

INNOVATION AND DIGITAL TRANSFORMATION: EDUCATION, ECONOMY AND SOCIETY DIMENSIONS

**The University of Technology
in Katowice Press, 2025**

INNOVATION AND DIGITAL TRANSFORMATION: EDUCATION, ECONOMY AND SOCIETY DIMENSIONS

Monograph

*Edited by Tetyana Nestorenko
and Nazar Dobosh*

The University of Technology in Katowice Press

2025

*Nazar Dobosh – PhD, Associate Professor,
Lviv Polytechnic National University (Ukraine)*
Dominika Kalita – Academy of Silesia
*Tetyana Nestorenko – Professor AS, PhD, Academy of Silesia,
Associate Professor, Berdyansk State Pedagogical University (Ukraine)*
Aleksander Ostenda – Professor AS, PhD, Academy of Silesia
*Iryna Ostopolets – PhD, Associate Professor,
Bogdan Khmelnitsky Melitopol State Pedagogical University (Ukraine)*
*Slawomir Sliwa – DSc, Academy of Applied Sciences –
Academy of Management and Administration in Opole*

Scientific reviewers :

*Nadiya Dubrovina – CSc., PhD, Associate Professor,
Bratislava University of Economics and Management (Slovakia)*
*Natalia Falko – DSc, Professor,
Bogdan Khmelnitsky Melitopol State Pedagogical University (Ukraine)*
Oleksandr Nestorenko – PhD, Academy of Silesia

The authors bear full responsible for the text, data, quotations, and illustrations.

Copyright by Academy of Silesia, Katowice, 2025

ISBN 978-83-68422-09-2

DOI: 10.54264/M054

Editorial compilation:

The University of Technology in Katowice Press
43 Rolna str., 40-555 Katowice, Silesia Province, Poland
tel. (32) 202 50 34; fax: (32) 252 28 75
email: kontakt@wydawnictwo.wst.pl
www.wst.pl, www.wydawnictwo.wst.pl

TABLE OF CONTENTS

Preface	9
Chapter 1. Innovative Technologies and Digitalization in Education	11
1.1. Using artificial intelligence in the educational process when training future graphic designers	11
1.2. Hybrid learning in construction education: an analysis of challenges and adaptation strategies	16
1.3. Higher education innovations in Ukraine	19
1.4. Dialoguing as an intersubjective method of competency-based learning	24
1.5. Didactic aspects of using digital educational resources in organizing the educational process in natural sciences	31
1.6. Integration of artificial intelligence into the teaching of higher mathematics: new didactic opportunities and pedagogical challenges	37
1.7. The impact of non-formal education on the development of digital competencies of teachers in pedagogical higher education institutions	44
1.8. Use of innovative technologies in the process of professional training of future teachers to form ecologically appropriate behavior of preschool children	50
1.9. Methodological support of distance learning in computer science: the role of lesson constructors in teachers' practice	56
1.10. Developing the future computer science teachers' ability to peer-assess learning outcomes using the LMS Moodle	66
1.11. The flipped classroom as an innovative form of organizing the educational process: theoretical foundations and practical implementation	75
1.12. Integrating knowledge, skills, and digital tools: a competence-oriented vision for Ukrainian higher education	81
1.13. Internationalization of Ukrainian higher education: challenges and prospects for development	88
1.14. Digitalization of social reintegration processes: prospects for training specialists in the field of psychosocial support	95
1.15. Use of innovative technologies in training future doctors	103
1.16. Application of innovative learning as a tool for professional and pedagogical training of future special education teachers in higher education institutions	108
1.17. Didactic potential of using neural networks in technological training of ZZSO students	115
1.18. Pedagogical conditions for training future doctors to form a communicative culture	124
1.19. Theoretical and methodological foundations of the model of professional training of future physical education teachers in the context of European integration	130
1.20. Gamification and immersive technologies as innovative means of developing professional competencies in future teachers	137

Chapter 2. Economics, Governance and Social Transformations in the Digital Era	144
2.1. Architecture of release gates in digital banking	144
2.2. Public-private partnership as a strategic resource for Ukraine's recovery: a crisis-adaptive approach	151
2.3. National traditions as a source of innovation in the work of a new generation of artists	157
2.4. Information technologies in education: a teacher's and student's view	162
2.5. Microservice for populating a knowledge model of term-definition pairs from pdf documents	167
2.6. HR marketing in digital transformation: tools and technologies	174
2.7. The study of the impact of digital brands on consumer behaviour in the digital economy	183
2.8. The role of information technology in studying the work motivation of medical college teachers	193
2.9. Intangible transformations and consequences of war for de-occupied territories	203
2.10. Development of digital technologies in the customs sphere of Ukraine: current state and prospects	209
2.11. Stochasticity and uncertainty of the external environment as factors in the formation of innovative technologies in economics and management	215
2.12. Regularities of the interaction of socio-political events in Ukraine on changes in the English language	222
2.13. Information technologies in the tourism business	226
2.14. The genealogical research as a tool for developing students' research competencies in the context of digitalization of archival heritage	231
2.15. Leadership in early childhood education: advancing managerial competencies of administrators and building effective teaching teams	239
2.16. Current state of banking credit in Ukraine	245
2.17. Smart technologies as a component of improving the quality of learning the subject "Information and Communication Technologies" by future science teachers, preschool educators, and speech therapists	251
2.18. Managing banks' deposit policies in the context of digital transformation and the use of international experience	256

Chapter 3. Technology, Security, and Specialized Applications 262

3.1. Application of modern technologies in the professional training of physical culture and sports specialists	262
3.2. Development of an information and analytical model for forecasting and assessment of the ecological risk of river ecosystems based on pollution data analysis	269
3.3. Methods of implementing artificial intelligence	275
3.4. Formation of empathic abilities of future nurses in practical classes, in the academic discipline of obstetrics and gynecology	281
3.5. Risks, resilience, and critical infrastructure management: digital, environmental, and social aspects	286
3.6. Innovation technologies for critical infrastructures of society	293
3.7. Use of artificial intelligence for designing Arduino-based devices	301
3.8. Football as a tool for developing environmental awareness in schoolchildren	307
3.9. Cyber threats to critical infrastructure: analysis of vulnerabilities and consequences for the transport, financial, communication, and other sectors	314
3.10. Methodology for teaching the essence of Industry 4.0 and its role in the implementation of wireless technologies	321
3.11. Improving the efficiency of UAV navigation in GPS-interference conditions	327
3.12. Prevention of posture disorders in schoolchildren using rhythmic gymnastics	334
3.13. Methods of working with algorithms and rules in the school mathematics course	341
3.14. Innovation model as the main factor in the construction and development of modern society	348
3.15. Development of a network interface configurator	353
3.16. Issues of medical information security under the legal regime of martial law in Ukraine	360
3.17. Modeling the impact of landfill flue on the economic and ecological state of territories	366
3.18. The impact of digital transformation on literacy and communication processes in modern society	371
3.19. Environmental problems resulting from premature ageing of electronic products	378
3.20. The role of active tourism and sports in the recovery system for Ukrainian military personnel	383
Conclusion	388
Annotation	389
About the authors	407

ЗМІСТ

Вступ

9

Розділ 1. Інноваційні технології та цифровізація в освіті

11

1.1. Використання штучного інтелекту в навчальному процесі при підготовці майбутніх дизайнерів-графіків	11
1.2. Гібридне навчання в будівельній освіті: аналіз викликів та стратегій адаптації	16
1.3. Інновації вищої освіти в Україні	19
1.4. Діалогування як інтерсуб'єктний метод компетентнісного навчання	24
1.5. Дидактичні аспекти використання цифрових освітніх ресурсів в організації освітнього процесу з природничих наук	31
1.6. Вплив неформальної освіти на розвиток цифрових компетентностей викладачів педагогічних закладів вищої освіти	37
1.7. Вплив неформальної освіти на розвиток цифрових компетентностей викладачів педагогічних закладів вищої освіти	44
1.8. Використання інноваційних технологій в процесі фахової підготовки майбутніх педагогів до формування екологічно доцільної поведінки дітей дошкільного віку	50
1.9. Методичне забезпечення дистанційного навчання інформатики: роль конструктора уроків у діяльності вчителя	56
1.10. Формування здатності до взаємооцінювання результатів навчання в майбутніх вчителів інформатики засобами LMS Moodle	66
1.11. Перевернутий клас як інноваційна форма організації навчального процесу: теоретичні засади та практичне впровадження	75
1.12. Інтеграція знань, навичок і цифрових інструментів: компетентнісне бачення розвитку української вищої освіти	81
1.13. Інтернаціоналізація вищої освіти України: виклики та перспективи розвитку	88
1.14. Цифровізація процесів соціальної реінтеграції: перспективи для підготовки фахівців у сфері психосоціальної підтримки	95
1.15. Використання інноваційних технологій при підготовці майбутніх лікарів	103
1.16. Застосування інноваційного навчання як інструмент професійно-педагогічної підготовки майбутнього спеціального педагога у закладах вищої освіти	108
1.17. Дидактичний потенціал застосування нейромереж в технологічній підготовці учнів ЗЗСО	115
1.18. Педагогічні умови підготовки майбутніх медиків до формування комунікативної культури	124
1.19. Теоретико-методичні засади моделі професійної підготовки майбутнього вчителя фізичної культури в умовах євроінтеграції	130
1.20. Гейміфікація та імерсивні технології як інноваційні засоби формування професійних компетентностей майбутніх педагогів	137

Розділ 2. Економіка, управління та суспільні трансформації в цифрову еру	144
2.1. Архітектура релізних гейтів у цифровому банкінгу	144
2.2. Публічно-приватне партнерство як стратегічний ресурс відновлення України: кризово-адапційний підхід	151
2.3. Національні традиції як джерело інновацій у творчості митців нової генерації	157
2.4. Інформаційні технології в освіті: погляди викладача та студента	162
2.5. Мікросервіс заповнення моделі знань термінів-визначень із документів pdf формату	167
2.6. HR-маркетинг у цифровій трансформації: інструменти та технології	174
2.7. Дослідження впливу цифрових брендів на поведінку споживачів в умовах цифрової економіки	183
2.8. Роль інформаційних технологій при вивченні мотивації праці викладачів медичних коледжів	193
2.9. Нематеріальні трансформації та наслідки війни для деокупованих територій	203
2.10. Розвиток цифрових технологій у митній справі України: сучасний стан та перспективи	209
2.11. Стохастичність та невизначеність зовнішнього середовища як фактори формування інноваційних технологій в економіці і управлінні	215
2.12. Відображення суспільно-політичних подій в Україні в лексиці англійської мови	222
2.13. Інформаційні технології в туристичному бізнесі	226
2.14. Генеалогічне дослідження як інструмент розвитку дослідницьких компетентностей студентів в умовах цифровізації архівної спадщини	231
2.15. Лідерство в дошкіллі: розвиток управлінських компетенцій керівника, формування ефективної команди педагогів	239
2.16. Сучасний стан банківського кредитування в Україні	245
2.17. Смарт-технології як складова покращення якості вивчення навчальної дисципліни “Інформаційно-комунікаційні технології” майбутніми учителями природничих наук, вихователями закладів дошкільної освіти та логопедами	251
2.18. Управління депозитною політикою банків в умовах цифрових трансформацій та використання міжнародного досвіду	256

Розділ 3. Технології, безпека та спеціалізовані застосування	262
3.1. Застосування сучасних технологій у професійній підготовці фахівців з фізичної культури і спорту	262
3.2. Розробка інформаційно-аналітичної моделі прогнозування та оцінки екологічного ризику річкових екосистем на основі аналізу даних забруднення	269
3.3. Методи впровадження штучного інтелекту	275
3.4. Формування емпатійних здібностей майбутніх медичних сестер на практичних заняттях з дисципліни “Акушерство і гінекологія”	281
3.5. Ризики, стійкість та управління критичною інфраструктурою: цифрові, екологічні та соціальні аспекти	286
3.6. Інноваційні технології для критичних інфраструктур суспільства	293
3.7. Використання штучного інтелекту для конструювання пристрійв на базі Arduino	301
3.8. Футбол як інструмент формування екологічної свідомості учнів	307
3.9. Кіберзагрози критичній інфраструктурі: аналіз вразливостей та наслідків для транспортного, фінансового, комунікаційного та інших секторів	314
3.10. Методика навчання сутності індустрії 4.0 та її ролі у запровадженні безпровідних технологій	321
3.11. Підвищення ефективності навігації БПЛА в умовах GPS-перешкод	327
3.12. Профілактика порушень постави у школярів засобами художньої гімнастики	334
3.13. Методика роботи з алгоритмами і правилами в шкільному курсі математики	341
3.14. Інноваційна модель як головний фактор побудови та розвитку сучасного суспільства	348
3.15. Розробка конфігуратора мережевого інтерфейсу	353
3.16. Питання безпеки медичної інформації в умовах правового режиму воєнного стану в Україні	360
3.17. Моделювання впливу випарів сміттєзвалищ на економіко-екологічний стан територій	366
3.18. Вплив цифрової трансформації на грамотність і комунікаційні процеси сучасного суспільства	371
3.19. Екологічні проблеми як наслідок передчасного старіння електронних товарів	378
3.20. Роль активного туризму та спорту в системі відновлення військовослужбовців України	383
Заключення	388
Анотації	389
Інформація про авторів	407

