
M.Sc. [Computer Science]
II - Semester

341 22

Directorate of Distance Education

 DISTRIBUTED OPERATING
SYSTEMS

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: 7361, Ravindra Mansion, Ram Nagar, New Delhi 110 055
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE1-291/Preparation and Printing of Course Materials/2018 Dated 19.11.2018 Copies - 500

Authors

Dr Syed Mohsin Saif Andrabi, Assistant Professor, Islamic University of Science & Technology, Awantipora, Jammu and
Kashmir

Dr Mudasir M Kirmani, Assistant Professor-cum-Junior Scientist, Sher-e-Kashmir University of Sciences and Technology of
Kashmir
Units (1, 4, 5, 6.2-6.3, 7, 8, 10.0-10.1, 10.4-10.10)

Rohit Khurana, CEO, ITL Education Solutions Ltd.
Units (3.0-3.2, 14.0-14.2, 14.4-14.9)

V.K. Govindan, Professor, Computer Engineering, Department of Computer Science and Engineering, NIT, Calicut
Unit (13)

Vikas® Publishing House, Units (2, 3.3-3.8, 6.0-6.1, 6.4-6.9, 9, 10.2-10.3, 11, 12, 14.3)

"The copyright shall be vested with Alagappa University"

SYLLABI-BOOK MAPPING TABLE
 Distributed Operating Systems

BLOCK 1: FUNDAMENTALS
Unit - 1: Introduction: What is Distributed Operating System, Evolutions,
Models
Unit - 2: Issues in Designing Distributed Computing System
Unit - 3: Introduction to Computer Networks: Network Types, LAN,
WAN, Communication Protocols, Internetworking, ATM Technology

BLOCK 2 : MESSAGE PASSING
Unit - 4: Introduction: Features, Issued in PC Message Passing,
Synchronization
Unit - 5: Buffering, Multidatagram Messages, Encoding and Decoding
Unit - 6: Process Addressing, Failure Handling, Group Communication

BLOCK 3 : DISTRIBUTED SHARED MEMORY
Unit - 7: Introduction: General Architecture of DSM System, Design
and Implementation Issues of DSM, Granularity, Structure of Shared
Memory Consistency Models, Replacement Strategy, Thrasing
Unit - 8: Other Approaches to DSM, Heterogeneous DSM, Advantages
Unit - 9: Synchronization: Introduction, Clock Synchronization, Event
Ordering, Mutual Exclusion, Deadlock, Election Algorithm

BLOCK 4 : DISTRIBUTED FILE SYSTEM
Unit - 10: Introduction: Desirable Features, File Modes, File Accessing
Models
Unit - 11: File Sharing Semantics, File Caching Schemes, File
Replication
Unit - 12: Fault Tolerence, Atomic Transaction, Design Principles

BLOCK 5 : SECURITY
Unit - 13: Introduction: Potential Attacks to Computer System,
Cryptography, Authentication
Unit - 14: Access Control, Digital Signatures, Design Principles

Syllabi Mapping in Book

Unit 1: Introduction to Distributed
Operating System

(Pages 1-8);
Unit 2: Issues in Designing

Distributed Computing System
(Pages 9-16);

Unit 3: Introduction to Computer
Networks

(Pages 17-34)

Unit 4: Introduction to
Message Passing

(Pages 35-46);
Unit 5: Buffering and

Multidatagram Messages
(Pages 47-52);

Unit 6: Process Addressing
and Failure Handling

(Pages 53-70)

Unit 7: Introduction to DSM
(Pages 71-83);

Unit 8: Approaches to DSM
(Pages 84-89);

Unit 9: Synchronization
(Pages 90-113)

Unit 10: Introduction to DFS
(Pages 114-123);

Unit 11: File Sharing and Replication
(Pages 124-143);

Unit 12: Fault Tolerance and
Transaction in DFS

(Pages 144-159)

Unit 13: Introduction to Security
(Pages 160-174)

Unit 14: Access Control and
Design Principles
(Pages 175-184)

INTRODUCTION
BLOCK I: FUNDAMENTALS

UNIT 1 INTRODUCTION TO DISTRIBUTED OPERATING SYSTEM 1-8
1.0 Introduction
1.1 Objectives
1.2 Distributed Operating System
1.3 Evolution of Distributed Operating System
1.4 Models of Distributed Operating System
1.5 Answers to Check Your Progress Questions
1.6 Summary
1.7 Key Words
1.8 Self Assessment Questions and Exercises
1.9 Further Readings

UNIT 2 ISSUES IN DESIGNING DISTRIBUTED COMPUTING SYSTEM 9-16
2.0 Introduction
2.1 Objectives
2.2 Design Issues
2.3 Answers to Check Your Progress Questions
2.4 Summary
2.5 Key Words
2.6 Self Assessment Questions and Exercises
2.7 Further Readings

UNIT 3 INTRODUCTION TO COMPUTER NETWORKS 17-34
3.0 Introduction
3.1 Objectives
3.2 Computer Networks

3.2.1 Types of Networks
3.2.2 Network Topology
3.2.3 Switching Techniques
3.2.4 Communication Protocols

3.3 ATM Technology/Model
3.4 Answers to Check Your Progress Questions
3.5 Summary
3.6 Key Words
3.7 Self Assessment Questions and Exercises
3.8 Further Readings

BLOCK II: MESSAGE PASSING

UNIT 4 INTRODUCTION TO MESSAGE PASSING 35-46
4.0 Introduction
4.1 Objectives
4.2 Features
4.3 Issues in PC Messaging
4.4 Synchronization
4.5 Answers to Check Your Progress Questions

CONTENTS

4.6 Summary
4.7 Key Words
4.8 Self Assessment Questions and Exercises
4.9 Further Readings

UNIT 5 BUFFERING AND MULTIDATAGRAM MESSAGES 47-52
5.0 Introduction
5.1 Objectives
5.2 Buffering
5.3 Multi-Datagram Messages
5.4 Encoding and Decoding
5.5 Answers to Check Your Progress Questions
5.6 Summary
5.7 Key Words
5.8 Self Assessment Questions and Exercises
5.9 Further Readings

UNIT 6 PROCESS ADDRESSING AND FAILURE HANDLING 53-70
6.0 Introduction
6.1 Objectives
6.2 Introduction to Process Addressing
6.3 Failure Handling
6.4 Group Communication
6.5 Answers to Check Your Progress Questions
6.6 Summary
6.7 Key Words
6.8 Self Assessment Questions and Exercises
6.9 Further Readings

BLOCK III: DISTRIBUTED SHARED MEMORY

UNIT 7 INTRODUCTION TO DSM 71-83
7.0 Introduction
7.1 Objectives
7.2 General Architecture of the DSM System
7.3 Design and Implementation Issues of DSM
7.4 Granularity
7.5 Structure of Shared Memory Space
7.6 Consistency Models
7.7 Replacement Strategy
7.8 Thrashing
7.9 Answers to Check Your Progress Questions

7.10 Summary
7.11 Key Words
7.12 Self Assessment Questions and Exercises
7.13 Further Readings

UNIT 8 APPROACHES TO DSM 84-89
8.0 Introduction
8.1 Objectives
8.2 Design Approaches of DSM
8.3 Heterogeneous DSM
8.4 Advantages of DSM

8.5 Answers to Check Your Progress Questions
8.6 Summary
8.7 Key Words
8.8 Self Assessment Questions and Exercises
8.9 Further Readings

UNIT 9 SYNCHRONIZATION 90-113
9.0 Introduction
9.1 Objectives
9.2 Clock Synchronization and Event Ordering

9.2.1 Logical Clocks
9.2.2 Physical Clocks

9.3 Clock Synchronization Algorithms
9.3.1 Cristian's Algorithm
9.3.2 Berkeley's Algorithm
9.3.3 Averaging Algorithms
9.3.4 Multiple External Time Sources

9.4 Mutual Exclusion
9.4.1 Centralized Algorithm
9.4.2 Distributed Algorithm
9.4.3 Token Ring Algorithm

9.5 Election Algorithms
9.5.1 Bully Algorithm
9.5.2 Ring Algorithm

9.6 Deadlocks in Distributed Systems
9.6.1 Distributed Deadlock Detection

9.7 Answers to Check Your Progress Questions
9.8 Summary
9.9 Key Words

9.10 Self Assessment Questions and Exercises
9.11 Further Readings

BLOCK IV: DISTRIBUTED FILE SYSTEM

UNIT 10 INTRODUCTION TO DFS 114-123
10.0 Introduction
10.1 Objectives
10.2 DFS
10.3 Desirable Features
10.4 File Modes
10.5 File Accessing Models
10.6 Answers to Check Your Progress Questions
10.7 Summary
10.8 Key Words
10.9 Self Assessment Questions and Exercises

10.10 Further Readings

UNIT 11 FILE SHARING AND REPLICATION 124-143
11.0 Introduction
11.1 Objectives
11.2 Basic Concept of File

11.2.1 File Attributes
11.2.2 Semantics of File Sharing

11.3 Mechanisms of DFS
11.3.1 Naming
11.3.2 Remote File Access
11.3.3 Cache Mechanism
11.3.4 File Replication
11.3.5 System Structure

11.4 Directory Structures
11.4.1 Single-Level Structure
11.4.2 Two-Level Structure
11.4.3 Hierarchical Structure

11.5 Answers to Check Your Progress Questions
11.6 Summary
11.7 Key Words
11.8 Self Assessment Questions and Exercises
11.9 Further Readings

UNIT 12 FAULT TOLERANCE AND TRANSACTION IN DFS 144-159
12.0 Introduction
12.1 Objectives
12.2 Fault Tolerance
12.3 Atomic Transactions and Design Principles
12.4 Answers to Check Your Progress Questions
12.5 Summary
12.6 Key Words
12.7 Self Assessment Questions and Exercises
12.8 Further Readings

BLOCK V: SECURITY

UNIT 13 INTRODUCTION TO SECURITY 160-174
13.0 Introduction
13.1 Objectives
13.2 Security Attacks
13.3 Cryptography and Encryption
13.4 Authentication
13.5 Answers to Check Your Progress Questions
13.6 Summary
13.7 Key Words
13.8 Self Assessment Questions and Exercises
13.9 Further Readings

UNIT 14 ACCESS CONTROL AND DESIGN PRINCIPLES 175-184
14.0 Introduction
14.1 Objectives
14.2 Protection Mechanism and Access Control

14.2.1 Access Control List (ACL)
14.3 Digital Signatures
14.4 Design Principles for Security
14.5 Answers to Check Your Progress Questions
14.6 Summary
14.7 Key Words
14.8 Self Assessment Questions and Exercises
14.9 Further Readings

Introduction

NOTES

Self-Instructional
8 Material

INTRODUCTION

Distributed Operating System (DOS) is an operating system which manages a set
of independent computer systems, and makes these computer systems appear as
a single unit to the user of a system. In DOS, two types of hardware architectures—
parallel and distributed—can be used. Parallel architecture is a hardware
architecture in which there are multiple processors that are tightly coupled and
have a shared memory. Distributed hardware architecture is a hardware architecture
in which there are multiple loosely coupled computer systems, each system with
its own memory. Software architectures which can be used for DOS, include
multiprocessor Operating System (OS), network OS and distributed OS.
Multiprocessor OS is an operating system in which communication between
processors takes place through shared memory and a single-run queue. Network
OS is an operating system in which communication takes place using shared files
and n-run queues. Distributed OS is an operating system in which communication
takes place using messages and N-run queues.

DOS has a number of advantages over other network operating systems. It
provides an easy interface required to obtain services from different systems of
the network. This interface is implemented below the application program that
enables a user to use the existing systems easily. Another key advantage of DOS
is its communication techniques which are used to transfer messages from one
system to another. In DOS, every computer system has an operating system.
DOS provides an interface that a program can use to obtain services, such as
input and output services. DOS allows a computer in the distributed system to
execute a program and access data from another computer system.

This book, Distributed Operating Systems, follows the self-instruction
mode or the SIM format wherein each unit begins with an ‘Introduction’ to the
topic followed by an outline of the ‘Objectives’. The content is presented in a
simple and structured form interspersed with ‘Check Your Progress’ questions for
better understanding. At the end of the each unit a list of ‘Key Words’ is provided
along with a ‘Summary’ and a set of ‘Self Assessment Questions and Exercises’
for effective recapitulation.

NOTES

Self-Instructional
Material 1

Introduction to
Distributed Operating

System
BLOCK - I

FUNDAMENTALS

UNIT 1 INTRODUCTION TO
DISTRIBUTED OPERATING
SYSTEM

1.0 Introduction
1.1 Objectives
1.2 Distributed Operating System
1.3 Evolution of Distributed Operating System
1.4 Models of Distributed Operating System
1.5 Answers to Check Your Progress Questions
1.6 Summary
1.7 Key Words
1.8 Self Assessment Questions and Exercises
1.9 Further Readings

1.0 INTRODUCTION

In the last few decades, you have seen a rapid development in technology which
has resulted in facilitation of different tasks performed by a common man in their
daily lives. The cost of technology has become affordable to a common man which
has results in acceptance of technology by masses. The connectivity of computers
to internet has enabled to explore the whole world virtually. However, the
connectivity to internet involves different technologies working in tandem in order
to make the communication between any two devices possible. The computers
are connected with local networks which are further connected to network of
networks in order to make the communication between any two computers a
reality. The computers also known as nodes in which distance doesn’t matter but
the connectivity between the two nodes is very important in order to establish a
connection.

A computer is an electronic device which accepts inputs and processes as
per the requirement and at the end gives the output to the end-user. A computer
does not understand the language of a human therefore operating system works
as a interface between a computer and a user in order to use the computer for
improving the effectiveness and efficiency of different tasks performed. An
operating system is a program that acts as an intermediary between the user of
a computer and the computer hardware. The purpose of an operating system is

Introduction to
Distributed Operating
System

NOTES

Self-Instructional
2 Material

to provide an environment in which a user can execute programs in a convenient
and efficient manner. The operating system must ensure the correct operation of
the computer system and should prevent user programs from interfering with the
proper operation of the system by providing appropriate mechanisms. The
operating system provides certain services to programs and to the users of those
programs in order to make their tasks easier. The services differ from one
operating system to another. An operating system is a program that manages the
computer hardware.

Operating Systems are of different types and some of them are:

Single User OS: An operating system designed for use by a single individual, for
example MS-DOS (Microsoft Disk Operating System) is a single user operating
system.

Multi User OS: An operating system that can be used by more than one person.
Multi User operating system can be accessed simultaneously by several people
through communications facilities or via network terminals. Windows operating
system is one of the examples of multi user operating system.

