pointers for functions executing in user mode

Memory shared with other processes, used for interprocess communication

Register Context

Program counter

Processor status
register

Stack pointer

General-purpose
registers

Address of next instruction to be executed; may be in kernel or user memory space of
this process

Contains the hardware status at the time of preemption; contents and format are hard-
ware dependent

Points to the top of the kernel or user stack, depending on the mode of operation at the
time or preemption

Hardware dependent

System-Level Context

Process table entry
U (user) area

Per process region
table

Kernel stack

Defines state of a process; this information is always accessible to the operating system
Process control information that needs to be accessed only in the context of the process

Defines the mapping from virtual to physical addresses; also contains a permission
field that indicates the type of access allowed the process: read-only, read-write, or
read-execute

Contains the stack frame of kernel procedures as the process executes in kernel mode

3.6 / UNIX SVR4 PROCESS MANAGEMENT 169

Table 3.11 UNIX Process Table Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate the process.

User identifiers The real user ID identifies the user who is responsible for the running process. The effec-

tive user ID may be used by a process to gain temporary privileges associated with a
particular program; while that program is being executed as part of the process, the pro-
cess operates with the effective user ID.

Process identifiers | ID of this process; ID of parent process. These are set up when the process enters the
Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs, the process is trans-
ferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and user-set timer used to
send alarm signal to a process.

P link Pointer to the next link in the ready queue (valid if process is ready to execute).

Memory status Indicates whether process image is in main memory or swapped out. If it is in memory,

this field also indicates whether it may be swapped out or is temporarily locked into
main memory.

stays with a process throughout its lifetime, and a dynamic part, which varies in
size through the life of the process. One element of the static part is the process
table entry. This is actually part of the process table maintained by the OS, with
one entry per process. The process table entry contains process control information
that is accessible to the kernel at all times; hence, in a virtual memory system, all
process table entries are maintained in main memory. Table 3.11 lists the contents
of a process table entry. The user area, or U area, contains additional process con-
trol information that is needed by the kernel when it is executing in the context of
this process; it is also used when paging processes to and from memory. Table 3.12
shows the contents of this table.

The distinction between the process table entry and the U area reflects the fact
that the UNIX kernel always executes in the context of some process. Much of the
time, the kernel will be dealing with the concerns of that process. However, some of
the time, such as when the kernel is performing a scheduling algorithm preparatory
to dispatching another process, it will need access to information about other pro-
cesses. The information in a process table can be accessed when the given process is
not the current one.

The third static portion of the system-level context is the per process region
table, which is used by the memory management system. Finally, the kernel stack is
the dynamic portion of the system-level context. This stack is used when the process
is executing in kernel mode, and contains the information that must be saved and
restored as procedure calls and interrupts occur.

170 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Table 3.12 UNIX U Area

Process table pointer

Indicates entry that corresponds to the U area.

User identifiers

Real and effective user IDs used to determine user privileges.

Timers

Record time that the process (and its descendants) spent executing in user mode and
in kernel mode.

Signal-handler array

For each type of signal defined in the system, indicates how the process will react to
receipt of that signal (exit, ignore, execute specified user function).

Control terminal

Indicates login terminal for this process, if one exists.

Error field

Records errors encountered during a system call.

Return value

Contains the result of system calls.

I/O parameters

Describe the amount of data to transfer, the address of the source (or target) data
array in user space, and file offsets for I/O.

File parameters

Current directory and current root describe the file system environment of the
process.

User file descriptor
table

Records the files the process has opened.

Limit fields

Restrict the size of the process and the size of a file it can write.

Permission modes
fields

Mask mode settings on files the process creates.

Process Control

Process creation in UNIX is made by means of the kernel system call, fork () . When
a process issues a fork request, the OS performs the following functions [BACHS6]:

1. It allocates a slot in the process table for the new process.

2. It assigns a unique process ID to the child process.

3. It makes a copy of the process image of the parent, with the exception of any
shared memory.

4. Tt increments counters for any files owned by the parent, to reflect that an
additional process now also owns those files.

5. It assigns the child process to the Ready to Run state.

6. It returns the ID number of the child to the parent process, and a 0 value to
the child process.

All of this work is accomplished in kernel mode in the parent process. When
the kernel has completed these functions, it can do one of the following, as part of
the dispatcher routine:

e Stay in the parent process. Control returns to user mode at the point of the fork
call of the parent.

e Transfer control to the child process. The child process begins executing at the
same point in the code as the parent, namely at the return from the fork call.

e Transfer control to another process. Both parent and child are left in the Ready
to Run state.

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 171

It is perhaps difficult to visualize this method of process creation because both
parent and child are executing the same passage of code. The difference is this: When
the return from the fork occurs, the return parameter is tested. If the value is zero,
then this is the child process, and a branch can be executed to the appropriate user
program to continue execution. If the value is nonzero, then this is the parent process,
and the main line of execution can continue.

3.7 SUMMARY

The most fundamental concept in a modern OS is the process. The principal function
of the OS is to create, manage, and terminate processes. While processes are active,
the OS must see that each is allocated time for execution by the processor, coordi-
nate their activities, manage conflicting demands, and allocate system resources to
processes.

To perform its process management functions, the OS maintains a description
of each process, or process image, which includes the address space within which the
process executes, and a process control block. The latter contains all of the informa-
tion that is required by the OS to manage the process, including its current state,
resources allocated to it, priority, and other relevant data.

During its lifetime, a process moves among a number of states. The most impor-
tant of these are Ready, Running, and Blocked. A ready process is one that is not cur-
rently executing, but that is ready to be executed as soon as the OS dispatches it. The
running process is that process that is currently being executed by the processor. In a
multiprocessor system, more than one process can be in this state. A blocked process
is waiting for the completion of some event, such as an I/O operation.

A running process is interrupted either by an interrupt, which is an event that
occurs outside the process and that is recognized by the processor, or by executing
a supervisor call to the OS. In either case, the processor performs a mode switch,
transferring control to an operating system routine. The OS, after it has completed
necessary work, may resume the interrupted process or switch to some other process.

3.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
blocked state privileged mode running state
child process process suspend state
dispatcher process control block swapping
exit state process control information system mode
interrupt process image task
kernel mode process spawning time slice
mode switch process switch trace
new state program status word trap
parent process ready state user mode
preempt round-robin

172 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Review Questions

3.1. What is an instruction trace?
3.2. Explain the concept of a process and mark its differences from a program.
3.3. For the processing model of Figure 3.6, briefly define each state.
3.4. What does it mean to preempt a process?
3.5. What is process spawning?
3.6. Why does Figure 3.9b have two blocked states?
3.7. List four characteristics of a suspended process.
3.8. For what types of entities does the OS maintain tables of information for management
purposes?
3.9. What are the elements of a process image?
3.10. Why are two modes (user and kernel) needed?
3.11. What are the steps performed by an OS to create a new process?
3.12. What is the difference between an interrupt and a trap?
3.13. Give three examples of an interrupt.
3.14. What is the difference between a mode switch and a process switch?
Problems
3.1. A system adopts a priority-based preemptive scheduling where the initial priority of
a process increases by 1 after every 5 ms. In a recorded time span, the system has four
processes, P1, P2, P3 and P4, as shown in the following table:
PROCESS INITIAL ARRIVAL TIME | TOTAL CPU TIME IN
ID PRIORITY IN MS MS
P1 1 0 15
P2 3 5 75
P3 2 10 5
P4 2 15 10
Draw a timing diagram similar to Figure 3.7 and find the turnaround time for each
process. Assume that the dispatcher takes 2.5 milliseconds for a process switch.
3.2. Suppose that four interleaved processes are running in a system having start addresses

4050, 3200, 5000 and 6700. The traces of the individual processes are as follows:

Process P1 Process P2 Process P3 Process P4
4050 3200 5000 6700
4051 3201 5001 6701
4052 3202 5002 6702
4053 3203 5003 <1/O>
4054 3204 5004
4055 3205 5005
4056 3206 5006
4057 <l/O> 5007
4058 5008
4059 5009
4060 5010

3.3.

3.4.

3.5.

3.6.

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 173

Find the interleaved traces of the processes. Assume that the dispatcher is invoked after

5 instructions or for interrupts and the dispatcher cycle has 4 instructions.

Figure 3.9b contains seven states. In principle, one could draw a transition between any

two states, for a total of 42 different transitions.

a. List all of the possible transitions and give an example of what could cause each
transition.

b. List all of the impossible transitions and explain why.

For the seven-state process model of Figure 3.9b, draw a queueing diagram similar to
that of Figure 3.8b.

Consider the state transition diagram of Figure 3.9b. Suppose it is time for the OS to dis-
patch a process and there are processes in both the Ready state and the Ready/Suspend
state, and at least one process in the Ready/Suspend state has higher scheduling prior-
ity than any of the processes in the Ready state. Two extreme policies are as follows:
(1) Always dispatch from a process in the Ready state, to minimize swapping, and
(2) always give preference to the highest-priority process, even though that may mean
swapping when swapping is not necessary. Suggest an intermediate policy that tries to
balance the concerns of priority and performance.

Table 3.13 shows the process states for the VAX/VMS operating system.
a. Can you provide a justification for the existence of so many distinct wait states?

b. Why do the following states not have resident and swapped-out versions: Page
Fault Wait, Collided Page Wait, Common Event Wait, Free Page Wait, and Resource
Wait?

Table 3.13 VAX/VMS Process States

Process State

Process Condition

Currently Executing Running process.

Computable (resident) Ready and resident in main memory.

Computable (outswapped) Ready, but swapped out of main memory.

Page Fault Wait Process has referenced a page not in main memory and must wait for the

page to be read in.

Collided Page Wait Process has referenced a shared page that is the cause of an existing page

fault wait in another process, or a private page that is in the process of
being read in or written out.

Common Event Wait Waiting for shared event flag (event flags are single-bit interprocess sig-

naling mechanisms).

Free Page Wait Waiting for a free page in main memory to be added to the collection of
pages in main memory devoted to this process (the working set of the
process).

Hibernate Wait (resident) Process puts itself in a wait state.

Hibernate Wait (outswapped) Hibernating process is swapped out of main memory.

Local Event Wait (resident) Process in main memory and waiting for local event flag (usually I/O
completion).

Local Event Wait (outswapped) Process in local event wait is swapped out of main memory.

Suspended Wait (resident) Process is put into a wait state by another process.

Suspended Wait (outswapped) Suspended process is swapped out of main memory.

Resource Wait

Process waiting for miscellaneous system resource.

174 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

3.7

¢. Draw the state transition diagram and indicate the action or occurrence that causes
each transition.

The VAX/VMS operating system makes use of four processor access modes to facili-
tate the protection and sharing of system resources among processes. The access mode
determines:

¢ Instruction execution privileges: What instructions the processor may execute

® Memory access privileges: Which locations in virtual memory the current instruc-
tion may access

The four modes are as follows:

® Kernel: Executes the kernel of the VMS operating system, which includes memory
management, interrupt handling, and I/O operations.

e Executive: Executes many of the OS service calls, including file and record (disk
and tape) management routines.

® Supervisor: Executes other OS services, such as responses to user commands.

e User: Executes user programs, plus utilities such as compilers, editors, linkers, and
debuggers.

A process executing in a less-privileged mode often needs to call a procedure that

executes in a more-privileged mode; for example, a user program requires an operat-

ing system service. This call is achieved by using a change-mode (CHM) instruction,

which causes an interrupt that transfers control to a routine at the new access mode. A

return is made by executing the REI (return from exception or interrupt) instruction.

a. A number of operating systems have two modes: kernel and user. What are the
advantages and disadvantages of providing four modes instead of two?

b. Can you make a case for even more than four modes?

Figure 3.18 VAX/VMS Access Modes

3.8.

3.9.

3.10.

3.11.

3.12.

3.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 175

The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 3.18. Indeed, the simple kernel/user scheme, as
described in Section 3.3, is a two-ring structure. A potential disadvantage of this protec-
tion structure is that it cannot readily be used to enforce a “need-to-know” principle.
[SILBO04] gives this example: If an object is accessible in domain Dj but not in domain
Di,then j < i. But this means that every object accessible in Di is also accessible in Dj.

Explain clearly what the problem is that is referred to in the preceding paragraph.
Figure 3.8b suggests that a process can only be in one event queue at a time.

a. Isit possible that you would want to allow a process to wait on more than one event
at the same time? Provide an example.

b. In that case, how would you modify the queueing structure of the figure to support
this new feature?

What is the purpose of the system call fork () in the UNIX operating system? Write a
Croutine to create a child process using the fork () system call. Incorporate an error
check in your routine in case the creation of the child process fails.

What are the specialities of Process 0 and Process 1 in UNIX? Which command will
you use to get information about the running processes in the system?

You have executed the following C program:

main ()

{ int pid;

pid = fork ();

printf (“%d \n”, pid);
}

What are the possible outputs, assuming the fork succeeded?

CHAPTER

THREADS

4.1 Processes and Threads
Multithreading
Thread Functionality

4.2 Types of Threads
User-Level and Kernel-Level Threads
Other Arrangements

4.3 Multicore and Multithreading
Performance of Software on Multicore
Application Example: Valve Game Software

4.4 Windows Process and Thread Management
Management of Background Tasks and Application Lifecycles
The Windows Process
Process and Thread Objects
Multithreading
Thread States
Support for OS Subsystems

4.5 Solaris Thread and SMP Management
Multithreaded Architecture
Motivation
Process Structure
Thread Execution
Interrupts as Threads

4.6 Linux Process and Thread Management
Linux Tasks
Linux Threads
Linux Namespaces

4.7 Android Process and Thread Management
Android Applications
Activities
Processes and Threads

4.8 Mac OS X Grand Central Dispatch
4.9 Summary

4.10 Key Terms, Review Questions, and Problems

176

4.1 / PROCESSES AND THREADS 177

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Understand the distinction between process and thread.

Describe the basic design issues for threads.

Explain the difference between user-level threads and kernel-level threads.
Describe the thread management facility in Windows.

Describe the thread management facility in Solaris.

Describe the thread management facility in Linux.

This chapter examines some more advanced concepts related to process manage-
ment, which are found in a number of contemporary operating systems. We show
that the concept of process is more complex and subtle than presented so far and
in fact embodies two separate and potentially independent concepts: one relat-
ing to resource ownership, and another relating to execution. This distinction has
led to the development, in many operating systems, of a construct known as the
thread.

4.1 PROCESSES AND THREADS

The discussion so far has presented the concept of a process as embodying two
characteristics:

1. Resource ownership: A process includes a virtual address space to hold the

process image; recall from Chapter 3 that the process image is the collection of
program, data, stack, and attributes defined in the process control block. From
time to time, a process may be allocated control or ownership of resources,
such as main memory, I/O channels, [/O devices, and files. The OS performs a
protection function to prevent unwanted interference between processes with
respect to resources.

Scheduling/execution: The execution of a process follows an execution path
(trace) through one or more programs (e.g., Figure 1.5). This execution may
be interleaved with that of other processes. Thus, a process has an execution
state (Running, Ready, etc.) and a dispatching priority, and is the entity that is
scheduled and dispatched by the OS.

Some thought should convince the reader that these two characteristics are

independent and could be treated independently by the OS. This is done in a number
of operating systems, particularly recently developed systems. To distinguish the two
characteristics, the unit of dispatching is usually referred to as a thread or

178 CHAPTER 4 / THREADS

lightweight process, while the unit of resource ownership is usually referred to as a
process or task.!

Multithreading

Multithreading refers to the ability of an OS to support multiple, concurrent paths
of execution within a single process. The traditional approach of a single thread of
execution per process, in which the concept of a thread is not recognized, is referred
to as a single-threaded approach. The two arrangements shown in the left half of
Figure 4.1 are single-threaded approaches. MS-DOS is an example of an OS that
supports a single-user process and a single thread. Other operating systems, such
as some variants of UNIX, support multiple user processes, but only support one
thread per process. The right half of Figure 4.1 depicts multithreaded approaches.
A Java runtime environment is an example of a system of one process with multiple
threads. Of interest in this section is the use of multiple processes, each of which
supports multiple threads. This approach is taken in Windows, Solaris, and many

One process
One thread

One process
Multiple threads

Multiple processes
One thread per process

Multiple processes
Multiple threads per process

5 = Instruction trace

Figure 41 Threads and Processes

! Alas, even this degree of consistency is not maintained. In IBM’s mainframe operating systems, the con-
cepts of address space and task, respectively, correspond roughly to the concepts of process and thread that
we describe in this section. Also, in the literature, the term lightweight process is used as either (1) equiva-
lent to the term thread, (2) a particular type of thread known as a kernel-level thread, or (3) in the case of
Solaris, an entity that maps user-level threads to kernel-level threads.

4.1 / PROCESSES AND THREADS 179

modern versions of UNIX, among others. In this section, we give a general descrip-
tion of multithreading; the details of the Windows, Solaris, and Linux approaches will
be discussed later in this chapter.

In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection. The following are associated with processes:

e A virtual address space that holds the process image
* Protected access to processors, other processes (for interprocess communica-
tion), files, and I/O resources (devices and channels)

Within a process, there may be one or more threads, each with the following:

* A thread execution state (Running, Ready, etc.)

e A saved thread context when not running; one way to view a thread is as an
independent program counter operating within a process

* An execution stack
e Some per-thread static storage for local variables

e Access to the memory and resources of its process, shared with all other threads
in that process

Figure 4.2 illustrates the distinction between threads and processes from the
point of view of process management. In a single-threaded process model (i.e., there
is no distinct concept of thread), the representation of a process includes its process
control block and user address space, as well as user and kernel stacks to manage the
call/return behavior of the execution of the process. While the process is running, it
controls the processor registers. The contents of these registers are saved when the
process is not running. In a multithreaded environment, there is still a single process

Single-threaded Multithreaded
process model process model
Thread Thread Thread
[——— - [———— - [——— -
I| Thread : 1| Thread : 1| Thread :
Process User : control || : control || : control ||
control stack 1| block : 1| block : 1| block :
block : | : | : |
| (I (I !
| (I (I !
Process | !| User [i User |! 1| User [!
U Kernel | [[|
addsreerss stack control | | stack [; | stack [} || stack ||
spac‘e‘ block : : : : : :
| (I (I !
| (I (I !
| [[|
User i| Kernel |I || Kernel |!I || Kernel |!
address | || stack | | stack | | stack |
space | : | : | :
I I I

Figure 4.2 Single-Threaded and Multithreaded Process Models

180 CHAPTER 4 / THREADS

control block and user address space associated with the process, but now there are
separate stacks for each thread, as well as a separate control block for each thread
containing register values, priority, and other thread-related state information.

Thus, all of the threads of a process share the state and resources of that process.
They reside in the same address space and have access to the same data. When one
thread alters an item of data in memory, other threads see the results if and when
they access that item. If one thread opens a file with read privileges, other threads in
the same process can also read from that file.

The key benefits of threads derive from the performance implications:

1. It takes far less time to create a new thread in an existing process, than to create
a brand-new process. Studies done by the Mach developers show that thread
creation is ten times faster than process creation in UNIX [TEVAS7].

2. It takes less time to terminate a thread than a process.

3. It takes less time to switch between two threads within the same process than
to switch between processes.

4. Threads enhance efficiency in communication between different executing
programs. In most operating systems, communication between independent
processes requires the intervention of the kernel to provide protection and the
mechanisms needed for communication. However, because threads within the
same process share memory and files, they can communicate with each other
without invoking the kernel.

Thus, if there is an application or function that should be implemented as a set
of related units of execution, it is far more efficient to do so as a collection of threads,
rather than a collection of separate processes.

An example of an application that could make use of threads is a file server. As
each new file request comes in, a new thread can be spawned for the file management
program. Because a server will handle many requests, many threads will be created
and destroyed in a short period. If the server runs on a multiprocessor computer,
then multiple threads within the same process can be executing simultaneously on
different processors. Further, because processes or threads in a file server must share
file data and therefore coordinate their actions, it is faster to use threads and shared
memory than processes and message passing for this coordination.

The thread construct is also useful on a single processor to simplify the structure
of a program that is logically doing several different functions.

[LETW8S] gives four examples of the uses of threads in a single-user multipro-
cessing system:

1. Foreground and background work: For example, in a spreadsheet program, one
thread could display menus and read user input, while another thread executes
user commands and updates the spreadsheet. This arrangement often increases
the perceived speed of the application by allowing the program to prompt for
the next command before the previous command is complete.