3.7. USE OF ARTIFICIAL INTELLIGENCE FOR DESIGNING ARDUINO-BASED DEVICES

3.7. ВИКОРИСТАННЯ ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ КОНСТРУЮВАННЯ ПРИСТРОЇВ НА БАЗІ ARDUINO

Генеративні мовні моделі, що за останні роки суттєво еволюціонували, дедалі частіше застосовуються в технічному середовищі як інструменти підтримки інженерної діяльності. Їхня поява стала результатом стрімкого розвитку нейронних архітектур, зокрема трансформерів (Кравчук, 2024), що дозволяють обробляти складні лінгвістичні запити з урахуванням широкого контексту та багаторівневої семантики. Якщо на початковому етапі такі моделі використовувалися переважно для генерації природномовних текстів, то сьогодні спектр їх застосувань охоплює галузі технічного проєктування, моделювання, програмування та навіть первинної верифікації інженерних рішень. Це відкриває нову парадигму взаємодії між користувачем і цифровими інструментами, де природна мова стає не просто засобом спілкування, а повноцінним інтерфейсом взаємодії з алгоритмічними структурами.

Так, конструювання пристрій являє собою процес проєктування та створення нових пристрій, що включає в себе розробку концепції, вибір компонентів, створення прототипів та тестування. Платформа Arduino із власним середовищем для написання програмного коду – це інструмент для проєктування електронних конструкцій, своєрідний конструктор, який щільно може взаємодіяти з фізичним середовищем, зокрема, завдяки можливості під'єднання додаткових плат розширення.

У контексті аматорських електронних проектів, зокрема на платформі Arduino, мовні моделі виступають потенційними асистентами на всіх етапах розробки: від формування вимог, вибору компонентної бази й моделювання функціональних блоків – до написання програмного коду, тестування логіки та усунення логічних або технічних помилок. Використання мовної моделі як цифрового консультанта дозволяє користувачеві не лише пришвидшити процес проєктування, але й уникнути типових помилок, що часто виникають на ранніх етапах через нестачу досвіду або неповну обізнаність із технічною документацією. Водночас модель здатна запропонувати альтернативні варіанти реалізації тієї самої функції – наприклад, використання різних типів сенсорів чи способів підключення виконавчих елементів, – що робить її корисним інструментом для швидкого прототипування (Клєпцов & Гусєва-Божаткіна, 2024).

Окремої уваги заслуговує специфіка самої платформи Arduino, яка виявляється надзвичайно сприятливою для інтеграції з генеративним штучним інтелектом. Завдяки відкритості апаратного та програмного забезпечення, модульності архітектури й наявності великої кількості бібліотек, документації та прикладів використання, Arduino є оптимальним середовищем для апробації можливостей штучного інтелекту (ШІ) у практичних сценаріях (Гордієнко & Коваль, 2025). Компонентна база Arduino включає сенсори, дисплей, двигуни, реле, плати розширення, що легко поєднуються як у фізичному плані (через стандартні пінові інтерфейси), так і в програмному (через уніфіковані бібліотеки для Arduino IDE). Це спрощує інтерпретацію запитів природною мовою в технічну реалізацію, якою здатна оперувати велика мовна модель.

Сучасні LLM (Large Language Models) демонструють здатність відповідати на запити природною мовою у структурованій технічній формі, генеруючи текст, який за змістом і структурою подібний до посібника, навчального матеріалу або технічного завдання. Це створює принципово нову модель взаємодії людини з інформацією – не через традиційний пошук у документації, форумах чи репозиторіях, а через безпосередню генерацію готового рішення, що враховує описану мету, параметри й обмеження. Відповідь ШІ у такому випадку може включати повний програмний код, опис схеми підключення, перелік необхідних компонентів і навіть рекомендації щодо покрокової збірки. Таким чином, мовна модель стає

не лише джерелом знань, а й інструментом їхньої конкретної матеріалізації у вигляді інженерного рішення.

Такий підхід актуалізує необхідність вивчення якості відповідей ШІ у сценаріях, наблизених до реальної практики, зокрема в освітньому та дослідницькому середовищі. Важливо не лише оцінити, чи здатна модель запропонувати правильне технічне рішення, а й з'ясувати, наскільки воно є функціонально повним, логічно структурованим, зрозумілим для виконавця й безпечним з погляду електротехніки. Також виникає потреба у порівнянні різних моделей між собою, з огляду на стиль відповіді, рівень деталізації, якість синтаксису програмного коду та здатність адаптуватися до різного рівня підготовки користувача.

У цій роботі досліджено як сучасні генеративні моделі справляються з типовим інженерним питанням у межах аматорського проектування. В процесі дослідження кожній з обраних LLM були сформовані ідентичні запити. Так, один з сформульованих запитів мав вигляд: “Мені потрібно створити простий пристрій на базі Arduino, який буде вимірювати температуру, виводити її на екран, і автоматично вмикати або вимикати вентилятор залежно від порогового значення”. Такий сценарій вибрано як показовий приклад низькорівневого автоматизованого регулювання з елементами зворотного зв'язку та індикації. Запит було подано до п'яти мовних моделей:

- ChatGPT (на базі GPT-4),
- Gemini 1.5 Pro (Google DeepMind),
- Claude 3 Opus (Anthropic),
- Mistral (open-source LLM),
- DeepSeek Coder (інженерно орієнтована модель із підтримкою кодогенерації).

Для кожної відповіді було здійснено фіксацію структури, змісту та технічної повноти з подальшим порівняльним аналізом.

Оцінювання здійснювалося за чотири основними критеріями:

- рівень деталізації та відповідність вибору компонентів;
- повнота та структурованість опису схеми підключення;
- якість згенерованого програмного коду з погляду функціональності та синтаксису; наявність пояснень, рекомендацій та адаптивності відповіді до різного рівня підготовки користувача.

Зібрані дані подано у вигляді узагальненої Таблиці 1, що містить оцінки відповідей моделей за зазначеними параметрами.

Порівняльний аналіз демонструє, що незважаючи на загальну здатність усіх моделей реалізувати базовий функціонал поставленого питання, між ними спостерігається істотна варіативність за такими параметрами, як структура відповіді, її технічна насыщеність, глибина пояснень, рівень аргументації, а також ступінь адаптації до очікуваного рівня користувача.

Кожна модель реалізує власну стратегію інтерпретації питання, що безпосередньо впливає на зручність, точність і повноту кінцевого результату. ChatGPT, наприклад, забезпечує найбільш повний супровід користувача, пропонуючи не лише функціональний код із детальними коментарями, але й інструктивну частину, яка охоплює логіку обраного рішення, рекомендації щодо складання схеми, коментарі щодо бібліотек та налаштувань середовища розробки. Це створює ефект “наставництва”, де ШІ не просто генерує код, а пояснює його логіку й можливі варіанти модифікації залежно від задачі.

Водночас DeepSeek демонструє технічно зрілий підхід, орієнтований передусім на інженерну строгость. Його відповіді містять більш глибоку деталізацію, зокрема з урахуванням електричних параметрів компонентів, таких як номінали резисторів, типи транзисторів, вимоги до живлення та теплоутворення. Окремо варто відзначити спроби моделі враховувати аспекти електромагнітної сумісності, перешкодостійкості й захисту елементів – функціональності, яка виходить за межі типового рівня підтримки аматорського проектування.

Таблиця 1. Порівняльна характеристика генеративних мовних моделей на прикладі реалізації *Arduino*-проекту

Модель III	Вибір компонентів	Схема підключення	Програмний код	Рівень пояснення	Орієнтація на користувача
ChatGPT	Повний, з конкретними моделями (DS18B20, LCD 1602 I2C, реле, резистори); включено рекомендації з живлення	Деталізована, зі схемою з'єднань, поясненням функцій кожного піну	Структурований, з коментарями, адаптований для Arduino IDE; реалізовано логіку з порогом і Serial монітором	Високий; додано обґрунтування рішень та типові помилки	Початківець, користувач середнього рівня
Gemini	Оптимізований, орієнтований на спрощення (DHT11, LCD з I2C, модуль реле); акцент на легкодоступність	Стисла, логічна, переважно описова; орієнтація на практичне збирання	Повнофункціональний код із простими умовами керування; враховано гістерезис	Високий; включено покрокові рекомендації	Новачок, студент, практик
Claude	Типовий набір без уточнення марок; фокус зміщено на функціональність	Загальний опис без точного призначення пінів; схема умовна	Код із реалізацією гістерезису, пояснення логіки включення / вимкнення вентилятора	Середній; наявні пояснення логіки, але бракує схемотехнічних коментарів	Користувач із базовими знаннями
Mistral	Мінімальний, без конкретизації моделей; орієнтація на досвід користувача	Опис спрощено, без номіналів і типів сигналів	Базовий шаблон коду без коментарів; не розділено логіку та інтерфейс	Низький; практично відсутні пояснення	Досвідчений користувач, розробник
DeepSeek	Детальний, з описом технічних характеристик, електричних параметрів; запропоновано захист вентилятора	Технічно точна, структурована, з урахуванням вимог до струму і напруг	Модульний код з функціями обробки помилок, перевірки діапазону та LCD-виводу	Високий; присутнє обґрунтування вибору схемних рішень	Інженер, користувач із досвідом

Модель Gemini вирізняється прагненням до балансу між зручністю використання та технічною точністю. Її відповіді побудовані так, щоби мінімізувати ймовірність помилок при збиранні схеми чи завантаженні прошивки, забезпечити доступність матеріалу для новачків і водночас зберегти базову інженерну логіку. Саме Gemini показала найвищу стабільність структури відповіді при повторному формулюванні запиту, що вказує на її стійкість до варіацій природної мови користувача. Claude, своєю чергою, фокусує увагу на логічній поведінці пристрою, прагнучи надати користувачу розуміння причинно-наслідкових зв'язків між показниками датчиків і реакцією керувальних елементів. Це важливо в контексті розробки автоматизованих систем із прогнозованою поведінкою.

Модель Mistral, хоч і демонструє мінімальний рівень деталізації, може виявиться ефективною в ситуаціях, коли користувач уже володіє досвідом у відповідній предметній галузі. Вона не витрачає ресурси на надмірні пояснення, а концентрується на стислому

представленні коду, допускаючи, що його реципієнт зможе самостійно заповнити пропущені компоненти завдяки власному досвіду. Такий підхід може бути виправданим у професійних середовищах, де важлива швидкість генерації рішення, а не його повна педагогічна опрацьованість.

Отримані дані дозволяють не лише охарактеризувати рівень практичної придатності моделей для вирішення аматорських інженерних завдань, але й зробити низку висновків щодо доцільності їхнього застосування в ширших контекстах – від освітнього до прикладного. Наприклад, у навчальному процесі відповіді моделей типу ChatGPT або Gemini можуть бути використані як додаткові джерела інструкцій (Шевченко та ін., 2024), прикладів і пояснень, які доповнюють теоретичний матеріал. У самостійному проектуванні мовні моделі можуть відігравати роль консультантів, особливо на етапі вибору архітектурного рішення або попередньої перевірки функціональності. У сфері швидкого прототипування – вони значно знижують час на підготовку, дозволяючи одразу перейти до практичної реалізації.

Важливим висновком є також потреба інтеграції багаторівневої адаптації у внутрішню архітектуру великих мовних моделей. Йдеться про здатність ШІ оцінювати профіль користувача, його попередній досвід, типові формулювання, рівень складності запиту й відповідно до цього динамічно змінювати стиль, глибину і форму подачі відповіді. Так, для початківця доречно запропонувати покрокову інструкцію з ілюстраціями та коментарями, тоді як для досвідченого користувача – стислий код із рекомендацією щодо оптимізації. Відповідь, яка є надто узагальненою, або навпаки – перенасиченою специфічною термінологією, може виявитися не менш марною, ніж її відсутність, адже в обох випадках користувач стикається з бар’єром розуміння.