Distributed OS: A form of information processing in which work is performed
by separate computers linked through a communications network. Distributed
operating system is usually categorized as either plain distributed processing or
true distributed processing. The distributed operating system has been discussed
in detail, later in this unit.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the concept of distributed operating system

 Understand the evolution of distributed OS

 Explain the various models of distributed OS

1.2 DISTRIBUTED OPERATING SYSTEM

The distributed operating system consists of different computers which are
connected with a network within a virtual shell. A user interacts with the virtual
shell in order to perform different tasks as and when needs arises but the distributed
operating system architecture delegates the responsibility of performing a task to
one or more computers within the virtual shell.

NOTES

Self-Instructional
Material 3

Introduction to
Distributed Operating

System

Fig. 1.1 View of Distributed Operating System

The dotted circle (boundary) in the Figure 1.1 gives an idea about the user’s
view of distributed operating system and the internal details are not visible to a
user. However, the developer’s view of the distributed operating system will be
component available within the dotted circle. The Figure 1.1 shows the availability
of components from 1 up to N which can vary from one scenario to other.

The components within a distributed operating system can be computers of
different operating system which are located at different sites for execution. All the
components are connected using a strong local area network as the same plays a
vital role in execution of a task within a distributed architecture.

The operating system generally provides different functions like process
management, input/ output management, memory management, file organization,
security & protection and network management. The distributed operating system
has different components which are responsible from different functions of an
operating system and all these components are connected with a network.
Whenever a user submits a command to a distributed operating system, the
instruction may require the services of one or more than one components of an
operating system. The user gets a feel as if the whole system is a single unit but
internally the whole system consists of sub systems which work in tandem in order
to achieve the centralized objective of a distributed operating system.

Plain distributed processing shares the workload among computers that
can communicate with one another. True distributed processing has separate
computers to perform different tasks in such a way that their combined work can
contribute to a goal. The latter type of processing requires a highly structured
environment that allows hardware and software to communicate, share resources,
and exchange information freely.

Introduction to
Distributed Operating
System

NOTES

Self-Instructional
4 Material

1.3 EVOLUTION OF DISTRIBUTED OPERATING
SYSTEM

The computers were having very less computing power in the early days of
computing when the computers were introduced. The pace of execution along
with processing power was increasing many-fold with the advances in technology.
Nowadays, minicomputers were used to process different volumes of data. With
the advancement in technology and increase in computer speed along with the
processing power of a processor, more complex processing along with huge
volumes of data was performed on personal computers. However, data analysis
where the volume of data was mammoth was performed on main-frame computers.
The main-frame computers were not appropriate options for processing of different
task in some case which led researchers in exploring option to find different
alternatives and one of the alternatives provided by the research community was
distributed operating system architecture. The distributed architecture was about
delegating the responsibility among one or more computers connected together
within a network. This feature of distributed architecture allowed an end user to
get higher speed and better processing power. The architecture helped researchers
to increase the processing power to manifold by integrating the resources of different
independent computers as a single virtual computer. The distributed architecture is
not only about hardware rather it is amalgamation of hardware utilization along
with appropriate software which help the system to perform with efficiency and
effectiveness.

The distributed architecture was further enhanced with the advent of RPC
remote procedure calls. The RPCs gained prominence due to the availability of
TCP/IP protocol which is known as Transmission Control Protocol/ Internet
Protocol. The RPCs helps an individual to execute different commands and
instructions on any computer remotely provided the computer is part of a network
which a user has permissions to access. The feature has led to more prominence
and relevance to the need of distributed operating system architectures in providing
higher processing power to an end-user.

Initially the architectural framework was designed to perform batch
processing which was later on improved with the inception of minicomputers. The
mini computers enabled the researchers to incorporate the concept of master/
slave where a computer was nominated as master and other connected nodes
were treated as slaves. The complete execution of a process from inception till
maturity was monitored by master and all the slaves will execute the orders of the
master as per the requirement of a process or task. As the size of computers was
reduced dramatically and with the increase in the processing power of
microcomputers the processing within a distributed operating system become more
easy, effective and efficient. Nowadays the networks that allow user to connect to
internet has reached newer heights in terms of performance, scalability and security

NOTES

Self-Instructional
Material 5

Introduction to
Distributed Operating

System

which has resulted in leveraging from the advancements in networks by
incorporating the high end servers to help in distributed computing with the help of
strong, reliable and secure networks.

1.4 MODELS OF DISTRIBUTED OPERATING
SYSTEM

The models in distributed operating system can also be termed as architectural
models. These models give a brief idea about the connection of different components
within a distributing operating system of distributed computing. The information
about the architectures helps the researchers in devising policies and procedures
to make these systems more scalable, robust, effective and efficient. The different
architectural models of distributed operating system are listed below:

1. Interaction Model

2. Failure Model

3. Security Model

Interaction model

In the interaction model, the issues related to the interaction of process are included
like timing of events. An example of an interaction model can be a client-server
architecture where a client submits a request to the server and the server responds
with a reply.

In a distributed operating system environment, all the clients need to interact with
the server in order to process a request. The server in turn manages and monitors
the processing within all the components of a distributed operating system connected
with a network. However, the communication between the client and the server
result in different issues which need to be addressed by the developers appropriately.

The interaction model can be categorized into two main categories which are
given below:

(i) Synchronous Model

(ii) Asynchronous Model

The Failure Model

Failure Model uses the specifications of different faults that occur during the
processing of a process and while communicating between the different components
of a process. The failure model handles different situation where failures do occur
provided the system is able to identify and detect a failure like Omission failure,
Byzantine (Arbitrary) Failure and timing failures etc.

Introduction to
Distributed Operating
System

NOTES

Self-Instructional
6 Material

The Security Model

The Security Model uses the specifications of different threats that occur during
the processing of a process and while using the communication channels which
play a pivotal part in execution of any process in a distributed operating system.
Security threats in a distributed operating system are generally attacks that are
intended to break the communication channel or to make a communication process
unsuccessful which will result in failure of a distributed operating system.

Some of the commonly occurred threats are list below:

 Unauthorized connection to network

 Identity Threat

 Denial of Service

 Modification/ Deletion of message in a communication channel

 Trojan Horse

 Virus

 Worm

 Server overloading

In order to make any system secure the recommendation is always to use
pro-active approach which is similar to the approach of “Prevention is better than
cure” where the impact of threats can be mitigated by properly monitoring the
processing of tasks and by taking preventive measuring for mitigating the impact
of threats.

Check Your Progress

1. What do you understand by distributed OS?

2. What are the two categories of interaction model?

1.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Distributed OS is a form of information processing in which work is
performed by separate computers linked through a communications
network.

2. Interaction model is categorized into synchronous and asynchronous
model.

NOTES

Self-Instructional
Material 7

Introduction to
Distributed Operating

System
1.6 SUMMARY

 The distributed operating system consists of different computers which are
connected within a network within a virtual shell. A user interacts with the
virtual shell in order to perform different tasks as and when needs arises.

 The components within a distributed operating system can be computers of
different operating system which are located at different sites for execution.

 The models in distributed operating system can also be termed as architectural
models. These models give a brief idea about the connection of different
components within a distributing operating system of distributed computing.

 In the interaction model, the issues related to the interaction of process are
included like timing of events.

 Failure Model uses the specifications of different faults that occur during the
processing of a process and while communicating between the different
components of a process.

 The Security Model uses the specifications of different threats that occur
during the processing of a process and while using the communication
channels which play a pivotal part in execution of any process in a distributed
operating system.

1.7 KEY WORDS

 Distributed system: A collection of hardware and software components
which are connected through a network and distributed system layer
(middleware) which allows these components to communicate and
coordinate with each other and share the resources in such a way that it
appears to its user as a single computing facility.

 Process: A program under execution or we can say an executing set of
machine instructions.

1.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write a short note on distributed operating system.

2. What are the various functions of OS?

3. Discuss the evolution of distributed OS.

Introduction to
Distributed Operating
System

NOTES

Self-Instructional
8 Material

Long Answer Questions

1. Explain the concept of distributed OS with the help of a diagram.

2. What are the various models of distributed operating system? Explain.

1.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 9

Issues in Designing
Distributed Computing

SystemUNIT 2 ISSUES IN DESIGNING
DISTRIBUTED
COMPUTING SYSTEM

2.0 Introduction
2.1 Objectives
2.2 Design Issues
2.3 Answers to Check Your Progress Questions
2.4 Summary
2.5 Key Words
2.6 Self Assessment Questions and Exercises
2.7 Further Readings

2.0 INTRODUCTION

In the previous unit, you have learnt that a distributed system consists of a large
number of CPUs connected to a high-speed network. An important feature of
distributed systems is the linkage between multiple processors for processing data.
The processors can be of different types such as bus-based multiprocessor and
switched multiprocessor. In this unit, you will learn about the various design issues
such as transparency, flexibility and performance, of distributed systems.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the various design issues of distributed systems

 Discuss the various types of transparencies

 Understand the bottlenecks in developing a large system

2.2 DESIGN ISSUES

The design issues in a distributed system help engineers in developing the distributed
system effectively. The various design issues in the development of distributed
systems are stated as follows:

 Transparency

 Flexibility

 Reliability

 Performance

 Scalability

Issues in Designing
Distributed Computing
System

NOTES

Self-Instructional
10 Material

Transparency

A distributed system is said to be transparent if the users of the system feel that the
collection of machines is a timesharing system and belongs entirely to him.
Transparency can be achieved at two different levels. In the first level, the distribution
of the system is hidden from the users: for example, in UNIX, when a user compiles
his program using the make command, compilation takes place in parallel on
different machines, which use different file systems. The whole system can be
made to look like a single-processor system.

In the other level, the system is made to look transparent to the programs. The
system call interface can be designed in such a way that the existence of multiple
processors can be hidden. This process is more difficult than the first process.
There are various types of transparency in the distributed system, which are stated
as follows:

 Location transparency: It implies that in a true distributed system, the
user cannot tell the location of hardware and software resources, such as
CPU, printer, database and files: for example, if a user wants to change his
address in the database, then he can update the database with his new
address. But while doing so, he does not need to know where the database
is stored.

 Migration transparency: It implies that the resources should move from
one location to another without changing their names: for example, consider
that there is a file with the hierarchy fun/games. An user decides that playing
games is fun and changes the file from fun/games to games/fun. Then if
some other client will boot the system, he will not see the file as fun/games
but as games/fun.

 Replication transparency: It means that the OS in a distributed system
has the authorization to create additional copies of files and resources without
involving the user. It means that the user does not know about the number
of the copies of the files that exist: for example, consider a collection of
servers, which are logically connected to each other to form a ring. Each
server maintains the directory tree structure of files. If a client sends a request
to read a file to any of the servers, it will reply only if it contains the file;
otherwise, it forwards the request to the next server. The next server repeats
the same process. In replication transparency, servers can make multiple
copies of files, which are heavily used.

 Concurrency transparency: It suggests that multiple users can use the
resources automatically. The problem arises when two or more users try to
access the same resource or update the same file concurrently. In such a
situation, the system locks the resource or the file if someone else starts
accessing it. The lock is released only after the user has finished accessing
the resource or the file.

NOTES

Self-Instructional
Material 11

Issues in Designing
Distributed Computing

System

 Parallelism transparency: It refers to the parallel execution of activities
without the user’s knowledge: for example, if the user wants to evaluate the
boards of the chess program, multiple situations have to be evaluated in
parallel. After evaluating the results, they all send the result to the system
and the user can see the result on the screen.

Flexibility

Flexibility in distributed systems is important because this system is new for
engineers, and thus there may be false starts and it might be required to backtrack
the system. The design issues might prove wrong in the later stages of development.
There are two different schemes for building distributed systems. The first one,
called monolithic kernel, states that each machine should run a traditional kernel,
which provides most of the services itself. Figure 2.1 shows a monolithic kernel.

Fig. 2.1 Monolithic Kernel

Monolithic kernel is the centralized OS, which has networking ability and
remote services. The system calls are made by locking the kernel, then the desired
task is performed and the kernel is released after returning the result to the user. In
this approach, the machines have their own disks and maintain their own local file
system.

The other one, called microkernel, states that the kernel should provide
very little services and most of the OS services should be provided from the user-
level servers. Figure 2.2 shows a microkernel.

Fig. 2.2 Microkernel

Issues in Designing
Distributed Computing
System

NOTES

Self-Instructional
12 Material

Most of the distributed systems are designed to use microkernel because it performs
very few tasks. As a result, these systems are more flexible. The services provided
by the microkernel are stated as follows:

 It provides interprocess communication.

 It manages the memory.

 It performs low-level process management and scheduling.

 It also performs low-level I/O.

These services are provided by the microkernel because it is expensive for the
user-level servers to provide these services. However, it does not provide the file
system, directory system, process management and system calls. If the user wants
to search for a name, he sends the request to the server, which returns the result
after searching. The advantages of this system are stated as follows:

 It is easy to install, implement and debug.

 There is a well-defined interface for each service.

 Each service is equally accessible to all the clients.

 It is more flexible as users have the ability to add, delete and modify the
services because it does not involve stopping or booting the kernel.

 The users can write their own services.

The microkernel is more powerful as compared to the monolithic kernel
because there can be multiple file servers in the distributed system in which one
supports MS-DOS and the other one uses the UNIX file system. Individual users
can decide to use either of them or both in the microkernel, whereas in the
monolithic kernel, the users do not have any choice. The disadvantage of using the
microkernel is its poor performance. The monolithic kernel is faster as it locks the
kernel to perform the task rather than sending the request to the server to perform
the task as in the case of the microkernel.

Reliability

Distributed systems are more reliable than single-processor systems because if
one system in a distributed system stops functioning, other systems can take over.
Some other machine can take up the job of the machine that is not working. There
are various issues related to reliability, which are stated as follows:

 Availability: It refers to the fraction of time during which the system is
usable. The availability of a system can be ensured with the design, which
does not require simultaneous use of key components. In other words, the
components, which are required very often, should not be used concurrently.
The resources or files, which are used frequently, can be replicated. If any
one of them is occupied by one process or fails, the other processes do not
have to wait indefinitely. The data, which is required frequently, can be
stored on multiple servers for quick access. But it must be ensured that all

NOTES

Self-Instructional
Material 13

Issues in Designing
Distributed Computing

System

the copies are consistent with each other. If one file is updated, all the other
copies should also be updated.