2. Asynchronous processing: Asynchronous elements in the program can be
implemented as threads. For example, as a protection against power failure,
one can design a word processor to write its random access memory (RAM)

4.1 / PROCESSES AND THREADS 181

buffer to disk once every minute. A thread can be created whose sole job is
periodic backup and that schedules itself directly with the OS; there is no need
for fancy code in the main program to provide for time checks or to coordinate
input and output.

3. Speed of execution: A multithreaded process can compute one batch of data
while reading the next batch from a device. On a multiprocessor system, mul-
tiple threads from the same process may be able to execute simultaneously.
Thus, even though one thread may be blocked for an I/O operation to read in
a batch of data, another thread may be executing.

4. Modular program structure: Programs that involve a variety of activities or a
variety of sources and destinations of input and output may be easier to design
and implement using threads.

In an OS that supports threads, scheduling and dispatching is done on a thread
basis; hence, most of the state information dealing with execution is maintained
in thread-level data structures. There are, however, several actions that affect all
of the threads in a process, and that the OS must manage at the process level. For
example, suspension involves swapping the address space of one process out of
main memory to make room for the address space of another process. Because
all threads in a process share the same address space, all threads are suspended
at the same time. Similarly, termination of a process terminates all threads within
that process.

Thread Functionality

Like processes, threads have execution states and may synchronize with one another.
We look at these two aspects of thread functionality in turn.

THREAD STATES As with processes, the key states for a thread are Running, Ready,
and Blocked. Generally, it does not make sense to associate suspend states with
threads because such states are process-level concepts. In particular, if a process is
swapped out, all of its threads are necessarily swapped out because they all share the
address space of the process.

There are four basic thread operations associated with a change in thread state
[ANDEO04]:

1. Spawn: Typically, when a new process is spawned, a thread for that process
is also spawned. Subsequently, a thread within a process may spawn another
thread within the same process, providing an instruction pointer and arguments
for the new thread. The new thread is provided with its own register context and
stack space and placed on the Ready queue.

2. Block: When a thread needs to wait for an event, it will block (saving its user
registers, program counter, and stack pointers). The processor may then turn to
the execution of another ready thread in the same or a different process.

3. Unblock: When the event for which a thread is blocked occurs, the thread is
moved to the Ready queue.

4. Finish: When a thread completes, its register context and stacks are deallocated.

182 CHAPTER 4 / THREADS

A significant issue is whether the blocking of a thread results in the blocking
of the entire process. In other words, if one thread in a process is blocked, does this
prevent the running of any other thread in the same process, even if that other thread
is in a ready state? Clearly, some of the flexibility and power of threads is lost if the
one blocked thread blocks an entire process.

We will return to this issue subsequently in our discussion of user-level versus
kernel-level threads, but for now, let us consider the performance benefits of threads
that do not block an entire process. Figure 4.3 (based on one in [KLEI96]) shows a
program that performs two remote procedure calls (RPCs)? to two different hosts to
obtain a combined result. In a single-threaded program, the results are obtained in
sequence, so the program has to wait for a response from each server in turn. Rewrit-
ing the program to use a separate thread for each RPC results in a substantial
speedup. Note if this program operates on a uniprocessor, the requests must be gener-
ated sequentially and the results processed in sequence; however, the program waits
concurrently for the two replies.

Time ——>

RPC RPC
request request
Process 1 | KRR IRXIRRIRRIRRIRRRXA]

(a) RPC using single thread

RPC

request

Thread A (Process 1) |

Thread B (Process 1) []

RPC

request

(b) RPC using one thread per server (on a uniprocessor)

3 Blocked, waiting for response to RPC
1 Blocked, waiting for processor, which is in use by Thread B
1 Running

Figure 4.3 Remote Procedure Call (RPC) Using Threads

2An RPC is a technique by which two programs, which may execute on different machines, interact using
procedure call/return syntax and semantics. Both the called and calling programs behave as if the partner
program were running on the same machine. RPCs are often used for client/server applications and will
be discussed in Chapter 16.

4.2 / TYPES OF THREADS 183

Time
1/0 Request Time quantum
request complete expires

Thread A (Process 1) [I]
Thread B (Process 1) [I []
Thread C (Process 2) Tim:xgl;rt;tum /I I I

Process

created

1 Blocked 1 Ready [1Running

Figure 4.4 Multithreading Example on a Uniprocessor

On a uniprocessor, multiprogramming enables the interleaving of multiple
threads within multiple processes. In the example of Figure 4.4, three threads in two
processes are interleaved on the processor. Execution passes from one thread to
another either when the currently running thread is blocked or when its time slice is
exhausted.’

THREAD SYNCHRONIZATION All of the threads of a process share the same address
space and other resources, such as open files. Any alteration of a resource by one
thread affects the environment of the other threads in the same process. It is therefore
necessary to synchronize the activities of the various threads so that they do not
interfere with each other or corrupt data structures. For example, if two threads each
try to add an element to a doubly linked list at the same time, one element may be
lost or the list may end up malformed.

The issues raised and the techniques used in the synchronization of threads
are, in general, the same as for the synchronization of processes. These issues and
techniques will be the subject of Chapters 5 and 6.

4.2 TYPES OF THREADS

User-Level and Kernel-Level Threads

There are two broad categories of thread implementation: user-level threads (ULT's)
and kernel-level threads (KLTs).* The latter are also referred to in the literature as
kernel-supported threads or lightweight processes.

USER-LEVEL THREADS 1In a pure ULT facility, all of the work of thread management
is done by the application and the kernel is not aware of the existence of threads.

3In this example, thread C begins to run after thread A exhausts its time quantum, even though thread B
is also ready to run. The choice between B and C is a scheduling decision, a topic covered in Part Four.

“The acronyms ULT and KLT are not widely used, but are introduced for conciseness.

184 CHAPTER 4 / THREADS

SR S SR
“ \ |/

Threads User User Threads User
library space space library space
Kernel Kernel Kernel

space space space

@ D D © ©

®
0 D @
(a) Pure user—level (b) Pure kernel-level (c) Combined

5 User-level thread @ Kernel-level thread @ Process

Figure 4.5 User-Level and Kernel-Level Threads

Figure 4.5a illustrates the pure ULT approach. Any application can be programmed
to be multithreaded by using a threads library, which is a package of routines for ULT
management. The threads library contains code for creating and destroying threads,
for passing messages and data between threads, for scheduling thread execution, and
for saving and restoring thread contexts.

By default, an application begins with a single thread and begins running in
that thread. This application and its thread are allocated to a single process man-
aged by the kernel. At any time that the application is running (the process is in
the Running state), the application may spawn a new thread to run within the same
process. Spawning is done by invoking the spawn utility in the threads library. Con-
trol is passed to that utility by a procedure call. The threads library creates a data
structure for the new thread and then passes control to one of the threads within this
process that is in the Ready state, using some scheduling algorithm. When control
is passed to the library, the context of the current thread is saved, and when control
is passed from the library to a thread, the context of that thread is restored. The
context essentially consists of the contents of user registers, the program counter,
and stack pointers.

All of the activity described in the preceding paragraph takes place in user
space and within a single process. The kernel is unaware of this activity. The ker-
nel continues to schedule the process as a unit and assigns a single execution state
(Ready, Running, Blocked, etc.) to that process. The following examples should
clarify the relationship between thread scheduling and process scheduling. Suppose
process B is executing in its thread 2; the states of the process and two ULTs that
are part of the process are shown in Figure 4.6a. Each of the following is a possible
occurrence:

1. The application executing in thread 2 makes a system call that blocks B. For
example, an I/O call is made. This causes control to transfer to the kernel.
The kernel invokes the I/O action, places process B in the Blocked state, and

S9JB)S SSAI0IJ PUE SI)JB)S PEIIY], [PAIT-19S) Ud3aM)aq sdiysuone[dy] ay) jo sajdwexyy 9y 21n3iy

payoorg

¢ SSed01g

Pa3o01g
D= G

T prary,

G

Paxd01g
D G

1 peary,
(P)

Pa3201d

D G

g SSe001g

pa3do1g pa3do1g
G \ @i

T peary], I prary,

()

¢ Ssed01g

paxd01g
D G

T prearyy,

G

pa3d01g
e

1 peary,
(@

P33001d

G

g Ssed01g

pa3d0o1g pa3d01g
G \ @i

T peary], I pearyL,

(®)

185

186 CHAPTER 4 / THREADS

switches to another process. Meanwhile, according to the data structure main-
tained by the threads library, thread 2 of process B is still in the Running
state. It is important to note that thread 2 is not actually running in the sense
of being executed on a processor; but it is perceived as being in the Running
state by the threads library. The corresponding state diagrams are shown in
Figure 4.6b.

2. A clock interrupt passes control to the kernel, and the kernel determines
that the currently running process (B) has exhausted its time slice. The kernel
places process B in the Ready state and switches to another process. Meanwhile,
according to the data structure maintained by the threads library, thread 2 of
process B is still in the Running state. The corresponding state diagrams are
shown in Figure 4.6c.

3. Thread 2 has reached a point where it needs some action performed by thread
1 of process B. Thread 2 enters a Blocked state and thread 1 transitions from
Ready to Running. The process itself remains in the Running state. The cor-
responding state diagrams are shown in Figure 4.6d.

Note that each of the three preceding items suggests an alternative event start-
ing from diagram (a) of Figure 4.6. So each of the three other diagrams (b, ¢, d) shows
a transition from the situation in (a). In cases 1 and 2 (Figures 4.6b and 4.6¢), when the
kernel switches control back to process B, execution resumes in thread 2. Also note
that a process can be interrupted, either by exhausting its time slice or by being pre-
empted by a higher-priority process, while it is executing code in the threads library.
Thus, a process may be in the midst of a thread switch from one thread to another
when interrupted. When that process is resumed, execution continues within the
threads library, which completes the thread switch and transfers control to another
thread within that process.

There are a number of advantages to the use of ULTs instead of KLTs, includ-
ing the following:

1. Thread switching does not require kernel-mode privileges because all of the
thread management data structures are within the user address space of a single
process. Therefore, the process does not switch to the kernel mode to do thread
management. This saves the overhead of two mode switches (user to kernel;
kernel back to user).

2. Scheduling can be application specific. One application may benefit most from
a simple round-robin scheduling algorithm, while another might benefit from a
priority-based scheduling algorithm. The scheduling algorithm can be tailored
to the application without disturbing the underlying OS scheduler.

3. ULTs can run on any OS. No changes are required to the underlying kernel to
support ULTs. The threads library is a set of application-level functions shared
by all applications.

There are two distinct disadvantages of ULTs compared to KLTs:

1. In a typical OS, many system calls are blocking. As a result, when a ULT exe-
cutes a system call, not only is that thread blocked, but all of the threads within
the process are blocked as well.

4.2 / TYPES OF THREADS 187

2. In a pure ULT strategy, a multithreaded application cannot take advantage of
multiprocessing. A kernel assigns one process to only one processor at a time.
Therefore, only a single thread within a process can execute at a time. In effect,
we have application-level multiprogramming within a single process. While this
multiprogramming can result in a significant speedup of the application, there
are applications that would benefit from the ability to execute portions of code
simultaneously.

There are ways to work around these two problems. For example, both prob-
lems can be overcome by writing an application as multiple processes rather than
multiple threads. But this approach eliminates the main advantage of threads: Each
switch becomes a process switch rather than a thread switch, resulting in much greater
overhead.

Another way to overcome the problem of blocking threads is to use a technique
referred to as jacketing. The purpose of jacketing is to convert a blocking system
call into a nonblocking system call. For example, instead of directly calling a system
I/0 routine, a thread calls an application-level I/O jacket routine. Within this jacket
routine is code that checks to determine if the I/O device is busy. If it is, the thread
enters the Blocked state and passes control (through the threads library) to another
thread. When this thread is later given control again, the jacket routine checks the
1/O device again.

KERNEL-LEVEL THREADS In a pure KLT facility, all of the work of thread
management is done by the kernel. There is no thread management code in the
application level, simply an application programming interface (API) to the kernel
thread facility. Windows is an example of this approach.

Figure 4.5b depicts the pure KLT approach. The kernel maintains context infor-
mation for the process as a whole and for individual threads within the process.
Scheduling by the kernel is done on a thread basis. This approach overcomes the
two principal drawbacks of the ULT approach. First, the kernel can simultaneously
schedule multiple threads from the same process on multiple processors. Second, if
one thread in a process is blocked, the kernel can schedule another thread of the same
process. Another advantage of the KLT approach is that kernel routines themselves
can be multithreaded.

The principal disadvantage of the KLT approach compared to the ULT
approach is that the transfer of control from one thread to another within the
same process requires a mode switch to the kernel. To illustrate the differences,
Table 4.1 shows the results of measurements taken on a uniprocessor VAX com-
puter running a UNIX-like OS. The two benchmarks are as follows: Null Fork,
the time to create, schedule, execute, and complete a process/thread that invokes

Table 4.1 Thread and Process Operation Latencies (us)

Operation User-Level Threads Kernel-Level Threads Processes
Null Fork 34 948 11,300
Signal Wait 37 441 1,840

188 CHAPTER 4 / THREADS

the null procedure (i.e., the overhead of forking a process/thread); and Signal-Wait,
the time for a process/thread to signal a waiting process/thread and then wait on a
condition (i.e., the overhead of synchronizing two processes/threads together). We
see there is an order of magnitude or more of difference between ULTs and KLTs,
and similarly between KLTs and processes.

Thus, on the face of it, while there is a significant speedup by using KLT mul-
tithreading compared to single-threaded processes, there is an additional significant
speedup by using ULTs. However, whether or not the additional speedup is realized
depends on the nature of the applications involved. If most of the thread switches
in an application require kernel-mode access, then a ULT-based scheme may not
perform much better than a KLT-based scheme.

COMBINED APPROACHES Some operating systems provide a combined ULT/KLT
facility (see Figure 4.5c). In a combined system, thread creation is done completely
in user space, as is the bulk of the scheduling and synchronization of threads within
an application. The multiple ULTs from a single application are mapped onto some
(smaller or equal) number of KLTs. The programmer may adjust the number of KLTs
for a particular application and processor to achieve the best overall results.

In a combined approach, multiple threads within the same application can run
in parallel on multiple processors, and a blocking system call need not block the entire
process. If properly designed, this approach should combine the advantages of the
pure ULT and KLT approaches while minimizing the disadvantages.

Solaris is a good example of an OS using this combined approach. The current
Solaris version limits the ULT/KLT relationship to be one-to-one.

Other Arrangements

As we have said, the concepts of resource allocation and dispatching unit have tra-
ditionally been embodied in the single concept of the process—thatis,as a1 :1
relationship between threads and processes. Recently, there has been much interest
in providing for multiple threads within a single process, which is a many-to-one
relationship. However, as Table 4.2 shows, the other two combinations have also been
investigated, namely, a many-to-many relationship and a one-to-many relationship.

Table 4.2 Relationship between Threads and Processes

Threads: Processes Description Example Systems
1:1 Each thread of execution is a unique process Traditional UNIX
with its own address space and resources. implementations
M:1 A process defines an address space and dynamic | Windows NT, Solaris, Linux,
resource ownership. Multiple threads may be 0S/2, 0S/390, MACH

created and executed within that process.

1M A thread may migrate from one process envi- Ra (Clouds), Emerald
ronment to another. This allows a thread to be
easily moved among distinct systems.

M:N It combines attributes of M:1 and 1:M cases. TRIX

4.2 / TYPES OF THREADS 189

MANY-TO-MANY RELATIONSHIP The idea of having a many-to-many relationship
between threads and processes has been explored in the experimental operating
system TRIX [PAZZ92, WARD®S0]. In TRIX, there are the concepts of domain and
thread. A domain is a static entity, consisting of an address space and “ports” through
which messages may be sent and received. A thread is a single execution path, with
an execution stack, processor state, and scheduling information.

As with the multithreading approaches discussed so far, multiple threads may
execute in a single domain, providing the efficiency gains discussed earlier. However,
it is also possible for a single-user activity, or application, to be performed in multiple
domains. In this case, a thread exists that can move from one domain to another.

The use of a single thread in multiple domains seems primarily motivated by
a desire to provide structuring tools for the programmer. For example, consider a
program that makes use of an I/O subprogram. In a multiprogramming environment
that allows user-spawned processes, the main program could generate a new process
to handle I/O, then continue to execute. However, if the future progress of the main
program depends on the outcome of the I/O operation, then the main program will
have to wait for the other I/O program to finish. There are several ways to implement
this application:

1. The entire program can be implemented as a single process. This is a reason-
able and straightforward solution. There are drawbacks related to memory
management. The process as a whole may require considerable main memory
to execute efficiently, whereas the 1/0 subprogram requires a relatively small
address space to buffer I/O and to handle the relatively small amount of pro-
gram code. Because the I/O program executes in the address space of the larger
program, either the entire process must remain in main memory during the I/O
operation, or the I/O operation is subject to swapping. This memory manage-
ment effect would also exist if the main program and the I/O subprogram were
implemented as two threads in the same address space.

2. The main program and I/O subprogram can be implemented as two separate
processes. This incurs the overhead of creating the subordinate process. If the
I/O activity is frequent, one must either leave the subordinate process alive,
which consumes management resources, or frequently create and destroy the
subprogram, which is inefficient.

3. Treat the main program and the I/O subprogram as a single activity that is to
be implemented as a single thread. However, one address space (domain) could
be created for the main program and one for the I/O subprogram. Thus, the
thread can be moved between the two address spaces as execution proceeds.
The OS can manage the two address spaces independently, and no process
creation overhead is incurred. Furthermore, the address space used by the I/O
subprogram could also be shared by other simple I/O programs.

The experiences of the TRIX developers indicate that the third option has
merit, and may be the most effective solution for some applications.

ONE-TO-MANY RELATIONSHIP In the field of distributed operating systems
(designed to control distributed computer systems), there has been interest in the

190 CHAPTER 4 / THREADS

concept of a thread as primarily an entity that can move among address spaces.’
A notable example of this research is the Clouds operating system, and especially
its kernel, known as Ra [DASG92]. Another example is the Emerald system
[STEE9S].

A thread in Clouds is a unit of activity from the user’s perspective. A process
is a virtual address space with an associated process control block. Upon creation, a
thread starts executing in a process by invoking an entry point to a program in that
process. Threads may move from one address space to another, and actually span
computer boundaries (i.e., move from one computer to another). As a thread moves,
it must carry with it certain information, such as the controlling terminal, global
parameters, and scheduling guidance (e.g., priority).

The Clouds approach provides an effective way of insulating both users and
programmers from the details of the distributed environment. A user’s activity may
be represented as a single thread, and the movement of that thread among computers
may be dictated by the OS for a variety of system-related reasons, such as the need
to access a remote resource, and load balancing.

4.3 MULTICORE AND MULTITHREADING

The use of a multicore system to support a single application with multiple threads
(such as might occur on a workstation, a video game console, or a personal computer
running a processor-intense application) raises issues of performance and applica-
tion design. In this section, we first look at some of the performance implications of
a multithreaded application on a multicore system, then describe a specific example
of an application designed to exploit multicore capabilities.

Performance of Software on Multicore

The potential performance benefits of a multicore organization depend on the abil-
ity to effectively exploit the parallel resources available to the application. Let us
focus first on a single application running on a multicore system. Amdahl’s law (see
Appendix E) states that:

time to execute program on a single processor 1
f
1-fH+=
a-p+y

The law assumes a program in which a fraction (1 — f) of the execution time involves
code that is inherently serial, and a fraction f that involves code that is infinitely paral-
lelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attractive.
But as Figure 4.7a shows, even a small amount of serial code has a noticeable impact.
If only 10% of the code is inherently serial (f = 0.9), running the program on a multi-
core system with eight processors yields a performance gain of a factor of only 4.7 In

Speedup = — =
P P~ lime to execute program on N parallel processors

>The movement of processes or threads among address spaces, or thread migration, on different machines
has become a hot topic in recent years. Chapter 18 will explore this topic.