Окрім безпосереднього аналізу технічної придатності мовних моделей у задачах проектування, доцільно розглянути також ширші контексти їх використання. У сучасній освітній парадигмі, орієнтованій на розвиток практичних компетентностей у рамках STEM-дисциплін, застосування генеративного ШІ у навчальних проектах, побудованих на основі платформи Arduino, мікроконтролерах, відкриває унікальні можливості для персоніфікованого навчання, самостійного опанування інформаційними технологіями та індивідуальної творчості. Завдяки інтерфейсу природної мови, користувачі, зокрема студенти, можуть формулювати запити не в технічних термінах, а звичайною мовою, отримуючи при цьому структуровану, логічну й функціональну відповідь, що суттєво знижує вхідний бар’єр в ІТ-галузь.

Особливої актуальності набуває здатність ШІ трансформувати складні інженерні задачі у послідовні, покрокові інструкції, зрозумілі для користувачів із мінімальним рівнем підготовки. У такий спосіб модель фактично виконує роль інтелектуального тьютора, який не лише підказує, як реалізувати певну функцію, але й поступово формує у користувача логіку проектного мислення. Це має особливу цінність у контексті неформальної освіти, хакатонів, гурткової діяльності та дистанційного навчання.

Водночас слід пам’ятати, що мовна модель, навіть найрозвиненіша, не є експертною системою в класичному розумінні. Її відповіді базуються на ймовірнісному аналізі патернів у навчальних текстах, а не на симуляціях фізичних процесів чи емпіричному тестуванні електронних схем. Тому остаточне рішення щодо застосування запропонованого варіанту, його надійність, безпечність і відповідність технічним стандартам має приймати людина, яка володіє необхідними знаннями та здатна здійснити критичну верифікацію отриманих результатів. Цей факт вимагає від користувача відповідального підходу до взаємодії з ШІ та усвідомлення меж його компетентності.

З погляду етики, особливої уваги заслуговує проблема генерації потенційно небезпечних схем. Деякі мовні моделі здатні надавати відповіді, які формально є коректними з огляду на синтаксис або логіку програмного коду, проте на практиці можуть призводити до перевантаження електричних ланцюгів, короткого замикання або навіть до виникнення небезпечних ситуацій, пов’язаних з ризиком ураження електричним струмом конструкції.

Відсутність вбудованих механізмів технічної валідації таких рішень становить одну з найсерйозніших перешкод на шляху до повномасштабної інтеграції LLM у критично важливі галузі інженерії. Тому перспективним напрямом розвитку є створення захисних фільтрів на рівні архітектури моделі – модулів, які дозволятимуть не лише оцінювати відповідність запиту, але й проводити попередній аналіз технічної безпеки рішення. Ще одним перспективним кроком може стати інтеграція моделей із зовнішніми симуляторами, які будуть автоматично верифікувати згенеровану конструкторську схему перед її фізичним утиленням.

У цьому ж контексті виникає потреба в персоналізації мовних моделей. Оскільки користувачі суттєво відрізняються за рівнем підготовки, технічного мислення, володіння інструментами й навіть за формуєю постановки запиту, модель має адаптувати стиль комунікації відповідно до контексту. Імовірним рішенням є використання багаторівневого профілювання, де модель, аналізуючи стиль мовлення, ключові слова та мету завдання, зможе прогнозувати очікування користувача й відповідно модифікувати свою відповідь – від докладного дидактичного пояснення до стислої інженерної інструкції. У цьому плані моделі ChatGPT та Gemini уже демонструють здатність динамічно змінювати структуру відповіді (Шевченко та ін., 2024), що створює передумови для формування персоналізованих інженерно-освітніх асистентів нового покоління.

Прозорість – ще один критично важливий компонент, необхідний для утвердження довіри до генеративних систем. Щоб користувач міг не лише отримати правильне рішення, але й зрозуміти його логіку, необхідно, щоб модель пояснювала причини обрання конкретного компонента, структуру алгоритму, переваги певної бібліотеки чи конфігурації. Наявність пояснювального шару дає змогу не просто повторити запропоноване рішення, а глибше його усвідомити, що є важливою умовою формування інженерного мислення. Такі пояснення частково вже реалізовано в Claude і ChatGPT, що робить їх придатними не лише для генерації, а й для аналітичного супроводу процесу конструювання.

Особливої уваги заслуговують перспективи створення гібридних систем, які поєднують функціональність мовної моделі з візуальними середовищами розробки – такими як Fritzing, Tinkercad, Proteus або Arduino IDE. У таких середовищах можлива реалізація повного циклу роботи над проектом: від генерації коду – до побудови схеми, симуляції її роботи, візуалізації потоку сигналів, розрахунку енергоспоживання, і навіть до автоматичної перевірки на логічні або електротехнічні помилки. Це дозволить не лише підвищити ефективність навчального процесу, але й створити інноваційне середовище для самостійного експериментування та прискореного прототипування.

Проведене дослідження свідчить, що сучасні великі мовні моделі мають реальну прикладну цінність у галузі аматорського конструювання. Їхня здатність до адаптації, гнучкість у комунікації, варіативність у підходах до розв'язання практичних задач та підтримка великого масиву технічних форматів дають змогу використовувати їх як ефективні інструменти інженерної діяльності. Найефективніші на нашу думку моделі – зокрема ChatGPT та Gemini – демонструють високу якість згенерованих відповідей, які містять структуровані технічні описи конструкцій, добре коментований код, підбір сумісних компонентів і пояснення потенційних помилок. Це формує нову парадигму самонавчання, де користувач поєднує роль учня, проектанта і дослідника в одному процесі взаємодії з системою.

Проте результати дослідження також свідчать про те, що універсального рішення не існує. Кожна модель має власний стиль і набір сильних сторін. ChatGPT забезпечує максимальну глибину пояснень, але іноді потребує повторного запиту для конкретизації. Gemini стабільно формує відповіді, добре структуровані та зрозумілі для початківця. Claude демонструє високий рівень логічної послідовності, однак не завжди достатньо деталізує фізичні аспекти апаратної частини, мікроконтролерів. Mistral є ефективним інструментом для досвідчених фахівців, яким не потрібен надлишковий супровід, а DeepSeek виявляє

інженерну точність, але вимагає від користувача ґрунтовних знань у галузі мікроелектроніки для верифікації відповідей.

З практичного погляду, результати дослідження можуть бути інтегровані у навчальні програми з мікроконтролерної техніки (Гордієнко & Коваль, 2025), основ автоматизації, робототехніки та Інтернету речей (IoT). Застосування LLM як допоміжного ресурсу дає змогу забезпечити індивідуалізовану підтримку студентів у режимі реального часу, зменшити залежність від викладача, підвищити якість самостійної роботи та сформувати середовище, у якому навчання набуває ознак персоніфікованого досвіду. З боку викладачів, ці моделі можуть використовуватись для автоматизованої генерації прикладів, варіантів практичних завдань, дидактичного матеріалу або для попередньої перевірки проектів. У результаті, штучний інтелект поступово трансформується з інструмента допомоги на ранньому етапі – у повноцінного партнера освітнього процесу.

Перспективи розвитку конструювання електронних пристрій з використанням технологій штучного інтелекту пов’язані з підвищенням доменної специфічності моделей, їхньою інтеграцією з симуляційними та CAD-середовищами, а також з розробкою модулів валідації рішень. Особливо багатообіцяючим виглядає вектор на створення систем, у яких генеративний модуль одразу зв’язаний із симулятором і перевіряє життєздатність і безпечність згенерованого рішення. Такі середовища можуть істотно підвищити довіру до систем ІІІ в комп’ютерних науках.

Таким чином, застосування генеративного штучного інтелекту в конструюванні пристрій на базі Arduino не обмежується лише інструментальним виміром. Це – один із ключових кроків у напрямі набуття hard skills і формування нової культури цифрової творчості. За умови відповідального підходу, етичного регулювання й інституційної підтримки (Андрощук та ін., 2023), LLM можуть стати фундаментальною частиною технічної освіти, інженерної практики та процесів цифрової трансформації.

Література:

1. АНДРОЩУК, Г. О., та ін. (2023). Рівень довіри до штучного інтелекту: аналіз результатів глобальних досліджень та стан в Україні. Інститут проблем правозастосування НАН України. <https://il.ipri.org.ua/article/view/291675>.
2. ГОРДІЄНКО, О., & КОВАЛЬ, А. (2025). Як штучний інтелект змінює розробку програмного забезпечення. Міжрегіональна Академія управління персоналом. Інститут комп’ютерно-інформаційних технологій, 6 (Частина 2). <https://journals.maup.com.ua/index.php/it/article/view/4580>.
3. КЛІСПІЦОВ, А. А., & ГУССВА-БОЖАТКІНА, В. А. (2024). Розробка апаратно-програмного комплексу з використанням штучного інтелекту для калібрування газового датчика MQ-2. Вісник Херсонського національного технічного університету, 4, 36. <https://doi.org/10.35546/kntu2078-4481.2024.4.36>.
4. КРАВЧУК, О. (2024). Штучний інтелект у програмуванні: як ІІІ змінює підхід до розробки та автоматизації коду. Вісник Хмельницького національного університету, (345), 36-46. <https://doi.org/10.31891/2307-5732-2024-345-6-36>.
5. ШЕВЧЕНКО, Л. С., УМАНЕЦЬ, В. О., & РОЗПУТНЯ, Б. М. (2024). Застосування генеративного ІІІ для автоматизації завдань викладачів у ЗП(ПТ)О. Відкрите освітнє e-середовище сучасного університету, (17), 160-170. <https://doi.org/10.28925/2414-0325.2024.1711>.

ЗАКЛЮЧЕННЯ

Сьогодні інноваційні технології та цифровізація є не просто окремими явищами, а комплексними, взаємопов'язаними процесами, які радикально трансформують три основні сфери людського буття: освіту, економіку та суспільство.

Впровадження штучного інтелекту, гібридного навчання, гейміфікації та дистанційних інструментів формує нову парадигму, що вимагає від викладачів і студентів принципово нових підходів. Освіта сьогодні – це не стільки передача інформації, скільки розвиток критичного мислення, навичок співпраці та здатності до безперервного навчання. Професійна підготовка майбутніх фахівців у будь-якій галузі, від педагогіки до медицини, повинна ґрунтуватися на інтеграції знань, практичних навичок та цифрових інструментів. Для України це також означає необхідність прискорення процесів інтернаціоналізації та адаптації до світових освітніх стандартів. Успішність цих змін залежить від готовності освітньої системи інвестувати в розвиток цифрових компетентностей як студентів, так і викладачів, перетворюючи їх на активних учасників технологічної революції.

Цифрова трансформація є кatalізатором глибоких економічних і соціальних змін. Сфери, які раніше вважалися консервативними, такі як банківська справа, маркетинг та управління персоналом, тепер повністю залежать від цифрових технологій. Ми побачили, що бізнес-стратегії формуються на основі аналізу великих даних, а поведінка споживачів моделюється з урахуванням впливу цифрових брендів. В умовах сучасних викликів, зокрема, наслідків війни, публічно-приватне партнерство виступає як критично важливий ресурс для відновлення, а гнучкі та інноваційні підходи в управлінні стають запорукою стійкості. Цей процес вимагає від суспільства та бізнесу постійної адаптації до невизначеності зовнішнього середовища, перетворення ризиків на можливості для зростання.

Інновації мають величезний прикладний потенціал. Від прогнозування екологічних ризиків за допомогою моделювання до підвищення ефективності навігації БПЛА, технології пропонують конкретні рішення для складних проблем. Однак, з їхнім поширенням зростають і загрози. Питання кібербезпеки критичної інфраструктури сьогодні стойте гостріше, ніж будь-коли, і вимагає постійних інвестицій та вдосконалення механізмів захисту. Це також стосується і безпеки медичної інформації в умовах правового режиму воєнного стану. Водночас, ми відзначили, що технології є не лише інструментом для захисту, а й засобом для покращення якості життя, зокрема, у сфері фізичної культури та спорту, що підтверджує їхню універсальність.