 Security: It implies that anyone can access the data stored on a distributed
system. As a result, it should be protected from unauthorized access. This
problem also persists in single-processor systems. But in single-processor
systems, the users are required to log in, and thus they are authenticated
and the system can check the permission of the user. But in a distributed
system, the system has no provision for determining the user and his
permission. Anyone can send the request for any file or data in the distributed
system. As a result, the issue of security has to be kept in mind while designing
the distributed systems.

 Fault tolerance: It refers to masking of failure of one of the servers from
the users. Suppose while processing some task, one of the servers crashes
and quickly reboots. Then, the user will not be able to know what has
happened and the data will be lost. Distributed systems should be designed
in such a way that even if one of the servers crashes, another server takes
up the job and continues evaluating it. If there is cooperation between the
servers, the user will not be able to know that the server has crashed and
his work will also be completed, though with a little degradation in the
performance.

Performance

Building a system, which is flexible and reliable, is of no use if the system is
slower than a single-processor system. To measure the performance of the system,
various performance metrics are used, such as number of jobs per hour, system
utilization and amount of network capacity consumed. The result of any standard
used to measure the performance of the system is dependent on the nature of
the standard. A standard, which involves a large number of CPU-related
computations, will give results different from that of which involves scanning and
searching a file for some pattern. In a distributed system, performance is measured
by the communication between two users. Sending a message from one system
to another and getting a reply does not take much time. Time is wasted in
waiting for the protocols, which are used to handle the messages. To increase
the performance of the system, it is required to run as many activities as possible
at a time. But this requires sending a large number of messages. To solve this
problem, it is important to analyse the grain size of all the computations. First of
all, small computations, such as addition of two numbers, has to be performed
and then complex computations should be performed. This is because large
complex computations require more CPU cycles as compared to simple
computations. There are some processes in distributed systems, which require
simple computations but involve high interaction with one another. These
processes are said to have fine-grained parallelism. On the other hand, processes,
which involve large computations and require low interaction with one another,

Issues in Designing
Distributed Computing
System

NOTES

Self-Instructional
14 Material

are said to exhibit coarse-grained parallelism. Processes, which have coarse-
grained parallelism, are preferred over processes having fine-grained parallelism.
Better reliability can be achieved when the servers cooperate on a single request:
for example, when the request arrives at the server, it can send a copy of the
message to the other server for reliability. If the first server crashes before
completing the task, the other server can continue the task. When the task is
completed, the server has to inform the first server that the task has been
completed. This provides more reliability to the system but involves extra
messages across the network, which does not produce any output.

Scalability

Distributed systems are designed to work with a few hundred CPUs. There may
be situations in future when the systems are much bigger than the systems, which
are presently used. As a result, the solution, which works well, may not work well
for the system containing very large number of CPUs: for example, consider that
the postal, telephone and telegraph administration decides to install a terminal in
every house and business in its area. The terminal will allow the people to access
the online database containing all the telephone numbers in the area. Thus, there is
no need for printing and distributing telephone directory. When all the terminals
are placed, they can also be used for e-mails. Using this system, the users can
access all the databases and services, such as electronic banking and ticket
reservation. There are certain bottlenecks in developing such a large system, which
are stated as follows:

 Centralized components: There should not be any centralized components
in the systems: for example, if there is a single centralized mail server for all
the users of the system, the traffic over the network will increase. The system
will not be able to tolerate faults and also if any one of the systems fails, the
whole system will crash.

 Centralized tables: If the data of the users is stored in the centralized
tables, the communication lines will be blocked. Thus, the system will become
prone to faults and failures.

 Centralized algorithms: If the messages in such a large system are sent
using a single algorithm, it will take much time to reach the destination due
to the large number of users and traffic.

In such a large system, only decentralized algorithms should be used. The
characteristics of decentralized systems are stated as follows:

 No machine has the complete information about the system.

 The decisions made by the machines are based on local information.

 Failure of any one system does not affect the overall system.

NOTES

Self-Instructional
Material 15

Issues in Designing
Distributed Computing

SystemCheck Your Progress

1. Define the term transparency in distributed system.

2. What is the significance of flexibility in distributed systems?

2.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A distributed system is said to be transparent if the users of the system feel
that the collection of machines is a timesharing system and belongs entirely
to him.

2. Flexibility in distributed systems is important because the system is new for
engineers, and thus there may be false starts and it might be required to
backtrack the system.

2.4 SUMMARY

 The design issues in a distributed system help engineers in developing the
distributed system effectively.

 A distributed system is said to be transparent if the users of the system feel
that the collection of machines is a timesharing system and belongs entirely
to him.

 Transparency can be achieved at two different levels. In the first level, the
distribution of the system is hidden from the users. In the other level, the
system is made to look transparent to the programs.

 Flexibility in distributed systems is important because this system is new for
engineers, and thus there may be false starts and it might be required to
backtrack the system.

 Distributed systems are more reliable than single-processor systems because
if one system in a distributed system stops functioning, other systems can
take over.

 Building a system, which is flexible and reliable, is of no use if the system is
slower than a single-processor system. To measure the performance of the
system, various performance metrics are used, such as number of jobs per
hour, system utilization and amount of network capacity consumed.

2.5 KEY WORDS

 Monolithic Kernel: It is an operating system architecture where the entire
operating system is working in kernel space.

Issues in Designing
Distributed Computing
System

NOTES

Self-Instructional
16 Material

 Microkernel: It states that the kernel should provide very little services
and most of the OS services should be provided from the user-level servers.

2.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. List the various types of design issues in distributed systems.

2. Discuss the advantages of microkernel system.

3. How the performance of a distributed system is important?

Long Answer Questions

1. What are the various types of transparencies? Explain.

2. What are the two types of schemes for building distributed system?

3. What are the various issues related to reliability of distributed system?

2.7 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 17

Introduction to Computer
NetworksUNIT 3 INTRODUCTION TO

COMPUTER NETWORKS
3.0 Introduction
3.1 Objectives
3.2 Computer Networks

3.2.1 Types of Networks
3.2.2 Network Topology
3.2.3 Switching Techniques
3.2.4 Communication Protocols

3.3 ATM Technology/Model
3.4 Answers to Check Your Progress Questions
3.5 Summary
3.6 Key Words
3.7 Self Assessment Questions and Exercises
3.8 Further Readings

3.0 INTRODUCTION

In this unit, you will learn about the basic concept of networks. Computers are
connected by many different technologies. A network is a system of two or more
computers that can interconnect in a peer-to-peer or client-to-server fashion, most
often over a virtual and shared connection. In this unit, you will also learn about the
different network classifications, such as LAN, WAN and ATM technology.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the different types of networks

 Discuss the different types of network topologies

 Describe the various types of communication protocols

 Explain the Asynchronous Transfer Mode reference model

3.2 COMPUTER NETWORKS

Computer networks form the basis for the distributed systems. A computer network
includes both networking hardware and software. Networking hardware deals
basically with networking technology and design of computer networks, and
software deals with implementing communication between a pair of processes.
The reliability and throughput of a distributed system is determined by the underlying

Introduction to Computer
Networks

NOTES

Self-Instructional
18 Material

hardware and software. In this section we will discuss some of the hardware and
software aspects of networking.

3.2.1 Types of Networks

A computer network can be as small as several personal computers on a small
network or as large as the Internet. Depending on the geographical area they
span, computer networks can be classified into two main categories, namely, local
area networks and wide area networks.

Local Area Networks

A Local Area Network (LAN) is the network restricted to a small area such as an
office or a factory or a building. It is a privately owned network that is confined to
an area of few kilometers. In a LAN, the computers connected have a network
operating system installed in them. One computer is designated as the file server
which stores all the software that controls the network and the software that can
be shared by the computers attached to the network. The other computers
connected to the file server are called workstations. The workstations can be less
powerful than the file server and may have additional software on their hard drives.
On most LANs, cables are used to connect the computers. Generally, a LAN
offers a bandwidth of 10 to 10 Gbps. LANs are distinguished from other networks
by three main characteristics including their size, topology, and transmission
technology.

Fig. 3.1 Local Area Network

Wide Area Network (WAN)

A Wide Area Network (WAN) spreads over a large geographical area like a
country or a continent. It is much bigger than a LAN and interconnects various
LANs. This interconnection helps in a faster and more efficient exchange of
information at a higher speed and low cost. These networks use telephone lines,
satellite transmission and other long-range communication technologies to connect
the various networks. For example, a company with offices in New Delhi, Chennai
and Mumbai may connect their individual LANs together through a WAN. The
largest WAN in existence is the Internet.

NOTES

Self-Instructional
Material 19

Introduction to Computer
Networks

Fig. 3.2 Wide Area Network

3.2.2 Network Topology

A network topology refers to the way a network is laid out either physically or
logically. The selection of a particular topology is important and depends upon the
number of factors like cost, reliability and flexibility. The various network topologies
include bus, ring, star, tree, mesh, and graph.

Bus/Linear Topology

The bus topology uses a common single cable to connect all the workstations.
Each computer performs its task of sending messages without the help of the
central server. Whenever a message is to be transmitted on the network, it is
passed back and forth along the cable from one end of the network to the other.
However, only one workstation can transmit a message at a particular time in the
bus topology.

As the message passes through each workstation, the workstations check
the message’s destination address. If the destination address in the message does
not match with the workstation’s address, the bus carries the message to the next
station until the message reaches its desired workstation. Note that the bus
comprises terminators at both ends. The terminator absorbs the message that
reaches the end of the medium. This type of topology is popular because many
computers can be connected to a single central cable.

Fig. 3.3 Bus Topology

Introduction to Computer
Networks

NOTES

Self-Instructional
20 Material

Advantages

 It is easy to connect and install.

 It involves a low cost of installation.

 It can be easily extended.

Disadvantages

 The entire network shuts down if there is a failure in the central cable.

 Only a single message can travel at a particular time.

 It is difficult to troubleshoot an error.

Ring/Circular Topology

In the ring topology, the computers are connected in the form of a ring without any
terminated ends. Every workstation in the ring topology has exactly two neighbours.
The data is accepted from one workstation and is transmitted to the destination
through a ring in the same direction (clockwise or counter clockwise) until it reaches
its destination.

Each node in a ring topology incorporates a repeater. That is, each
workstation re-transmits data or message received from a neighbouring
workstation, no signal is lost and hence, repeaters are not required. In addition,
since the ring topology does not have a terminator that terminates the message
received, the source computer needs to remove the message from the network.

Fig. 3.4 Ring Topology

Advantages

 It is easy to install.

 It uses lesser cable length for the installation.

 Every computer is given equal access to the ring.

NOTES

Self-Instructional
Material 21

Introduction to Computer
Networks

Disadvantages

 The maximum ring length and the number of nodes are limited.

 A failure in any cable or node breaks the loop and can take down the entire
network.

Star Topology

In the star topology, the devices are not directly linked to each other but are
connected through a centralized network component known as the hub or the
concentrator. Computers connected to the hub by cable segments send their
traffic to the hub that resends the message either to all the computers or only to the
destination computer. The hub acts as a central controller and if a node wants to
send the data to another node, it boosts up the message and sends the message to
the intended node. This topology commonly uses twisted pair cable, however,
coaxial cable or optical fibre can also be used.

It is easy to modify and add new computers to a star network without
disturbing the rest of the network. Simply a new line can be added from the
computer to the central location and plugged into the hub. However, the number
of systems that can be added depends upon the capacity of the hub.

Fig. 3.5 Star Topology

Advantages

 It is easy to troubleshoot.

 A single node failure does not affect the entire network.

 The fault detection and removal of faulty parts is easier.

 In case a workstation fails, the network is not affected.

Introduction to Computer
Networks

NOTES

Self-Instructional
22 Material

Disadvantages

 It is difficult to expand.

 The cost of the hub and the longer cables makes it expensive over others.

 In case hub fails, the entire network fails.

Tree Topology

The tree topology combines the characteristics of the bus and star topologies. It
consists of groups of star-configured workstations connected to a bus backbone
cable. Every node is not directly plugged to the central hub. The majority of nodes
connect to a secondary hub which in turn is connected to the central hub. Each
secondary hub in this topology functions as the originating point of a branch to
which other nodes connect. This topology is commonly used where a hierarchical
flow of data takes place.

Fig. 3.6 Tree Topology

Advantages

 It eliminates network congestion.

 The network can be easily extended.

 The faulty nodes can easily be isolated from the rest of the network.

Disadvantages

 It uses large cable length.

 It requires a large amount of hardware components and hence, is expensive.

 The installation and reconfiguration of the network is very difficult.

Mesh Topology

In the mesh topology, each workstation is linked to every workstation in the
network. That is, every node has a dedicated point-to-point link to every other

NOTES

Self-Instructional
Material 23

Introduction to Computer
Networks

node. The messages sent on a mesh network can take any of the several possible
paths from the source to the destination. A fully connected mesh network with n
devices has n(n-1)/2 physical links. For example, if an organization implementing
the topology has 8 nodes, 8(8-1)/2, that is, 28 links are required. In addition,
routers are used to dynamically select the best path to be used for transmitting the
data.

The mesh topology is commonly used in large Internet-working environment
because it provides extensive back up and outing capabilities. This topology is
ideal for distributed computers.

Fig. 3.7 Mesh Topology

Advantages

 The availability of large number of routes eliminates congestions.

 It is fault tolerant, that is, failure of any route or node does not result in
network failure.

Disadvantages

 It is expensive as more cabling is required.

 It difficult to install.

Graph Topology

In a graph topology, the nodes are connected randomly in an arbitrary fashion.
There can be multiple links and all the links may or may not be connected to all the
nodes in the network. However, if all the nodes are linked through one or more
links, the layout is known as a connected graph.

3.2.3 Switching Techniques

The main aim of networking is transfer of the data or messages between different
computers. The data is transferred using switches that are connected to
communication devices directly or indirectly. On a network, switching means routing

Introduction to Computer
Networks

NOTES

Self-Instructional
24 Material

traffic by setting up temporary connections between two or more network points.
This is done by the devices located at different locations on the network called
switches (or exchanges). A switch is a device that selects an appropriate path or
circuit to send the data from the source to the destination. In a switched network,
some switches are directly connected to the communicating devices while others
are used for routing or forwarding information.

Fig. 3.8 Switched Network

Figure 3.8 depicts a switched network in which the communicating computers
are labelled 1, 2, 3, etc., and the switches are labelled I, II, III, IV, etc. Each
switch is connected either to a communicating device or to any other switch for
forwarding information. The technique of using the switches to route the data is
called a switching technique (also known as connection strategy). A switching
technique basically determines when a connection should be set up between a
pair of processes, and for how long it should be maintained. There are three
types of switching techniques, namely, circuit switching, message switching and
packet switching.