4.3 / MULTICORE AND MULTITHREADING 191

0%
8
/ b
6 5%
o
=
3
;‘)-' 10%
ER
=
o}
o~
2
0 —! 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
Number of processors
(a) Speedup with 0%, 2%, 5%, and 10% sequential portions
2.5
10%
15%
& 20%
§ 1.5
o
2
E 10
5]
o

0.5

0 —L | | | | | | |
1 2 3 4 5 6 7 8

Number of processors

(b) Speedup with overheads

Figure 4.7 Performance Effect of Multiple Cores

addition, software typically incurs overhead as a result of communication and distri-
bution of work to multiple processors and cache coherence overhead. This results in a
curve where performance peaks and then begins to degrade because of the increased
burden of the overhead of using multiple processors. Figure 4.7b, from [MCDO07],
is a representative example.

However, software engineers have been addressing this problem, and there
are numerous applications in which it is possible to effectively exploit a multicore

192 CHAPTER 4 / THREADS

64
L2 Oracle DSS 4-way join
,*/ @ TMC data mining
",;;/. DB2 DSS scan & aggs
, / /»' Oracle ad hoc insurance OLTP
48

32

Scaling

16

0 16 32 48 64
Number of CPUs

Figure 4.8 Scaling of Database Workloads on Multiprocessor Hardware

system. [MCDOO07] reports on a set of database applications, in which great attention
was paid to reducing the serial fraction within hardware architectures, operating sys-
tems, middleware, and the database application software. Figure 4.8 shows the result.
As this example shows, database management systems and database applications are
one area in which multicore systems can be used effectively. Many kinds of servers
can also effectively use the parallel multicore organization, because servers typically
handle numerous relatively independent transactions in parallel.

In addition to general-purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores.
[MCDOO06] lists the following examples:

* Multithreaded native applications: Multithreaded applications are charac-
terized by having a small number of highly threaded processes. Examples
of threaded applications include Lotus Domino or Siebel CRM (Customer
Relationship Manager).

e Multiprocess applications: Multiprocess applications are characterized by the
presence of many single-threaded processes. Examples of multiprocess applica-
tions include the Oracle database, SAP, and PeopleSoft.

e Java applications: Java applications embrace threading in a fundamental way.
Not only does the Java language greatly facilitate multithreaded applications,
but the Java Virtual Machine is a multithreaded process that provides sched-
uling and memory management for Java applications. Java applications that
can benefit directly from multicore resources include application servers such
as Oracle’s Java Application Server, BEA’s Weblogic, IBM’s Websphere, and
the open-source Tomcat application server. All applications that use a Java 2

4.3 / MULTICORE AND MULTITHREADING 193

Platform, Enterprise Edition (J2EE platform) application server can immedi-
ately benefit from multicore technology.

* Multi-instance applications: Even if an individual application does not scale to
take advantage of a large number of threads, it is still possible to gain from mul-
ticore architecture by running multiple instances of the application in parallel.
If multiple application instances require some degree of isolation, virtualization
technology (for the hardware of the operating system) can be used to provide
each of them with its own separate and secure environment.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number
of popular games, as well as the Source engine, one of the most widely played game
engines available. Source is an animation engine used by Valve for its games and
licensed for other game developers.

In recent years, Valve has reprogrammed the Source engine software to use
multithreading to exploit the power of multicore processor chips from Intel and
AMD [REIMO6]. The revised Source engine code provides more powerful support
for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows
[HARROG6]:

* Coarse threading: Individual modules, called systems, are assigned to individual
processors. In the Source engine case, this would mean putting rendering on
one processor, Al (artificial intelligence) on another, physics on another, and
so on. This is straightforward. In essence, each major module is single-threaded
and the principal coordination involves synchronizing all the threads with a
timeline thread.

¢ Fine-grained threading: Many similar or identical tasks are spread across mul-
tiple processors. For example, a loop that iterates over an array of data can be
split up into a number of smaller parallel loops in individual threads that can
be scheduled in parallel.

* Hybrid threading: This involves the selective use of fine-grained threading for
some systems, and single-threaded for other systems.

Valve found that through coarse threading, it could achieve up to twice the
performance across two processors compared to executing on a single processor. But
this performance gain could only be achieved with contrived cases. For real-world
gameplay, the improvement was on the order of a factor of 1.2. Valve also found that
effective use of fine-grained threading was difficult. The time-per-work unit can be
variable, and managing the timeline of outcomes and consequences involved complex
programming.

Valve found that a hybrid threading approach was the most promising and
would scale the best, as multicore systems with 8 or 16 processors became available.
Valve identified systems that operate very effectively being permanently assigned
to a single processor. An example is sound mixing, which has little user interaction,
is not constrained by the frame configuration of windows, and works on its own set

194 CHAPTER 4 / THREADS

(Render)
I
I I

(Skybox) (Main view) (Monitor) (Etc.)
I

(Scene list)

|—(For each object)
—(Particles)

|—(Sim and draw)

—(Character)

Bone setup)

Draw)

—{ Etc.)

Figure 4.9 Hybrid Threading for Rendering Module

of data. Other modules, such as scene rendering, can be organized into a number of
threads so that the module can execute on a single processor but achieve greater
performance as it is spread out over more and more processors.

Figure 4.9 illustrates the thread structure for the rendering module. In this
hierarchical structure, higher-level threads spawn lower-level threads as needed. The
rendering module relies on a critical part of the Source engine, the world list, which
is a database representation of the visual elements in the game’s world. The first task
is to determine what are the areas of the world that need to be rendered. The next
task is to determine what objects are in the scene as viewed from multiple angles.
Then comes the processor-intensive work. The rendering module has to work out the
rendering of each object from multiple points of view, such as the player’s view, the
view of monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module
are listed in [LEONO7] and include the following:

e Construct scene rendering lists for multiple scenes in parallel (e.g., the world
and its reflection in water).
e Overlap graphics simulation.

e Compute character bone transformations for all characters in all scenes in
parallel.

¢ Allow multiple threads to draw in parallel.

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT 195

The designers found that simply locking key databases, such as the world list,
for a thread was too inefficient. Over 95% of the time, a thread is trying to read from
a data set, and only 5% of the time at most is spent in writing to a data set. Thus, a
concurrency mechanism known as the single-writer-multiple-readers model works
effectively.

4.4 WINDOWS PROCESS AND THREAD MANAGEMENT

This section begins with an overview of the key objects and mechanisms that support
application execution in Windows. The remainder of the section looks in more detail
at how processes and threads are managed.

An application consists of one or more processes. Each process provides the
resources needed to execute a program. A process has a virtual address space, exe-
cutable code, open handles to system objects, a security context, a unique process
identifier, environment variables, a priority class, minimum and maximum working
set sizes, and at least one thread of execution. Each process is started with a single
thread, often called the primary thread, but can create additional threads from any
of its threads.

A thread is the entity within a process that can be scheduled for execution.
All threads of a process share its virtual address space and system resources. In
addition, each thread maintains exception handlers, a scheduling priority, thread
local storage, a unique thread identifier, and a set of structures the system will use
to save the thread context until it is scheduled. On a multiprocessor computer, the
system can simultaneously execute as many threads as there are processors on the
computer.

A job object allows groups of processes to be managed as a unit. Job objects
are namable, securable, sharable objects that control attributes of the processes
associated with them. Operations performed on the job object affect all processes
associated with the job object. Examples include enforcing limits such as working
set size and process priority or terminating all processes associated with a job.

A thread pool is a collection of worker threads that efficiently execute asyn-
chronous callbacks on behalf of the application. The thread pool is primarily used to
reduce the number of application threads and provide management of the worker
threads.

A fiber is a unit of execution that must be manually scheduled by the applica-
tion. Fibers run in the context of the threads that schedule them. Each thread can
schedule multiple fibers. In general, fibers do not provide advantages over a well-
designed multithreaded application. However, using fibers can make it easier to port
applications that were designed to schedule their own threads. From a system stand-
point, a fiber assumes the identity of the thread that runs it. For example if a fiber
accesses thread local storage, it is accessing the thread local storage of the thread that
is running it. In addition, if a fiber calls the Exi tThread function, the thread that is
running it exits. However, a fiber does not have all the same state information associ-
ated with it as that associated with a thread. The only state information maintained
for a fiber is its stack, a subset of its registers, and the fiber data provided during
fiber creation. The saved registers are the set of registers typically preserved across

196 CHAPTER 4 / THREADS

a function call. Fibers are not preemptively scheduled. A thread schedules a fiber by
switching to it from another fiber. The system still schedules threads to run. When a
thread that is running fibers is preempted, its currently running fiber is preempted
but remains selected.

User-mode scheduling (UMS) is a lightweight mechanism that applications can
use to schedule their own threads. An application can switch between UMS threads in
user mode without involving the system scheduler, and regain control of the proces-
sor if a UMS thread blocks in the kernel. Each UMS thread has its own thread context
instead of sharing the thread context of a single thread. The ability to switch between
threads in user mode makes UMS more efficient than thread pools for short-duration
work items that require few system calls. UMS is useful for applications with high
performance requirements that need to efficiently run many threads concurrently on
multiprocessor or multicore systems. To take advantage of UMS, an application must
implement a scheduler component that manages the application’s UMS threads and
determines when they should run.

Management of Background Tasks and Application
Lifecycles

Beginning with Windows 8, and carrying through to Windows 10, developers are
responsible for managing the state of their individual applications. Previous versions
of Windows always give the user full control of the lifetime of a process. In the classic
desktop environment, a user is responsible for closing an application. A dialog box
might prompt them to save their work. In the new Metro interface, Windows takes
over the process lifecycle of an application. Although a limited number of applica-
tions can run alongside the main app in the Metro UI using the SnapView function-
ality, only one Store application can run at one time. This is a direct consequence of
the new design. Windows Live Tiles give the appearance of applications constantly
running on the system. In reality, they receive push notifications and do not use sys-
tem resources to display the dynamic content offered.

The foreground application in the Metro interface has access to all of the
processor, network, and disk resources available to the user. All other apps are
suspended and have no access to these resources. When an app enters a suspended
mode, an event should be triggered to store the state of the user’s information. This
is the responsibility of the application developer. For a variety of reasons, whether
it needs resources or because an application timed out, Windows may terminate
a background app. This is a significant departure from the Windows operating
systems that precede it. The app needs to retain any data the user entered, settings
they changed, and so on. That means you need to save your app’s state when it’s
suspended, in case Windows terminates it, so you can restore its state later. When
the app returns to the foreground, another event is triggered to obtain the user
state from memory. No event fires to indicate termination of a background app.
Rather, the application data will remain resident on the system, as though it is
suspended, until the app is launched again. Users expect to find the app as they
left it, whether it was suspended or terminated by Windows, or closed by the user.
Application developers can use code to determine whether it should restore a
saved state.

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT 197

Some applications, such as news feeds, may look at the date stamp associated
with the previous execution of the app and elect to discard the data in favor of newly
obtained information. This is a determination made by the developer, not by the oper-
ating system. If the user closes an app, unsaved data is not saved. With foreground
tasks occupying all of the system resources, starvation of background apps is a reality
in Windows. This makes the application development relating to the state changes
critical to the success of a Windows app.

To process the needs of background tasks, a background task API is built to
allow apps to perform small tasks while not in the foreground. In this restricted envi-
ronment, apps may receive push notifications from a server or a user may receive a
phone call. Push notifications are template XML strings. They are managed through
a cloud service known as the Windows Notification Service (WNS). The service will
occasionally push updates to the user’s background apps. The API will queue those
requests and process them when it receives enough processor resources. Background
tasks are severely limited in the usage of processor, receiving only one proces-
sor second per processor hour. This ensures that critical tasks receive guaranteed
application resource quotas. It does not, however, guarantee a background app will
ever run.

The Windows Process

Important characteristics of Windows processes are the following:

e Windows processes are implemented as objects.

e A process can be created as a new process or as a copy of an existing process.
* An executable process may contain one or more threads.

e Both process and thread objects have built-in synchronization capabilities.

Figure 4.10, based on one in [RUSS11], illustrates the way in which a process
relates to the resources it controls or uses. Each process is assigned a security access
token, called the primary token of the process. When a user first logs on, Windows
creates an access token that includes the security ID for the user. Every process that
is created by or runs on behalf of this user has a copy of this access token. Windows
uses the token to validate the user’s ability to access secured objects, or to perform
restricted functions on the system and on secured objects. The access token controls
whether the process can change its own attributes. In this case, the process does
not have a handle opened to its access token. If the process attempts to open such
a handle, the security system determines whether this is permitted, and therefore
whether the process may change its own attributes.

Also related to the process is a series of blocks that define the virtual address
space currently assigned to this process. The process cannot directly modify these
structures, but must rely on the virtual memory manager, which provides a memory-
allocation service for the process.

Finally, the process includes an object table, with handles to other objects
known to this process. Figure 4.10 shows a single thread. In addition, the process
has access to a file object and to a section object that defines a section of shared
memory.

198 CHAPTER 4 / THREADS

Access
token
Virtual address descriptors
Process
j —
object
Available
Handle table objects
T T
Handlel | | |
| |
Handle2 : : —
| |
Handle3 : : Section z

Figure 4.10 A Windows Process and Its Resources

Process and Thread Objects

The object-oriented structure of Windows facilitates the development of a general-
purpose process facility. Windows makes use of two types of process-related objects:
processes and threads. A process is an entity corresponding to a user job or applica-
tion that owns resources, such as memory and open files. A thread is a dispatchable
unit of work that executes sequentially and is interruptible, so the processor can turn
to another thread.

Each Windows process is represented by an object. Each process object
includes a number of attributes and encapsulates a number of actions, or services,
that it may perform. A process will perform a service when called upon through a
set of published interface methods. When Windows creates a new process, it uses
the object class, or type, defined for the Windows process as a template to gener-
ate a new object instance. At the time of creation, attribute values are assigned.
Table 4.3 gives a brief definition of each of the object attributes for a process
object.

A Windows process must contain at least one thread to execute. That thread
may then create other threads. In a multiprocessor system, multiple threads from the
same process may execute in parallel. Table 4.4 defines the thread object attributes.
Note some of the attributes of a thread resemble those of a process. In those cases,
the thread attribute value is derived from the process attribute value. For example,
the thread processor affinity is the set of processors in a multiprocessor system that
may execute this thread; this set is equal to or a subset of the process processor

affinity.

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT 199

Table 4.3 Windows Process Object Attributes

Process ID

A unique value that identifies the process to the operating system.

Security descriptor

Describes who created an object, who can gain access to or use the object, and
who is denied access to the object.

Base priority

A baseline execution priority for the process’s threads.

Default processor affinity

The default set of processors on which the process’s threads can run.

Quota limits

The maximum amount of paged and nonpaged system memory, paging file space,
and processor time a user’s processes can use.

Execution time

The total amount of time all threads in the process have executed.

1/0 counters

Variables that record the number and type of I/O operations that the process’s
threads have performed.

'VM operation counters

Variables that record the number and types of virtual memory operations that
the process’s threads have performed.

Exception/debugging ports

Interprocess communication channels to which the process manager sends a
message when one of the process’s threads causes an exception. Normally, these
are connected to environment subsystem and debugger processes, respectively.

Exit status

The reason for a process’s termination.

Note one of the attributes of a thread object is context, which contains the
values of the processor registers when the thread last ran. This information enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behavior
of a thread by altering its context while it is suspended.

Table 4.4 Windows Thread Object Attributes

Thread ID

A unique value that identifies a thread when it calls a server.

Thread context

The set of register values and other volatile data that defines the execution state
of a thread.

Dynamic priority

The thread’s execution priority at any given moment.

Base priority

The lower limit of the thread’s dynamic priority.

Thread processor affinity

The set of processors on which the thread can run, which is a subset or all of the
processor affinity of the thread’s process.

Thread execution time

The cumulative amount of time a thread has executed in user mode and in
kernel mode.

Alert status

A flag that indicates whether a waiting thread may execute an asynchronous
procedure call.

Suspension count

The number of times the thread’s execution has been suspended without being
resumed.

Impersonation token

A temporary access token allowing a thread to perform operations on behalf of
another process (used by subsystems).

Termination port

An interprocess communication channel to which the process manager sends a
message when the thread terminates (used by subsystems).

Thread exit status

The reason for a thread’s termination.

200 CHAPTER 4 / THREADS

Multithreading

Windows supports concurrency among processes because threads in different
processes may execute concurrently (appear to run at the same time). Moreover,
multiple threads within the same process may be allocated to separate processors
and execute simultaneously (actually run at the same time). A multithreaded pro-
cess achieves concurrency without the overhead of using multiple processes. Threads
within the same process can exchange information through their common address
space and have access to the shared resources of the process. Threads in different
processes can exchange information through shared memory that has been set up
between the two processes.

An object-oriented multithreaded process is an efficient means of implement-
ing a server application. For example, one server process can service a number of
clients concurrently.

Thread States
An existing Windows thread is in one of six states (see Figure 4.11):

1. Ready: A ready thread may be scheduled for execution. The Kernel dispatcher
keeps track of all ready threads and schedules them in priority order.

2. Standby: A standby thread has been selected to run next on a particular proces-
sor. The thread waits in this state until that processor is made available. If the
standby thread’s priority is high enough, the running thread on that processor
may be preempted in favor of the standby thread. Otherwise, the standby thread
waits until the running thread blocks or exhausts its time slice.

Runnable

Pick to

—_— Switch

Preempted

Unblock/resume
Resource available

Resource

available Terminate

Unblock
Resource not available

Not runnable

Figure 4.11 Windows Thread States

4.4 / WINDOWS PROCESS AND THREAD MANAGEMENT 201

3. Running: Once the Kernel dispatcher performs a thread switch, the standby
thread enters the Running state and begins execution and continues execution
until it is preempted by a higher-priority thread, exhausts its time slice, blocks,
or terminates. In the first two cases, it goes back to the Ready state.

4. Waiting: A thread enters the Waiting state when (1) it is blocked on an event
(e.g.,1/0), (2) it voluntarily waits for synchronization purposes, or (3) an envi-
ronment subsystem directs the thread to suspend itself. When the waiting con-
dition is satisfied, the thread moves to the Ready state if all of its resources are
available.

5. Transition: A thread enters this state after waiting if it is ready to run, but the
resources are not available. For example, the thread’s stack may be paged out of
memory. When the resources are available, the thread goes to the Ready state.

6. Terminated: A thread can be terminated by itself, by another thread, or when
its parent process terminates. Once housekeeping chores are completed, the
thread is removed from the system, or it may be retained by the Executive® for
future reinitialization.

Support for OS Subsystems

The general-purpose process and thread facility must support the particular process
and thread structures of the various OS environments. It is the responsibility of each
OS subsystem to exploit the Windows process and thread features to emulate the
process and thread facilities of its corresponding OS. This area of process/thread
management is complicated, and we give only a brief overview here.

Process creation begins with a request for a new process from an application.
The application issues a create-process request to the corresponding protected sub-
system, which passes the request to the Executive. The Executive creates a process
object and returns a handle for that object to the subsystem. When Windows creates
a process, it does not automatically create a thread. In the case of Win32, a new pro-
cess must always be created with an initial thread. Therefore, the Win32 subsystem
calls the Windows process manager again to create a thread for the new process,
receiving a thread handle back from Windows. The appropriate thread and process
information are then returned to the application. In the case of POSIX, threads are
not supported. Therefore, the POSIX subsystem obtains a thread for the new process
from Windows so that the process may be activated but returns only process informa-
tion to the application. The fact that the POSIX process is implemented using both
a process and a thread from the Windows Executive is not visible to the application.

When a new process is created by the Executive, the new process inherits many of
its attributes from the creating process. However, in the Win32 environment, this pro-
cess creation is done indirectly. An application client process issues its process creation
request to the Win32 subsystem; then the subsystem in turn issues a process request
to the Windows executive. Because the desired effect is that the new process inherits
characteristics of the client process and not of the server process, Windows enables the

The Windows Executive is described in Chapter 2. It contains the base operating system services, such as
memory management, process and thread management, security, I/O, and interprocess communication.

202 CHAPTER 4 / THREADS

subsystem to specify the parent of the new process. The new process then inherits the
parent’s access token, quota limits, base priority, and default processor affinity.

4.5 SOLARIS THREAD AND SMP MANAGEMENT

Solaris implements multilevel thread support designed to provide considerable flex-
ibility in exploiting processor resources.

Multithreaded Architecture

Solaris makes use of four separate thread-related concepts:

1.

2.

Process: This is the normal UNIX process and includes the user’s address space,
stack, and process control block.

User-level threads: Implemented through a threads library in the address space
of a process, these are invisible to the OS. A user-level thread (ULT)’ is a user-
created unit of execution within a process.