Можна стверджувати, що інноваційна модель розвитку є не просто бажаною, а необхідною умовою для побудови стабільного та конкурентоспроможного суспільства. Всі три сфери – освіта, економіка та суспільство – тісно переплітаються, і зміни в одній із них неминуче впливають на інші. Ця монографія є внеском у розуміння цієї складної взаємодії та пропонує орієнтири для подальших наукових досліджень та практичних дій. Застосування висновків цієї роботи на практиці дозволить мінімізувати ризики, максимізувати можливості та ефективно адаптуватися до вимог епохи, що настала, – епохи технологій та безперервних трансформацій.

ANNOTATION

CHAPTER 1. INNOVATIVE TECHNOLOGIES AND DIGITALIZATION IN EDUCATION

1.1. Valerii Atlanov. USING ARTIFICIAL INTELLIGENCE IN THE EDUCATIONAL PROCESS WHEN TRAINING FUTURE GRAPHIC DESIGNERS

The article examines the relevance of introducing artificial intelligence (AI) technologies into the educational program for graphic designers. Modern AI tools, such as generative image models (Midjourney, DALL-E), platforms for automating routine tasks (Adobe Sensei), and intelligent assistants used in graphic design, are analyzed. Based on the analysis, methodological recommendations are developed for the effective integration of these tools into the educational process. Particular attention is paid to potential benefits, such as stimulating creativity, accelerating prototyping, and personalizing learning, as well as challenges associated with ethical aspects and changing the role of the designer. The results of the study confirm that the balanced use of AI not only increases the competitiveness of future specialists, but also contributes to the formation of an innovative approach to creative tasks.

1.2. Viktoriia Atlanova. HYBRID LEARNING IN CONSTRUCTION EDUCATION: AN ANALYSIS OF CHALLENGES AND ADAPTATION STRATEGIES

The article examines the current problem of implementing hybrid learning in higher education institutions of the construction sector. The aim of the work is to analyze the key problems that arise when organizing the educational process using a hybrid model and develop effective ways to overcome them. The work uses methods of theoretical analysis, synthesis and generalization.

Based on the analysis, a number of problems were identified, including: the lack of specialized methodological support that takes into account the specifics of construction disciplines; insufficient level of technical equipment and digital competencies of teachers and students; as well as significant difficulties in organizing practical training, which is critically important for the construction industry.

As ways to solve these problems, the development of adapted curricula, the creation of a single digital educational environment, the widespread introduction of modern technologies (VR, AR, 3D modeling) for simulating practical processes, as well as systematic training of teaching staff are proposed. The importance of a balanced combination of face-to-face and distance learning forms of education is emphasized to ensure high quality education.

The practical value of the study lies in the possibility of using the proposed recommendations to optimize the educational process in construction higher education institutions.

1.3. Olha Blaha, Stepan Nedilskyi. HIGHER EDUCATION INNOVATIONS IN UKRAINE

The article conducted a study the processes of innovation in higher education when Ukraine participated in the program of integration of higher education institutions into the European Higher Education Area. Problems of the process of development of higher education are identified. It is noted that in order to restore its status and popularize it among the younger generation, it is necessary to create conditions for the formation of students' skills of logical and critical thinking, analysis, creative search, responsibility and maximum involvement in the educational process. The role of the teacher is reformatted from the usual transfer of knowledge to the creation of the necessary learning environment, which would become the basis for creating skills for lifelong education. At the same time, there are concerns that the orientation to European standards will lead to the loss of the identity of Ukrainian education and the destruction of national educational values.

1.4. Nelly Bondarenko, Serhii Kosianchuk. DIALOGUING AS AN INTERSUBJECTIVE METHOD OF COMPETENCY-BASED LEARNING

The relevance of the dialoguing method in the context of the dialoguing of the educational process is substantiated. The differences between dialogue and dialoguing are clarified, and the essence of the dialoguing method is revealed in comparison with the dialogue method in the context of types of speech activity. The goal and objectives of the method are formulated, its scientific principles are outlined; the main techniques within the method are identified; organizational forms and teaching means are discussed; the advantages of the dialoguing method compared to others are emphasized; the parameters and criteria for effectiveness are determined; a list of complementary methods that enhance the effectiveness of dialoguing is provided; the potential of the method is analyzed, and the prospects for its modernization and development are predicted. Aspects of the teacher's professional skills that contribute to the effectiveness of applying the dialoguing method are characterized.

1.5. Andrii Drobin. DIDACTIC ASPECTS OF USING DIGITAL EDUCATIONAL RESOURCES IN ORGANIZING THE EDUCATIONAL PROCESS IN NATURAL SCIENCES

The article examines the issue of digital educational resources in the educational process. The relevance of the problem is justified through the prism of globalization processes as an objective factor of the demand of the economy and production for the possession of digital technologies by specialists. The approaches to the classification of digital educational resources by domestic scientists and the author's view on the classification are considered. Based on the presented classification, the most used digital educational resources are presented and their compliance with didactic requirements for educational resources is substantiated.

1.6. Vladyslav Herasymenko. INTEGRATION OF ARTIFICIAL INTELLIGENCE INTO THE TEACHING OF HIGHER MATHEMATICS: NEW DIDACTIC OPPORTUNITIES AND PEDAGOGICAL CHALLENGES

The article explores the integration of artificial intelligence (AI) technologies into the teaching of higher mathematics as a key component of contemporary digital transformation in education. Generative AI systems such as ChatGPT, Copilot, and Wolfram Alpha are analyzed as cognitive partners that enhance personalization, adaptive learning, feedback mechanisms, and reflective thinking. The study outlines new didactic opportunities based on the principles of adaptability, authenticity, and reflexivity while identifying pedagogical and ethical challenges related to academic integrity, algorithmic transparency, and data privacy. An original concept of AI integration into mathematics education is proposed, combining three interconnected directions: the formation of students' digital and ethical competence, the development of AI pedagogical literacy among teachers, and the integration of AI tools into educational platforms (Moodle, Google Classroom). The implementation of this model promotes the emergence of a new pedagogical paradigm – generative pedagogy – in which the teacher becomes a facilitator, the student a co-creator of knowledge, and technology a means of enhancing human intellectual potential.

1.7. Natalia Honcharova. THE IMPACT OF NON-FORMAL EDUCATION ON THE DEVELOPMENT OF DIGITAL COMPETENCIES OF TEACHERS IN PEDAGOGICAL HIGHER EDUCATION INSTITUTIONS

The article examines the impact of non-formal education on the development of digital competences of higher education teachers. The study analyzes the concept of digital competence and types of non-formal education, including online courses, workshops, webinars, masterclasses, mentoring programs, and participation in professional communities. It is argued that non-formal

education provides flexibility, rapid adaptation, and practical application of digital technologies, enhancing professional development and improving the effectiveness of the educational process. Recommendations for integrating non-formal methods into the teacher professional development system are provided.

1.8. Sabina Ivanchuk. USE OF INNOVATIVE TECHNOLOGIES IN THE PROCESS OF PROFESSIONAL TRAINING OF FUTURE TEACHERS TO FORM ECOLOGICALLY APPROPRIATE BEHAVIOR OF PRESCHOOL CHILDREN

The article highlights the peculiarities of introducing modern innovative extracurricular forms, methods and means of teaching aimed at preparing future preschool teachers to form environmentally appropriate behavior in preschool children. The article considers both traditional approaches (environmental holidays, games, excursions, quizzes) and the latest forms of organizing extracurricular activities, classified into three areas motivational and communicative (eco-trainings, interactive games, environmental campaigns), informational and cognitive (environmental expeditions, visits to ethno-environmental exhibitions), and ecological and creative (scientific circles, volunteering, environmental initiatives, studios, camping, master classes, flash mobs, research and practical projects).

The importance of taking into account the individual experience of students as a resource for their professional self-improvement and personal development in the process of obtaining professional training is emphasized.

1.9. Olena Kosovets. METHODOLOGICAL SUPPORT OF DISTANCE LEARNING IN COMPUTER SCIENCE: THE ROLE OF LESSON CONSTRUCTORS IN TEACHERS' PRACTICE

The article explores the methodological features of organizing distance learning in computer science under martial law, which has led to a mass transition of students to distance or blended learning formats. Scientific sources are analyzed that highlight the challenges of digitalizing education: unequal access to technology, insufficient digital competence among teachers, and the need to adapt the content and methods of instruction. A lesson design model is proposed in the form of four interconnected "puzzle pieces": planning, design, tools, and reflection. This model is illustrated through a Grade 6 computer science lesson on the topic "Behavior in the Digital Space", which takes into account students' individual needs, the principles of inclusive education, and the development of digital competencies. The proposed lesson constructor ensures pedagogical flexibility and allows for effective adaptation of lessons to face-to-face, distance, or blended learning formats.

1.10. Iryna Krasheninnik, Alona Chorna. DEVELOPING THE FUTURE COMPUTER SCIENCE TEACHERS' ABILITY TO PEER-ASSESS LEARNING OUTCOMES USING THE LMS MOODLE

The article considers the problem of forming the evaluation and analytical competence of future teachers of computer science, in particular the ability to peer evaluate learning outcomes. The relevance of introducing peer evaluation into the educational process of higher education institutions is substantiated, taking into account the requirements of the Professional Standard "Teacher of a General Secondary Education Institution" and changes in the regulatory framework for evaluation in the schools. The purpose of the study is to develop methods for using the "Workshop" activity type in the LMS Moodle to develop students' peer evaluation skills. A SWOT analysis of the use of peer evaluation is presented, its strengths and weaknesses, opportunities and threats are identified. The results of the research work, which included the students' performance of practical tasks and the evaluation of the work of their classmates according to certain criteria, are characterized. The results of the survey of the experiment

participants showed an increase in the quality of feedback, intensification of educational activities and the development of analysis and reasoned evaluation skills. A conclusion was made about the feasibility of widely implementing peer assessment in the training of future computer science teachers using LMS Moodle tools.

1.11. Iurii Linnik, Oksana Dovgalets, Vita Sternyk. THE FLIPPED CLASSROOM AS AN INNOVATIVE FORM OF ORGANIZING THE EDUCATIONAL PROCESS: THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION

The article explores the flipped classroom model as a modern educational technology that meets the needs of higher education renewal in the context of global transformations. Particular attention is paid to its role in fostering 21st-century skills – specifically, independent learning, critical thinking, creativity, and digital literacy. The authors describe the stages of the model's development, its theoretical foundations, as well as its implementation in international contexts and in Ukraine, especially under conditions of distance learning. A key part of the study involved examining the experience of pharmacy students at Rivne Medical Academy, with results indicating positive changes in their ability to learn autonomously. The article outlines the benefits of the flipped classroom model, including enhanced cognitive engagement, individualized learning, and increased motivation. At the same time, it highlights the challenges of implementation, such as unequal access to digital resources, a lack of methodological support, and resistance rooted in traditional pedagogical culture. The article concludes with practical recommendations for the effective integration of the flipped classroom model into Ukrainian higher education. It emphasizes that this model is not merely a methodological technique but a comprehensive educational approach that requires adaptation, pedagogical reflection, and a shift in the educational paradigm.

1.12. Inna Naida, Oleksandr Kalinichenko. INTEGRATING KNOWLEDGE, SKILLS, AND DIGITAL TOOLS: A COMPETENCE-ORIENTED VISION FOR UKRAINIAN HIGHER EDUCATION

The article examines the role of the competence-based approach as a key tool for modernizing Ukraine's higher education and ensuring its alignment with global educational trends. Emphasis is placed on the development of digital infrastructure, open electronic libraries, national repositories, and MOOC platforms to democratize access to knowledge. The integration of academic knowledge, practical experience, and socio-emotional skills is highlighted as a foundation for graduates' adaptability in multicultural environments. The study concludes that highly skilled professionals are essential for national security, economic stability, and sustainable development in the context of global challenges and opportunities.

1.13. Nataliia Pavlova. INTERNATIONALIZATION OF UKRAINIAN HIGHER EDUCATION: CHALLENGES AND PROSPECTS FOR DEVELOPMENT

The content and basic principles of internationalization of higher education are revealed based on the analysis of domestic and foreign studies. The relevance of its implementation in the activities of higher education institutions as a key factor in improving the quality of education is substantiated. The criteria for classifying forms of internationalization are systematized, and external and internal mechanisms for harmonizing the national higher education system with the global and European educational and scientific space are compared. The main content of the most common international cooperation programs is revealed. Attention is drawn to joint and double degree programs as instruments of academic mobility for students and scientific and pedagogical workers. Based on SWOT analysis, the advantages, challenges, opportunities, and prospects for the integration of Ukrainian universities into the European and global educational and scientific space have been identified.