Circuit Switching

In the circuit switching technique, first, the complete end-to-end transmission path
between the source and the destination computers is established and then the
message is transmitted through the path. The main advantage of this technique is
that the dedicated transmission path provides a guaranteed delivery of the message.
It is mostly used for voice communication such as in the Public Switched Telephone
Network (PSTN) in which when a telephone call is placed, the switching equipment
within the telephone system seeks out a physical path all the way from the computer
to the receiver’s telephone.

In circuit switching, the data is transmitted with no delay (except for negligible
propagation delay). In addition, this technique is simple and requires no special
facilities. Hence, it is well suited for low speed data transmission.

NOTES

Self-Instructional
Material 25

Introduction to Computer
Networks

Fig. 3.9 Circuit Switching

Message Switching

In the message switching technique, no physical path is established between sender
and receiver in advance. This technique follows the store and forward mechanism.
In this mechanism, a special device (usually a computer system with large memory
storage) in the network receives the message from the source computer and stores
it in its memory. It then finds a free route and sends the stored information to the
intended receiver. In this kind of switching, a message is always delivered to one
device where it is stored and then rerouted to its destination.

Fig. 3.10 Message Switching

Message switching is one of the earliest types of switching techniques, which
was common in the 1960s and 1970s. As delays in such switching are inherent
(time delay in storing and forwarding the message) and a large capacity of data
storage is required, this technique has virtually become obsolete.

Packet Switching

In the packet switching technique, the message is first broken down into fixed size
discreet units known as packets. The packets are discrete units of variable length
block of data. Apart from data, the packets also contain a header with the control
information such as the destination address, priority of the message, etc. The packets
are transmitted from the source to its local Packet Switching Exchange (PSE).
The PSE receives the packet, examines the packet header information and then
passes the packet through a free link over the network. If the link is not free, the
packet is placed in a queue until it becomes free. The packets travel in different

Introduction to Computer
Networks

NOTES

Self-Instructional
26 Material

routes to reach the destination. At the destination, the Packet Assembler and
Disassembler (PAD) puts each packet in order and assembles the packet to
retrieve the information.

The benefit of packet switching is that since packets are short, they are
easily transferred over a communication link. Longer messages require a series of
packets to be sent, but do not require the link to be dedicated between the
transmission of each packet. This also allows packets belonging to other messages
to be sent between the packets of the original message. Hence, packet switching
provides a much fairer and efficient sharing of the resources. Due to these
characteristics, packet switching is widely used in data networks like the Internet.

Fig. 3.11 Packet Switching

The comparison of the three switching techniques is listed in Table 3.1

Table 3.1 Comparison between the Various Switching Techniques

Criteria Circuit Message Packet

Path established in advance Yes No No

Store and forward technique No Yes Yes

Message follows multiple routes No Yes Yes

3.2.4 Communication Protocols

A communication protocol (also known as a network protocol) is a set of rules
that coordinates the exchange of information. If one computer is sending information
to another and they both follow the same protocol, the message gets through;
regardless of what types of machines they are and on what operating systems they
are running. As long as machines have software that can manage the protocol,
communication is possible. The two most popular types of communication protocols
are the ISO protocol and TCP/IP protocol.

NOTES

Self-Instructional
Material 27

Introduction to Computer
Networks

ISO Protocol

The International Standards Organization (ISO) provided an Open Systems
Interconnection (OSI) reference model for communication between two end users
in a network. In 1983, ISO published a document called ‘The Basic Reference
Model for Open Systems Interconnection’ which visualizes network protocols as
a seven-layered model. The model lays a framework for the design of network
systems that allow for communication across all types of computer systems. It
consists of seven separate but related layers, namely, Physical, Data Link, Network,
Transport, Session, Presentation and Application.

A layer in the OSI model communicates with two other OSI layers, the
layer directly above it and the layer directly below it. For example, the data link
layer in System X communicates with the network layer and the physical layer.
When a message is sent from one machine to another, it travels down the layers on
one machine and then up the layers on the other machine. This route is illustrated
in Figure 3.12.

Fig. 3.12 Communication between two machines using OSI Model

As the message travels down the first stack, each layer (except the physical
layer) adds header information to it. These headers contain control information
that are read and processed by the corresponding layer on the receiving stack. At
the receiving stack, the process happens in reverse. As the message travels up the
other machine, each layer strips off the header added by its peer layer.

Introduction to Computer
Networks

NOTES

Self-Instructional
28 Material

The seven layers of the OSI model are listed here.

 Physical Layer: It is the lowest layer of the OSI model that defines the
physical characteristics of the network. This layer communicates with data
link layer and regulates transmission of stream of bits (0s and 1s) over a
physical medium such as cables, optical fibers, etc. In this layer, bits are
converted into electromagnetic signal before traveling across physical
medium.

 Data Link Layer: It takes the streams of bits from the network layer to
form frames. These frames are then transmitted sequentially to the receiver.
The data link layer at the receiver’s end detects and corrects any errors in
the transmitted data, which travels from the physical layer.

 Network Layer: This layer is responsible for transferring data between
the devices that are not locally attached. Network layers manage the network
traffic problems such as routing data packets. The network layer device
such as router facilitates routing services in a network. The router checks
the destination address of the packet received and compares with the routing
table (comprises network addresses). The router directs the packet to an
appropriate router to reach the destination.

 Transport Layer: The transport layer establishes, maintains and terminates
communication between the sender and the receiver. This layer manages
the end-to-end message delivery in the network

 Session Layer: The fifth layer of the OSI model organizes and synchronizes
the exchange of data between the sending and the receiving application.
This layer keeps each application at one end and confirms know the status
of other applications at other end.

 Presentation Layer: The sixth layer in the OSI model is responsible for
format and code conversion like encoding and decoding data, encrypting
and decrypting data, compresses and decompresses data. The layer ensures
that information or data sent from the application layer of a computer system
is readable by application layer of another computer system. The layer
packs and unpacks the data.

 Application Layer: This layer is the entrance point that programs use to
access the OSI model. It is the “topmost” or the seventh layer of the OSI
model. It provides standardized services such as virtual terminal file and
job transfer operations.

TCP/IP Protocol

The Transmission Control Protocol/Internet Protocol (TCP/IP) is the most widely
adopted protocol over the Internet. It has fewer layers than that of the ISO protocol,
which makes it more efficient. However, it combines several functions in each

NOTES

Self-Instructional
Material 29

Introduction to Computer
Networks

layer, which makes it more difficult and complex to implement. The various layers
in the TCP/IP protocol are listed here.

 The Link Layer: It corresponds to the hardware, including the device
driver and interface card. The link layer has data packets associated with it
depending on the type of network being used, such as Token ring or Ethernet.

 The Network Layer: It manages the movement of packets around the
network. It is responsible for making sure that packets reach their
destinations correctly.

 The Transport Layer: It is the mechanism used for two computers to
exchange data with regards to software. The two types of protocols that
are the transport mechanisms are TCP and UDP.

 The Application Layer: It refers to networking protocols that are used to
support various services, such as FTP, Telnet, etc.

Application

Transport

Network

Link

Fig. 3.13 TCP/IP Protocol

3.3 ATM TECHNOLOGY/MODEL

A network in which ATM reference model is used is known as ATM network. In
the ATM network, a sender first establishes a connection with the receiver. During
the establishment of connection, information related to the route, which has been
selected to transfer the information, is sent. This information is stored in the switches
presented in the selected routes.

After establishing the connection and selecting the route, the sender transfers
the information. The information is sent in the form of packets. These packets are
chopped into small units called cells, which are of fixed-size. These cells are passed
through that route, whose information is stored in the switches. If the connection
established by the sender and the receiver is not required for a long time, then the
information related to the route stored in switches is flushed out from the switches.

The ATM network scheme has many advantages over traditional packet
and circuit switching technique. The most important advantages of this scheme are
that a number of items, such as voice, data, audio, images and videotapes can be
transferred through a single medium. Therefore, this network is suitable for video
conferencing.

Introduction to Computer
Networks

NOTES

Self-Instructional
30 Material

In this network, the cells are the most important entity. This means, the
network is only concerned about transmission of cells without considering the
content stored in these cells. The technique used to transmit cells is known as cell
switching, which is a suitable technique for transmitting data into thousands of
houses and offices connected to a common transmission media. The main advantage
of the cell switching technique is that it handles point-to-point networking and
multicasting networking. Elimination of delay occurred due to transmission of a
large packet is another advantage of the cell switching technique. Delay is eliminated
because of the fixed size of cells.

The ATM network follows its own hierarchy of protocols, which represents
the different layers of the ATM reference model. The ATM reference model consists
of three layers. The bottom layer of the ATM reference model is known as physical
layer, the middle layer is known as ATM layer and the top layer is known as
adaptation layer. Figure 3.14 shows the ATM reference model.

Fig. 3.14 The ATM Reference Model

Physical Layer of ATM Reference Model

The functions of the physical layer of the ATM reference model are similar to the
physical layer of the OSI reference model. It is responsible for maintaining the
physical connection of the network. In the physical layer, an ATM adaptor board
is used to transfer the bit stream of data over the transmission medium of the
network. The transmission of data should be synchronous. To maintain
synchronization of transmission, empty cells are transmitted over the transmission
medium. The adaptor board uses the Synchronous Optical NETwork (SONET)
in the physical layer. It places different cells into the payload portion of the SONET
frame.

The SONET frame is an array having nine rows and 90 columns of bytes.
In other words, a frame is a group of 810 bytes. 36 bytes of this frame are overhead
and 774 bytes of this frame are payload. A frame takes 125 microseconds to
transmit via a transmission medium.

NOTES

Self-Instructional
Material 31

Introduction to Computer
Networks

The physical layer is also responsible for generating the essential form, i.e.
analog or digital-wave form of data that is required to be transmitted from one end
to the other end of the network. This layer defines the bit timings and the other
characteristics required to encode and decode data for transmission over the
network.

ATM Layer

The ATM layer deals with cells and their transportation. For this purpose, it selects
the most suitable route that is similar to the function of the second layer of the OSI
reference model. However, it does not recover lost and damaged cells.

In the ATM layer, a 53-bytes cell is used to transmit data. This byte cell
includes a 5-bytes header and 48-bytes data field used to contain data stream.
This byte cell is known as ATM cell, which is not suitable for SONET payload.
Therefore, the ATM cell is spanned with SONET frames and requires two separate
levels for synchronization. One level of synchronization is used to detect the starting
of the SONET frame and the other one is used to detect the starting of the ATM
cell spanned with the SONET frame.

The layout of the cell header of the byte cell depends on the type of devices
connected in the network: for example, if a cell is transmitted from a computer to
the first ATM switch, then the first four bytes of the cell header are known as
General Flow Control (GFC); whereas, if the cell is transmitted between two
ATM switches, then four bytes of GFC are involved in the Virtual Path Identifier
(VPI) field of the cell header. The fields of the cell header, which are common to
all the cell headers, are stated as follows:

 Virtual Channel Identifier (VCI): VCI is used to identify the network
and the path related to a particular cell. To identify the path and the network,
it is combined with the VPI field. The VPI and VCI fields are modified at
each hop along the path.

 Payload Type: Payload type is used to distinguish the data cells from the
control cells.

 Cell Loss Priority (CLP): CLP is used to mark the less important cells
that help in maintaining traffic during occurrence of congestion.

 Cyclic Redundancy Checksum (CRC): CRC is used to maintain accuracy
of data.

Figure 3.15 shows the layout of the cell header including GFC field.

Fig. 3.15 The Cell Header Including GFC Field

Introduction to Computer
Networks

NOTES

Self-Instructional
32 Material

Adaptation Layer

The Adaptation layer of an ATM network is responsible for managing transmission
of cells and packets over the network. Generally this layer is known as AAL,
which stands for ATM Adaptation Layer. In the ATM network, a cell can arrive in
3 microseconds and the average speed of network is 155 Mbps. If a computer is
able to handle the interrupts with the rate of 300,000 interrupts/sec, then a special
mechanism is required by the network. This special mechanism is capable of
transmitting packets in the form of fixed size cells and of re-assembling all the cells
at the destination end. It is also responsible for generating one interrupt per packet.
It is assumed that the main adaptor board is responsible for running the adaptation
layer on the board and generating an interrupt after receiving one packet.

The adaptation layer handles the following classes of traffic:

 Constant bit rate traffic

 Variable bit rate traffic with bounded delay

 Connection-oriented data traffic

 Connection less data traffic

Note: The Upper layer refers to a set of layers included in the reference model that are used
to connect the different systems of the network.

Check Your Progress

1. What are the two main categories of networks?

2. Define network topology.

3. What are the three types of switching techniques?

4. What is a communication protocol?

3.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Computer networks can be classified into two main categories, namely,
local area network and wide area networks.

2. A network topology refers to the way a network is laid out either physically
or logically.

3. There are three types of switching techniques, namely, circuit switching,
message switching and packet switching.

4. A communication protocol (also known as a network protocol) is a set of
rules that coordinates the exchange of information.

NOTES

Self-Instructional
Material 33

Introduction to Computer
Networks3.5 SUMMARY

 A computer network can be as small as several personal computers on a
small network or as large as the Internet. Depending on the geographical
area they span, computer networks can be classified into two main
categories, namely, local area networks and wide area networks.

 A Local Area Network (LAN) is the network restricted to a small area
such as an office or a factory or a building.

 A Wide Area Network (WAN) spreads over a large geographical area like
a country or a continent. It is much bigger than a LAN and interconnects
various LANs.

 A network topology refers to the way a network is laid out either physically
or logically. The various network topologies include bus, ring, star, tree,
mesh, and graph.

 The main aim of networking is transfer of the data or messages between
different computers. The data is transferred using switches that are connected
to communication devices directly or indirectly. A switch is a device that
selects an appropriate path or circuit to send the data from the source to the
destination.

 The technique of using the switches to route the data is called a switching
technique (also known as connection strategy). There are three types of
switching techniques, namely, circuit switching, message switching and packet
switching.

 A communication protocol (also known as a network protocol) is a set of
rules that coordinates the exchange of information. The two most popular
types of communication protocols are the ISO protocol and TCP/ IP
protocol.

 The International Standards Organization (ISO) provided an Open Systems
Interconnection (OSI) reference model for communication between two
end users in a network. An OSI model consists of seven separate but related
layers, namely, Physical, Data Link, Network, Transport, Session,
Presentation and Application.

 The Transmission Control Protocol/Internet Protocol (TCP/IP) is the most
widely adopted protocol over the Internet. It has fewer layers than that of
the ISO protocol. The various layers in the TCP/IP protocol are Link,
Network, Transport and Application.