Lightweight processes: A lightweight process (LWP) can be viewed as a map-
ping between ULTs and kernel threads. Each LWP supports ULT and maps to
one kernel thread. LWPs are scheduled by the kernel independently, and may
execute in parallel on multiprocessors.

Kernel threads: These are the fundamental entities that can be scheduled and
dispatched to run on one of the system processors.

Figure 4.12 illustrates the relationship among these four entities. Note there is

always exactly one kernel thread for each LWP. An LWP is visible within a process to
the application. Thus, LWP data structures exist within their respective process address
space. At the same time, each LWP is bound to a single dispatchable kernel thread, and
the data structure for that kernel thread is maintained within the kernel’s address space.

A process may consist of a single ULT bound to a single LWP. In this case, there

is a single thread of execution, corresponding to a traditional UNIX process. When
concurrency is not required within a single process, an application uses this process
structure. If an application requires concurrency, its process contains multiple threads,
each bound to a single LWP, which in turn are each bound to a single kernel thread.

In addition, there are kernel threads that are not associated with LWPs. The

kernel creates, runs, and destroys these kernel threads to execute specific system
functions. The use of kernel threads rather than kernel processes to implement system
functions reduces the overhead of switching within the kernel (from a process switch
to a thread switch).

Motivation

The three-level thread structure (ULT, LWP, kernel thread) in Solaris is intended to
facilitate thread management by the OS and to provide a clean interface to appli-
cations. The ULT interface can be a standard thread library. A defined ULT maps
onto a LWP, which is managed by the OS and which has defined states of execution,

7Again, the acronym ULT is unique to this book and is not found in the Solaris literature.

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 203

Process

User
_I thread r

User
_I thread r

Lightweight Lightweight
process (LWP) process (LWP)
syscall () ‘ 1 ‘ 1 syscall ()
Kernel Kernel
thread thread

—| System calls l—

Kernel

Hardware

Figure 4.12 Processes and Threads in Solaris [MCDO07]

defined subsequently. An LWP is bound to a kernel thread with a one-to-one cor-
respondence in execution states. Thus, concurrency and execution are managed at
the level of the kernel thread.

In addition, an application has access to hardware through an application pro-
gramming interface consisting of system calls. The API allows the user to invoke ker-
nel services to perform privileged tasks on behalf of the calling process, such as read
or write a file, issue a control command to a device, create a new process or thread,
allocate memory for the process to use, and so on.

Process Structure

Figure 4.13 compares, in general terms, the process structure of a traditional
UNIX system with that of Solaris. On a typical UNIX implementation, the
process structure includes:

e Process ID.

User IDs.

Signal dispatch table, which the kernel uses to decide what to do when sending
a signal to a process.

File descriptors, which describe the state of files in use by this process.
* Memory map, which defines the address space for this process.
e Processor state structure, which includes the kernel stack for this process.

Solaris retains this basic structure but replaces the processor state block with a list of
structures containing one data block for each LWP.
The LWP data structure includes the following elements:

* An LWP identifier
e The priority of this LWP and hence the kernel thread that supports it

204 CHAPTER 4 / THREADS

UNIX process structure

Solaris process structure

Process ID

User IDs

Process ID
User IDs
Signal dispatch table
Memory map
Priority
Signal mask
Registers
STACK
File descriptors PSS

Processor state

Signal dispatch table

Memory map

File descriptors E\

LWP2 LWP 1
LWPID |<=—| LWPID
Priority Priority
Signal mask Signal mask
Registers Registers
STACK STACK
LX X] (XX]

Figure 4.13 Process Structure in Traditional UNIX and Solaris [LEWI96]

e A signal mask that tells the kernel which signals will be accepted

e Resource usage and profiling data

 Pointer to the process structure

Thread Execution

Figure 4.14 shows a simplified view of both thread execution states. These states
reflect the execution status of both a kernel thread and the LWP bound to it. As
mentioned, some kernel threads are not associated with an LWP; the same execution
diagram applies. The states are as follows:

Saved values of user-level registers (when the LWP is not running)

The kernel stack for this LWP, which includes system call arguments, results, and
error codes for each call level

Pointer to the corresponding kernel thread

e RUN: The thread is runnable; that is, the thread is ready to execute.

e ONPROC: The thread is executing on a processor.

4.5 / SOLARIS THREAD AND SMP MANAGEMENT 205

IDL PINNED
thread_create () intr ()
swtch ()
syscall ()
RUN) NPROC >
preempt ()
wakeup ()
STOP -« /
prun () pstop () exit() reap ()

Figure 4.14 Solaris Thread States

SLEEP: The thread is blocked.
STOP: The thread is stopped.
ZOMBIE: The thread has terminated.

FREE: Thread resources have been released and the thread is awaiting removal
from the OS thread data structure.

A thread moves from ONPROC to RUN if it is preempted by a higher-priority
thread or because of time slicing. A thread moves from ONPROC to SLEEP if it
is blocked and must await an event to return the RUN state. Blocking occurs if the
thread invokes a system call and must wait for the system service to be performed. A
thread enters the STOP state if its process is stopped; this might be done for debug-
ging purposes.

Interrupts as Threads

Most operating systems contain two fundamental forms of concurrent activity: pro-
cesses and interrupts. Processes (or threads) cooperate with each other and manage
the use of shared data structures by means of a variety of primitives that enforce
mutual exclusion (only one process at a time can execute certain code or access
certain data) and that synchronize their execution. Interrupts are synchronized by
preventing their handling for a period of time. Solaris unifies these two concepts
into a single model, namely kernel threads, and the mechanisms for scheduling and
executing kernel threads. To do this, interrupts are converted to kernel threads.

206 CHAPTER 4 / THREADS

The motivation for converting interrupts to threads is to reduce overhead.

Interrupt handlers often manipulate data shared by the rest of the kernel. There-
fore, while a kernel routine that accesses such data is executing, interrupts must be
blocked, even though most interrupts will not affect that data. Typically, the way this
is done is for the routine to set the interrupt priority level higher to block interrupts,
then lower the priority level after access is completed. These operations take time.
The problem is magnified on a multiprocessor system. The kernel must protect more
objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

Solaris employs a set of kernel threads to handle interrupts. As with any kernel
thread, an interrupt thread has its own identifier, priority, context, and stack.

The kernel controls access to data structures and synchronizes among inter-
rupt threads using mutual exclusion primitives, of the type to be discussed in
Chapter 5. That is, the normal synchronization techniques for threads are used
in handling interrupts.

Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the thread

that was executing on that processor is pinned. A pinned thread cannot move to
another processor and its context is preserved; it is simply suspended until the inter-
rupt is processed. The processor then begins executing an interrupt thread. There is a
pool of deactivated interrupt threads available, so a new thread creation is not required.
The interrupt thread then executes to handle the interrupt. If the handler routine needs
access to a data structure that is currently locked in some fashion for use by another
executing thread, the interrupt thread must wait for access to that data structure. An
interrupt thread can only be preempted by another interrupt thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach provides

superior performance to the traditional interrupt-handling strategy [KLEI95].

4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

e State: The execution state of the process (executing, ready, suspended,

stopped, zombie). This is described subsequently.

Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes are
scheduled before normal processes, and within each category, relative priorities
can be used. A reference counter keeps track of the amount of time a process
is allowed to execute.

Identifiers: Each process has a unique process identifier (PID) and also has
user and group identifiers. A group identifier is used to assign resource access
privileges to a group of processes.

4.6 / LINUX PROCESS AND THREAD MANAGEMENT 207

¢ Interprocess communication: Linux supports the I[PC mechanisms found in
UNIX SVR4, described later in Chapter 6.

e Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.

¢ Times and timers: Includes process creation time and the amount of processor
time so far consumed by the process. A process may also have associated one or
more interval timers. A process defines an interval timer by means of a system
call; as a result, a signal is sent to the process when the timer expires. A timer
may be single use or periodic.

e File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process

e Address space: Defines the virtual address space assigned to this process

e Processor-specific context: The registers and stack information that constitute
the context of this process
Figure 4.15 shows the execution states of a process. These are as follows:

e Running: This state value corresponds to two states. A Running process is either
executing, or it is ready to execute.

¢ Interruptible: This is a blocked state, in which the process is waiting for an event,
such as the end of an I/O operation, the availability of a resource, or a signal
from another process.

Stopped

Running

) state
Creation

Figure 415 Linux Process/Thread Model

208 CHAPTER 4 / THREADS

e Uninterruptible: This is another blocked state. The difference between this and
the Interruptible state is that in an Uninterruptible state, a process is waiting
directly on hardware conditions and therefore will not handle any signals.

e Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be put
into the Stopped state.

e Zombie: The process has been terminated but, for some reason, still must have
its task structure in the process table.

Linux Threads

Traditional UNIX systems support a single thread of execution per process, while
modern UNIX systems typically provide support for multiple kernel-level threads
per process. As with traditional UNIX systems, older versions of the Linux kernel
offered no support for multithreading. Instead, applications would need to be written
with a set of user-level library functions, the most popular of which is known as
pthread (POSIX thread) libraries,with all of the threads mapping into a single kernel-
level process.® We have seen that modern versions of UNIX offer kernel-level threads.
Linux provides a unique solution in that it does not recognize a distinction between
threads and processes. Using a mechanism similar to the lightweight processes of
Solaris, user-level threads are mapped into kernel-level processes. Multiple user-level
threads that constitute a single user-level process are mapped into Linux kernel-level
processes that share the same group ID. This enables these processes to share
resources such as files and memory, and to avoid the need for a context switch when
the scheduler switches among processes in the same group.

A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so it shares resources such as files, signal han-
dlers, and virtual memory. When the two processes share the same virtual memory,
they function as threads within a single process. However, no separate type of data
structure is defined for a thread. In place of the usual fork() command, processes are
created in Linux using the clone() command. This command includes a set of flags as
arguments. The traditional fork() system call is implemented by Linux as a clone()
system call with all of the clone flags cleared.

Examples of clone flags include the following:

e CLONE_NEWPID: Creates new process ID namespace.
CLONE_PARENT: Caller and new task share the same parent process.
CLONE_SYSVSEM: Shares System V SEM_UNDO semantics.

CLONE_THREAD: Inserts this process into the same thread group of the par-
ent. If this flag is true, it implicitly enforces CLONE_PARENT.

CLONE_VM: Shares the address space (memory descriptor and all page tables).

8POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a standard
for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads. Pthreads
are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but Microsoft Windows
implementations also exist.

4.6 / LINUX PROCESS AND THREAD MANAGEMENT 209

e CLONE_FS: Shares the same filesystem information (including current work-
ing directory, the root of the filesystem, and the umask).

e CLONE_FILES: Shares the same file descriptor table. Creating a file descrip-
tor or closing a file descriptor is propagated to the another process, as well as
changing the associated flags of a file descriptor using the fentl() system call.

When the Linux kernel performs a context switch from one process to another,
it checks whether the address of the page directory of the current process is the same
as that of the to-be-scheduled process. If they are, then they are sharing the same
address space, so a context switch is basically just a jump from one location of code
to another location of code.

Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone() call
creates separate stack spaces for each process.

Linux Namespaces

Associated with each process in Linux are a set of namespaces. A namespace enables
a process (or multiple processes that share the same namespace) to have a differ-
ent view of the system than other processes that have other associated namespaces.
Namespaces and cgroups (which will be described in the following section) are the
basis of Linux lightweight virtualization, which is a feature that provides a process or
group of processes with the illusion that they are the only processes on the system.
This feature is used widely by Linux Containers projects. There are currently six
namespaces in Linux: mnt, pid, net, ipc, uts, and user.

Namespaces are created by the clone() system call, which gets as a param-
eter one of the six namespaces clone flags (CLONE_NEWNS, CLONE_NEWPID,
CLONE_NEWNET, CLONE_NEWIPC, CLONE_NEWUTS, and CLONE_
NEWUSER). A process can also create a namespace with the unshare() system call
with one of these flags; as opposed to clone(), a new process is not created in such a
case; only a new namespace is created, which is attached to the calling process.

MouUNT NAMESPACE A mount namespace provides the process with a specific view
of the filesystem hierarchy, such that two processes with different mount namespaces
see different filesystem hierarchies. All of the file operations that a process employs
apply only to the filesystem visible to the process.

UTS Namespace The UTS (UNIX timesharing) namespace is related to the uname
Linux system call. The uname call returns the name and information about the current
kernel, including nodename, which is the system name within some implementation-
defined network; and domainname, which is the NIS domain name. NIS (Network
Information Service) is a standard scheme used on all major UNIX and UNIX-like
systems. It allows a group of machines within an NIS domain to share a common set
of configuration files. This permits a system administrator to set up NIS client systems
with only minimal configuration data and add, remove, or modify configuration data
from a single location. With the UTS namespace, initialization and configuration
parameters can vary for different processes on the same system.

210 CHAPTER 4 / THREADS

IPC NAmESPACE An IPC namespace isolates certain interprocess communication
(IPC) resources, such as semaphores, POSIX message queues, and more. Thus,
concurrency mechanisms can be employed by the programmer that enable IPC
among processes that share the same IPC namespace.

PID NamespAce PID namespaces isolate the process ID space, so processes in
different PID namespaces can have the same PID. This feature is used for Checkpoint/
Restore In Userspace (CRIU), a Linux software tool. Using this tool, you can freeze
a running application (or part of it) and checkpoint it to a hard drive as a collection
of files. You can then use the files to restore and run the application from the freeze
point on that machine or on a different host. A distinctive feature of the CRIU
project is that it is mainly implemented in user space, after attempts to implement it
mainly in kernel failed.

NETWORK NAMESPACE Network namespaces provide isolation of the system
resources associated with networking. Thus, each network namespace has its own
network devices, IP addresses, IP routing tables, port numbers, and so on. These
namespaces virtualize all access to network resources. This allows each process or
a group of processes that belong to this network namespace to have the network
access it needs (but no more). At any given time, a network device belongs to only
one network namespace. Also, a socket can belong to only one namespace.

USErR NAMESPACE User namespaces provide a container with its own set of UIDs,
completely separate from those in the parent. So when a process clones a new process
it can assign it a new user namespace, as well as a new PID namespace, and all the
other namespaces. The cloned process can have access to and privileges for all of the
resources of the parent process, or a subset of the resources and privileges of the parent.
The user namespaces are considered sensitive in terms of security, as they enable
creating non-privileged containers (processes which are created by a non-root user).

THE LINUX cGROUP SUBSYSTEM The Linux cgroup subsystem, together with the
namespace subsystem, are the basis of lightweight process virtualization, and as
such they form the basis of Linux containers; almost every Linux containers project
nowadays (such as Docker, LXC, Kubernetes, and others) is based on both of them.
The Linux cgroups subsystem provides resource management and accounting. It
handles resources such as CPU, network, memory, and more; and it is mostly needed in
both ends of the spectrum (embedded devices and servers), and much less in desktops.
Development of cgroups was started in 2006 by engineers at Google under the name
“process containers,” which was later changed to “cgroups” to avoid confusion with
Linux Containers. In order to implement cgroups, no new system call was added. A
new virtual file system (VES), “cgroups” (also referred to sometimes as cgroupfs) was
added, as all the cgroup filesystem operations are filesystem based. A new version of
cgroups, called cgroups v2, was released in kernel 4.5 (March 2016). The cgroup v2
subsystem addressed many of the inconsistencies across cgroup v1 controllers, and
made cgroup v2 better organized, by establishing strict and consistent interfaces.
Currently, there are 12 cgroup vl controllers and 3 cgroup v2 controllers (mem-
ory, I/O, and PIDs) and there are other v2 controllers that are a work in progress.

4.7 / ANDROID PROCESS AND THREAD MANAGEMENT 211

In order to use the cgroups filesystem (i.e., browse it, attach tasks to cgroups,

and so on), it first must be mounted, like when working with any other filesystem. The
cgroup filesystem can be mounted on any path on the filesystem, and many userspace
applications and container projects use /sys/fs/cgroup as a mounting point.
After mounting the cgroups filesystem, you can create subgroups, attach processes
and tasks to these groups, set limitations on various system resources, and more. The
cgroup v1 implementation will probably coexist with the cgroup v2 implementation
as long as there are userspace projects that use it; we have a parallel phenomenon in
other kernel subsystems, when a new implementation of existing subsystem replaces
the current one; for example, currently both iptables and the new nftables coexist,
and in the past, iptables coexisted with ipchains.

4.7 ANDROID PROCESS AND THREAD MANAGEMENT

Before discussing the details of the Android approach to process and thread manage-
ment, we need to describe the Android concepts of applications and activities.

Android Applications

An Android application is the software that implements an app. Each Android appli-
cation consists of one or more instance of one or more of four types of application
components. Each component performs a distinct role in the overall application
behavior, and each component can be activated independently within the applica-
tion and even by other applications. The following are the four types of components:

1.

Activities: An activity corresponds to a single screen visible as a user interface.
For example, an e-mail application might have one activity that shows a list of
new e-mails, another activity to compose an e-mail, and another activity for
reading e-mails. Although the activities work together to form a cohesive user
experience in the e-mail application, each one is independent of the others.
Android makes a distinction between internal and exported activities. Other
apps may start exported activities, which generally include the main screen of
the app. However, other apps cannot start the internal activities. For example, a
camera application can start the activity in the e-mail application that composes
new mail, in order for the user to share a picture.

Services: Services are typically used to perform background operations that
take a considerable amount of time to finish. This ensures faster responsiveness,
for the main thread (a.k.a. UI thread) of an application, with which the user is
directly interacting. For example, a service might create a thread to play music
in the background while the user is in a different application, or it might create
a thread to fetch data over the network without blocking user interaction with
an activity. A service may be invoked by an application. Additionally, there are
system services that run for the entire lifetime of the Android system, such as
Power Manager, Battery, and Vibrator services. These system services create
threads that are part of the System Server process.

Content providers: A content provider acts as an interface to application data
that can be used by the application. One category of managed data is private

212 CHAPTER 4 / THREADS

data, which is used only by the application containing the content provider. For
example the NotePad application uses a content provider to save notes. The
other category is shared data, accessible by multiple applications. This category
includes data stored in file systems, an SQLite database, on the Web, or any
other persistent storage location your application can access.

4. Broadcast receivers: A broadcast receiver responds to system-wide broadcast
announcements. A broadcast can originate from another application, such as to let
other applications know that some data has been downloaded to the device and is
available for them to use, or from the system (for example, a low-battery warning).

Each application runs on its own dedicated virtual machine and its own single
process that encompasses the application and its virtual machine (see Figure 4.16).
This approach, referred to as the sandboxing model, isolates each application. Thus,
one application cannot access the resources of the other without permission being
granted. Each application is treated as a separate Linux user with its own unique user
ID, which is used to set file permissions.

Activities

An Activity is an application component that provides a screen with which users
can interact in order to do something, such as make a phone call, take a photo, send
an e-mail, or view a map. Each activity is given a window in which to draw its user
interface. The window typically fills the screen, but may be smaller than the screen
and float on top of other windows.

As was mentioned, an application may include multiple activities. When an
application is running, one activity is in the foreground, and it is this activity that

/ Dedicated Process \

Broadcast ' Content "

receiver provider
Application

Activity ' Service '

g
]

Dedicated

virtual machine

A /

Figure 4.16 Android Application

4.7 / ANDROID PROCESS AND THREAD MANAGEMENT 213

interacts with the user. The activities are arranged in a last-in-first-out stack (the back
stack),in the order in which each activity is opened. If the user switches to some other
activity within the application, the new activity is created and pushed on to the top
of the back stack, while the preceding foreground activity becomes the second item
on the stack for this application. This process can be repeated multiple times, adding
to the stack. The user can back up to the most recent foreground activity by pressing
a Back button or similar interface feature.

Acrtrvity STATES Figure 4.17 provides a simplified view of the state transition
diagram of an activity. Keep in mind there may be multiple activities in the application,
each one at its own particular point on the state transition diagram. When a new
activity is launched, the application software performs a series of API calls to the

Activity
launched

onCreate ()

Entire
Lifetime \

. | onStart
User navigates

to the activity Vsl

Lifetime

onResume ()

App process

Foreground
Lifetime*

({esumed

onPause ()

killed

User returns
to the activity

Apps with higher
priority need memory

User navigates
to the activity

onDestroy ()

s e

Activity
shut down

Figure 4.17 Activity State Transition Diagram

214 CHAPTER 4 / THREADS

Activity Manager (Figure 2.20): onCreate () does the static setup of the activity,
including any data structure initialization; onStart () makes the activity visible to
the user on the screen; onResume () passes control to the activity so user input goes
to the activity. At this point the activity is in the Resumed state. This is referred to as
the foreground lifetime of the activity. During this time, the activity is in front of all
other activities on screen and has user input focus.