1.14. Kateryna Petrovska. DIGITALIZATION OF SOCIAL REINTEGRATION PROCESSES: PROSPECTS FOR TRAINING SPECIALISTS IN THE FIELD OF PSYCHOSOCIAL SUPPORT

The article analyzes the role of digital technologies in the processes of social reintegration of individuals affected by armed conflict. Special attention is paid to the educational aspects of training professionals in the field of psychosocial support. The paper explores the prospects of using digital platforms, online services, and virtual simulators in vocational training. The focus is on innovative approaches to developing competencies necessary for working with veterans, internally displaced persons, and other vulnerable groups.

1.15. Oksana Polianska, Igor Polianskyi, Olha Hulaha, Inna Moskaliuk. USE OF INNOVATIVE TECHNOLOGIES IN TRAINING FUTURE DOCTORS

Interactive technologies, problem-based learning and digital platforms make it possible to make the educational process individualized and closer to the real conditions of the future profession. Simulation training involves the use of various methods and tools to simulate real medical situations: first, students receive the necessary theoretical basis, then they enter a simulated situation, perform tasks, make decisions, and then all participants discuss their actions, thoughts, and feelings that arose during the training. The advantages of simulation classes are the proximity of situations to the clinic, motivation and involvement of students, the ability to make decisions. Important components in conducting simulation classes in conditions of limited resources are motivation and maintaining interest in learning throughout the study of the subject, helping students to get the maximum benefit from their studies.

1.16. Tetyana Prykhodko. APPLICATION OF INNOVATIVE LEARNING AS A TOOL FOR PROFESSIONAL AND PEDAGOGICAL TRAINING OF FUTURE SPECIAL EDUCATION TEACHERS IN HIGHER EDUCATION INSTITUTIONS

The article highlights the issues of professional and pedagogical training of future special education teachers in higher education institutions. It is determined that addressing this issue within higher education requires teachers to creatively search for new or improved concepts, principles, and approaches to teaching in higher education. It was found that educational innovations in the higher education system can be implemented in the content of education; in the forms and technologies of the teaching and educational process, and in methods; as well as in the education management system. The author identifies a number of innovative technologies that will most effectively contribute to the professional and pedagogical development of future special education specialists. The innovative orientation of teachers' and students' activities involves creating and applying pedagogical innovations since innovative technologies maintain the connection between classical knowledge, skills, and the key competencies that future special education teachers must develop. In this regard, higher education must be modernized in line with current challenges, and teachers must be prepared for innovative professional and pedagogical activities to integrate the latest technologies into the educational process.

1.17. Sergiy Ryabets, Olena Mykhaylova. DIDACTIC POTENTIAL OF USING NEURAL NETWORKS IN TECHNOLOGICAL TRAINING OF ZZSO STUDENTS

The article is devoted to an overview of software products based on artificial intelligence and the possibilities of their integration into the educational process of technology. The paper considers the didactic potential of using such programs as Autodesk Fusion 360 AI-powered Design, SolidWorks AI Simulation, Siemens NX AI-driven Manufacturing, ANSYS AI Simulation, Google AutoML, IBM Watson for Education, as well as intelligent assistants ChatGPT and Copilot. Particular attention is paid to such functionality as automated design, generative design, optimization of production processes and personalized learning.

1.18. Sofiia Tykhola, Elvira Manzhos. PEDAGOGICAL CONDITIONS FOR TRAINING FUTURE DOCTORS TO FORM A COMMUNICATIVE CULTURE

The study has proven that for developing the motivation of future medical specialists to form a communicative culture, it is necessary to create conditions for the emergence of internal incentives (motives, goals, emotions) for the development of their communicative culture, their awareness and further self-development of the motivational sphere. In the process of training future doctors, a number of pedagogical conditions that ensure the effective formation of their communicative culture have been identified. Firstly, an important factor is the development of students' motivation to master communicative culture, which is achieved by creating specially organized game situations. Secondly, the use of role-playing game techniques is of great importance, which contribute to the acquisition of practical skills and professional communication skills in simulated conditions. Thirdly, an essential component is the mastery of modern information and communication technologies, focused on the development of the communicative culture of future medical specialists.

1.19. Anna Velychko, Yuliia Muskarina. THEORETICAL AND METHODOLOGICAL FOUNDATIONS OF THE MODEL OF PROFESSIONAL TRAINING OF FUTURE PHYSICAL EDUCATION TEACHERS IN THE CONTEXT OF EUROPEAN INTEGRATION

This article addresses the issue of developing health-preserving competence in prospective physical education teachers within the framework of ongoing educational reforms and Ukraine's integration into the European educational area. The concept of "health-preserving competence" is elaborated, its structural components are identified, and the necessity of their balanced integration into the system of professional teacher training is substantiated. The study provides a comprehensive analysis of the experience of leading European countries that have long implemented effective models of health-preserving education. Particular emphasis is placed on methodological approaches that enhance students' motivation for adopting a healthy lifestyle, cultivate their responsibility for maintaining physical and psychological well-being, and underscore the importance of digitalization in education, which creates new opportunities for integrating health-preserving technologies into the learning process.

1.20. Anna Vozniuk. GAMIFICATION AND IMMERSIVE TECHNOLOGIES AS INNOVATIVE MEANS OF DEVELOPING PROFESSIONAL COMPETENCIES IN FUTURE TEACHERS

The article analyzes the use of gamification and immersive technologies (virtual and augmented reality) as innovative tools in the training of future educators. It is substantiated that these approaches contribute to increasing motivation, engagement, and the formation of key professional competencies, including critical thinking, creativity, and teamwork skills. The psychological foundations of gamification based on self-determination theory and its advantages for the educational process are considered. The author proposes a classification of tools by type, didactic purpose, and level of implementation complexity, and provides specific examples of their use. Methodological recommendations for the phased integration of these technologies into the training of future professionals are presented, which will allow for the effective preparation of competent and competitive educators.

CHAPTER 2. ECONOMICS, GOVERNANCE AND SOCIAL TRANSFORMATIONS IN THE DIGITAL ERA

2.1. Vladyslav Ananchenko, Yurii Lotyuk. ARCHITECTURE OF RELEASE GATES IN DIGITAL BANKING

The paper proposes a conceptual release-gate model for managing the rollout of client-side software in digital banking environments. Release gates are mapped to key categories of operational risk: software supply-chain vulnerabilities (SBOM / CVE), client-server interface incompatibilities, insufficient test quality, performance budget violations, and security or regulatory non-compliance. A set of software release quality indicators and an aggregate Release Risk Score are introduced. A training sandbox demonstrates stop/go release decision support based on the model. The implications for financial institutions and the training of DevSecOps specialists have been investigated.

2.2. Yuliia Bodashevskaya. PUBLIC-PRIVATE PARTNERSHIP AS A STRATEGIC RESOURCE FOR UKRAINE'S RECOVERY: A CRISIS-ADAPTIVE APPROACH

The study examines the main theoretical approaches to understanding public-private partnerships (PPP), including the economic, network governance, and institutional perspectives, and identifies their key characteristics. It also analyzes the current state of PPP implementation in Ukraine, which reveals limited project realization and a significant impact of ongoing military aggression on the investment landscape. Furthermore, the paper conducts a comprehensive analysis of the concept and essence of public-private partnerships, with particular attention to their specific features in the context of Ukraine and international experience. Additionally, the study examines international practices of PPP regulation and implementation within the European Union and other countries.

2.3. Alla Diachenko. NATIONAL TRADITIONS AS A SOURCE OF INNOVATION IN THE WORK OF A NEW GENERATION OF ARTISTS

The article explores national traditions as a source of innovative practices in the creative work of contemporary artists of the new generation. The aim of the article is to analyze how national traditions are transformed into a source of innovation in artistic practices of the new generation under conditions of global cultural and technological change. The study employed general scientific methods of cognition: analysis, synthesis, comparison, interpretation, generalization and a systematic approach. The findings show that the innovative landscape of contemporary art is not limited to technological solutions alone. It has been concluded that this landscape encompasses a wide range of expressions – from the use of digital tools (including generative algorithms, VR technologies, NFT) to new ways of thinking, material experimentation, reinterpretation of cultural symbols, and active viewer engagement in the artistic process. The research reveals the important role of genre blending, style hybridization, the development of ecological design, the use of stylized forms of authentic clothing, and the revitalization of local codes. It is shown that innovation in this context refers to the ability to integrate traditional meanings into the global cultural space while simultaneously preserving and transforming authenticity. In the Ukrainian context, it has been established that traditional art is developing as a dynamic form of cultural representation capable of adapting to current conditions of national heritage preservation and reinterpretation. The study outlines that the transformation of traditions into artistic innovations takes place through material-technological reincarnation (the use of AI, AR in traditional techniques), semiotic rebooting (the transfer of symbols from ritual contexts into the global media

space), and sociocultural interfacefication (turning the viewer into an active participant). As a result, the authentic cultural archive is transformed into a source of new aesthetic, economic, and communicative value, legitimizing art as a field of constant renewal of the past in the future. The practical significance of the research lies in identifying mechanisms of cultural renewal of traditions for the formation of an innovative artistic environment.

2.4. Viktoriia Filippovych. INFORMATION TECHNOLOGIES IN EDUCATION: A TEACHER'S AND STUDENT'S VIEW

The article explores the role of information technologies in the modern educational process, taking into account the perspectives of two key participants – teachers and students. It analyzes the advantages and challenges of integrating digital tools into education, including distance learning, the use of electronic platforms, and interactive tools. The study presents different views of teachers and students on the contemporary learning process and its specific features. Differences in attitudes toward the digitalization of education are identified. Conclusions are drawn regarding the effectiveness of implementing information technologies, and recommendations are offered to improve the quality of the educational process based on the opinions of both teachers and students.

2.5. Yevhenii Hliebov, Hanna Zavolodko. MICROSERVICE FOR POPULATING A KNOWLEDGE MODEL OF TERM-DEFINITION PAIRS FROM PDF DOCUMENTS

The article describes a microservice for automated generation of ‘term-definition’ pairs from documents, in particular PDF files with complex internal structure. The processing pipeline includes file type identification, text extraction using the pdfplumber library, normalisation and artefact removal, segmentation, identification of defining structures based on templates and heuristics, and generation of results in JSON format for integration into educational systems. The development supports Ukrainian and English languages, has the prospect of expansion to other formats and integration with NLP models to improve semantic relevance. The advantages of the solution are transparent architecture, efficiency, stability when working with heterogeneous PDFs, and no need for additional model training.

2.6. Olena Hurman. HR MARKETING IN DIGITAL TRANSFORMATION: TOOLS AND TECHNOLOGIES

This paper focuses on the study of modern HR marketing tools in the context of digital transformation, which open up new opportunities for implementing innovative approaches to human resource management. The research analyzes the impact of digital solutions on methods of attracting, retaining, and developing talent, as well as on employer branding. The paper also examines technologies that shape contemporary HR marketing strategies during digital transformation, including the use of Big Data, artificial intelligence, blockchain, and other innovative solutions that influence talent management practices.

2.7. Viktoriia Kofman. THE STUDY OF THE IMPACT OF DIGITAL BRANDS ON CONSUMER BEHAVIOUR IN THE DIGITAL ECONOMY

The article presents the results of a survey conducted among consumers of digital assets, which aimed to identify the characteristic profile of the target audience for digital brands. The study found that the largest age group of consumers actively engaging with digital brands are from the Millennial and Zoomer generations, particularly those utilizing NFT technologies. The collected data confirmed the research hypothesis that these generations show the greatest interest in consuming digital brands.

Additionally, the findings validated the hypothesis that consumers are willing to purchase digital brands at an affordable price point. Through factor analysis, the study identified barriers hindering the dissemination and acquisition of digital brands. The use of mathematical and statistical analysis methods, followed by interpretation of the results, confirmed the high level of engagement of the younger generation in the digital economy and their desire to gain economic advantages within the digital environment.

2.8. Dmytro Lysytsia, Ruslana Konoshchuk, Vitaliy Undir. THE ROLE OF INFORMATION TECHNOLOGY IN STUDYING THE WORK MOTIVATION OF MEDICAL COLLEGE TEACHERS

The article examines the use of the questionnaire method as an information technology with the help of Google Forms survey administration software to assess the state of work motivation among teachers at Ukrainian medical colleges. The article reveals the concept of "information technology", clarifies the essence and structure of information technology through analysis of scientific literature, and summarises the classification of information technology based on the works of scientists. It also reveals the concept of "work motivation" and its constituent elements. The research presents data on the analysis of work motivation among teachers at medical colleges in the Rivne, Lviv, Ivano-Frankivsk, Zhytomyr, Poltava regions and the city of Kyiv. In order to obtain data, the sociological tool "Questionnaire of Motivational Sources" (authors D. Barbut and R. Skolk) was used.