 A network in which ATM reference model is used is known as ATM network.
In the ATM network, a sender first establishes a connection with the receiver.
During the establishment of connection, information related to the route,
which has been selected to transfer the information, is sent.

 The ATM network follows its own hierarchy of protocols, which represents
the different layers of the ATM reference model. The ATM reference model

Introduction to Computer
Networks

NOTES

Self-Instructional
34 Material

consists of three layers. The bottom layer of the ATM reference model is
known as physical layer, the middle layer is known as ATM layer and the
top layer is known as adaptation layer

3.6 KEY WORDS

 Network Topology: The way a network is laid out either physically or
logically.

 Switch: A device that selects an appropriate path or circuit to send the data
from the source to the destination.

 Communication Protocol: A set of rules that coordinates the exchange of
information.

3.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Discuss the different types of computer networks.

2. Write the advantages and disadvantages of ring topology.

3. Differentiate between the following:

(i) LAN and WAN

(ii) Star and tree topology

(iii) Circuit switching and packet switching

Long Answer Questions

1. Explain the different types of networks.

2. What are the different types of network topology? Explain with advantages
and disadvantages.

3. Describe the various types of switching techniques.

4. Explain the OSI model in detail. How is TCP/IP model different from OSI
model?

5. Explain the ATM reference model.

3.8 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 35

Introduction to Message
PassingBLOCK - II

MESSAGE PASSING

UNIT 4 INTRODUCTION TO
MESSAGE PASSING

4.0 Introduction
4.1 Objectives
4.2 Features
4.3 Issues in PC Messaging
4.4 Synchronization
4.5 Answers to Check Your Progress Questions
4.6 Summary
4.7 Key Words
4.8 Self Assessment Questions and Exercises
4.9 Further Readings

4.0 INTRODUCTION

You have already learnt that the distributed operating system works on the concept
of having a collection of independent computers which are capable of
communicating with one another in order to complete any task submitted by a
user or a routine that needs to be executed by a distributed operating system.

The communication between the computers in a distributed operating system
works as a backbone to the whole system. The communication between the
computers in a distributed operating system is also known as IPS (Inter Process
Communication).

Node-1 Node-2

Send Message

Reply Received

When a user initiates a command starts to execute an application, it will
result in initiation of multiple process which need to work in tandem in order to
process the request of a user. The process created to complete the request need
to interact with one another either by sharing the resources or by passing the
messages.

Introduction to Message
Passing

NOTES

Self-Instructional
36 Material

Process-A Process-B

Message Queue

M1 M2 M3 M4 M5 … Mn

Fig. 4.1 An Example of Message Passing Communication between the Two Processes

Process-A Process-B

Resources

R1 R2 R3 R4 R5 … Rn

Fig. 4.2 An Example of Resource Sharing between Two Processes

One needs to understand the process of communication and inter-process
communication within a distributed operating system. The inter-process
communication is either implemented using shared-data method or message-passing
method. However, in a computer network message-passing method is a preferred
choice. The communication in a distributed operating system can be carried out
using four different approaches which are listed below:

(i) Message Passing Communication

(ii) Request–Reply Communication

(iii) Transaction Communication

(iv) Group Communication

The second important component in the communication system in a distributed
operating system is the network architecture that is used while passing the messages
from one computer to the other.

NOTES

Self-Instructional
Material 37

Introduction to Message
Passing4.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the features of message passing in distributed system

 Explain the issues encountered in messaging

 Explain the need of synchronization

4.2 FEATURES

The characteristics of any communication in a distributed system should ensure
the effectiveness, efficiency and correctness along with optimal usage of resources
required for execution of a process from inception till maturity. Keeping in mind
the importance of inter-process communication in distributed operation system,
following are the basic characteristics that a good inter-process communication
system should have.

(i) Ease of Use: The approach used for inter-process communication should
be simple and easy to use for different routines or processes of a distributed
operating system. A programmer or developer should be able to write the
programmes in order to communicate between two or more process in a
distributed operating system and these interfaces written should be easy to
understand in order to provide ease-of-use feature to a distributed operating
system. The ease-of-use feature should not become an obstacle in the
performance and efficiency of a distributed operating system. The simplicity
of the inter-process communication should allow developers to develop
programs for sharing of messages and the internal communication should
be handled by the inter-process communication routines.

(ii) Effective Communication: The inter-process communication system
should be effective, efficient and correct while passing messages among
two or more computers in a distributing operating system. The message to
be communicated should not get modified or lost while communicating from
one computer system to the other. It should ensure that the message
communicated among any two computer system is complete & correct
along with the optimal usage of resources. Any communication between
two or more processes is the backbone for a distributed computing
environment therefore any delay that occurs in inter-process communication
will result in decrease in efficiency of a distributed operating system.
Therefore, the effective communication is a pivotal feature which a distributed
operating system should have in order to complete any process requested
by a user.

Introduction to Message
Passing

NOTES

Self-Instructional
38 Material

The inter-process communication should be designed with the objective to
reduce the over-heads which are required to be managed while establishing
a connection between any two nodes within a network of computers.

(iii) Reliable Communication: The inter-process communication system should
use a reliable mode of communication between any two nodes within a
distributed system. For example, if a computer system or a node is lost due
to some technical error should not result in making the complete system
non-interactive because this will result in failure of the whole distributed
operating system. Therefore, the inter-process communication system should
handle the situation in such a fashion that the operations of a distributed
operating system do not get affected.

(iv) Uniformity in Communication: The inter-process communication system
should have uniformity in different message passing mechanisms within a
distributed operating system. This feature will help developers and users of
the operating system to develop routines to interact within the sub-nodes or
computers available in a distributed operating system. This characteristic
will facilitate the ease-of-use feature in any inter-process communication
system. The communication within a distributed operating system can be
either local or remote. In local the communication between any two process
occurs at the node locally however, in case of remote communication any
two process can communicated remotely provided the processes are
connected to a network which helps the process in getting connected
remotely.

(v) Flexible & Portable Communication: The inter-process communication
should be able to accommodate new changes in order to provide hassle
free connectivity within the nodes of a distributed operating system. The
network of nodes available should have the flexibility feature imbibed in
order to adapt to the new developments or changes. Any change or adaption
of new technological developments should not hamper the process of
communication between two or more nodes. The feature of flexibility will
facilitate the process of making the inter-process communication portable
as well. The inter-process communication system will be portable when the
system has been designed to ensure the adherence of ease-of-use, flexibility
and uniformity characteristic within a distributed operating system. The
portable feature in inter-process communication will allow a message passing
mechanism to be used in any other environment where the working of the
message passing mechanism will not stop rather it will continue to work
effectively and efficiently. This feature will help the developers as well as
users to re-use the message passing mechanisms in different distributed
computing environments.

(vi) Secure Communication: The message communicated between any two
nodes within a network of computers of a distributed operating system can

NOTES

Self-Instructional
Material 39

Introduction to Message
Passing

be modified. These types of threats may lead to breakdown of the
communication between any two or more nodes. Therefore, a secure
communication system must ensure that the message from a sender to a
received should not be viewed or modified by any one during the process
of communication within a distributed operating system.

(vii) Complete and Correct data: The message transferred from sender to
receiver node may get lost or manipulated while transferring the message. It
works as a motivation for people to develop mechanisms which will ensure
that the message or data transferred from the sender to the receiver is correct
and complete. In other words, it can be said that the data transferred from
the sender to receiver must adhere to the basic properties and the same are
listed below:

a. Atomicity: When a message is transferred from a sender to a receiver
either it should reach the receiver as a complete message or it should
not deliver any message to the receiver which explains the concept of
atomicity in inter-process communication. Therefore, the distributed
operating system needs to have the feature of ensuring the atomicity in
message transfer which will result in correct and complete transfer of
message.

b. Consistency: The message transferred from a sender to a receiver is
complete and accurate. In case any changes are made at the sender
node accordingly all the parameters dependent on the modification
are appropriately modified in order to accommodate the change. The
modifications made at the sender node should also be delivered at the
received node with all the changes that were applied at the sender
node.

c. Isolation: In case more than one message is passed from a sender to
different receiver nodes, the distributed computing message passing
procedures should ensure that all the appropriate messages destined
for the nodes are delivered correctly at the destined node only. The
message or data transferred from a sender should not be delivered at
a wrong node which will lead to reduction in performance and reliability
of a message passing mechanism in a distributed operating system.
While transferring more than one message or data packet from a sender
to a receiver the sequence of the messages or data packets is also
very important while reframing the messages or data packets transferred
from a sender to a receiver. Therefore, a message passing mechanism
should ensure that the messages are delivered at the receiver node in
the same sequence as was marked by the sender node while sending
the message or a data packet. This feature will ensure the completeness
of the message at the receiver node as per the format and sequence
that has been prepared by the sender node.

Introduction to Message
Passing

NOTES

Self-Instructional
40 Material

d. Durability: While transferring message from a sender to a receiver
the acknowledgement and reply to message is also very important in
order to complete the process of communication between any two
nodes. In case the process of message transfer is not complete between
any two nodes that resources occupied by these nodes will not be
released which will increase the probability of reaching a deadlock
state. Therefore, the inter-process communication in a distributed
operating system should have a feature to ensure that the process of
communication between any two nodes should be monitored for any
errors. If the process of communication has not generated any errors
then the message transfer process should be completed and the
resources acquired by the processes should be released accordingly.
However, in case the message passing process has not been completed
then appropriate measures need to be taken to ensure that the
resources should not remain in acquired state which will result in
reduction of performance of whole system.

4.3 ISSUES IN PC MESSAGING

The design of an inter-process communication needs to address some basic
issues while designing communication process procedures used for
communication between any two or more nodes. The messages are generally
transferred from sender to receiver in the form of data packets. The sender
node will send the data packet which will include of two basic components fixed
length header and variable length block. The fixed length header includes different
information related to sender process address, receiving process address,
message unique identification number, type of data, number of bytes/ element.
The information available in the fixed length header helps a data packet to reach
the correct destination and given correct information to the receiver about the
originating process as the same is used for sending the acknowledgement from
the receiver. Once the process of receiving a data packet is complete then an
acknowledgement is sent to the originating process in order to complete the
transfer of message between a sender and a receiver.

Fixed length block Variable length
Block

Fig. 4.3 Data Packet which is Transferred from a Sender Node to a Receiver Node

NOTES

Self-Instructional
Material 41

Introduction to Message
Passing

No. of bytes /
element

Type Receiving
process

identification

Sending process
identification

block

Message unique
identification
number

Fixed length block

Fig. 4.4 Parameters Available in “Fixed Length Block” of a Data Packet

The list of the basic challenges that are encountered by a distributed operating
system during inter process communication are given below:

(i) Naming and Name Resolution: Every process in a communication system
is assigned a unique identification number know as Process-ID (process
identification number). The computer network system should have a naming
system which allows a process to names in order to resolve any conflicts or
in order to manage the process execution in a distributed operating system
or inter-process communication. The implementation of a naming system
can be implemented either using distributed or non-distributed approach.
The method of selection have a direct impact on the effectiveness and
efficiency of a distributed operating system.

(ii) Routing Strategies: The main activity in an inter-process communication
is how a data packet will be sent from sender to receiver. Which path the
data packet should select in order to reach from source to destination. The
data packet may be required to pass through different nodes or computers
in order to reach the destination node. Needless to mention the message
will be decrypted or viewed only at the destination node not at any of the
nodes it passes through in order to reach the destination. The path a data
packet selects from the source node to the destination node is known as
route. The methods and mechanisms used in an inter-process communication
for identifying a route from source to destination is known as routing strategy.
The prime concern of any inter-process communication must be to select a
routing strategy which will be effective, efficient, secure and should use the
resources optimally. The commonly used routing strategies are given below:

a. Fixed routing

b. Virtual Circuit

c. Dynamic Routing

Introduction to Message
Passing

NOTES

Self-Instructional
42 Material

(iii) Connection Strategies: The back bone of any communication between a
sender and receiver is the physical link or a physical connection. The method
or technique used to establish a physical connection between a sender node
and a receiver node is known as connection strategy. If a connection strategy
is not selected appropriately will lead to different issues like delay in
communication, loss of message in communication or modification of a
message during the process of communication. The different connection
strategies used in distributed operating systems that need to be selected
based on the requirements of an operating system are given below:

a. Circuit Switching;

b. Message Switching;

c. Packet Switching

The message within an inter-process communication system is send from
the source node to the destination node in a format which includes information
about the different attributes like Address, Sequence number, structural information
and data within a block. The address parameter corresponds of sender address
and received address and the structural information corresponds of information
about the type and size of information. The actual data will be available at the end
of the block and in some cases the last element of the block will carry pointer to
the actual data.

4.4 SYNCHRONIZATION

The basic building blocks of a distributed operating system are cooperation,
exchange of data between different nodes of a distributed operating system. In
order to exchange data between any two nodes, the computer system at the
destination should accept the data that has been sent by a sender which is possible
only when synchronization between the sender and receiver is implemented. The
process of synchronization gives the details of the timing between sender and
receiver which helps the sender and receiver to communicate. The distributed
operating system is fully dependent on the communication between different
independent computers in a distributed system network which increases the priority
and importance of synchronization in distributed operating systems. The process
of synchronization can be categorized in two basic categories like blocking and
non-blocking synchronization. A communication process is said to be complete
only when the message is transferred to the receiver in its original form. The message
which is transferred in the form of packets can be send using any one of the two
methods of synchronization where if the sender node is blocked after sending the
message to the receiver and remains in the block state till the receiver acknowledges
the receipt of the message is known as blocking type of synchronization. However,
if the sender is not blocked after sending the data packet from sender node rather
the control is immediately transferred to the sender node is known as non-blocking

NOTES

Self-Instructional
Material 43

Introduction to Message
Passing

type of synchronization. Both blocking and non-blocking type of synchronization
are discussed in detail in the following section.

(a) Blocking: In every communication process a message is passed from a
sender to a receiver. In the blocking synchronization method the sender
after sending the message will wait for the acknowledgement from the receiver
and during the wait period the sender will be blocked till acknowledgement
is received. Similarly, the receiver after sending the acknowledgement will
wait for a message from the sender in order to proceed further. The process
of message communication from a sender to a receiver is shown graphically
in the figure given below where the dotted lines represent the block state
and the solid line represents the execute state. The sender node state changes
from the solid line to a dotted line when a message is send from a sender
node and the sender node is blocked. The receiver node needs to send the
acknowledgement on receipt of the message which results in unblocking of
the sender node.