A user action may invoke another activity within the application. For example,
during the execution of the e-mail application, when the user selects an e-mail, a
new activity opens to view that e-mail. The system responds to such an activity with
the onPause() system call, which places the currently running activity on the stack,
putting it in the Paused state. The application then creates a new activity, which will
enter the Resumed state.

At any time, a user may terminate the currently running activity by means of
the Back button, closing a window, or some other action relevant to this activity. The
application then invokes onStop (0) to stop the activity. The application then pops
the activity that is on the top of the stack and resumes it. The Resumed and Paused
states together constitute the visible lifetime of the activity. During this time, the user
can see the activity on-screen and interact with it.

If the user leaves one application to go to another, for example, by going to the
Home screen, the currently running activity is paused and then stopped. When the
user resumes this application, the stopped activity, which is on top of the back stack,
is restarted and becomes the foreground activity for the application.

KILLING AN APPLICATION If too many things are going on, the system may need to
recover some of main memory to maintain responsiveness. In that case, the system
will reclaim memory by killing one or more activities within an application and also
terminating the process for that application. This frees up memory used to manage
the process as well as memory to manage the activities that were killed. However, the
application itself still exists. The user is unaware of its altered status. If the user returns
to that application, it is necessary for the system to recreate any killed activities as they
are invoked.

The system kills applications in a stack-oriented style: So it will kill least recently
used apps first. Apps with foregrounded services are extremely unlikely to be killed.

Processes and Threads

The default allocation of processes and threads to an application is a single process
and a single thread. All of the components of the application run on the single thread
of the single process for that application. To avoid slowing down the user interface
when slow and/or blocking operations occur in a component, the developer can cre-
ate multiple threads within a process and/or multiple processes within an application.
In any case, all processes and their threads for a given application execute within the
same virtual machine.

In order to reclaim memory in a system that is becoming heavily loaded, the sys-
tem may kill one or more processes. As was discussed in the preceding section, when a
process is killed, one or more of the activities supported by that process are also killed.
A precedence hierarchy is used to determine which process or processes to kill in order

4.8 / MAC OS X GRAND CENTRAL DISPATCH 215

to reclaim needed resources. Every process exists at a particular level of the hierarchy
at any given time, and processes are killed beginning with the lowest precedence first.
The levels of the hierarchy, in descending order of precedence, are as follows:

e Foreground process: A process that is required for what the user is currently
doing. More than one process at a time can be a foreground process. For exam-
ple, both the process that hosts the activity with which the user is interacting
(activity in Resumed state), and the process that hosts a service that is bound to
the activity with which the user is interacting, are foreground processes.

e Visible process: A process that hosts a component that is not in the foreground,
but still visible to the user.

e Service process: A process running a service that does not fall into either of
the higher categories. Examples include playing music in the background or
downloading data on the network.

e Background process: A process hosting an activity in the Stopped state.

e Empty process: A process that doesn’t hold any active application components.
The only reason to keep this kind of process alive is for caching purposes, to
improve startup time the next time a component needs to run in it.

4.8 MAC OS X GRAND CENTRAL DISPATCH

As was mentioned in Chapter 2, Mac OS X Grand Central Dispatch (GCD) provides
a pool of available threads. Designers can designate portions of applications, called
blocks, that can be dispatched independently and run concurrently. The OS will provide
as much concurrency as possible based on the number of cores available and the thread
capacity of the system. Although other operating systems have implemented thread
pools, GCD provides a qualitative improvement in ease of use and efficiency [LEVI16].

A block is a simple extension to C or other languages, such as C++. The pur-
pose of defining a block is to define a self-contained unit of work, including code plus
data. Here is a simple example of a block definition:

x = Mprintf (*hello world\n”);}
A block is denoted by a caret at the start of the function, which is enclosed in curly
brackets. The above block definition defines x as a way of calling the function, so that
invoking the function x () would print the words hello world.

Blocks enable the programmer to encapsulate complex functions, together with
their arguments and data, so that they can easily be referenced and passed around in
a program, much like a variable. Symbolically:

F = F + data

Blocks are scheduled and dispatched by means of queues. The application
makes use of system queues provided by GCD and may also set up private queues.
Blocks are put onto a queue as they are encountered during program execution.
GCD then uses those queues to describe concurrency, serialization, and callbacks.
Queues are lightweight user-space data structures, which generally makes them far

216 CHAPTER 4 / THREADS

more efficient than manually managing threads and locks. For example, this queue
has three blocks:

H G F

Queue

Depending on the queue and how it is defined, GCD treats these blocks either
as potentially concurrent activities, or as serial activities. In either case, blocks are dis-
patched on a first-in-first-out basis. If this is a concurrent queue, then the dispatcher
assigns F to a thread as soon as one is available, then G, then H. If this is a serial queue,
the dispatcher assigns F to a thread, then only assigns G to a thread after F has com-
pleted. The use of predefined threads saves the cost of creating a new thread for each
request, reducing the latency associated with processing a block. Thread pools are
automatically sized by the system to maximize the performance of the applications
using GCD while minimizing the number of idle or competing threads.

H G I

In addition to scheduling blocks directly, the application can associate a single
block and queue with an event source, such as a timer, network socket, or file descrip-
tor. Every time the source issues an event, the block is scheduled if it is not already
running. This allows rapid response without the expense of polling or “parking a
thread” on the event source.

Source | E

An example from [SIRA09] indicates the ease of using GCD. Consider a
document-based application with a button that, when clicked, will analyze the current
document and display some interesting statistics about it. In the common case, this
analysis should execute in under a second, so the following code is used to connect
the button with an action:

- (Inaction)analyzeDocument: (NSButton *)sender
{
NSDictionary *stats = [myDoc analyze];
[myModel setDict:stats];

4.9 / SUMMARY 217

[myStatsView setNeedsDisplay:YES];
[stats release];

The first line of the function body analyzes the document, the second line
updates the application’s internal state, and the third line tells the application that the
statistics view needs to be updated to reflect this new state. This code, which follows a
common pattern, is executed in the main thread. The design is acceptable so long as
the analysis does not take too long, because after the user clicks the button, the main
thread of the application needs to handle that user input as fast as possible so it can
get back to the main event loop to process the next user action. But if the user opens
a very large or complex document, the analyze step may take an unacceptably long
amount of time. A developer may be reluctant to alter the code to meet this unlikely
event, which may involve application-global objects, thread management, callbacks,
argument marshalling, context objects, new variables, and so on. But with GCD, a
modest addition to the code produces the desired result:

- (IBAction)analyzeDocument: (NSButton *)sender
{dispatch_async(dispatch_get_global_queue (0, 0), ~{
NSDictionary *stats = [myDoc analyze];
dispatch_async(dispatch_get_main_queue(), *{
[myModel setDict:stats];
[myStatsView setNeedsDisplay:YES];
[stats release];
)
)

All functions in GCD begin with dispatch_.The outer dispatch_async ()
call puts a task on a global concurrent queue. This tells the OS that the block can be
assigned to a separate concurrent queue, off the main queue, and executed in parallel.
Therefore, the main thread of execution is not delayed. When the analyze function is
complete, the inner dispatch_async () call is encountered. This directs the OS to
put the following block of code at the end of the main queue, to be executed when it
reaches the head of the queue. So, with very little work on the part of the program-
mer, the desired requirement is met.

4.9 SUMMARY

Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership, and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a multi-
threaded system, multiple concurrent threads may be defined within a single process.
This may be done using either user-level threads or kernel-level threads. User-level

218 CHAPTER 4 / THREADS

threads are unknown to the OS and are created and managed by a threads library
that runs in the user space of a process. User-level threads are very efficient because
a mode switch is not required to switch from one thread to another. However, only
a single user-level thread within a process can execute at a time, and if one thread
blocks, the entire process is blocked. Kernel-level threads are threads within a process
that are maintained by the kernel. Because they are recognized by the kernel, mul-
tiple threads within the same process can execute in parallel on a multiprocessor and
the blocking of a thread does not block the entire process. However, a mode switch
is required to switch from one thread to another.

4.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
application message thread
fiber multithreading thread pool
jacketing namespaces user-level thread
job object port user-mode scheduling (UMS)
kernel-level thread process
lightweight process task

Review Questions

4.1. Table 3.5 lists typical elements found in a process control block for an unthreaded OS.
Of these, which should belong to a thread control block, and which should belong to
a process control block for a multithreaded system?

4.2. List reasons why a mode switch between threads may be cheaper than a mode switch
between processes.

4.3. What are the two separate and potentially independent characteristics embodied in
the concept of process?

4.4. Give four general examples of the use of threads in a single-user multiprocessing
system.

4.5. How is a thread different from a process?

4.6. What are the advantages of using multithreading instead of multiple processes?

4.7. List some advantages and disadvantages of using kernel-level threads.

4.8. Explain the concept of threads in the case of the Clouds operating system.

Problems
4.1. The use of multithreading improves the overall efficiency and performance of the

execution of an application or program. However, not all programs are suitable for
multithreading. Can you give some examples of programs where a multithreaded solu-
tion fails to improve on the performance of a single-threaded solution? Also give some
examples where the performance improves when multiple threads are used in place of
single threads.

4.2,

4.3.

44.

4.5.

4.6.

4.7.

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 219

Suppose a program has a main routine that calls two sub-routines. The sub-routines
can be executed in parallel. Give two possible approaches to implement this program,
one using threads and the other without.

OS/2 from IBM is an obsolete OS for PCs. In OS/2, what is commonly embodied in
the concept of process in other operating systems is split into three separate types
of entities: session, processes, and threads. A session is a collection of one or more
processes associated with a user interface (keyboard, display, and mouse). The session
represents an interactive user application, such as a word processing program or a
spreadsheet. This concept allows the personal computer user to open more than one
application, giving each one or more windows on the screen. The OS must keep track
of which window, and therefore which session, is active, so that keyboard and mouse
input are routed to the appropriate session. At any time, one session is in foreground
mode, with other sessions in background mode. All keyboard and mouse input is
directed to one of the processes of the foreground session, as dictated by the appli-
cations. When a session is in foreground mode, a process performing video output
sends it directly to the hardware video buffer and then to the user’s display. When the
session is moved to the background, the hardware video buffer is saved to a logical
video buffer for that session. While a session is in background, if any of the threads of
any of the processes of that session executes and produces screen output, that output
is directed to the logical video buffer. When the session returns to foreground, the
screen is updated to reflect the current contents of the logical video buffer for the
new foreground session.

There is a way to reduce the number of process-related concepts in OS/2 from
three to two. Eliminate sessions, and associate the user interface (keyboard, mouse, and
display) with processes. Thus, one process at a time is in foreground mode. For further
structuring, processes can be broken up into threads.

a. What benefits are lost with this approach?
b. If you go ahead with this modification, where do you assign resources (memory,
files, etc.): at the process or thread level?

Consider an environment in which there is a one-to-one mapping between user-level
threads and kernel-level threads that allows one or more threads within a process to
issue blocking system calls while other threads continue to run. Explain why this model
can make multithreaded programs run faster than their single-threaded counterparts
on a uniprocessor computer.

An application has 20% of code that is inherently serial. Theoretically, what will its
maximum speedup be if it is run on a multicore system with four processors?

The OS/390 mainframe operating system is structured around the concepts of address
space and task. Roughly speaking, a single address space corresponds to a single appli-
cation and corresponds more or less to a process in other operating systems. Within
an address space, a number of tasks may be generated and executed concurrently; this
corresponds roughly to the concept of multithreading. Two data structures are key to
managing this task structure. An address space control block (ASCB) contains infor-
mation about an address space needed by OS/390 whether or not that address space
is executing. Information in the ASCB includes dispatching priority, real and virtual
memory allocated to this address space, the number of ready tasks in this address
space, and whether each is swapped out. A task control block (TCB) represents a user
program in execution. It contains information needed for managing a task within an
address space, including processor status information, pointers to programs that are
part of this task, and task execution state. ASCBs are global structures maintained
in system memory, while TCBs are local structures maintained within their address
space. What is the advantage of splitting the control information into global and local
portions?

Many current language specifications, such as for C and C++, are inadequate for
multithreaded programs. This can have an impact on compilers and the correctness

220 CHAPTER 4 / THREADS

of code, as this problem illustrates. Consider the following declarations and function
definition:

int global_positives = 0;
typedef struct list {
struct list *next;
double val;
}o* list;
void count_positives(list 1)
{
list p;
for (p = 1; p; p = p —> next)
if (p => val > 0.0)
++global_positives;

}
Now consider the case in which thread A performs

count_positives (<list containing only negative wvalues>);
while thread B performs

++global_positives;

a. What does the function do?
b. The C language only addresses single-threaded execution. Does the use of two
parallel threads create any problems or potential problems?

4.8. But some existing optimizing compilers (including gcc, which tends to be relatively
conservative) will “optimize” count_positives to something similar to

void count_positives(list 1)
{
list p;
register int r;
r = global_positives;
for (p = 1; p; P = p —> next)
if (p -> val > 0.0) ++r;
global_positives = r;

}

‘What problem or potential problem occurs with this compiled version of the program
if threads A and B are executed concurrently?

4.9. Consider the following code using the POSIX Pthreads API:

thread2.c
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int myglobal;
void *thread_function (void *arg) {
int 1,73;

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 221

for (1i=0; 1i<20; 1i++) {
j=myglobal;
Jj=3+1;
printf(“.”);
fflush (stdout) ;
sleep (1) ;
myglobal=j;
}
return NULL;

int main (void) {
pthread_t mythread;

int 1i;
if (pthread_create(&mythread, NULL, thread_function,
NULL)) {
printf (ldquo;error creating thread.”);
abort () ;

for (1=0; 1<20; 1i++) {
myglobal=myglobal+l;
printf (Yo”);
fflush (stdout) ;

sleep (1) ;
}
if (pthread_join (mythread, NULL)) {
printf (Yerror joining thread.”);
abort () ;

}

printf (M\nmyglobal equals %$d\n”,myglobal);
exit (0);

}

In main () we first declare a variable called mythread, which has a type of
pthread_t.Thisis essentially an ID for a thread. Next, the if statement creates a
thread associated with mythread. The call pthread_create () returns zero on
success and a nonzero value on failure. The third argument of pthread_create ()
is the name of a function that the new thread will execute when it starts. When this
thread_function () returns, the thread terminates. Meanwhile, the main pro-
gram itself defines a thread, so there are two threads executing. The pthread_join
function enables the main thread to wait until the new thread completes.

a. What does this program accomplish?
b. Here is the output from the executed program:

$./thread2
..0.0.0.0.00.0.0.0.0.0.0.0.0.0..0.0.0.0.0
myglobal equals 21

Is this the output you would expect? If not, what has gone wrong?

222 CHAPTER 4 / THREADS

4.10.

4.11.

4.12.

Stop User-level threads

Continue

Dispatch

Time slice
or preempt Stop

Dispatch

Blocking
system
call

Continue

Lightweight processes

Figure 4.18 Solaris User-Level Thread and LWP States

It is sometimes required that when two threads are running, one thread should auto-

matically preempt the other. The preempted thread can execute only when the other

has run to completion. Implement the stated situation by setting priorities for the

threads; use any programming language of your choice.

In Solaris 9 and Solaris 10, there is a one-to-one mapping between ULTs and LWPs. In

Solaris 8, a single LWP supports one or more ULTs.

a. What is the possible benefit of allowing a many-to-one mapping of ULTs to LWPs?

b. In Solaris 8, the thread execution state of a ULT is distinct from that of its LWP.
Explain why.

c. Figure 4.18 shows the state transition diagrams for a ULT and its associated LWP in
Solaris 8 and 9. Explain the operation of the two diagrams and their relationships.

Explain the rationale for the Uninterruptible state in Linux.

CONCURRENCY:
MutuAaL EXcCLUSION
AND SYNCHRONIZATION

5.1 Mutual Exclusion: Software Approaches
Dekker’s Algorithm
Peterson’s Algorithm

5.2 Principles of Concurrency
A Simple Example
Race Condition
Operating System Concerns
Process Interaction
Requirements for Mutual Exclusion

5.3 Mutual Exclusion: Hardware Support
Interrupt Disabling
Special Machine Instructions

5.4 Semaphores
Mutual Exclusion
The Producer/Consumer Problem
Implementation of Semaphores

5.5 Monitors
Monitor with Signal
Alternate Model of Monitors with Notify and Broadcast

5.6 Message Passing
Synchronization
Addressing
Message Format
Queueing Discipline
Mutual Exclusion

5.7 Readers/Writers Problem
Readers Have Priority
Writers Have Priority

5.8 Summary

5.9 Key Terms, Review Questions, and Problems

223

224 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Discuss basic concepts related to concurrency, such as race conditions, OS
concerns, and mutual exclusion requirements.

Understand hardware approaches to supporting mutual exclusion.
Define and explain semaphores.

Define and explain monitors.

Explain the readers/writers problem.

The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

* Multiprogramming: The management of multiple processes within a uniproces-
sor system

* Multiprocessing: The management of multiple processes within a multiprocessor

 Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is a
prime example of this type of system.

Fundamental to all of these areas, and fundamental to OS design, is concurrency.
Concurrency encompasses a host of design issues, including communication among
processes, sharing of and competing for resources (such as memory, files, and 1/O
access), synchronization of the activities of multiple processes, and allocation of
processor time to processes. We shall see that these issues arise not just in multi-
processing and distributed processing environments, but also in single-processor
multiprogramming systems.

Concurrency arises in three different contexts:

1. Multiple applications: Multiprogramming was invented to allow processing

time to be dynamically shared among a number of active applications.

2. Structured applications: As an extension of the principles of modular design

and structured programming, some applications can be effectively programmed
as a set of concurrent processes.

3. Operating system structure: The same structuring advantages apply to systems

programs, and we have seen that operating systems are themselves often imple-
mented as a set of processes or threads.

Because of the importance of this topic, four chapters and an appendix focus on

concurrency-related issues. Chapters 5 and 6 will deal with concurrency in multipro-
gramming and multiprocessing systems. Chapters 16 and 18 will examine concurrency
issues related to distributed processing.

CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION 225

This chapter begins with an introduction to the concept of concurrency and
the implications of the execution of multiple concurrent processes.! We find that
the basic requirement for support of concurrent processes is the ability to enforce
mutual exclusion; that is, the ability to exclude all other processes from a course
of action while one process is granted that ability. Section 5.2 covers various
approaches to achieving mutual exclusion. All of these are software solutions that
require the use of a technique known as busy waiting. Next, we will examine some
hardware mechanisms that can support mutual exclusion. Then, we will look at
solutions that do not involve busy waiting and that can be either supported by the
OS or enforced by language compilers. We will examine three approaches: sema-
phores, monitors, and message passing.

Two classic problems in concurrency are used to illustrate the concepts and
compare the approaches presented in this chapter. The producer/consumer problem
will be introduced in Section 5.4 and used as a running example. The chapter closes
with the readers/writers problem.

Our discussion of concurrency will continue in Chapter 6, and we defer a dis-
cussion of the concurrency mechanisms of our example systems until the end of that
chapter. Appendix A covers additional topics on concurrency. Table 5.1 lists some
key terms related to concurrency. A set of animations that illustrate concepts in this
chapter is available at the Companion website for this book.

Table 5.1 Some Key Terms Related to Concurrency

Atomic operation A function or action implemented as a sequence of one or more instructions that
appears to be indivisible; that is, no other process can see an intermediate state or
interrupt the operation. The sequence of instruction is guaranteed to execute as

a group, or not execute at all, having no visible effect on system state. Atomicity
guarantees isolation from concurrent processes.

Critical section A section of code within a process that requires access to shared resources, and that
must not be executed while another process is in a corresponding section of code.

Deadlock A situation in which two or more processes are unable to proceed because each is
waiting for one of the others to do something.

Livelock A situation in which two or more processes continuously change their states in
response to changes in the other process(es) without doing any useful work.