2.9. Nataliia Lysiak, Nataliia Samotiy, Ivanna Pecheritsa. INTANGIBLE TRANSFORMATIONS AND CONSEQUENCES OF WAR FOR DE-OCCUPIED TERRITORIES

The article analyzes the transformations of de-occupied territories with a focus on the intangible consequences of war. It examines moral and value transformations, natural and landscape changes and losses, demographic and socio-psychological consequences, educational and cultural losses, as well as issues of security and the uniqueness of the living environment. Approaches to their recovery and spatial development are substantiated, taking into account regulatory requirements and socio-economic processes. A methodology for analysis based on five determinants (spatial, economic, social, temporal, managerial) is proposed, ensuring consideration of the interrelation between material and intangible transformations. Using the example of communities in Kherson and Mykolaiv regions, development priorities are identified, including data inventory, strengthening environmental resilience and security, updating urban planning documentation, and stimulating economic activity.

2.10. Maryna Mashchenko, Inna Ippolitova, Iryna Lisna. DEVELOPMENT OF DIGITAL TECHNOLOGIES IN THE CUSTOMS SPHERE OF UKRAINE: CURRENT STATE AND PROSPECTS

The article examines the current state and prospects for the development of digital technologies in Ukraine's customs sector. It analyzes the regulatory, institutional, and technological foundations of the digital transformation of the customs system, in particular the implementation of electronic declaration, automated risk management systems, the "single window" mechanism, blockchain technologies, the Internet of Things (IoT), and intelligent data analytics. The key benefits of digitalization are identified, including increased transparency and speed of customs procedures, reduced administrative burden, lower corruption risks, and enhanced security of foreign economic activity. The main challenges hindering the development of digital solutions in the customs sphere are outlined, such as insufficient technical infrastructure, the need to improve the digital competencies of customs officers, and cybersecurity threats. Promising directions for further digital transformation are proposed, including integration with the European and global

digital environment, expanded use of artificial intelligence, automated analytical systems, and innovative services focused on businesses and citizens. The results of the study can be used to shape strategies for the digital development of Ukraine's customs authorities in the context of the global digital economy.

2.11. Iryna Popovychenko, Andrii Andriichuk. STOCHASTICITY AND UNCERTAINTY OF THE EXTERNAL ENVIRONMENT AS FACTORS IN THE FORMATION OF INNOVATIVE TECHNOLOGIES IN ECONOMICS AND MANAGEMENT

The article examines the impact of stochastic and uncertain external environmental factors on innovation processes in the economy and management systems. A classification and characterization of external environmental factors influencing the activities of economic agents under conditions of stochasticity and uncertainty are presented. The key types and sources of uncertainty are systematized. Expected and unexpected effects are analyzed in the context of technological development. The study generalizes the characteristics of contemporary management concepts and technologies under conditions of turbulence and stochasticity in the external environment. Relevant directions for further research in the field of innovative management technologies in the economy under turbulent and stochastic conditions are formulated.

2.12. Viktoriia Pryma. REGULARITIES OF THE INTERACTION OF SOCIO-POLITICAL EVENTS IN UKRAINE ON CHANGES IN THE ENGLISH LANGUAGE

This paper examines the patterns of mutual influence of socio-political events in Ukraine on changes in the English language, in particular in its lexical composition and semantic transformations. The main focus is on the period after 2014, when the Ukrainian issue became the object of wide international interest, as well as on the latest events related to the full-scale war launched by Russia in 2022. Analyzing English-language media, social networks, dictionaries, and scientific sources, an active penetration of Ukrainian realities into the global English-language discourse was revealed.

It has been established that socio-political changes in Ukraine contributed to the emergence of new English words, terms and phraseologisms related to war, volunteerism, national identity, culture of resistance, etc. In particular, the English language borrowed such lexemes as "Kyiv" instead of "Kiev", "Russism", "rashist", "Holodomor", as well as phrases such as "Stand with Ukraine", "Ghost of Kyiv", etc. Some of them acquired symbolic or politically colored meaning, influencing the worldview of the international audience.

Particular attention is paid to how language is used as a tool for information warfare, narrative formation, and global community mobilization. The work also examines the processes of translation, adaptation, and semantic change of concepts that arise as a result of the global reaction to the Ukrainian events.

The study confirms the close connection between political processes and linguistic changes, demonstrating that English, as an international language, quickly responds to geopolitical transformations, reflecting new realities through linguistic innovations, changes in usage and semantics.

2.13. Kateryna Pylypenko, Nataiia Runcheva, Oksana Horiacha. INFORMATION TECHNOLOGIES IN THE TOURISM BUSINESS

The study emphasizes the feasibility of implementing modern accounting software that will automate the accounting of income and expenses, simplify reporting, ensure timely filing of declarations, and reduce the risks of errors related to the human factor. It is proven that information automation will also help save time and financial resources, especially for small tourism enterprises where resources are limited.

2.14. Yuliia Rudenko. THE GENEALOGICAL RESEARCH AS A TOOL FOR DEVELOPING STUDENTS' RESEARCH COMPETENCIES IN THE CONTEXT OF DIGITALIZATION OF ARCHIVAL HERITAGE

The article examines genealogical research as an effective method of teaching Ukrainian history to students, fostering the development of a personal connection with the national past. The author analyzes the sequence of the main research stages: collecting initial information, processing the family archive, analyzing library sources, and verifying data through state archives. Special attention is given to the use of digital archival resources, which significantly expand the possibilities for searching and accessing authentic sources. The application of genealogical methods in the educational process equips students with skills in critical analysis, working with primary sources, and navigating digital platforms. The author emphasizes the importance of personalizing historical knowledge through the creation of family trees, which stimulates independent research activity. The article demonstrates that integrating the genealogical approach into the educational process contributes to the formation of historical memory, patriotism, and national identity awareness. The author concludes that digital resources play a practical role in enhancing student motivation and improving the quality of history learning.

2.15. Yulianna Tserkunyk-Kvitka. LEADERSHIP IN EARLY CHILDHOOD EDUCATION: ADVANCING MANAGERIAL COMPETENCIES OF ADMINISTRATORS AND BUILDING EFFECTIVE TEACHING TEAMS

The article discusses current methods for developing managerial skills among leaders of preschool education institutions and creating successful teaching teams. It emphasizes the importance of effective leadership in improving the quality of education, promoting a positive psychological environment, and implementing innovative management techniques. The article also examines ways to enhance leaders' communication, organizational, and strategic abilities, which in turn contribute to the professional development of their staff. It stresses the value of collaboration, partnership, and mutual support among educators in achieving common objectives. Additionally, the article provides practical suggestions for establishing and sustaining a team that is focused on producing results and embracing innovation.

2.16. Leonid Tsubov, Oresta Shcherban, Liubov Kvasnii. CURRENT STATE OF BANKING CREDIT IN UKRAINE

The purpose of the article is to study the current state of bank lending in Ukraine. This article examines the functioning of the banking sector and lending, which takes place in the context of the deterioration of the macroeconomic situation in the country and the significant destabilization of financial markets caused by the war in Ukraine unleashed by the Russian Federation. The article substantiates the main components of a loan agreement and the essence of each stage of bank lending. The main means of optimizing bank lending are considered, namely: bank control and the process of managing the credit process. It is substantiated that the banking lending system in Ukraine is an important component of the country's economy, which facilitates access of the population and business entities to credit resources. The essence of each stage of bank lending to enterprises is analyzed from the standpoint of providing the credit institution with its resources. The importance and place of bank lending to enterprises in the structure of active operations of most banks is emphasized, since lending is one of the main areas of activity of banks, which forms the bulk of their income and profit. Therefore, the key task of any commercial bank is to build a system of credit work that will allow to receive maximum income while minimizing the risk of non-repayment of loans. The analysis of lending of JSC CB "PRIVATBANK" was carried out, as one of the leaders of the banking system of Ukraine and an important participant in the market of bank lending to enterprises. Given the scale of its activities and impact on the country's economy, the analysis of the financial condition of PrivatBank's lending activities

is relevant both from the point of view of practical significance and for understanding the general trends in the development of bank lending in Ukraine. The emphasis is on the fact that in modern economic conditions, which are characterized by constant changes in financial markets, instability and a high level of competition, bank lending to enterprises plays a key role in ensuring sustainable business development.

2.17. Olha Yuzyk. SMART TECHNOLOGIES AS A COMPONENT OF IMPROVING THE QUALITY OF LEARNING THE SUBJECT “INFORMATION AND COMMUNICATION TECHNOLOGIES” BY FUTURE SCIENCE TEACHERS, PRESCHOOL EDUCATORS, AND SPEECH THERAPISTS

The article systematically and consistently demonstrates the importance of introducing smart technologies into the educational process of higher education institutions. It proves the importance of using smart technologies in classes on “Information and Communication Technologies” in combination with theoretical knowledge and practical application. The possibility of using smart technologies in the training of future teachers of natural sciences, speech therapists, and educators of preschool educational institutions is analyzed using the example of the discipline “Information and Communication Technologies”. It has been proven that smart technologies are an interactive educational complex that allows you to create, edit, and distribute multimedia teaching materials both in the classroom and in extracurricular activities. The positive aspects of using smart technologies in the educational process have been identified: the possibility of using them in teaching various disciplines; high efficiency of knowledge acquisition; modernity of technologies and their understanding and perception as a natural component of youth, which makes them a convenient tool for developing creative potential; increased interest of students in learning; ease of combining Smart technologies with a communicative approach to learning.

In the educational process, multimedia tools (multimedia technologies) are widely used in the study of the discipline “Information and Communication Technologies”, which allow combining text, sound, video, and graphic images into a single system. Multifunctional, demonstration multimedia systems are created using personal computers, interactive whiteboards, and multimedia projectors to support the educational process with graphic, text, or sound visualization of the discipline. Electronic educational resources are also used. These smart technologies facilitate faster mastery of the discipline and the formation of general and special professional competencies in higher education students.

2.18. Liudmyla Zveruk, Dmitro Krasnozhon. MANAGING BANKS' DEPOSIT POLICIES IN THE CONTEXT OF DIGITAL TRANSFORMATION AND THE USE OF INTERNATIONAL EXPERIENCE

Under conditions of heightened risks, the necessity for digitalization of banking activities, and the implementation of European experience, the essence of the concept of “deposit policy” has undergone significant evolution from a narrow operational interpretation as a set of actions for attracting funds to transformation into a comprehensive, adaptive management system. Today, deposit policy should be considered as a multi-level system of strategic and tactical decisions aimed at forming a stable, diversified, and cost-optimal resource base in a dynamic and risk-oriented environment. The systematization of classification features of deposits allows us to assert that digital transformation leads to the emergence of hybrid products that blur traditional boundaries. Analysis of the toolkit for forming a deposit portfolio, which includes price, non-price (product-oriented), marketing, and service-technological levers, shows that competitive advantages are shifting toward technology, service quality, and creating positive customer experience. Generalization of international experience in managing deposit policy under crisis conditions allows us to identify positive development directions for Ukrainian banks: the importance of institutional trust and a reliable deposit guarantee system (experience of developed countries), the need to develop flexible products that account for macroeconomic risks (experience of developing

countries), and the implementation of digitalization and utilization of synergy between state and bank actions (experience of countries that have survived conflicts). Ukrainian banks should form their own hybrid deposit policy strategy, adapting the best global practices to the unique conditions of operating during crisis, the necessity of digitalization, and European integration. Deposit policy management is a complex dynamic process that requires systematic approach, flexibility, innovation, and deep understanding of both internal processes and the impact of global and national challenges from banking management.

CHAPTER 3. TECHNOLOGY, SECURITY, AND SPECIALIZED APPLICATIONS

3.1. Viktoriya Babalich, Tetiana Maleniuk, Halyna Panchenko. APPLICATION OF MODERN TECHNOLOGIES IN THE PROFESSIONAL TRAINING OF PHYSICAL CULTURE AND SPORTS SPECIALISTS

The article analyzes the experience of using modern technologies in the professional training of physical education and sports specialists. The role of digital tools, virtual simulators, multimedia resources and interactive teaching methods in increasing the efficiency of the educational process is highlighted. The integration of innovative technologies ensures a combination of theoretical knowledge with practical skills, increases student motivation and promotes the development of professional competencies. Special attention is paid to the importance of students' digital literacy. The implementation of these approaches contributes to the competitiveness of future specialists in the labor market and their readiness for continuous professional growth.