Acknowledgement sent

from receiver

Message Send from sender

E
xecute State

B
locked S

tate

E
xe

cu
te

 S
ta

te

E
xe

cu
te

 S
ta

te

B
lo

ck
ed

 S
ta

te

Sender
Node

Receiver
Node

Blocked State

Execute State

The sender or the receiver node is blocked while the message is being
transmitted from sender to receiver and in some cases may result in
permanent blocking of either sender or receiver. In order to avoid any situation
of permanent blocking of sender or a receiver a timeout is fixed either at the
system level or at the process execution level. The timeout is used to fix a
time limit for keeping a sender in a blocking stage while waiting for the
acknowledgement. In case a sender does not receive any acknowledgement

Introduction to Message
Passing

NOTES

Self-Instructional
44 Material

the sender will be clocked till it will reach the timeout limit. Once the timeout
limit is exceeded the sender will be unblocked and the system can proceed
with further execution of other process which will result in mitigation of
reaching a deadlock state. If both the sender and receiver are using the
blocking method of synchronization the method of communication is called
as synchronous communication. The synchronous method of communication
is better the asynchronous communication method as it is simple to implement
and the method ensures that the message has reached the receiver from
sender. However, the synchronous communication method may lead to
different state which can result in a deadlock state where the whole system
will not be able to respond.

(b) Non-Blocking: In the non-blocking synchronization method the sender
after sending the message is not blocked and the sender will not wait for the
acknowledgement from the receiver in order to proceed further with
execution. The sender is allowed to go ahead once the message from the
sender is moved to buffer. In an inter-process communication process a
message is sent from a sender to a receiver via a buffer. A receiver will
proceed with other process executions after executing the receive statement.
A receiver in non-blocking will not wait for the message from the sender in
order to proceed further with other process executions. If both the sender
and receiver are using the nonblocking method of synchronization the method
of communication is called as asynchronous communication.

In the non blocking synchronization how and when will a receiver node
know that the message is available in the buffer? A message may be lost in the
buffer and receiver will not receive the message or a receiver has to continuously
check the buffer for any messages which are destined for the receiver node. A
method of continuously checking the buffer status for any messages by the receiver
is followed in non-blocking synchronization method and is known as polling.
Another method to intimate the receiver about the availability of a message in a
buffer is known as Interrupt method.

In the interrupt method an interrupt is generated using software once the
message is available in the buffer and the same is sent to the receiver. The receiver
will receive the interrupt and will start with the process of retrieving the message
from the buffer. However, the interrupt method requires for efforts and resources
in order to implement the synchronization and at times it becomes tough to implement
the same using software in distributed operating systems.

In both the blocking and non-blocking methods of synchronization some
challenges are to be addressed in order to make the system more robust, effective
and efficient along with utilizing the resources optimally. However it is always
recommended to use a perfect blend of both blocking and non-blocking methods
to complete the communication process between two nodes in an inter-process
communication system.

NOTES

Self-Instructional
Material 45

Introduction to Message
Passing

Check Your Progress

1. What are the approaches used for message passing in a distributed system?

2. What are the two types of block that a data packet holds?

4.5 ANSWERS TO CHECK YOUR PROGRESS

1. The communication within a distributed operating system can be carried
out using four different approaches:

(i) Message Passing Communication

(ii) Request–Reply Communication

(iii) Transaction Communication

(iv) Group Communication

2. The sender node will send the data packet which will include of two basic
components fixed length header and variable length block.

4.6 SUMMARY

 The communication between the computers within a distributed operating
system is also known as IPS (Inter Process Communication).

 The inter-process communication is either implemented using shared-data
method or message-passing method.

 The messages are generally transferred from sender to receiver in the form
of data packets. The sender node will send the data packet which will
include of two basic components fixed length header and Variable length
block. The fixed length header includes different information related to sender
process address, receiving process address, message unique identification
number, type of data, number of bytes/ element.

 Every process in a communication system is assigned a unique identification
number know as Process-ID (process identification number).

 The path a data packet selects from the source node to the destination
node is known as route. The methods and mechanisms used in an inter-
process communication for identifying a route from source to destination is
known as routing strategy.

 The method or technique used to establish a physical connection between a
sender node and a receiver node is known as connection strategy.

 The process of synchronization can be categorized in two basic categories
like blocking and non-blocking synchronization.

Introduction to Message
Passing

NOTES

Self-Instructional
46 Material

 If the sender node is blocked after sending the message to the receiver and
remains in the block state till the receiver acknowledges the receipt of the
message is known as blocking type of synchronization. However, if the
sender is not blocked after sending the data packet from sender node rather
the control is immediately transferred to the sender node is known as non-
blocking type of synchronization.

4.7 KEY WORDS

 Inter-process communication: It refers to the mechanisms an operating
system provides to allow the processes to manage shared data.

 Routing Strategy: It refers to the methods and mechanisms used in an
inter-process communication for identifying a route from source to
destination.

 Connection Strategy: The method or technique used to establish a physical
connection between a sender node and a receiver node.

4.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is inter-process communication?

2. What information a fixed block of data provides?

3. What are the types of routing and connection strategies used by a distributed
system?

Long Answer Questions

1. Explain the features of inter-process communication system.

2. What are the issues of message passing in a system?

3. Explain the blocking and non-blocking process of synchronization.

4.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 47

Buffering and
Multidatagram MessagesUNIT 5 BUFFERING AND

MULTIDATAGRAM
MESSAGES

5.0 Introduction
5.1 Objectives
5.2 Buffering
5.3 Multi-Datagram Messages
5.4 Encoding and Decoding
5.5 Answers to Check Your Progress Questions
5.6 Summary
5.7 Key Words
5.8 Self Assessment Questions and Exercises
5.9 Further Readings

5.0 INTRODUCTION

In this unit, you will learn about the buffering, multi-datagram messages,
encoding and decoding. Buffering is the process which uses a memory area
for message storage till the receiver node receives it. If the message size is
large then it is divided into small datagrams and these datagrams are known as
multi-datagram.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the concept of buffering

 Explain the multi-datagram messages

 Understand the term encoding and decoding

5.2 BUFFERING

The message that is sent from a sender to receiver will either use synchronous or
asynchronous communication method. However, when a message is sent from a
sender it needs to be temporarily stored in a memory area until the receiver node
receives the message. The message can be stored in a memory area that is available
at the sender node or at the memory area which is managed by the operating
system. This memory area which is used to store the message till the receiver node
receives it is known as buffer and the process is known as buffering. Different

Buffering and
Multidatagram Messages

NOTES

Self-Instructional
48 Material

types of buffering are used based on the requirement of a process within a
distributed operating system and some of them are given below:

1. Null Buffering: This type of buffering doesn’t use any buffer rather the
send process remains in suspended mode till the receiver node in a position
to receive the message. Once the process of send message starts the receiver
starts the receiving the message and accordingly an acknowledgement is
sent once the message is delivered. The sender node on receipt of
acknowledgement sends a message to the received in order to unblock the
receiver node for further processing.

2. Single Message Buffering: This type of buffering uses a single buffer
either at the receiver node address space in order to ensure that the message
is readily available to the receiver as and when the receiver node is ready to
accept the same. The single message buffer performs better in some situations
as the message is available in the buffer which helps the while system in
reducing the blocking duration at different nodes. The single message buffer
method reduces the delays in communication in comparison with the Null
buffering method of communication.

Single Buffer

3. Multiple Message Buffering: The multiple message buffering
communication mechanism is generally used in asynchronous type of
communication in inter process communication within distributed operating
system. The multiple message buffer as shown in the figure below works as
a mail box which is either stored at the receiver’s address space or operating
system address space. A sender executes the send process in order to send
a message and the same is received by the receiver from the mail box as
and when the receiver processes the receive message process.

NOTES

Self-Instructional
Material 49

Buffering and
Multidatagram Messages

Message-1

Message-2

Message-3

Message-N

The multiple message buffering is a good mechanism for message passing
however, the method is prone to buffer overflow problem. The buffer
overflow problem is handled in two different mechanisms where a message
send request will generate an error message in case the buffer is full and
similarly, the receive message request will generate an error message when
the buffer is empty. The second method to handle this problem is to use the
multiple message buffer in an controlled fashion where the send message
request is processed and the message is stored in the multiple message
buffer. The multiple message buffer is blocked till the acknowledgement
from the receiver is received to acknowledge the receipt of the message at
the receiver node. This mechanism is also treated as forced synchronous
mode of communication between different nodes and this mechanism may
lead to unexpected occurrence of deadlocks in the communication process
within a distributed operating system.

5.3 MULTI-DATAGRAM MESSAGES

The inter-process communication between different nodes within a distributed
operating system is an essential part of a network based operating system. The
messages transferred from a sender to a receiver in a network is in the form of
packets where the data packets correspond of different information attributes like
process identifier, address, sequence number, structural information and actual
data. A datagram is a self-sufficient and independent packet of data associated
with a packet switched network. It carries adequate information to be routed
from the source to the destination and the network. Datagrams provide a
connectionless communication service across a packet-switched network. Every
network allows a maximum allowable size of a datagram that can be transmitted
from one node to the other and the same is known as MTU maximum transfer
unit. In case the size of the message is smaller than the maximum transfer unit then
the datagram is known as “single datagram” message. However, in case the size of
the datagram is more than the maximum transfer unit then the datagram is divided
into smaller datagrams in order to communicate these multiple datagrams from
sender to receiver. The multiple datagrams communicated from sender to receiver

Buffering and
Multidatagram Messages

NOTES

Self-Instructional
50 Material

are known as multi-datagrams. These multi-datagrams include extra attributes
within a packet which carry the information about the sequence of the datagrams
and mechanism used for fragmenting. This extra information is used at the receiver
end to combine all the multiple datagrams into a single block of information.

5.4 ENCODING AND DECODING

A message transmitted from the source node to destination node is in the form of
single datagram or multi-datagram. The message delivered at the destination or
receiver node should be complete and correct. Therefore, the structure of the
datagram should also be known at the receiver node in order to understand the
complete properties of the datagram received. The receiver node should have the
complete information related to the datagram available at sender node in order to
maintain the consistency and integrity of data. To ensure this the datagram to be
sent to the receiver node should be converted into a form which can be transmitted
through the communication channel and accordingly on receipt of the packet the
same should be converted back to the original form at the receiver node. The
process of converted the original data packet into a stream that is compatible with
the communication channel is known as encoding of the message and the process
of reverted the received message to the original message at the receiver node is
known as decoding. The received node encodes the original message and sends
the same through the communication channel or buffer to the receiver node where
the encoded message is decoded to get the original message back at the receiver
node. Different methods are used for encoding and decoding and the two basic
representation of encoding and decoding process are Tagged representation and
untagged representation.

In the tagged representation all the details about the object along with the
data value is encoded and then send through any communication channel or buffer
to the receiver. At the receiver node the encoding done using tagged method
reverted back to its original form. The data packet received by the receiver node
is simple to decode and implement as the information about all the properties of
the data packet along with the data is available. However, in untagged representation
program objects do contain only data which does not make the data packet
delivered at the receiver node as self-explanatory. The receiver node must have
the information about the encoding method or mechanism used at the sender node
in advance to decode the data packet to its original form.

Check Your Progress

1. What is buffering?

2. What are multi-datagrams?

NOTES

Self-Instructional
Material 51

Buffering and
Multidatagram Messages5.5 ANSWERS TO CHECK YOUR PROGRESS

1. The memory area which is used to store the message till the receiver node
receives it is known as buffer and the process is known as buffering.

2. If the size of the datagram is more than the maximum transfer unit then
the datagram is divided into smaller datagrams in order to communicate
these multiple datagrams from sender to receiver. The multiple
datagrams communicated from sender to receiver are known as multi-
datagrams.

5.6 SUMMARY

 The memory area which is used to store the message till the receiver node
receives it is known as buffer and the process is known as buffering.

 Null buffering doesn’t use any buffer rather the send process remains in
suspended mode till the receiver node in a position to receive the
message.

 Single message buffering uses a single buffer either at the receiver node
address space in order to ensure that the message is readily available to the
receiver as and when the receiver node is ready to accept the same.

 Multiple message buffering communication mechanism is generally used in
asynchronous type of communication.

 If the size of the datagram is more than the maximum transfer unit then the
datagram is divided into smaller datagrams in order to communicate these
multiple datagrams from sender to receiver. The multiple datagrams
communicated from sender to receiver are known as multi-datagrams.

 The process of converted the original data packet into a stream that is
compatible with the communication channel is known as encoding of the
message and the process of reverted the received message to the original
message at the receiver node is known as decoding.

5.7 KEY WORDS

 Buffering: It is the process which uses a memory area for message storage
till the receiver node receives it.

 Encoding: It is the process of converting the original data packet into a
stream that is compatible with the communication channel.

 Decoding: The process of retrieving the received message to the original
message at the receiver node.

Buffering and
Multidatagram Messages

NOTES

Self-Instructional
52 Material

5.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Define buffer.

2. What do you understand by multi-datagram messages?

Long Answer Questions

1. Explain the different types of buffering used based on the requirement of a
process.

2. Explain the requirement of encoding and decoding in communication system.

5.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 53

Process Addressing and
Failure HandlingUNIT 6 PROCESS ADDRESSING

AND FAILURE HANDLING
6.0 Introduction
6.1 Objectives
6.2 Introduction to Process Addressing
6.3 Failure Handling
6.4 Group Communication
6.5 Answers to Check Your Progress Questions
6.6 Summary
6.7 Key Words
6.8 Self Assessment Questions and Exercises
6.9 Further Readings

6.0 INTRODUCTION

In this unit, you will learn about the process addressing and group communication.
Process addressing is required in distributed system to identify the nodes for which
the communication process takes place. There may be several reasons that results
in communication failure which are also discussed in this unit. Group communication
system is a system where a number of members can communicate with each other.

6.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the process addressing in distributed operating system

 Understand failure handling

 Explain the process of group communication

6.2 INTRODUCTION TO PROCESS ADDRESSING

The process of communication from any two nodes in a distributed operating
system cannot be complete without the address of the source node and target
node is known. The address of a node or a computer while communicating messages
from one node to another is known as addressing or naming. The addressing or
naming helps the network to identify the nodes with unique value which is very
important in establishing connection between any two nodes of a distributed system.
The two basic addressing modes used in distributed operating system are given
below:

1. Explicit Addressing: when the message is explicitly destined for a process
then the message is sent using the explicit mode of addressing. In this

Process Addressing and
Failure Handling

NOTES

Self-Instructional
54 Material

addressing mode, the process-identification (x) along with message (y) is
sent to the receiver node (z). The receiver node (z) will only receive the
message from process-identification (x). If any other message from
process-identification (k) is available it will not be received by the receiver
node (z).