Mutual exclusion The requirement that when one process is in a critical section that accesses shared
resources, no other process may be in a critical section that accesses any of those
shared resources.

Race condition A situation in which multiple threads or processes read and write a shared data item,
and the final result depends on the relative timing of their execution.

Starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen.

! For simplicity, we generally refer to the concurrent execution of processes. In fact, as we have seen in the
preceding chapter, in some systems the fundamental unit of concurrency is a thread rather than a process.

226 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.1 MUTUAL EXCLUSION: SOFTWARE APPROACHES

Software approaches can be implemented for concurrent processes that execute on
a single-processor or a multiprocessor machine with shared main memory. These
approaches usually assume elementary mutual exclusion at the memory access level
([LAMPY1], but see Problem 5.3). That is, simultaneous accesses (reading and/or
writing) to the same location in main memory are serialized by some sort of memory
arbiter, although the order of access granting is not specified ahead of time. Beyond
this, no support in the hardware, operating system, or programming language is
assumed.

Dekker’s Algorithm

Dijkstra [DIJK65] reported an algorithm for mutual exclusion for two processes,
designed by the Dutch mathematician Dekker. Following Dijkstra, we develop the
solution in stages. This approach has the advantage of illustrating many of the com-
mon bugs encountered in developing concurrent programs.

FIrst ATTEMPT As mentioned earlier, any attempt at mutual exclusion must rely
on some fundamental exclusion mechanism in the hardware. The most common of
these is the constraint that only one access to a memory location can be made at a
time. Using this constraint, we reserve a global memory location labeled turn. A
process (PO or P1) wishing to execute its critical section first examines the contents
of turn. If the value of turn is equal to the number of the process, then the process
may proceed to its critical section. Otherwise, it is forced to wait. Our waiting process
repeatedly reads the value of turn until it is allowed to enter its critical section. This
procedure is known as busy waiting, or spin waiting, because the thwarted process
can do nothing productive until it gets permission to enter its critical section. Instead,
it must linger and periodically check the variable; thus it consumes processor time
(busy) while waiting for its chance.

After a process has gained access to its critical section, and after it has com-
pleted that section, it must update the value of turn to that of the other process.

In formal terms, there is a shared global variable:

int turn = 0;

Figure 5.1a shows the program for the two processes. This solution guarantees
the mutual exclusion property but has two drawbacks. First, processes must strictly
alternate in their use of their critical section; therefore, the pace of execution is dic-
tated by the slower of the two processes. If PO uses its critical section only once per
hour, but P1 would like to use its critical section at a rate of 1,000 times per hour, P1
is forced to adopt the pace of PO. A much more serious problem is that if one process
fails, the other process is permanently blocked. This is true whether a process fails in
its critical section or outside of it.

The foregoing construction is that of a coroutine. Coroutines are designed to
be able to pass execution control back and forth between themselves (see Problem

5.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES

/* PROCESS 0 /*

while (turn != 0)

/* do nothing */ ;
/* critical section*/;
turn = 1;

/* PROCESS 1 *

while (turn != 1)

/* do nothing */;
/* critical section*/;
turn = 0;

(a) First attempt

/* PROCESS 0 *

while (flag[l])

/* do nothing */;
flag[0] = true;
/*critical section*/;
flag[0] = false;

/* PROCESS 1 *

while (flag([0])

/* do nothing */;
flag[l] = true;
/* critical section*/;
flag[l] = false;

(b) Second attempt

/* PROCESS 0 *

flag[0] = true;
while (flag[1l])

/* do nothing */;
/* critical section*/;
flag[0] = false;

/* PROCESS 1 *

flag[l] = true;
while (flag[0])

/* do nothing */;
/* critical section*/;
flag[l] = false;

(c) Third attempt

/* PROCESS 0 *

flag[0] = true;
while (flag[l]) {
flag[0] = false;
/*delay */;
flag[0] = true;
}
/*critical section*/;
flag[0] = false;

/* PROCESS 1 *

flag[l] = true;

while (flag[0]) {
flag[l] = false;
/*delay */;
flag[l] = true;

}

/* critical section*/;

flag[l] = false;

(d) Fourth attempt

u Figure 5.1 Mutual Exclusion Attempts

227

228 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.5). While this is a useful structuring technique for a single process, it is inad-
equate to support concurrent processing.

SEconD ArTEMPT The flaw in the first attempt is that it stores the name of the
process that may enter its critical section, when in fact we need state information
about both processes. In effect, each process should have its own key to the critical
section so that if one fails, the other can still access its critical section. To meet this
requirement a Boolean vector £1ag is defined, with £1ag[0] corresponding to PO
and flag[1] corresponding to P1. Each process may examine the other’s flag but
may not alter it. When a process wishes to enter its critical section, it periodically
checks the other’s flag until that flag has the value false, indicating that the other
process is not in its critical section. The checking process immediately sets its own
flag to true and proceeds to its critical section. When it leaves its critical section, it
sets its flag to false.
The shared global variable” now is

enum boolean (false = 0; true = 1);
boolean flag([2] = 0, O

Figure 5.1b shows the algorithm. If one process fails outside the critical section,
including the flag-setting code, then the other process is not blocked. In fact, the other
process can enter its critical section as often as it likes, because the flag of the
other process is always false. However, if a process fails inside its critical section
or after setting its flag to true just before entering its critical section, then the other
process is permanently blocked.

This solution is, if anything, worse than the first attempt because it does not
even guarantee mutual exclusion. Consider the following sequence:

PO executes the while statement and finds f1ag[1] setto false
Pl executes the while statement and finds f1ag[0] setto false
POsets f1ag[0] to true and enters its critical section
Plsets flag[1] to true and enters its critical section

Because both processes are now in their critical sections, the program is incor-
rect. The problem is that the proposed solution is not independent of relative process
execution speeds.

THIRD ATTEMPT Because a process can change its state after the other process
has checked it but before the other process can enter its critical section, the second
attempt failed. Perhaps we can fix this problem with a simple interchange of two
statements, as shown in Figure 5.1c.

As before, if one process fails inside its critical section, including the flag-setting
code controlling the critical section, then the other process is blocked, and if a process
fails outside its critical section, then the other process is not blocked.

>The enum declaration is used here to declare a data type (boolean) and to assign its values.

5.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES 229

Next, let us check that mutual exclusion is guaranteed, using the point of view
of process PO. Once PO has set £1ag[0] to true, Pl cannot enter its critical section
until after PO has entered and left its critical section. It could be that Pl is already in
its critical section when PO sets its flag. In that case, PO will be blocked by the while
statement until P1 has left its critical section. The same reasoning applies from the
point of view of Pl

This guarantees mutual exclusion, but creates yet another problem. If both
processes set their flags to true before either has executed the while statement,
then each will think that the other has entered its critical section, causing
deadlock.

FourrH ArTtempr In the third attempt, a process sets its state without knowing the
state of the other process. Deadlock occurs because each process can insist on its right
to enter its critical section; there is no opportunity to back off from this position. We
can try to fix this in a way that makes each process more deferential: Each process
sets its flag to indicate its desire to enter its critical section, but is prepared to reset
the flag to defer to the other process, as shown in Figure 5.1d.

This is close to a correct solution, but is still flawed. Mutual exclusion is still
guaranteed, using similar reasoning to that followed in the discussion of the third
attempt. However, consider the following sequence of events:

POsets f1lag[0] to true.
Plsets flag[1] to true.
PO checks flag[1].

Pl checks f1lag[0].
POsets f1ag[0] to false.
Plsets flag[1l] to false.
POsets f1ag[0] to true.
Plsets flag[1] to true.

This sequence could be extended indefinitely, and neither process could enter
its critical section. Strictly speaking, this is not deadlock, because any alteration in the
relative speed of the two processes will break this cycle and allow one to enter the
critical section. This condition is referred to as livelock. Recall that deadlock occurs
when a set of processes wishes to enter their critical sections, but no process can suc-
ceed. With livelock, there are possible sequences of executions that succeed, but it is
also possible to describe one or more execution sequences in which no process ever
enters its critical section.

Although the scenario just described is not likely to be sustained for very long,
it is nevertheless a possible scenario. Thus, we reject the fourth attempt.

A Correct SoLutioN We need to be able to observe the state of both processes,
which is provided by the array variable £1ag. But, as the fourth attempt shows, this is
not enough. We must impose an order on the activities of the two processes to avoid
the problem of "mutual courtesy” that we have just observed. The variable turn

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

from the first attempt can be used for this purpose;in this case the variable indicates
which process has the right to insist on entering its critical region.

We can describe this solution, referred to as Dekker’s algorithm, as follows.
When PO wants to enter its critical section, it sets its flag to true. It then checks the
flag of Pl. If that is false, PO may immediately enter its critical section. Otherwise,
PO consults turn. If PO finds that turn = 0, then it knows that it is its turn to insist
and periodically checks PI's flag. Pl will at some point note that it is its turn to defer
and set its to flag false, allowing PO to proceed. After PO has used its critical section,
it sets its flag to false to free the critical section, and sets turn to | to transfer the
right to insist to Pl.

boolean flag [2];
int turn;

void PO ()

{

while (true) ({

flag [0] = true;
while (flag [1]) {
if (turn == 1)
flag [0] = false;
while (turn == 1) /* do nothing */;
flag [0] = true;

}
}
/* critical section */;
turn = 1;
flag [0] = false;
/* remainder */;
}
}
void P1()

{
while (true) ({

flag [1] = true;
while (flag [0]) {
if (turn == 0) {
flag [1] = false;
while (turn == 0) /* do nothing */;
flag [1] = true;

}
}
/* critical section */;
turn = 0;
flag [1] = false;
/* remainder */;
}
}
void main ()

{

flag [0] = false;
flag [1] = false;
turn = 1;

parbegin (PO, P1);

videoNote Figure 5.2 Dekker’s Algorithm

5.1 / MUTUAL EXCLUSION: SOFTWARE APPROACHES 231

Figure 5.2 provides a specification of Dekker’s algorithm. The construct
parbegin (PL, P2, . . . , Pn) means the following: suspend the execution of the main
program; initiate concurrent execution of procedures Pl, P2, . . ., Pn; when all of PI,
P2, ..., Pn have terminated, resume the main program. A verification of Dekker’s
algorithm is left as an exercise (see Problem 5.1).

Peterson’s Algorithm

Dekker’s algorithm solves the mutual exclusion problem, but with a rather complex
program that is difficult to follow and whose correctness is tricky to prove. Peterson
[PETESI] has provided a simple, elegant solution. As before, the global array variable
flag indicates the position of each process with respect to mutual exclusion, and
the global variable turn resolves simultaneity conflicts. The algorithm is presented
in Figure 5.3.

That mutual exclusion is preserved is easily shown. Consider process PO.
Once it has set f1ag[0] to true, Pl cannot enter its critical section. If Pl already
is in its critical section, then flag[1] = true and PO is blocked from entering its
critical section. On the other hand, mutual blocking is prevented. Suppose that PO
is blocked in its while loop. This means that f1ag[1] is true and turn = 1. PO can

boolean flag [2];

int turn;

void PO ()

{

while (true) {

flag [0] = true;
turn = 1;
while (flag [1l] && turn == 1) /* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

void P1()
{
while (true) {

flag [1] = true;
turn = 0;
while (flag [0] && turn == 0) /* do nothing */;
/* critical section */;
flag [1] = false;

/* remainder */
}
}
void main()
{
flag [0] false;
flag [1] false;
parbegin (PO, P1);

}

videoNote Figure 5.3 Peterson’s Algorithm for Two Processes

232 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

enter its critical section when either f1ag[1] becomes false or turn becomes 0.
Now consider three exhaustive cases:

1. Plhasno interest in its critical section. This case is impossible, because it implies
flag[l] =false.

2. Pl is waiting for its critical section. This case is also impossible, because if
turn = 1, Plis able to enter its critical section.

3. Plis using its critical section repeatedly and therefore monopolizing access to it.
This cannot happen, because Pl is obliged to give PO an opportunity by setting
turn to 0 before each attempt to enter its critical section.

Thus, we have a simple solution to the mutual exclusion problem for two processes.
Furthermore, Peterson’s algorithm is easily generalized to the case of processes
[HOFR90].

5.2 PRINCIPLES OF CONCURRENCY

In a single-processor multiprogramming system, processes are interleaved in time
to yield the appearance of simultaneous execution (see Figure 2.12a). Even though
actual parallel processing is not achieved, and even though there is a certain amount
of overhead involved in switching back and forth between processes, interleaved
execution provides major benefits in processing efficiency and in program structur-
ing. In a multiprocessor system, it is possible not only to interleave the execution of
multiple processes, but also to overlap them (see Figure 2.12b).

At first glance, it may seem that interleaving and overlapping represent funda-
mentally different modes of execution and present different problems. In fact, both
techniques can be viewed as examples of concurrent processing, and both present
the same problems. In the case of a uniprocessor, the problems stem from a basic
characteristic of multiprogramming systems: The relative speed of execution of pro-
cesses cannot be predicted. It depends on the activities of other processes, the way in
which the OS handles interrupts, and the scheduling policies of the OS. The following
difficulties arise:

1. The sharing of global resources is fraught with peril. For example, if two pro-
cesses both make use of the same global variable and both perform reads and
writes on that variable, then the order in which the various reads and writes
are executed is critical. An example of this problem is shown in the following
subsection.

2. It is difficult for the OS to optimally manage the allocation of resources. For
example, process A may request use of, and be granted control of, a particular
1/O channel, then be suspended before using that channel. It may be undesirable
for the OS simply to lock the channel and prevent its use by other processes;
indeed this may lead to a deadlock condition, as will be described in Chapter 6.

3. It becomes very difficult to locate a programming error because results are typi-
cally not deterministic and reproducible (e.g.,see [LEBL87 CARR89, SHEN02]
for a discussion of this point).

5.2 / PRINCIPLES OF CONCURRENCY 233

All of the foregoing difficulties present themselves in a multiprocessor system
as well, because here too the relative speed of execution of processes is unpredictable.
A multiprocessor system must also deal with problems arising from the simultane-
ous execution of multiple processes. Fundamentally, however, the problems are the
same as those for uniprocessor systems. This should become clear as the discussion
proceeds.

A Simple Example

Consider the following procedure:

void echo ()

{
chin = getchar();
chout = chin;
putchar (chout) ;

}

This procedure shows the essential elements of a program that will provide a char-
acter echo procedure; input is obtained from a keyboard one keystroke at a time.
Each input character is stored in variable chin. The character is then transferred to
variable chout and sent to the display. Any program can call this procedure repeat-
edly to accept user input and display it on the user’s screen.

Now consider that we have a single-processor multiprogramming system sup-
porting a single user. The user can jump from one application to another, and each
application uses the same keyboard for input and the same screen for output. Because
each application needs to use the procedure echo, it makes sense for it to be a shared
procedure that is loaded into a portion of memory global to all applications. Thus,
only a single copy of the echo procedure is used, saving space.

The sharing of main memory among processes is useful to permit efficient and
close interaction among processes. However, such sharing can lead to problems. Con-
sider the following sequence:

1. Process P1 invokes the echo procedure and is interrupted immediately after
getchar returns its value and stores it in chin. At this point, the most recently
entered character, X, is stored in variable chin.

2. Process P2 is activated and invokes the echo procedure, which runs to conclu-
sion, inputting and then displaying a single character, y, on the screen.

3. Process P1 is resumed. By this time, the value x has been overwritten in chin
and therefore lost. Instead, chin contains y, which is transferred to chout and
displayed.

Thus, the first character is lost and the second character is displayed twice.
The essence of this problem is the shared global variable, chin. Multiple processes
have access to this variable. If one process updates the global variable and is then
interrupted, another process may alter the variable before the first process can use
its value. Suppose, however, that we permit only one process at a time to be in that
procedure. Then the foregoing sequence would result in the following:

234 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

1.

Process P1 invokes the echo procedure and is interrupted immediately after
the conclusion of the input function. At this point, the most recently entered
character, x, is stored in variable chin.

Process P2 is activated and invokes the echo procedure. However, because P1
is still inside the echo procedure, although currently suspended, P2 is blocked
from entering the procedure. Therefore, P2 is suspended awaiting the availabil-
ity of the echo procedure.

At some later time, process P1 is resumed and completes execution of echo.
The proper character, x, is displayed.

When P1 exits echo, this removes the block on P2. When P2 is later resumed,
the echo procedure is successfully invoked.

This example shows that it is necessary to protect shared global variables (and

other shared global resources) and the only way to do that is to control the code that
accesses the variable. If we impose the discipline that only one process at a time may
enter echo, and that once in echo the procedure must run to completion before it
is available for another process, then the type of error just discussed will not occur.
How that discipline may be imposed is a major topic of this chapter.

This problem was stated with the assumption that there was a single-processor,

multiprogramming OS. The example demonstrates that the problems of concurrency
occur even when there is a single processor. In a multiprocessor system, the same
problems of protected shared resources arise, and the same solution works. First,
suppose there is no mechanism for controlling access to the shared global variable:

1.

2.

Processes P1 and P2 are both executing, each on a separate processor. Both
processes invoke the echo procedure.

The following events occur; events on the same line take place in parallel:

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar (chout) ; .
. putchar (chout) ;
. .

The result is that the character input to P1 is lost before being displayed, and the

character input to P2 is displayed by both P1 and P2. Again, let us add the capability
of enforcing the discipline that only one process at a time may be in echo. Then the
following sequence occurs:

1.

2.

Processes P1 and P2 are both executing, each on a separate processor. P1
invokes the echo procedure.

While P1 is inside the echo procedure, P2 invokes echo. Because P1 is still
inside the echo procedure (whether P1 is suspended or executing), P2 is

5.2 / PRINCIPLES OF CONCURRENCY 235

blocked from entering the procedure. Therefore, P2 is suspended awaiting the
availability of the echo procedure.

3. At alater time, process P1 completes execution of echo, exits that procedure,
and continues executing. Immediately upon the exit of P1 from echo, P2 is
resumed and begins executing echo.

In the case of a uniprocessor system, the reason we have a problem is that an
interrupt can stop instruction execution anywhere in a process. In the case of a mul-
tiprocessor system, we have that same condition and, in addition, a problem can be
caused because two processes may be executing simultaneously and both trying to
access the same global variable. However, the solution to both types of problem is
the same: control access to the shared resource.

Race Condition

A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in the
multiple processes. Let us consider two simple examples.

As a first example, suppose two processes, P1 and P2, share the global variable
a. At some point in its execution, P1 updates a to the value 1, and at some point in
its execution, P2 updates a to the value 2. Thus, the two tasks are in a race to write
variable a. In this example, the “loser” of the race (the process that updates last)
determines the final value of a.

For our second example, consider two processes, P3 and P4, that share global
variables b and c, with initial values b = 1 and ¢ = 2. At some point in its execution,
P3 executes the assignment b = b + ¢, and at some point in its execution, P4 executes
the assignment ¢ = Db + c. Note the two processes update different variables. However,
the final values of the two variables depend on the order in which the two processes
execute these two assignments. If P3 executes its assignment statement first, then the
final values are b = 3 and c = 5. If P4 executes its assignment statement first, then
the final values are b = 4 and ¢ = 3.

Appendix A includes a discussion of race conditions using semaphores as an
example.

Operating System Concerns

What design and management issues are raised by the existence of concurrency? We
can list the following concerns:

1. The OS must be able to keep track of the various processes. This is done with
the use of process control blocks and was described in Chapter 4.

2. The OS must allocate and deallocate various resources for each active process.
At times, multiple processes want access to the same resource. These resources
include

¢ Processor time: This is the scheduling function, to be discussed in Part Four.

* Memory: Most operating systems use a virtual memory scheme. The topic
will be addressed in Part Three.

236 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

e Files: To be discussed in Chapter 12
e 1/0O devices: To be discussed in Chapter 11

3. The OS must protect the data and physical resources of each process against
unintended interference by other processes. This involves techniques that relate
to memory, files, and I/O devices. A general treatment of protection found in
Part Seven.

4. The functioning of a process, and the output it produces, must be independent
of the speed at which its execution is carried out relative to the speed of other
concurrent processes. This is the subject of this chapter.

To understand how the issue of speed independence can be addressed, we need
to look at the ways in which processes can interact.