3.2. Mariana Baran. DEVELOPMENT OF AN INFORMATION AND ANALYTICAL MODEL FOR FORECASTING AND ASSESSMENT OF THE ECOLOGICAL RISK OF RIVER ECOSYSTEMS BASED ON POLLUTION DATA ANALYSIS

The article examines the problem of monitoring the environmental condition of river waters in Ukraine in the context of anthropogenic impact. Contemporary monitoring methods are analyzed, including IoT sensors, satellite technologies, and analytical approaches, with emphasis on their advantages and limitations. The research method involves the development of an integrated water-quality monitoring system that combines sensor technologies, data-processing algorithms based on fuzzy logic, and a user-friendly interface. The system is designed to provide automated data collection and analysis, report generation, and support for managerial decision-making. It is expected that implementation of such a system will reduce pollution, preserve biodiversity, and increase public awareness of the state of river ecosystems.

3.3. Serhii Bednarsky, Yurii Lotyuk. METHODS OF IMPLEMENTING ARTIFICIAL INTELLIGENCE

The article discusses the main directions of artificial intelligence development in the world, namely: machine learning; image and voice recognition; natural language; autonomous systems; economics and finance. The main aspects of introducing artificial intelligence into the digital society are outlined, in particular, ensuring privacy and data protection, regulating ethical aspects, and supporting business.

3.4. Dmytro Fylypiuk. FORMATION OF EMPATHIC ABILITIES OF FUTURE NURSES IN PRACTICAL CLASSES, IN THE ACADEMIC DISCIPLINE OF OBSTETRICS AND GYNECOLOGY

The article explores the pedagogical potential of the discipline “Obstetrics and Gynecology” in developing empathetic abilities among future nurses.

The paper presents the experience of organizing practical classes in obstetrics and gynecology aimed at fostering empathy in nursing students. These classes are structured in two consecutive components: (1) preparation for understanding patients and their circumstances, including consideration of socio-ecological factors influencing women's health and well-being; and (2) acquisition of ethical reasoning skills, communication competencies, and teamwork abilities.

Pedagogical methods proposed for empathy development include didactic instruction, perspective-taking exercises, training in communication and interpersonal skills, activities for interpreting verbal and non-verbal cues, empathetic communication tasks, integration of art and literature, and reflective exercises.

3.5. Tamila Golotsukova, Viktor Godliuk. RISKS, RESILIENCE, AND CRITICAL INFRASTRUCTURE MANAGEMENT: DIGITAL, ENVIRONMENTAL, AND SOCIAL ASPECTS

The risks and resilience of critical infrastructure in modern society are examined, particularly in the context of digital technologies, environmental and social challenges. The consequences of extreme weather events, aging equipment, and system deterioration are analyzed, along with cyber threats that affect the uninterrupted operation of healthcare, water supply, and municipal services sectors. Special attention is given to intersectoral interdependencies and cascading effects that can lead to large-scale disruptions in the population's daily life. The findings emphasize the importance of effective risk management, infrastructure modernization, and the development of policies aimed at ensuring the resilience of critical systems.

3.6. Vasyl Gorbachuk, Serhii Bespalov, Maksym Dunaievskyi. INNOVATION TECHNOLOGIES FOR CRITICAL INFRASTRUCTURES OF SOCIETY

Because critical infrastructure (CI) protection often requires a deep understanding of potential targets, highly skilled professionals are needed to understand the relevant issues of mitigating attacks at the system level and collaborating with other industry experts on cross-industry impacts. Some sectors have not invested enough in urgent improvements to CI networks, assets, systems and facilities, thereby increasing the likelihood of outages and service interruptions. As sectoral governance bodies are often decentralized and assets are largely privatized, the resulting gaps can create coordination challenges and complicate efforts to support and improve CI. Characteristics of different types of actors and threat vectors are offered to raise awareness of systemic vulnerabilities and threat environments that may impact a country's CI.

3.7. Vasyl Kot, Iryna Yakymchuk, Valentyna Yuskovych-Zhukovska. USE OF ARTIFICIAL INTELLIGENCE FOR DESIGNING ARDUINO-BASED DEVICES

The article discusses the potential of large language models in the context of designing amateur devices on the Arduino platform. A comparative analysis of five leading generative artificial intelligence (AI) models – ChatGPT, Gemini, Claude, Mistral, and DeepSeek – is conducted based on a common application task of creating a simple thermostat. The article details the features of component selection, connection methods, and software code generation. It illustrates the advantages and limitations of the models depending on the user's technical training and the complexity of the query.

3.8. Olena Markova, Oleksandr Hryhoriev. FOOTBALL AS A TOOL FOR DEVELOPING ENVIRONMENTAL AWARENESS IN SCHOOLCHILDREN

The article analyzes the potential of football as a tool for fostering students' environmental awareness within the context of education for sustainable development. It explores theoretical foundations, international and Ukrainian initiatives aimed at integrating environmental themes into physical education. Practical methodologies are proposed, including plogging, eco-games, and environmental awareness activities that can be effectively implemented in the school educational process.

3.9. Dmytro Rybachok. CYBER THREATS TO CRITICAL INFRASTRUCTURE: ANALYSIS OF VULNERABILITIES AND CONSEQUENCES FOR THE TRANSPORT, FINANCIAL, COMMUNICATION, AND OTHER SECTORS

The article explores the impact of cyber threats on critical infrastructure, such as transportation, finance, communication, and other sectors. It discusses the vulnerabilities that arise from the growing interdependence and automation of systems, and the potential consequences these threats pose for the economy and security. Special focus is given to the tactics used by malicious actors to execute attacks and the strategies that can be implemented to strengthen infrastructure resilience.

3.10. Mykola Sadovy, Olena Tryfonova. METHODOLOGY FOR TEACHING THE ESSENCE OF INDUSTRY 4.0 AND ITS ROLE IN THE IMPLEMENTATION OF WIRELESS TECHNOLOGIES

The article considers certain aspects of the methodology for teaching the concepts of Industry 4.0 and ways to implement wireless technologies based on digital transformation and digitalization. The implementation of certain tasks in educational institutions during the training of specialists contributes to increasing the efficiency of production and competitiveness of all areas of activity of scientists, subjects of education. The introduction of Industry 4.0 technologies, wireless technologies opens up new horizons and sets new tasks that motivate the transition to smart production. Technology 4.0 naturally emerged, which radically changed the approaches to managing production and other processes, creating equipment, new generation machines. Accordingly, the problem of accelerated transition, transformation from traditional to innovative in all areas of human activity arose.

3.11. Oleksandr Sheremeta, Valentyna Yuskovych-Zhukovska. IMPROVING THE EFFICIENCY OF UAV NAVIGATION IN GPS-INTERFERENCE CONDITIONS

The paper investigates the effectiveness of unmanned aerial vehicle navigation in modern electronic warfare conditions. The influence of GPS jamming and GPS spoofing on the effectiveness of drone target acquisition in conditions of deliberate GPS signal jamming and distortion is analysed. The potential of high-precision inertial navigation systems, visual odometry, ground beacons and combined sensor fusion architectures is considered. An approach to integrating alternative navigation modalities to reduce dependence on satellite systems in areas of active electronic warfare is proposed. The results of the study can be used in the design of interference-resistant navigation systems for small and medium-sized unmanned aerial vehicles.

3.12. Olga Shevchenko, Yuliia Myzina. PREVENTION OF POSTURE DISORDERS IN SCHOOLCHILDREN USING RHYTHMIC GYMNASTICS

The article substantiates preventive means of influencing the elimination of posture defects in schoolchildren through the interaction of gymnastic exercises and the principles of therapeutic physical culture. It is found that the musculoskeletal system plays a key role in the life of schoolchildren, and one of the prerequisites for deviations in their health is a violation of body posture. It has been proven that a significant role in the prevention and treatment of posture disorders in children belongs to therapeutic physical culture, since it is the only leading method that allows you to effectively strengthen the muscle corset, equalize muscle tone, the front and back surfaces of the torso, hips. It has been determined that corrective gymnastics is a key method in the prevention and correction of posture defects.

3.13. Natalia Sinitcka. METHODS OF WORKING WITH ALGORITHMS AND RULES IN THE SCHOOL MATHEMATICS COURSE

In this article we will consider the use of algorithms in the study of mathematics as one of the ways to educate algorithmic culture of schoolchildren. Algorithmization is based on rules that regulate activities when solving a certain task. After all, a large place in learning is occupied by the development of certain skills that should be carried out automatically. These skills are not important in themselves, they are a necessary component of any creative process. The creative process is impossible if its individual elements are not automated. An algorithmic process is a system of actions (operations) with an object, it is nothing more than a consistent and orderly selection of certain elements in a particular object. One of the advantages of algorithmization of learning is the possibility of formalization and model representation of this process.

3.14. Alexander Sklyarenko. INNOVATION MODEL AS THE MAIN FACTOR IN THE CONSTRUCTION AND DEVELOPMENT OF MODERN SOCIETY

The article substantiates the essence of innovations as a universal value of society, which is a combination of political, socio-economic, cultural, educational, organizational, managerial, technical and technological, and other determinants of innovative development of the state and society. The paper shows that the latest technologies penetrate into all spheres of society and form unique structural innovative changes in it, which will ultimately only increase the country's defense capability.

3.15. Liudmyla Sukhovirska, Vasyl Bolillyi. DEVELOPMENT OF A NETWORK INTERFACE CONFIGURATOR

The article presents the development process of a network interface configurator for Linux-based operating systems. The main goal is to simplify network interface configuration and centralize management via a unified web interface. The system supports eth, wlan, and lo interfaces in loopback, static, and DHCP modes. It includes a DNS management module, a log viewer module, and an automatic configuration backup feature. An intuitive graphical interface is implemented, suitable for both beginners and experienced users. The software has a modular architecture that allows for easy functional extension. Its file structure follows Debian / Ubuntu standards and can be flexibly configured. The development utilizes PHP, HTML, CSS, JavaScript, and XML technologies. Testing confirmed reduced configuration time and minimized error probability. The proposed configurator is an effective tool for managing network settings in Linux systems of various complexity levels.

3.16. Iryna Tarasova. ISSUES OF MEDICAL INFORMATION SECURITY UNDER THE LEGAL REGIME OF MARTIAL LAW IN UKRAINE

This publication is dedicated to current problems related to the introduction of information technologies in the life of society, namely in the field of healthcare and the need to strengthen the protection of medical information, including personal data about the patient in Ukraine.

The author considers two groups of issues: the distinction between the concepts of medical confidentiality and medical secrecy in the context of the legal admissibility of restricting the right to privacy in Ukraine during the legal regime of martial law, and the formation and development of the digital competence of a medical worker as a mandatory component of the cybersecurity of a healthcare institution.

3.17. Lesia Uhryna. MODELING THE IMPACT OF LANDFILL FLUE ON THE ECONOMIC AND ECOLOGICAL STATE OF TERRITORIES

The article considers the urgent problem of ensuring the ecological safety of territories as a component of the socio-ecological-economic systems of any country. Of particular importance is the study of the impact of landfill fumes on the economic and ecological state of regions, since these processes can cause complex environmental pollution, which negatively affects the health of the population and the quality of natural resources. In the context of modern challenges, in particular during full-scale military operations in Ukraine, the topic of controlling fumes from both operating landfills and unauthorized ones is becoming particularly relevant. It is necessary to implement conceptual approaches to monitoring and develop information systems for monitoring the state of landfills for the implementation of programs for sustainable environmental development of regions. Special attention is paid to informatization and continuous monitoring of the actual state of the environment near landfills. The paper explores the prospects for modeling and creating an automated information system for monitoring the impact of landfill fumes on the environment, capable of providing an operational assessment of the ecological state of territories in different regions of the country. The role of modern information technologies in increasing the efficiency of environmental control is emphasized, while emphasizing that the final result depends on the quality of the developed software. The proposed approach is aimed at supporting the adoption of informed management decisions in the field of environmental protection and sustainable development of territories.

3.18. Valeria Vasylenko. THE IMPACT OF DIGITAL TRANSFORMATION ON LITERACY AND COMMUNICATION PROCESSES IN MODERN SOCIETY

The article explores the impact of digital transformation on the development of digital literacy and communication processes in modern society. The structure of digital literacy is revealed, including information, communication, technological competences, security skills, and digital creativity. The role of digital skills in ensuring effective interaction in business, education, public administration, and the civic sector is highlighted. Key models of digital transformation (Digital Maturity Model, RAMS, MIT, ADKAR) are analyzed as a methodological framework for organizational change. Practical cases of Ukrainian companies are presented, demonstrating how digital strategies enhance competences and optimize communication. Under wartime conditions, challenges related to cybersecurity, countering disinformation, and maintaining the continuity of socio-economic processes are outlined. The importance of lifelong learning and digital skills development is emphasized as a prerequisite for adaptation to global digitalization.