2. Implicit Addressing: when a message is destined for any receiver node
that requires the services of the message then implicit mode of addressing is
used. In this addressing mode, the service-identification (x1) along with
message (y) is intended to be sent to any receiver node where the service-
identification(x1) is offered. The implicit mode of addressing allows a sender
node to send the message to more than one node within a network provided
the sender has to name a service rather than a process. This type of
addressing mode is feasible for client-to-server communication where a
client requests for a service and sends the message to all the available servers.
The server in turn will receive the message and treat it as a process. Similarly
a server can also send a message to all clients to access a service and in-
turn only clients which are allowed to use the service can receive the message
from the server and acknowledge the same.

The naming of a node is carried out using different methods where the address
of the machine is used as the address of the node and in some cases the address
of the machine along with the process identification number is used as the address
of a node.

Suppose a node has been assigned an address 159 which for humans is a
numerical number and the same number is understood by a machine in the form
of machine instruction which is always in 1’s and 0’s. In case any node intends
to send a message to the node which has been given 159 number will be sending
the message by creating a data packet where the address will be mentioned as
159. Once the data packet is broadcasted in the network the node with 159
address will accept the data packet and send the acknowledgement to source
node. The kernel of an operating system will have information about the task of
sending the message from the sender node to the receiver node if only one
process is existing within a network. The statement will not be true in case of
distributed operating system where at a given point of time one or more number
of processes will be existing and all the processes are required to be monitored
by the kernel of an operating system. Therefore the address method that has
been discussed above will not work for distributed operating system. Another
method of address can include more than one segments in the address for example
if a machine address is 159 and the process identifier of requesting process is
29 then we can have an address like 159@29 which is self-explanatory to the
operating system as the first component gives information about the address of

NOTES

Self-Instructional
Material 55

Process Addressing and
Failure Handling

the machine and the second component of the address gives the information
about the process identification. The machine address and process identification
are unique numbers which are assigned to a machine and a process respectively
within a network. Therefore, 159@29 gives the information to the network that
the message is destined to machine number 159 where process number 29
requires the message. In this addressing system the load balancing becomes
difficult if the number of running processes is more in number. The problem of
load balancing can be reduced by including third attribute in the address which
can contain the information about the machine address of the last known location.
Therefore, the addressing mechanism will have three segments i.e.
Machine_Number@Process_Identification_Number @Machine_Number_
lastknown. Once a process is created the first two segments will have constant
value till the completion time of the process. However, the third segment of the
address will keep on changing as per the movement of the message from one
node to the other. The addressing mechanism with three segments is also known
as link-based addressing. This addressing mechanism will be overloaded, if a
process has moved from one node to many nodes while reaching the destination
as the overheads in this regard will increase as the message is moving via many
nodes. The second problem in this addressing mechanism is that it does not
support portability.

In order to mitigate the impact of the above mentioned problems a two level
addressing mechanism can be used which include a high level address and a low-
level address. The high-level address will be an ASCII string which will be
independent of the machine that is being used in order to enhance portability and
migration of a process from one system on a network to other system on another
network. The low-level address will contain the information about the machine
and the process locally. The low-level address will contain the machine identification
number and the process identification number. However, this addressing mechanism
requires support of the naming server as the ASCII string as high-level address
needs to be translated to low-level address which will be stored on naming server.
In this addressing mechanism the onus lies on the name server as the same is
responsible for generating the low-level address based on the high-level address.
In case the name server response time is more the whole system will take more
time complete the processing of a process.

6.3 FAILURE HANDLING

The messages sent from the sender node are not received at the receiver node due
to different failures which may occur in a distributed operating system. The scalable
and robust design is always pro-active in order to give seamless services to users

Process Addressing and
Failure Handling

NOTES

Self-Instructional
56 Material

interacting with a distributed operating system. The failures that can occur while
communicating a message within any two or more nodes of a network are discussed
below:

1. Request Message Lost: This problem can occur if the sender node sends
a message and the receiver is down due to breakdown of the communication
link between the sender node and the receiver node.

In case the receiver node is down or gets crashed the communication
between the sender node and the receiver node will not be possible and the
same is shown in figure given below:

In case the receiver node receives the message but crashes prior to sending
the acknowledgement will result failure of communication as the sender
node will not receive the acknowledgement. The scenario of receiver crash
after receiving the message is shown in figure given below:

NOTES

Self-Instructional
Material 57

Process Addressing and
Failure Handling

The impact of this problem is mitigated by implementing the concept of
timeout. In case the sender is not able to receive acknowledgement from
the receiver node, the kernel of the operating system will wait for a particular
time limit known as timeout. Once the time limit has reached the sender
node tries to send the message again and if the acknowledgement is not
received the kernel of the operating system initiates the process of freeing
the resources acquired by message sending process.

2. Node/Computer Crashes: The problem occurs when either a sender node
or the receiver node crashes in the process of communication. The kernel
of the operating system initiates the process of freeing the resources after
waiting for timeout. In case the sender node crashes after sending the message
and the receiver node does not receive the message, the kernel of the
operating system waits for the timeout limit. After the expiry of the timeout
the kernel frees the communication channel and clears the message and the
processes associated with the message. Similarly, in case the receiver node
crashes after sending the acknowledgement to the sender node which in
turn has to reply to the receiver node in order to complete the process and
free the resources acquired by the process at the receiver end. The kernel
of the operating system will initiate the process of freeing the resources
acquired by the process after the timeout period is over. The two main
cases where a node may crash are given below:

(a) Receiver node crashes after receiving message

(b) Sender node crashes after sending the message

Process Addressing and
Failure Handling

NOTES

Self-Instructional
58 Material

Fig.6.1 (a) Pictorial Representation of Receiver Node Crashes after Receiving the Message

Fig. 6.1 (b) Pictorial Representation of Sender Node Crashes after Receiving the Message

NOTES

Self-Instructional
Material 59

Process Addressing and
Failure Handling

3. Response Message Lost: This problem generally occur when a receiver
node receives the message and the acknowledgement is not received by
the sender due to breakdown of the communication link or sender node is
down after sending the message to the receiver node.

The impact of this problem is mitigated by implementing the concept of
timeout. In case the sender is not able to receive acknowledgement from
the receiver node, the kernel of the operating system will wait for a particular
time limit known as timeout. Once the time limit has reached the sender
node tries to send the message again and if the acknowledgement is not
received the kernel of the operating system initiates the process of freeing
the resources acquired by message sending process.

The whole system of communication is susceptible to errors or failures which
need to be handled properly in order to mitigate the impact of communication
failures on distributed operating system. In order to handle the situations which
may lead to a failure different tools and techniques are used in distributing computing
environments.

One of the failure handling technique is to create checkpoints for all the
message passing routines which are required for process completion. The
checkpoints give the information about the state of the message passing sub routine
to the kernel in order to decide whether a commit or a rollback is required in
order to complete the process of communication between any two nodes within a
network. The commit point gives information to the kernel about the exact status
of a message passing process prior to the node crash in a network. The status
information in commit is then implemented and stored permanently in the system
in order to ensure the integrity and consistency of data within a distributed operating
system. The rollback point gives the information about the status of a message
passing routine within a distributed operating system and the same information
helps a kernel to roll back all the changes made as per the information available in
the rollback point. The rollback of all the computations is implemented by the
operating system by reinstating the status to the previously stored commit point.

Another method to handle failures in communication process is by using
retransmission or a message between a sender node and a receiver node where
the retransmission of a message is implemented after the expiry of timeout. In this
method the kernel of the corresponding machine will wait for the acknowledgement

Process Addressing and
Failure Handling

NOTES

Self-Instructional
60 Material

or reply from the corresponding nodes till the timeout limit is reached and after the
expiry of the timeout limit the kernel of the machine will retransmit the message. As
an example if a sender node sends a message to the receiver node and the sender
node is not receiving the acknowledgement from the receiver due to any failure
that has occurred during the communication process. The sender node will not
retransmit the message unless the timeout is reached. After the timeout limit is
reached the sender node will retransmit the message to sender node. Similarly, if a
receiver node has received a message and has sent an acknowledgement to the
receiver. The receiver node in turn has to send a reply to the receiver node in
order to change the status of the communication process to complete. In case the
receiver node does not receive the reply from the sender node, it will wait for the
timeout limit to expire. Once the timeout limit expires the receiver node will retransmit
the acknowledgement to the sender node in order to complete the communication
process and free the resources associated with the process.

6.4 GROUP COMMUNICATION

The communication between two processes in RPC is established by calling remote
procedures. This technique is not suitable for an environment in which multiple
members are involved: for example, consider that multiple servers are cooperating
on a single, fault tolerant file system. In this system, the client has to send the
message to all the servers so that the task is performed even if one of the servers
crashes. RPC cannot handle a communication involving one sender and multiple
receivers. It has to perform separate RPCs with every one.

Introduction to Group Communication

A group consists of a collection of processes, which perform the task together in
the system. If a message is sent to the group, all the processes receive it. Different
members of a group can communicate in two ways, one-to-many communication
and one-to-one communication. In the one-to-many communication, one sender
and many receivers are involved. One-to-many communication involving one sender
and many receivers is shown in Figure 6.2.

Fig. 6.2 One-to-Many Communication

NOTES

Self-Instructional
Material 61

Process Addressing and
Failure Handling

These groups are dynamic and therefore, new groups can be created and
old groups can be deleted at any time. A process can join or leave any group and
can be the member of many groups at a time. While sending a message to the
group, the process does not need to know the number of members in the group.
The implementation of communication in groups depends on the hardware. A
network address can be assigned to the network, which can be used to send the
message in the group. When the message is sent to that particular address, it is
automatically delivered to all the members. This process is called multicasting.
Multicasting provides a simple technique to implement groups by assigning different
multicast addresses for each group. Networks, which do not have multicasting,
broadcast the packet. In broadcasting, the packet is sent to all the members of all
the groups. Broadcasting the packet is less efficient because when the packets are
delivered to every group, the software is required to check whether or not the
packet is intended for the computer. If the packet is not delivered, then the packet
has to be discarded. Thus, extra time is required for this purpose.

If neither multicasting nor broadcasting can be implemented, then the group
communication can be achieved by sending separate packets to each member of
the group. However, n packets are required for a total of n members in all the
groups. Sending of message from a single sender to a single receiver is called
unicasting or point-to-point communication. The process of transmitting data from
a single user to a single receiver is shown in Figure 6.3.

Fig. 6.3 Point-to-Point Communication

This process is efficient if the size of groups is small and is not suitable in
case the size of the groups is big.

Design Issues related to Group communication

Different types of group communications can be designed to establish communication
among multiple users of the system. There are a lot of design possibilities used in
the designing of the group communication system. The regular message passing
and primitives based communications are examples of such design possibilities.
Designing of the group communication system is entirely dependent on the internal
organization of a group. The types of group communication systems are stated as
follows:

 Closed group: This group refers to the group in which outsiders are not
allowed to send messages to the group as a whole.

 Open group: This group refers to the group in which an outsider can send
message to any group involved in the network.

 Peer group: This group refers to the group in which every member of the
group is connected to the other members of that group.

Process Addressing and
Failure Handling

NOTES

Self-Instructional
62 Material

 Hierarchical group: This group refers to the group in which one member
of the group acts as a coordinator of the other members of that group.

Closed Groups versus Open Groups

Group communication system can be categorized on the basis of the permission
given to a sender, who sends message to a group. Closed group system and open
group system are examples of such group systems. In closed groups, only the
members of the group can send a message to the other members of the group. A
computer, which is not the member of the group, cannot send the message in the
group. Figure 6.4 shows the closed group.

Fig. 6.4 Closed Group

Closed groups are used for parallel processing of data: for example, a
collection of processes running for computing the moves in a chess game or a
group of processes copying a file from one location to another form a closed
group. These groups do not interact with the computers outside the groups.

In open groups, any computer can send the message to any other computer
or member in the group. Open group is shown in Figure 6.5.

Fig. 6.5 Open Group

Open groups are used when coordination between servers is required for
performing some task. In this situation, it is required that the computers, which are

NOTES

Self-Instructional
Material 63

Process Addressing and
Failure Handling

not members of the groups, should be able to send the message to the other
groups.

Peer Groups versus Hierarchical Groups

The members of the group can also be differentiated on the basis of internal structure
of the group. In some groups, all the members are considered equal and can make
the decisions collectively. This type of group is called peer group. Peer group is
shown in Figure 6.6.

Fig. 6.6 Peer Group

A peer group is symmetric and does not fail. If any one member crashes,
the other members can take over the job. The disadvantage of this group is that
decision-making is very complicated in this group. Voting is performed to decide
anything.

In other types of groups, an hierarchy of members exists. One process is
made the coordinator, which makes the decisions for all the members of the group.
This type of group is called hierarchical group. Hierarchical group is shown in
Figure 6.7.

Fig. 6.7 Hierarchical Group

Process Addressing and
Failure Handling

NOTES

Self-Instructional
64 Material

When a request for any task is generated by an external client or any member
of the group, the coordinator decides which member is best suited to complete
the task. In this system, if the coordinator crashes, the whole system comes to a
halt. But, if any other member crashes, then it does not affect the coordinator but
the performance of the system decreases.

Group Membership

When group communication is employed, then a method is required to create and
delete groups and also one method is required to allow the members to leave and
join groups. One method can be to have a group server to which all the requests
of this type can be sent. The group server maintains the database for all the groups
and their members. However, there is a problem with this technique as well. If the
group server crashes, then the group management also fails and all the groups
have to be reconstructed from the beginning by terminating all the processes. The
other method can be to have the membership in a distributed technique. Any
computer can send the message to any group to become the member of the group.
In case of closed groups also, the members have to send the message to join the
group. If any member wishes to leave the group, then it can simply send the message
to all the other members.

There are a few problems associated with both of these techniques related to the
membership of groups. These problems are stated as follows:

 If any one of the members crashes, then the other members will not be able
to know whether the member has really crashed or left the group. The
other members have to be certain that the member, which is not responding,
has really crashed or left the group.

 One more matter of concern is there, i.e. the process of leaving and joining
the group has to be synchronous with the messages. In other words , the
computer should start receiving messages as soon as it joins the group and
should also be able to send messages to the other members of the group.
Besides as soon as the member leaves the group neither it should receive
any message from the group nor the members of the group should receive
any message from it.

 The final issue is that if many members in the group crash, then some
mechanism is required to reconstruct the whole group. Since in such a
situation, the group will no longer be able to complete the task, one of the
working members has to take up the job of reconstructing the whole
group. There could be a problem if more than one member starts
reconstructing the group. A mechanism is required to control this problem
as well.