Process Interaction

We can classify the ways in which processes interact on the basis of the degree to
which they are aware of each other’s existence. Table 5.2 lists three possible degrees
of awareness and the consequences of each:

* Processes unaware of each other: These are independent processes that are not
intended to work together. The best example of this situation is the multipro-
gramming of multiple independent processes. These can either be batch jobs
or interactive sessions or a mixture. Although the processes are not working
together, the OS needs to be concerned about competition for resources. For
example, two independent applications may both want to access the same disk
or file or printer. The OS must regulate these accesses.

Table 5.2 Process Interaction

Influence that One

Degree of Awareness

Relationship

Process Has on the
Other

Potential Control
Problems

Processes unaware of
each other

Competition

e Results of one process
independent of the action
of others

Timing of process may be
affected

* Mutual exclusion

¢ Deadlock (renewable
resource)

e Starvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by
sharing

Results of one process
may depend on infor-
mation obtained from
others

Timing of process may be
affected

e Mutual exclusion

¢ Deadlock (renewable
resource)

e Starvation

e Data coherence

Processes directly aware
of each other (have
communication
primitives available

to them)

Cooperation by
communication

Results of one process
may depend on infor-
mation obtained from
others

Timing of process may be
affected

e Deadlock (consumable
resource)
e Starvation

5.2 / PRINCIPLES OF CONCURRENCY 237

e Processes indirectly aware of each other: These are processes that are not neces-
sarily aware of each other by their respective process IDs but that share access
to some object, such as an I/O buffer. Such processes exhibit cooperation in
sharing the common object.

* Processes directly aware of each other: These are processes that are able to
communicate with each other by process ID and that are designed to work
jointly on some activity. Again, such processes exhibit cooperation.

Conditions will not always be as clear-cut as suggested in Table 5.2. Rather, sev-
eral processes may exhibit aspects of both competition and cooperation. Neverthe-
less, it is productive to examine each of the three items in the preceding list separately
and determine their implications for the OS.

COMPETITION AMONG PROCESSES FOR RESOURCES ~ Concurrent processes come into
conflict with each other when they are competing for the use of the same resource. In
its pure form, we can describe the situation as follows. Two or more processes need
to access a resource during the course of their execution. Each process is unaware
of the existence of other processes, and each is to be unaffected by the execution of
the other processes. It follows from this each process should leave the state of any
resource that it uses unaffected. Examples of resources include I/O devices, memory,
processor time, and the clock.

There is no exchange of information between the competing processes. How-
ever, the execution of one process may affect the behavior of competing processes.
In particular, if two processes both wish access to a single resource, then one process
will be allocated that resource by the OS, and the other will have to wait. There-
fore, the process that is denied access will be slowed down. In an extreme case, the
blocked process may never get access to the resource, and hence will never terminate
successfully.

In the case of competing processes three control problems must be faced. First
is the need for mutual exclusion. Suppose two or more processes require access to a
single nonsharable resource, such as a printer. During the course of execution, each
process will be sending commands to the I/O device, receiving status information,
sending data, and/or receiving data. We will refer to such a resource as a critical
resource, and the portion of the program that uses it as a critical section of the pro-
gram. It is important that only one program at a time be allowed in its critical section.
We cannot simply rely on the OS to understand and enforce this restriction because
the detailed requirements may not be obvious. In the case of the printer, for example,
we want any individual process to have control of the printer while it prints an entire
file. Otherwise, lines from competing processes will be interleaved.

The enforcement of mutual exclusion creates two additional control problems.
One is that of deadlock. For example, consider two processes, P1 and P2, and two
resources, R1 and R2. Suppose that each process needs access to both resources to
perform part of its function. Then it is possible to have the following situation: the OS
assigns R1 to P2, and R2 to P1. Each process is waiting for one of the two resources.
Neither will release the resource that it already owns until it has acquired the other
resource and performed the function requiring both resources. The two processes
are deadlocked.

238 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* PROCESS 1 * void Pl
{
while (true) {
/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;
}
}

/* PROCESS 2 * void P2
{
while (true) {
/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;
}
}

/* PROCESS n * void Pn
{
while (true) {
/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;
}
}

videoNote Figure 5.4 Illustration of Mutual Exclusion

A final control problem is starvation. Suppose three processes (P1, P2, P3) each
require periodic access to resource R. Consider the situation in which P1 is in posses-
sion of the resource, and both P2 and P3 are delayed, waiting for that resource. When
P1 exits its critical section, either P2 or P3 should be allowed access to R. Assume
the OS grants access to P3, and P1 again requires access before P3 completes its
critical section. If the OS grants access to P1 after P3 has finished, and subsequently
alternately grants access to P1 and P3, then P2 may indefinitely be denied access to
the resource, even though there is no deadlock situation.

Control of competition inevitably involves the OS because the OS allocates
resources. In addition, the processes themselves will need to be able to express the
requirement for mutual exclusion in some fashion, such as locking a resource prior to
its use. Any solution will involve some support from the OS, such as the provision of the
locking facility. Figure 5.4 illustrates the mutual exclusion mechanism in abstract terms.
There are n processes to be executed concurrently. Each process includes (1) a criti-
cal section that operates on some resource Ra, and (2) additional code preceding and
following the critical section that does not involve access to Ra. Because all processes
access the same resource Ra, it is desired that only one process at a time be in its criti-
cal section. To enforce mutual exclusion, two functions are provided:entercritical
and exitcritical. Each function takes as an argument the name of the resource
that is the subject of competition. Any process that attempts to enter its critical section
while another process is in its critical section, for the same resource, is made to wait.

It remains to examine specific mechanisms for providing the functions enter-
critical and exitcritical.For the moment, we defer this issue while we con-
sider the other cases of process interaction.

COOPERATION AMONG PROCESSES BY SHARING The case of cooperation by sharing
covers processes that interact with other processes without being explicitly aware of
them. For example, multiple processes may have access to shared variables or to shared
files or databases. Processes may use and update the shared data without reference to
other processes, but know that other processes may have access to the same data. Thus
the processes must cooperate to ensure that the data they share are properly managed.
The control mechanisms must ensure the integrity of the shared data.

Because data are held on resources (devices, memory), the control problems
of mutual exclusion, deadlock, and starvation are again present. The only difference
is that data items may be accessed in two different modes, reading and writing, and
only writing operations must be mutually exclusive.

5.2 / PRINCIPLES OF CONCURRENCY 239

However, over and above these problems, a new requirement is introduced: that
of data coherence. As a simple example, consider a bookkeeping application in which
various data items may be updated. Suppose two items of data a and b are to be main-
tained in the relationship a = b. That is, any program that updates one value must
also update the other to maintain the relationship. Now consider the following two
processes:

P1:
a=a+1;
b=b+1;
P2:
b=2%*b;
a=2%a

If the state is initially consistent, each process taken separately will leave the
shared data in a consistent state. Now consider the following concurrent execution
sequence, in which the two processes respect mutual exclusion on each individual
data item (a and b):

a=a+1;
b=2%*b;
b=>b+1,
a=2%a;

At the end of this execution sequence, the condition a = b no longer holds. For
example, if we start with @ = b = 1, at the end of this execution sequence we have
a = 4 and b = 3. The problem can be avoided by declaring the entire sequence in
each process to be a critical section.

Thus, we see that the concept of critical section is important in the case of
cooperation by sharing. The same abstract functions of entercritical and
exitcritical discussed earlier (see Figure 5.4) can be used here. In this case,
the argument for the functions could be a variable, a file, or any other shared object.
Furthermore, if critical sections are used to provide data integrity, then there may be
no specific resource or variable that can be identified as an argument. In that case,
we can think of the argument as being an identifier that is shared among concurrent
processes to identify critical sections that must be mutually exclusive.

COOPERATION AMONG PROCESSES BY COMMUNICATION In the first two cases that
we have discussed, each process has its own isolated environment that does not
include the other processes. The interactions among processes are indirect. In both
cases, there is a sharing. In the case of competition, they are sharing resources without
being aware of the other processes. In the second case, they are sharing values, and
although each process is not explicitly aware of the other processes, it is aware of
the need to maintain data integrity. When processes cooperate by communication,
however, the various processes participate in a common effort that links all of the
processes. The communication provides a way to synchronize, or coordinate, the
various activities.

240 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Typically, communication can be characterized as consisting of messages of
some sort. Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel.

Because nothing is shared between processes in the act of passing messages,
mutual exclusion is not a control requirement for this sort of cooperation. However,
the problems of deadlock and starvation are still present. As an example of deadlock,
two processes may be blocked, each waiting for a communication from the other. As
an example of starvation, consider three processes, P1, P2, and P3, that exhibit the
following behavior. P1 is repeatedly attempting to communicate with either P2 or
P3, and P2 and P3 are both attempting to communicate with P1. A sequence could
arise in which P1 and P2 exchange information repeatedly, while P3 is blocked wait-
ing for a communication from P1. There is no deadlock, because P1 remains active,
but P3 is starved.

Requirements for Mutual Exclusion

Any facility or capability that is to provide support for mutual exclusion should meet
the following requirements:

1. Mutual exclusion must be enforced: Only one process at a time is allowed into
its critical section, among all processes that have critical sections for the same
resource or shared object.

2. A process that halts in its noncritical section must do so without interfering
with other processes.

3. It must not be possible for a process requiring access to a critical section to be
delayed indefinitely: no deadlock or starvation.

4. When no process is in a critical section, any process that requests entry to its
critical section must be permitted to enter without delay.

5. No assumptions are made about relative process speeds or number of processors.
6. A process remains inside its critical section for a finite time only.

There are a number of ways in which the requirements for mutual exclusion can
be satisfied. One approach is to leave the responsibility with the processes that wish to
execute concurrently. Processes, whether they are system programs or application pro-
grams, would be required to coordinate with one another to enforce mutual exclusion,
with no support from the programming language or the OS. We can refer to these as
software approaches. Although this approach is prone to high processing overhead and
bugs, it is nevertheless useful to examine such approaches to gain a better understand-
ing of the complexity of concurrent processing. This topic was covered in the preceding
section. A second approach involves the use of special-purpose machine instructions.
These have the advantage of reducing overhead but nevertheless will be shown to
be unattractive as a general-purpose solution; they will be covered in Section 5.3. A
third approach is to provide some level of support within the OS or a programming
language. Three of the most important such approaches will be examined in Sections
5.4 through 5.6.

5.3 / MUTUAL EXCLUSION: HARDWARE SUPPORT 241

5.3 MUTUAL EXCLUSION: HARDWARE SUPPORT

In this section, we look at several interesting hardware approaches to mutual exclusion.

Interrupt Disabling

In a uniprocessor system, concurrent processes cannot have overlapped execution;
they can only be interleaved. Furthermore, a process will continue to run until it
invokes an OS service or until it is interrupted. Therefore, to guarantee mutual exclu-
sion, it is sufficient to prevent a process from being interrupted. This capability can
be provided in the form of primitives defined by the OS kernel for disabling and
enabling interrupts. A process can then enforce mutual exclusion in the following
way (compare to Figure 5.4):

while (true) {
/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;

}

Because the critical section cannot be interrupted, mutual exclusion is guaran-
teed. The price of this approach, however, is high. The efficiency of execution could
be noticeably degraded because the processor is limited in its ability to interleave
processes. Another problem is that this approach will not work in a multiprocessor
architecture. When the computer includes more than one processor, it is possible (and
typical) for more than one process to be executing at a time. In this case, disabled
interrupts do not guarantee mutual exclusion.

Special Machine Instructions

In a multiprocessor configuration, several processors share access to a common
main memory. In this case, there is not a master/slave relationship; rather the proces-
sors behave independently in a peer relationship. There is no interrupt mechanism
between processors on which mutual exclusion can be based.

At the hardware level, as was mentioned, access to a memory location excludes
any other access to that same location. With this as a foundation, processor designers
have proposed several machine instructions that carry out two actions atomically,
such as reading and writing or reading and testing, of a single memory location with
one instruction fetch cycle. During execution of the instruction, access to the memory
location is blocked for any other instruction referencing that location.

In this section, we look at two of the most commonly implemented instructions.
Others are described in [RAYNS86] and [STON93].

3The term atomic means the instruction is treated as a single step that cannot be interrupted.

242 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

COMPARE&SwWAP INSTRUCTION The compares&swap instruction, also called a
compare and exchange instruction, can be defined as follows [HERL90]:

int compare_and_swap (int *word, int testval, int newval)

{
int oldval;
oldval = *word
if (oldval == testval) *word = newval;
return oldval;
}

This version of the instruction checks a memory location (*word) against a test
value (testval). If the memory location’s current value is testval, it is replaced
with newval; otherwise, it is left unchanged. The old memory value is always
returned; thus, the memory location has been updated if the returned value is the
same as the test value. This atomic instruction therefore has two parts: A compare is
made between a memory value and a test value; if the values are the same, a swap
occurs. The entire compareé&swap function is carried out atomically —that is, it is
not subject to interruption.

Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise. Some version of this instruction is available on nearly all
processor families (x86, IA64, sparc, IBM z series, etc.), and most operating systems
use this instruction for support of concurrency.

Figure 5.5a shows a mutual exclusion protocol based on the use of this instruc-
tion.* A shared variable bo1t is initialized to 0. The only process that may enter its

/* program mutualexclusion */

const int n = /* number of processes */;
int bolt;

void P(int 1)

/* program mutualexclusion */

int const n = /* number of processes */;
int bolt;

void P (int 1)

{

while (true) { while (true)

while (compare_and_swap (bolt, 0, 1) == 1) int keyi = 1;
/* do nothing */; do exchange (&keyi, &bolt)
/* critical section */; while (keyi != 0);
bolt = 0; /* critical section */;
/* remainder */; bolt = 0;

}
}
void main() {
bolt = 0;
parbegin (P (1), P(2)

/* remainder */;
}
}
void main() {
bolt = 0;

parbegin (P(1), P(2), ..., P(n));

(a) Compare and swap instruction

(b) Exchange instruction

videoNote Figure 5.5 Hardware Support for Mutual Exclusion

4The construct parbegin (P1, P2,

, Pn) means the following: suspend the execution of the

main program; initiate concurrent execution of procedures P1,P2, ..., Pn;when all of P1,P2, ..., Pn have

terminated, resume the main program.

5.3 / MUTUAL EXCLUSION: HARDWARE SUPPORT 243

critical section is one that finds bolt equal to 0. All other processes attempting to
enter their critical section go into a busy waiting mode. The term busy waiting, or spin
waiting, refers to a technique in which a process can do nothing until it gets permis-
sion to enter its critical section, but continues to execute an instruction or set of
instructions that tests the appropriate variable to gain entrance. When a process
leaves its critical section, it resets bolt to 0; at this point one and only one of the wait-
ing processes is granted access to its critical section. The choice of process depends
on which process happens to execute the compare&swap instruction next.

ExcHANGE INSTRUCTION The exchange instruction can be defined as follows:

void exchange (int *register, int *memory)
{

int temp;

temp = *memory;

*memory = *register;

*register = temp;

}

The instruction exchanges the contents of a register with that of a memory location.
Both the Intel IA-32 architecture (Pentium) and the [A-64 architecture (Itanium)
contain an XCHG instruction.

Figure 5.5b shows a mutual exclusion protocol based on the use of an exchange
instruction. A shared variable bolt is initialized to 0. Each process uses a local variable
key that is initialized to 1. The only process that may enter its critical section is one
that finds bolt equal to 0. It excludes all other processes from the critical section by
setting bolt to 1. When a process leaves its critical section, it resets bolt to 0, allowing
another process to gain access to its critical section.

Note the following expression always holds because of the way in which the
variables are initialized and because of the nature of the exchange algorithm:

bolt + D key; = n

If bolt = 0, then no process is in its critical section. If bolt = 1, then exactly one
process is in its critical section, namely the process whose key value equals 0.

PROPERTIES OF THE MACHINE-INSTRUCTION APPROACH 'The use of a special machine
instruction to enforce mutual exclusion has a number of advantages:

e Itis applicable to any number of processes on either a single processor or mul-
tiple processors sharing main memory.

e [t is simple and therefore easy to verify.

e It can be used to support multiple critical sections; each critical section can be
defined by its own variable.

However, there are some serious disadvantages:

e Busy waiting is employed: Thus, while a process is waiting for access to a critical
section, it continues to consume processor time.

244 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

e Starvation is possible: When a process leaves a critical section and more than
one process is waiting, the selection of a waiting process is arbitrary. Thus, some
process could indefinitely be denied access.

e Deadlock is possible: Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the same
resource as P1, it will be denied access because of the mutual exclusion mecha-
nism. Thus, it will go into a busy waiting loop. However, P1 will never be dis-
patched because it is of lower priority than another ready process, P2.

Because of the drawbacks of both the software and hardware solutions, we need
to look for other mechanisms.

5.4 SEMAPHORES

We now turn to OS and programming language mechanisms that are used to provide
concurrency. Table 5.3 summarizes mechanisms in common use. We begin, in this
section, with semaphores. The next two sections will discuss monitors and message
passing. The other mechanisms in Table 5.3 will be discussed when treating specific
OS examples, in Chapters 6 and 13.

Table 5.3 Common Concurrency Mechanisms

Semaphore An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to 0) must be the one to unlock it (sets the value to 1).

Condition variable A data type that is used to block a process or thread until a particular condition is true.

Monitor A programming language construct that encapsulates variables, access procedures, and

initialization code within an abstract data type. The monitor’s variable may only be
accessed via its access procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections. A monitor may
have a queue of processes that are waiting to access it.

Event flags A memory word used as a synchronization mechanism. Application code may associ-
ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one

of the bits is set (OR).

Mailboxes/messages | A means for two processes to exchange information and that may be used for
synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an infinite loop waiting

for the value of a lock variable to indicate availability.

5.4 / SEMAPHORES 245

The first major advance in dealing with the problems of concurrent processes
came in 1965 with Dijkstra’s treatise [DIJK65]. Dijkstra was concerned with the
design of an OS as a collection of cooperating sequential processes, and with the
development of efficient and reliable mechanisms for supporting cooperation. These
mechanisms can just as readily be used by user processes if the processor and OS
make the mechanisms available.

The fundamental principle is this: Two or more processes can cooperate by
means of simple signals, such that a process can be forced to stop at a specified place
until it has received a specific signal. Any complex coordination requirement can be
satisfied by the appropriate structure of signals. For signaling, special variables called
semaphores are used. To transmit a signal via semaphore s, a process executes the
primitive semSignal (s).To receive a signal via semaphore s, a process executes
the primitive semWait (s);if the corresponding signal has not yet been transmitted,
the process is suspended until the transmission takes place.’

To achieve the desired effect, we can view the semaphore as a variable that has
an integer value upon which only three operations are defined:

1. A semaphore may be initialized to a nonnegative integer value.

2. The semWait operation decrements the semaphore value. If the value becomes
negative, then the process executing the semiWait is blocked. Otherwise, the
process continues execution.

3. The semSignal operation increments the semaphore value. If the resulting
value is less than or equal to zero, then a process blocked by a semWa it opera-
tion, if any, is unblocked.

Other than these three operations, there is no way to inspect or manipulate
semaphores.

We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory. The negative value equals the number of processes waiting to be
unblocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

[Subject] points out three interesting consequences of the semaphore definition:

1. In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

3 In Dijkstra’s original paper and in much of the literature, the letter P is used for semwait and the
letter V for semSignal;these are the initials of the Dutch words for test (proberen) and increment
(verhogen). In some of the literature, the terms wait and signal are used. This book uses semWait
and semSignal for clarity, and to avoid confusion with similar wait and signal operations in monitors,
discussed subsequently.

246 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

{

}

{

struct semaphore {

bi

void semWait (semaphore s)

void semSignal (semaphore s)

int count;
queueType queue;

s.count--;

if (s.count < 0) {
/* place this process in s.queue */;
/* block this process */;

}

s.count++;

if (s.count<= 0) {
/* remove a process P from s.queue */;
/* place process P on ready list */;

}

videoNote Figure 5.6 A Definition of Semaphore Primitives

2. After a process increments a semaphore and another process gets woken up,
both processes continue running concurrently. There is no way to know which
process, if either, will continue immediately on a uniprocessor system.

3. When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero or one.

Figure 5.6 suggests a more formal definition of the primitives for sema-

phores. The semWait and semSignal primitives are assumed to be atomic. A
more restricted version, known as the binary semaphore, is defined in Figure 5.7

A

binary semaphore may only take on the values 0 and 1, and can be defined by the

following three operations:

be

1. A binary semaphore may be initialized to 0 or 1.

2. The semWaitB operation checks the semaphore value. If the value is zero, then
the process executing the semWaitB is blocked. If the value is one, then the
value is changed to zero and the process continues execution.