3.19. Iryna Yemchenko. ENVIRONMENTAL PROBLEMS RESULTING FROM PREMATURE AGEING OF ELECTRONIC PRODUCTS

The article explores the issues related to the durability of technically complex products, primarily electronic equipment. It highlights the interrelation between the rapid renewal of electronic devices, the use of innovative technologies, and the growth of electronic waste. The essence and stages of development of the planned obsolescence strategy are described. The concept of deliberately reducing the service life of products is presented. Factors influencing consumer behavior within the framework of unethical practices of planned obsolescence applied by businesses are systematized. The reasons for the artificial limitation of product longevity are identified, and the genuine consumer needs for updated electronic goods, which differ from those shaped by unfair commercial practices, are analyzed.

3.20. Antonina Zarubina, Vitalii Kyrpenko, Nadiia Kolomiets. THE ROLE OF ACTIVE TOURISM AND SPORTS IN THE RECOVERY SYSTEM FOR UKRAINIAN MILITARY PERSONNEL

The article examines the importance of active tourism and adaptive sports in the rehabilitation of military personnel who have experienced physical and psychological trauma due to combat operations. It outlines key directions for using physical activity as a tool for comprehensive recovery and systematizes methods and opportunities provided by tourism and sports in restoring soldiers' combat readiness. Particular emphasis is placed on psychosocial adaptation and resocialization through group activities, natural environments, competitive practices, and intellectual self-realization. The article presents practical examples of active tourism implemented in Ukrainian and international rehabilitation initiatives. Empirical data are analyzed, indicating reduced anxiety, improved physical endurance, and enhanced emotional state among participants. Current studies are reviewed, and the prospects for introducing adaptive rehabilitation programs into Ukraine's healthcare system are highlighted.

ABOUT THE AUTHORS

CHAPTER 1. INNOVATIVE TECHNOLOGIES AND DIGITALIZATION IN EDUCATION

1.1. Valerii Atlanov – Higher Vocational School No. 21 of the city of Mykolaiv, Petro Mohyla Black Sea National University, Mykolaiv, Ukraine.

1.2. Viktoriia Atlanova – Mykolaiv Construction Vocational College of Kyiv National University of Construction and Architecture, Mykolaiv, Ukraine.

1.3. Olha Blaha – Ivano-Frankivsk Educational and Scientific Law Institute of the National University “Odesa Law Academy”, Ivano-Frankivsk, Ukraine

Stepan Nedilskyi – Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

1.4. Nelly Bondarenko – Institute of Pedagogy of the NAES of Ukraine, Kyiv, Ukraine

Serhii Kosianchuk – Kyiv Gymnasium of Eastern Languages No. 1, Kyiv, Ukraine.

1.5. Andrii Drobina – Kirovograd Regional In-Service Teacher Training Institute named after Vasyl Sukhomlynsky, Kropyvnytskyi, Ukraine.

1.6. Vladyslav Herasymenko – Sumy National Agrarian University, Sumy, Ukraine.

1.7. Natalia Honcharova – Donbas State Pedagogical University, Sloviansk, Ukraine.

1.8. Sabina Ivanchuk – Oles Honchar Dnipro National University, Dnipro, Ukraine.

1.9. Olena Kosovets – Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, Vinnytsia, Ukraine.

1.10. Iryna Krasheninnik – Bogdan Khmelnitsky Melitopol State Pedagogical University, Zaporizhzhia, Ukraine

Alona Chorna – Bogdan Khmelnitsky Melitopol State Pedagogical University, Zaporizhzhia, Ukraine.

1.11. Iurii Linnik – Rivne Medical Academy, Rivne, Ukraine.

Oksana Dovgalets – Rivne Medical Academy, Rivne, Ukraine.

Vita Sternyk – Rivne Medical Academy, Rivne, Ukraine.

1.12. Inna Naida – Kyiv Cooperative Institute of Business and Law, Kyiv, Ukraine.

Oleksandr Kalinichenko – Kyiv Cooperative Institute of Business and Law, Kyiv, Ukraine.

1.13. Natalia Pavlova – Rivne State Humanities University, Rivne, Ukraine.

1.14. Kateryna Petrovska – Berdyansk State Pedagogical University, Zaporizhzhia, Ukraine.

1.15. Oksana Polianska – Bucovinian State Medical University, Chernivtsi, Ukraine

Igor Polianskyi – Bucovinian State Medical University, Chernivtsi, Ukraine

Olha Hulaha – Bucovinian State Medical University, Chernivtsi, Ukraine

Inna Moskaliuk – University of Opole, Opole, Poland.

1.16. Tetyana Prykhodko – Oles Honchar Dnipro National University, Dnipro, Ukraine.

1.17. Sergiy Ryabets – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine

Olena Mykhaylova – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine.

1.18. Sofiia Tykhola – National Pirogov Memorial Medical University, Vinnytsya, Ukraine

Elvira Manzhos – National Pirogov Memorial Medical University, Vinnytsya, Ukraine.

1.19. Anna Velychko – Donbas State Pedagogical University, Sloviansk, Ukraine.

Yuliia Muskarina – Donbas State Pedagogical University, Sloviansk, Ukraine.

1.20. Anna Vozniuk – Oles Honchar Dnipro National University, Dnipro, Ukraine.

CHAPTER 2. ECONOMICS, GOVERNANCE AND SOCIAL TRANSFORMATIONS IN THE DIGITAL ERA

2.1. Vladyslav Ananchenko – The Academician Stepan Demianchuk International University of Economics and Humanities, Rivne, Ukraine

Yuri Lotyuk – The Academician Stepan Demianchuk International University of Economics and Humanities, Rivne, Ukraine.

2.2. Yuliia Bodashevsk – Polissia National University, Zhytomyr, Ukraine.

2.3. Alla Diachenko – Mykhailo Boichuk Kyiv State Academy of Decorative and Applied Arts and Design, Kyiv, Ukraine.

2.4. Viktoriia Filippovych – Poltava College of Oil and Gas of Yurii Kondratyuk National University “Poltava Polytechnic”, Poltava, Ukraine

Vladyslav Yaremenko – Poltava College of Oil and Gas of Yurii Kondratyuk National University “Poltava Polytechnic”, Poltava, Ukraine.

2.5. Yevhenii Hliebov – National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

Hanna Zavolodko – National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.

2.6. Olena Hurman – Khmelnytskyi Cooperative Trade and Economic Institute, Khmelnytskyi, Ukraine.

2.7. Viktoriia Kofman – Odesa National Economic University, Odesa, Ukraine.

2.8. Dmytro Lysytsia – Professional Medical College of Municipal Institution of Higher Education “Rivne Medical Academy” of Rivne Regional Council, Rivne, Ukraine

Ruslana Konoshchuk – Municipal Institution of Higher Education “Rivne Medical Academy” of Rivne Regional Council, Rivne, Ukraine

Vitaliy Undir – Rivne Regional Council, Rivne, Ukraine.

2.9. Natalia Lysiak – Lviv Polytechnic National University, Lviv, Ukraine

Nataliia Samotiy – Lviv Polytechnic National University, Lviv, Ukraine

Ivanna Pecheritsa – Lviv Polytechnic National University, Lviv, Ukraine.

2.10. Maryna Mashchenko – National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

Inna Ippolitova – National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

Iryna Lisna – National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.

2.11. Iryna Popovychenko – Ukrainian State University of Science and Technology, SEI Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine

Andrii Andriichuk – Ukrainian State University of Science and Technology, SEI Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine.

2.12. Viktoria Pryma – State University of Trade and Economics, Kyiv, Ukraine.

2.13. Kateryna Pylypenko – Bogdan Khmelnitsky Melitopol State Pedagogical University, Zaporizhzhia, Ukraine

Nataliia Runcheva – Bogdan Khmelnitsky Melitopol State Pedagogical University, Zaporizhzhia, Ukraine

Oksana Horiacha – Bogdan Khmelnitsky Melitopol State Pedagogical University, Zaporizhzhia, Ukraine.

2.14. Yuliia Rudenko – Kyiv Cooperative Institute of Business and Law, Kyiv, Ukraine.

2.15. Yulianna Tserkunyk-Kvitka – Taratskez Primary School, P. Katalin Frangepan Gymnasium, Teresva, Ukraine.

2.16. Leonid Tsubov – Institute of Entrepreneurship and Perspective Technologies Lviv Polytechnic National University, Lviv, Ukraine

Oresta Shcherban – Institute of Entrepreneurship and Perspective Technologies Lviv Polytechnic National University, Lviv, Ukraine

Liubov Kvasnii – Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine.

2.17. Olha Yuzyk – Rivne State University of Humanities, Rivne, Ukraine.

2.18. Liudmyla Zveruk – Kyiv Cooperative Institute of Business and Law, Kyiv, Ukraine

Dmitro Krasnozhon – Kyiv Cooperative Institute of Business and Law, Kyiv, Ukraine.

CHAPTER 3. TECHNOLOGY, SECURITY, AND SPECIALIZED APPLICATIONS

3.1. Viktoriya Babalich – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine

Tetiana Maleniuk – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine

Halyna Panchenko – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine.

3.2. Mariana Baran – Institute of Spatial Planning and Prospective Technologies Lviv Polytechnic National University, Lviv, Ukraine.

3.3. Serhii Bednarsky – Internet Service Provider Nashnet, Rivne, Ukraine

Yuriii Lotyuk – The Academician Stepan Demianchuk International University of Economics and Humanities, Rivne, Ukraine.

3.4. Dmytro Fylypiuk – Municipal Institution of Higher Education “Rivne Medical Academy” of Rivne Region Council, Rivne, Ukraine.

3.5. Tamila Golotsukova – V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Viktor Godliuk – V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

3.6. Vasyl Gorbachuk – V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Serhii Bespalov – National Academy of Sciences of Ukraine Presidium Apparatus, Kyiv, Ukraine

Maksym Dunaievskyi – V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

3.7. Vasyl Kot – Rivne Professional College of National University of Life and Environmental Sciences of Ukraine, Rivne, Ukraine

Iryna Yakymchuk – Rivne Professional College of National University of Life and Environmental Sciences of Ukraine, Rivne, Ukraine

Valentyna Yuskovych-Zhukovska – The Academician Stepan Demianchuk International University of Economics and Humanities, Rivne, Ukraine.

3.8. Olena Markova – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine

Oleksandr Hryhoriev – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine.

3.9. Dmytro Rybachok – V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

3.10. Mykola Sadovyi – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine

Olena Tryfonova – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine.

3.11. Oleksandr Sheremeta – The Academician Stepan Demianchuk International University of Economics and Humanities, Rivne, Ukraine

Valentyna Yuskovych-Zhukovska – The Academician Stepan Demianchuk International University of Economics and Humanities, Rivne, Ukraine.

3.12. Olga Shevchenko – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine

Yuliia Myzina – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine.

3.13. Natalia Sinitcka – Rivne State Humanitarian University, Rivne, Ukraine.

3.14. Alexander Sklyarenko – Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine, Kyiv, Ukraine.

3.15. Liudmyla Sukhovirska – Odesa, Ukraine

Vasyl Bolilyi – Odesa, Ukraine.

3.16. Iryna Tarasova – Kyiv Cooperative Institute of Business and Law, Kyiv, Ukraine.

3.17. Lesia Uhryna – Institute of Enterprise and Advanced Technologies Lviv Polytechnic National University, Lviv, Ukraine.

3.18. Valeria Vasylenko – Vasyl' Stus Donetsk National University, Vinnytsya, Ukraine.

3.19. Iryna Yemchenko – Institute of Sustainable Development named after V. Chornovil Lviv Polytechnic National University, Lviv, Ukraine.

3.20. Antonina Zarubina – Volodymyr Vynnychenko Central Ukrainian State University, Kropyvnytskyi, Ukraine.

Vitalii Kyrpenko – Ivan Kozhedub Kharkiv National University of the Air Force, Kharkiv, Ukraine

Nadiia Kolomiets – Ivan Kozhedub Kharkiv National University of the Air Force, Kharkiv, Ukraine.

978-83-68422-09-2