3. The semSignalB operation checks to see if any processes are blocked on
this semaphore (semaphore value equals 0). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

In principle, it should be easier to implement the binary semaphore, and it can
shown that it has the same expressive power as the general semaphore (see Prob-

lem 5.19). To contrast the two types of semaphores, the nonbinary semaphore is often
referred to as either a counting semaphore or a general semaphore.

5.4 / SEMAPHORES 247

struct binary semaphore {
enum {zero, one} value;
queueType queue;
bi
void semWaitB (binary_ semaphore s)
{
if (s.value == one)
s.value = zero;
else {
/* place this process in s.queue */;
/* block this process */;
}
}
void semSignalB (semaphore s)
{
if (s.queue is empty /()
s.value = one;
else {
/* remove a process P from s.queue */;
/* place process P on ready list */;

videoNote Figure 5.7 A Definition of Binary Semaphore Primitives

A concept related to the binary semaphore is the mutual exclusion lock (mutex).
A mutex is a programming flag used to grab and release an object. When data are
acquired that cannot be shared, or processing is started that cannot be performed
simultaneously elsewhere in the system, the mutex is set to lock (typically zero),
which blocks other attempts to use it. The mutex is set to unlock when the data are
no longer needed or the routine is finished. A key difference between the a mutex
and a binary semaphore is that the process that locks the mutex (sets the value to
zero) must be the one to unlock it (sets the value to 1). In contrast, it is possible for
one process to lock a binary semaphore and for another to unlock it.6

For both counting semaphores and binary semaphores, a queue is used to hold
processes waiting on the semaphore. The question arises of the order in which pro-
cesses are removed from such a queue. The fairest removal policy is first-in-first-out
(FIFO): The process that has been blocked the longest is released from the queue
first; a semaphore whose definition includes this policy is called a strong semaphore.
A semaphore that does not specify the order in which processes are removed from
the queue is a weak semaphore. Figure 5.8 is an example of the operation of a strong
semaphore. Here processes A, B, and C depend on a result from process D. Initially
(1), A is running; B, C, and D are ready; and the semaphore count is 1, indicating
that one of D’s results is available. When A issues a semWai t instruction on sema-
phore s, the semaphore decrements to 0,and A can continue to execute; subsequently

“In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris, offer
a mutex facility which conforms to the definition in this book.

248 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

A issues semWai t, later times out

L | @ Processor
C

C|D|B > A D|(B|A >
Ready queue Processor @ Ready queue
Cissues semWait
Blocked queue Blocked queue
Processor
BEEE : .

Ready queue PY

@

[]
B issues semWait
Blocked queue
Processor Processor
A|C > D > D

@ Ready queue D issues semSignal @ Ready queue D issues semSignal

B C(A|B

Blocked queue Blocked queue

D issues semSignal, later times out

| Processor

C > D

L

B|A|C > D

Ready queue Processor Ready queue D issues semSignal

Blocked queue Blocked queue

Figure 5.8 Example of Semaphore Mechanism

it rejoins the ready queue. Then B runs (2), eventually issues a semWa i t instruction,
and is blocked, allowing D to run (3). When D completes a new result, it issues a
semSignal instruction, which allows B to move to the ready queue (4). D rejoins
the ready queue and C begins to run (5) but is blocked when it issues a semWait
instruction. Similarly, A and B run and are blocked on the semaphore, allowing D to
resume execution (6). When D has a result, it issues a semSignal, which transfers
C to the ready queue. Later cycles of D will release A and B from the Blocked state.

For the mutual exclusion algorithm discussed in the next subsection and illus-
trated in Figure 5.9, strong semaphores guarantee freedom from starvation, while
weak semaphores do not. We will assume strong semaphores because they are more
convenient, and because this is the form of semaphore typically provided by operat-
ing systems.

5.4 / SEMAPHORES 249

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int 1)
{
while (true) {
semWait (s);
/* critical section */;
semSignal (s) ;
/* remainder */;
}
}
void main ()
{
parbegin (P(1), P(2), . . . , P(n));
}

videoNote Figure 5.9 Mutual Exclusion Using Semaphores

Mutual Exclusion

Figure 5.9 shows a straightforward solution to the mutual exclusion problem using
a semaphore s (compare to Figure 5.4). Consider n processes, identified in the array
P(i), all of which need access to the same resource. Each process has a critical sec-
tion used to access the resource. In each process, a semWait (s) is executed just
before its critical section. If the value of s becomes negative, the process is blocked.
If the value is 1, then it is decremented to 0 and the process immediately enters its
critical section; because s is no longer positive, no other process will be able to enter
its critical section.

The semaphore is initialized to 1. Thus, the first process that executes a sem-
Wait will be able to enter the critical section immediately, setting the value of s to
0. Any other process attempting to enter the critical section will find it busy and will
be blocked, setting the value of s to —1. Any number of processes may attempt entry;
each such unsuccessful attempt results in a further decrement of the value of s. When
the process that initially entered its critical section departs, s is incremented and one
of the blocked processes (if any) is removed from the queue of blocked processes
associated with the semaphore and put in a Ready state. When it is next scheduled
by the OS, it may enter the critical section.

Figure 5.10, based on one in [BACOO03], shows a possible sequence for three
processes using the mutual exclusion discipline of Figure 5.9. In this example three
processes (A, B, C) access a shared resource protected by the semaphore lock. Process
A executes semWait (lock);because the semaphore has a value of 1 at the time of
the semWait operation, A can immediately enter its critical section and the sema-
phore takes on the value 0. While A is in its critical section, both B and C perform a
semWait operation and are blocked pending the availability of the semaphore. When
A exits its critical section and performs semSignal (lock), B, which was the first
process in the queue, can now enter its critical section.

The program of Figure 5.9 can equally well handle a requirement that more
than one process be allowed in its critical section at a time. This requirement is met

250 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Queue for Value of
semaphore lock semaphore lock A B C
Critical
region
______________________ semiiaitdock) | ____ | ___ 1 Domal
:Dj @ 1 Blocked on
____________________________ semWait(lock) | : semaphore
! v lock
| [B] :
_______________________________ |_ semiait(lock)
1
c[B] \ . :
semSignal(lock) 1 :
_____________________________________ q--—=
| [c] :
1
1
\ 1
___________________________ semSignal(lock)!
e | | semSignal(ock)
T }

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

Figure 5.10 Processes Accessing Shared Data Protected by a Semaphore

simply by initializing the semaphore to the specified value. Thus, at any time, the value
of s.count can be interpreted as follows:

e s.count = 0: s.count is the number of processes that can execute semiWait (s)
without suspension (if no semSignal (s) is executed in the meantime). Such
situations will allow semaphores to support synchronization as well as mutual
exclusion.

e s.count < 0: The magnitude of s.count is the number of processes suspended
in s.queue.

The Producer/Consumer Problem

‘We now examine one of the most common problems faced in concurrent processing:
the producer/consumer problem. The general statement is this: There are one or more
producers generating some type of data (records, characters) and placing these in a
buffer. There is a single consumer that is taking items out of the buffer one at a time.
The system is to be constrained to prevent the overlap of buffer operations. That is,
only one agent (producer or consumer) may access the buffer at any one time. The
problem is to make sure that the producer won't try to add data into the buffer if it’s
full, and that the consumer won’t try to remove data from an empty buffer. We will

5.4 / SEMAPHORES 251

look at a number of solutions to this problem to illustrate both the power and the
pitfalls of semaphores.

To begin, let us assume that the buffer is infinite and consists of a linear array
of elements. In abstract terms, we can define the producer and consumer functions
as follows:

producer: consumer:

while (true) { while (true) {
/* produce item v */; while (in <= out)
b[in] = v; /* do nothing */;
in++; w = blout];

} out++;

/* consume item w */;

}

Figure 5.11 illustrates the structure of buffer b. The producer can generate items
and store them in the buffer at its own pace. Each time, an index (in) into the buffer
is incremented. The consumer proceeds in a similar fashion but must make sure that
it does not attempt to read from an empty buffer. Hence, the consumer makes sure
that the producer has advanced beyond it (in> out) before proceeding.

Let us try to implement this system using binary semaphores. Figure 5.12 is a
first attempt. Rather than deal with the indices in and out, we can simply keep track
of the number of items in the buffer, using the integer variable n (= in — out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semWait if the buffer is empty.

This solution seems rather straightforward. The producer is free to add to the
buffer at any time. It performs semWaitB (s) before appending and semSignalB

(s) afterward to prevent the consumer (or any other producer) from accessing the
buffer during the append operation. Also, while in the critical section, the producer
increments the value of n. If n = 1, then the buffer was empty just prior to this
append, so the producer performs semSignalB (delay) to alert the consumer
of this fact. The consumer begins by waiting for the first item to be produced, using
semWaitB (delay).It then takes an item and decrements # in its critical section.
If the producer is able to stay ahead of the consumer (a common situation), then the

b[1] | b[2] | b[3] | b[4] |b[5S] | @ e e @

Out In
Note: Shaded area indicates portion of buffer that is occupied.

Figure 5.11 Infinite Buffer for the Producer/
Consumer Problem

252 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */
int n;
binary semaphore s = 1, delay = 0;
void producer (
{
while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB (delay);
semSignalB(s) ;
}
}
void consumer ()
{
semWaitB (delay) ;
while (true) {
semWaitB(s) ;
take () ;
m==g
semSignalB(s) ;
consume () ;
if (n==0) semWaitB(delay);
}
}
void main ()
{
n=0;
parbegin (producer, consumer) ;

videoNote Figure 5.12 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem

Using Binary Semaphores

consumer will rarely block on the semaphore delay because n will usually be posi-
tive. Hence, both producer and consumer run smoothly.

There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so it will be forced to wait until the
producer has placed more items in the buffer. This is the purpose of the statement:
if n==0 semWaitB (delay).Consider the scenario outlined in Table 5.4. In line
14, the consumer fails to execute the semWai tB operation. The consumer did indeed
exhaust the buffer and set # to 0 (line 8), but the producer has incremented n before
the consumer can test it in line 14. The result is a semSignalB not matched by a
prior semWaitB.The value of —1 for n in line 20 means the consumer has consumed
an item from the buffer that does not exist. It would not do simply to move the con-
ditional statement inside the critical section of the consumer, because this could lead
to deadlock (e.g., after line 8 of Table 5.4).

A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.13. A careful
trace of the logic should convince you that deadlock can no longer occur.

A somewhat cleaner solution can be obtained if general semaphores (also
called counting semaphores) are used, as shown in Figure 5.14. The variable n is now

5.4 / SEMAPHORES 253

Table 5.4 Possible Scenario for the Program of Figure 5.12

Producer Consumer s n Delay

1 1 0 0
2 semWaitB (s) 0 0

3 n++ 0 1 0
4 if (n==1) 0 1 1

(semSignalB (delay))
5 semSignalB(s) 1 1 1
6 semWaitB (delay) 1 1 0
7 semWaitB (s) 0 1 0
8 n-- 0 0 0
9 semSignalB (s) 1 0 0
10 semWaitB (s) 0 0 0
11 n++ 0 1 0
12 if (n==1) 0 1 1
(semSignalB (delay))
13 semSignalB(s) 1 1 1
14 if (n==0) 1 1 1
(semWaitB (delay))
15 semWaitB(s) 0 1 1
16 n-- 0 0 1
17 semSignalB (s) 1 0 1
18 if (n==0) 1 0 0
(semWaitB (delay))

19 semWaitB (s) 0 0 0
20 n-- 0 =1 0
21 semSignalB (s) 1 -1 0

Note: White areas represent the critical section controlled by semaphore s.

a semaphore. Its value still is equal to the number of items in the buffer. Suppose now
that in transcribing this program, a mistake is made and the operations semSignal
(s) and semSignal (n) are interchanged. This would require that the semSignal
(n) operation be performed in the producer’s critical section without interruption by
the consumer or another producer. Would this affect the program? No, because the
consumer must wait on both semaphores before proceeding in any case.

Now suppose the semWait (n) and semWait (s) operations are accidentally
reversed. This produces a serious, indeed a fatal, flaw. If the consumer ever enters its
critical section when the buffer is empty (n.count = 0), then no producer can ever
append to the buffer and the system is deadlocked. This is a good example of the
subtlety of semaphores and the difficulty of producing correct designs.

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage

254 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */

int n;

binary semaphore s = 1, delay = 0;

void producer ()

{

while (true) {

produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB(delay) ;
semSignalB(s) ;

}
void consumer ()
{
int m; /* a local variable */
semWaitB (delay) ;
while (true) ({
semWaitB(s) ;
take () ;
n--=;
m = n;
semSignalB(s) ;
consume () ;
if (m==0) semWaitB (delay);
}
}
void main ()
{
n = 0;
parbegin (producer, consumer);

videoNote Figure 5.13 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using
Binary Semaphores

(see Figure 5.15), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

Block on: Unblock on:
Producer: insert in full buffer Consumer: item inserted
Consumer: remove from empty buffer Producer: item removed

The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and n is the size of the buffer):

producer: consumer:
while (true) { while (true) {
/* produce item v */ while (in == out)
while ((in + 1) % n == out) /* do nothing */;
/* do nothing */; w = blout];
blin] = v; out = (out + 1) % n;
in = (in + 1) % n; /* consume item w */;

5.4 / SEMAPHORES 255

/* program producerconsumer */
semaphore n = 0, s = 1;
void producer ()

{
while (true) {
produce () ;
semWait (s);
append () ;
semSignal (s) ;
semSignal (n) ;
}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s);
take () ;
semSignal (s) ;
consume () ;
}
}
void main ()
{
parbegin (producer, consumer);

}

videoNote Figure 5.14 A Solution to the Infinite-Buffer Producer/Consumer Problem Using
Semaphores

Figure 5.16 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

Another instructive example in the use of semaphores is the barbershop prob-
lem described in Appendix A. Appendix A also includes additional examples of the
problem of race conditions when using semaphores.

b[1] | b[2] | b[3] | b[4] | b[5] e o o o bln]

Out In
(a)

b[1] | b[2] | b[3] | b[4] | b[5] e o o o |bln]

I

In Out
(b)

Figure 5.15 Finite Circular Buffer for the
Producer/Consumer Problem

256 CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;
semaphore s = 1, n = 0, e sizeofbuffer;
void producer ()

{

while (true) {
produce () ;
semWait (e) ;
semWait (s);
append () ;
semSignal (s) ;
semSignal (n) ;
}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s);
take () ;
semSignal (s) ;
semSignal (e) ;
consume () ;
}
}
void main ()
{

parbegin (producer, consumer);

videoNote Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores

Implementation of Semaphores

As was mentioned earlier, it is imperative that the semWait and semSignal oper-
ations be implemented as atomic primitives. One obvious way is to implement
them in hardware or firmware. Failing this, a variety of schemes have been sug-
gested. The essence of the problem is one of mutual exclusion: Only one process
at a time may manipulate a semaphore with either a semWait or semSignal
operation. Thus, any of the software schemes, such as Dekker’s algorithm or Peter-
son’s algorithm (see Section 5.1), could be used; this would entail a substantial
processing overhead.

Another alternative is to use one of the hardware-supported schemes for mutual
exclusion. For example, Figure 5.17 shows the use of a compares&swap instruction.
In this implementation, the semaphore is again a structure, as in Figure 5.6, but now
includes a new integer component, s.flag. Admittedly, this involves a form of busy
waiting. However, the semWait and semSignal operations are relatively short, so
the amount of busy waiting involved should be minor.

For a single-processor system, it is possible to inhibit interrupts for the dura-
tion of a semWait or semSignal operation, as suggested in Figure 5.17b. Once
again, the relatively short duration of these operations means that this approach is
reasonable.

5.5 / MONITORS 257

semWait (s)
{
while (compare_and_swap (s
/* do nothing */;

semWait (s)

{
inhibit interrupts;
s.count--;

s.count--; if (s.count < 0) {

if (s.count < 0) { /* place this process in s.queue */;
/* place this process in s.queue*/; /* block this process and allow inter-
/* block this process (must also set rupts*/;
s.flag to 0) */; }
} else

s.flag = 0;
} }

semSignal (s)
{ semSignal (s)

1)

allow interrupts;

while (compare_and_swap(s.flag, 0 , == 1) { . _ .
/* do nothing */; inhibit interrupts;

S o GO s.count++;

if (s.count<= 0) { if (s.count<= 0) {
/* remove a process P from s.queue */; /* remove a process P from s.queue */;
/* place process P on ready list */; /* place process P on ready list */;

} }

s.flag = 0; allow interrupts;

(a) Compare and Swap Instruction (b) Interrupts

videoNote Figure 5.17 Two Possible Implementations of Semaphores

5.5 MONITORS

Semaphores provide a primitive yet powerful and flexible tool for enforcing mutual
exclusion and for coordinating processes. However, as Figure 5.12 suggests, it may
be difficult to produce a correct program using semaphores. The difficulty is that
semWait and semSignal operations may be scattered throughout a program,
and it is not easy to see the overall effect of these operations on the semaphores
they affect.

The monitor is a programming language construct that provides equivalent
functionality to that of semaphores and that is easier to control. The concept was
first formally defined in [HOAR?74]. The monitor construct has been implemented
in a number of programming languages, including Concurrent Pascal, Pascal-Plus,
Modula-2, Modula-3, and Java. It has also been implemented as a program library.
This allows programmers to put a monitor lock on any object. In particular, for some-
thing like a linked list, you may want to lock all linked lists with one lock, or have one
lock for each list, or have one lock for each element of each list.

We begin with a look at Hoare’s version, and then examine a refinement.

Monitor with Signal

A monitor is a software module consisting of one or more procedures, an initializa-
tion sequence, and local data. The chief characteristics of a monitor are the following:

1. The local data variables are accessible only by the monitor’s procedures and
not by any external procedure.

258 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

2. A process enters the monitor by invoking one of its procedures.

3. Only one process may be executing in the monitor at a time; any other processes
that have invoked the monitor are blocked, waiting for the monitor to become
available.

The first two characteristics are reminiscent of those for objects in object-ori-
ented software. Indeed, an object-oriented OS or programming language can readily
implement a monitor as an object with special characteristics.

By enforcing the discipline of one process at a time, the monitor is able to pro-
vide a mutual exclusion facility. The data variables in the monitor can be accessed by
only one process at a time. Thus, a shared data structure can be protected by placing
it in a monitor. If the data in a monitor represent some resource, then the monitor
provides a mutual exclusion facility for accessing the resource.

To be useful for concurrent processing, the monitor must include synchroni-
zation tools. For example, suppose a process invokes the monitor and, while in the
monitor, must be blocked until some condition is satisfied. A facility is needed by
which the process is not only blocked, but releases the monitor so some other process
may enter it. Later, when the condition is satisfied and the monitor is again available,
the process needs to be resumed and allowed to reenter the monitor at the point of
its suspension.

A monitor supports synchronization by the use of condition variables that are
contained within the monitor and accessible only within the monitor. Condition vari-
ables are a special data type in monitors, which are operated on by two functions:

e cwait (c) : Suspend execution of the calling process on condition c¢. The mon-
itor is now available for use by another process.

® csignal (c) : Resume execution of some process blocked after a cwait on
the same condition. If there are several such processes, choose one of them; if
there is no such process, do nothing.

Note that monitor wait and signal operations are different from those for the
semaphore. If a process in a monitor signals and no task is waiting on the condition
variable, the signal is lost.

Figure 5.18 illustrates the structure of a monitor. Although a process can enter
the monitor by invoking any of its procedures, we can think of the monitor as having
a single entry point that is guarded so only one process may be in the monitor at a
time. Other processes that attempt to enter the monitor join a queue of processes
blocked waiting for monitor availability. Once a process is in the monitor, it may
temporarily block itself on condition x by issuing cwait (x);itis then placed in a
queue of processes waiting to reenter the monitor when the condition changes, and
resume execution at the point in its program following the cwait (x) call.

If a process that is executing in the monitor detects a change in the condition
variable x, it issues csignal (x),which alerts the corresponding condition queue
that the condition has changed.

As an example of the use of a monitor, let us return to the bounded-buffer
producer/consumer problem. Figure 5.19 shows a solution using a monitor. The
monitor module, boundedbuf fer, c