NOTES

Self-Instructional
Material 65

Process Addressing and
Failure Handling

Group Addressing

If any computer wants to send a message to a group, then there must be some
mechanism to specify the group to which it wants to send the message. The groups
can be provided with some unique address to address the groups. If multicast is
supported by the system, then the address of the group can be associated with the
multicast address. In this way, every message, which is sent to the group, can be
multicasted. In this technique, the message is sent only to those groups, which
need the message. Group multicasting is shown in Figure 6.8.

Fig. 6.8 Group Multicasting

If the system supports broadcasting but not multicasting, then the message
can be broadcasted to all the groups. The groups who do not need the message
just discard the message. Group broadcasting is shown in Figure 6.9.

Fig. 6.9 Group Broadcasting

If neither of the two techniques is supported b the system, then the kernel
has to send the message individually to the groups intended to. This process uses
point-to-point communication called unicast for sending the message to all the
groups. Point-to-point messaging in the group is shown in Figure 6.10.

Process Addressing and
Failure Handling

NOTES

Self-Instructional
66 Material

Fig. 6.10 Point-to-Point Messaging

In all the three processes, the computer sends the message to the group
address and it is delivered to all the members. OS decides the process of sending
the message to the groups. The sending computer is not aware of the process
used to send the message to the groups.

Another method of sending the message to the group can be to provide an
explicit list of the entire destination, such as IP address to the sender. If this method
is used, then the location to the destination contains a pointer to the list of addresses
as a parameter. In this method, each member of the groups is required to have the
information about the other members of the group. If the members in the group
are added or removed, then the list of members has to be updated. This task of
updating the list is performed by the kernel.

Send and Receive Primitives in Group Communication

The send and receive primitives are also used in the group communication system.
In group communication system, n number of replies can be transferred in order
to answer a request message. To deal with a number of members of the group,
explicit calling of one-way send and receive primitive is used. The send primitive
has two parameters, the destination address and the message. If the destination
address is related to a process, then message is sent to that process and if the
destination parameter contains the address of a group, then the message is delivered
to all the members of a group. The receive primitive is used to check whether or
not the message is received by the destination. The send and receive primitives
can be of any type, such as buffered, unbuffered, blocking and non-blocking.

Atomicity

Atomicity refers to a condition when a message is sent to a group and it is received
correctly either by all the members of the group or by none of the member of the
group. It is one of the most important properties of the group communication
system. Sometimes this property is known as all-or-nothing or atomic broadcast.
Atomicity helps in making communication easier among all the members of a

NOTES

Self-Instructional
Material 67

Process Addressing and
Failure Handling

distributed system. In other words, when a process of a system having atomicity
sends a message to a group, then it does not have to bother about the proper
delivery of the message. It also enhances the fault tolerance capability of a
distributed system by holding information about the failure of the machine involved
in the system.

Message Ordering

Message ordering is another important property of the group communication
system. It refers to the right order of the messages received by the different members
of a group. To understand the right order of the messages, consider an example of
a group, which consists of five processes namely, Process 1, Process 2, Process
3, Process 4 and Process 5. Process 1 and Process 5 have to send message to
the other processes of the group. First, Process 1 sends messages to Process 2,
Process 3, Process 4 and Process 5 and then Process 5 sends messages to
Process1, Process 2, Process 3 and Process 4. Figure 2.23 shows sending of
messages in a group.

Fig. 6.11 Message Ordering between Processes

In Figure 6.11, Process1 sends message to Process2 and then other
processes; whereas Process 5 sends message to Process 4 first. In this case,
Process 4 receives the message of Process 5 before receiving the message of
Process 1. If both the processes, i.e. Process 1 and Process 5 send messages
related to updation of the database, then the order of receiving messages can
cause problems with the database.

To avoid such type of problems, a proper message ordering is maintained
by the system so that the order of receiving the message at the destination end is
similar to the order of sending the messages.

Overlapping of Groups

A computer can be the member of any number of groups at a time. This can lead
to problems and inconsistency in the groups as well: for example, consider the
situation in which there are two groups A and B. Group A consists of members
m1, m2 and m3 and group B consists of members m1, m2 and m4 respectively. If

Process Addressing and
Failure Handling

NOTES

Self-Instructional
68 Material

the two groups send messages simultaneously to all the members in the group, it
can lead to inconsistency in the two groups. Suppose the messages are sent using
unicasting so that the member m2 receives the message first from group A and
then from group B and m3 first receives the message from group B and then from
group A. This process is shown in Figure 6.12.

Fig. 6.12 Overlapping of Groups

Check Your Progress

1. What is the need of addressing?

2. Name the different communication types used in group communication
system.

3. What do you mean by atomicity?

4. What is the function of group server?

6.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The addressing or naming helps the network to identify the nodes with
unique value which is very important in establishing connection between
any two nodes of a distributed system.

2. Different members of a group can communicate in two ways, one-to-many
communication and one-to-one communication.

3. Atomicity refers to a condition when a message is sent to a group and is
received correctly either by all the members of the group or by none of the
members of the group.

4. The group server maintains the database for all the groups and their members.

NOTES

Self-Instructional
Material 69

Process Addressing and
Failure Handling6.6 SUMMARY

 The process of communication from any two nodes in a distributed operating
system cannot be complete without the address of the source node and
target node is known. The address of a node or a computer while
communicating messages from one node to another is known as addressing
or naming.

 The addressing or naming helps the network to identify the nodes with unique
value which is very important in establishing connection between any two
nodes of a distributed system.

 One of the failure handling technique is to create checkpoints for all the
message passing routines which are required for process completion.

 The checkpoints give the information about the state of the message passing
sub routine to the kernel in order to decide whether a commit or a rollback
is required in order to complete the process of communication between any
two nodes in a network.

 The commit point gives information to the kernel about the exact status of
a message passing process prior to the node crash within a network.

 The communication between two processes in RPC is established by calling
remote procedures. This technique is not suitable for an environment in
which multiple members are involved.

 A group consists of a collection of processes, which perform the task
together in the system. If a message is sent to the group, all the processes
receive it. Different members of a group can communicate in two ways,
one-to-many communication and one-to-one communication.

 If neither multicasting nor broadcasting can be implemented, then the group
communication can be achieved by sending separate packets to each
member of the group.

 Designing of the group communication system is entirely dependent on the
internal organization of a group.

 Closed groups are used for parallel processing of data: for example, a
collection of processes running for computing the moves in a chess game or
a group of processes copying a file from one location to another form a
closed group.

 Open groups are used when coordination between servers is required for
performing some task.

 A peer group is symmetric and does not fail. If any one member crashes,
the other members can take over the job.

 Atomicity refers to a condition when a message is sent to a group and it is
received correctly either by all the members of the group or by none of the
member of the group.

Process Addressing and
Failure Handling

NOTES

Self-Instructional
70 Material

 Message ordering is another important property of the group communication
system. It refers to the right order of the messages received by the different
members of a group.

6.7 KEY WORDS

 Closed Group: This refers to the group in which outsiders are not allowed
to send messages to the group as a whole.

 Open Group: This refers to the group in which an outsider can send a
message to any group involved in the network.

 Peer Group: This refers to the group in which every member of the group
is connected to the other members of that group.

 Hierarchical Group: This refers to the group in which one member of the
group acts as a coordinator for the other members of that group.

 Atomicity: It refers to a condition where a message is sent to a group and
is to be received either by all the members of the group correctly or none of
the members of the group.

6.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Discuss the significance of process addressing.

2. What do you mean by group membership?

3. Write a short note on group communication.

4. What are the design issues related to the group communication?

Long Answer Questions

1. What are the different ways of process addressing?

2. Explain the various reasons of failures and how they can be handled.

3. What do you understand by group membership? Explain.

4. What is group addressing? Explain.

6.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 71

Introduction to DSM
BLOCK - III

DISTRIBUTED SHARED MEMORY

UNIT 7 INTRODUCTION TO DSM
7.0 Introduction
7.1 Objectives
7.2 General Architecture of the DSM System
7.3 Design and Implementation Issues of DSM
7.4 Granularity
7.5 Structure of Shared Memory Space
7.6 Consistency Models
7.7 Replacement Strategy
7.8 Thrashing
7.9 Answers to Check Your Progress Questions

7.10 Summary
7.11 Key Words
7.12 Self Assessment Questions and Exercises
7.13 Further Readings

7.0 INTRODUCTION

In this unit, you will learn about the distributed shared memory, its architecture,
and design and implementation issues. By the literal meaning of “Shared Memory,”
it can be said that for the execution of multiple processes the same memory space
is being shared among the various processes. It is considered as the fast inter-
process communication paradigm where an underlying operating system maps a
memory segment in the address space of diverse processes in such a fashion that
the communication between the memory and executing processes doesn’t further
require the involvement of operating system to write or read from or to the shared
memory segment. In order to streamline the execution of various processes
accessing the common shared memory, a much need synchronization mechanism
is developed.

In the figure given below, two processes Process 1 and Process 2 share a
memory segment attached to address space of both processes. Let’s consider the
case of process p1 requires to share some data with process p2 the process p1
first needs to read the address of the shared memory and later on can write data
into it and similarly the process p2 will also read the address then read the data as
shown below:

Data = Read (address)

Write (address, data)

Introduction to DSM

NOTES

Self-Instructional
72 Material

7.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the architecture of DSM
 Discuss the design and implementation issues of DSM
 Explain the term granularity
 Understand the commonly used approaches to build a shared memory space
 Explain the different types of consistency models
 Understand the replacement strategies

7.2 GENERAL ARCHITECTURE OF THE DSM
SYSTEM

The general architecture of distributed shared memory system is the representation
and arrangement of various components that constitute the working paradigm
used by different processes on different nodes to communicate by sharing a
common virtual address space to fulfill services and operations. The basic
architectural design of a DSM system is shown in the Figure 7.1.

Fig. 7.1 Architectural Design of a DSM

NOTES

Self-Instructional
Material 73

Introduction to DSMThe distributed shared memory can be built by interconnecting or organizing
various nodes or simply systems in a distributed network arrangement. Each node
has one or more processing units that are CPU and associated local memory. All
the constituent nodes or systems are connected with one another by a dedicated
communication link which in turn is connected to a high-speed communication
network. The distributed shared memory in contrast to physical memory is tightly
coupled with the processor and can also be looked like a virtual address space
build from various individual memories coupled with various connected processors.
This shared memory acts like a global address space for all the processors of the
distributed network and this address space can be as large as the collection of all
the individual memory spaces that is local to each processor in each node. A
memory-mapping manager that is in each node of the architecture maps local
memory onto the shared memory to constitute a virtual address space, which is
global and accessible to all the connected nodes. This virtual memory space is
partitioned into various blocks to facilitate better mapping. In order to overcome
the latency issues associated with multiple shared accesses, the local memory of
each node is also treated as a big cache memory of the shared address space
accessible to each individual processor of a node. This local cache is mapped
using the memory-mapping manager routine.

The access strategy of DSM architecture works when a process emerging
from any node of the network tries to access some data from the shared memory.
The request of data access is accepted by memory-mapping manager routine and
the data requested is first searched on the cache that is on the local memory. If the
data is found on the local address space the access is fulfilled without any latency.
However, if the data is not available on the local cache then the memory-mapping
manager triggers a network fault and the control is passed to the underlying operating
system. The operating system generates a request to the desired node that is the
node whose local memory contains the desired data. The data found is later
transferred to the requester nodes cache. This pattern of request-identify-retrieve
or transfer is performed whenever required to fulfill access operations. However,
this underlying architectural shift is not visible to user processes as for them the
memory is like a shared global address space. The caching of copies of data on
the local memory avoids or reduces the access latency.

7.3 DESIGN AND IMPLEMENTATION ISSUES
OF DSM

There are various issues and challenges associated with the design and
implementation of a distributed shared memory system. The most prominent issues
and challenges are mentioned as under:

 Granularity: Whenever a request for data transfer/access on the DSMS
is made, the extent of the data quota that can be standardized to be accessed
or moved across the processors of various nodes on the network if there is

Introduction to DSM

NOTES

Self-Instructional
74 Material

network block fault. The selection of a particular standardized unit to be
designated as a memory/data block is an important component in DSMS
design.

 Structure of Shared-Memory Space: The structure of the data block
shared on the network among various nodes typically is influenced by the
application type that DSMS is expected to support.

 Memory Coherence and Access Synchronization: When similar copies
of the data are moved across the shared memory of DSMS. The coherence
or the persistence of the data across different memories remains an issue
because, whenever a modification is made it is necessary to update all the
copies to ensure consistency in DSM. In DSMS, there can be concurrent
data access requests from several processes in order to address consistent
data accessibility over the DSMS, the access mechanism needs to be
synchronized.

 Data Location and Access: The mechanism of locating, retrieving and
transferring of requested data in DSM by user process needs to be properly
designed to respond to block faults effectively by availing consistent data
image.

 Replacement Strategy: In the situation like whole local cache is fully
occupied and the process has to respond to any data transfer request
generated by any node on DSMS. If the data requested is not the one that
is currently in the local cache, the requested data needs to be retrieved
from DSM and brought into local cache by replacing previously held content.
Therefore, the replacement of the cached content in this replacement
approach is a challenging issue in DSMS.

 Thrashing: This is the problem that emerges in DSMS when two processes
from two different nodes request the same data block. In this situation the
data block is moved back and forth among these competing processes
quickly, the quickness is as fast as it seems no data transfer was carried out.

 Heterogeneity: If the nodes and their underlying architecture used to design
DSMS are homogeneous then no heterogeneity issues can emerge. However,
if the underlying environment is different then the heterogeneity takes place.
The DSMS architecture design should facilitate positive and productive
data communication when DSMS is heterogeneous in nature.

7.4 GRANULARITY

As mentioned above granularity of a particular data block that the DSMS transfers
across the nodes need to be fixed at the design level of DSM architecture. The
fixed and representational granularity always establishes criteria to quantify the
efficiency associated with the network. In order to arrive at a specific unit to

NOTES

Self-Instructional
Material 75

Introduction to DSMgranule, the data quantum different criteria specifying different parameters are
referenced as mentioned below.

1. Parameters influencing Block Size Selection

 Paging overhead: The feature of “locality of reference” attributed with
shared memory programs to perform a data transactions on DSMS, the
process is expected to access a larger component on the shared address
space within a small quantum of time. This paging overhead associated to
access large memory is comparatively less than the paging overhead required
for small block size.

 Directory Size: In order to maintain the log to record all the data transactions
on the DSMS and the overhead associated with it, the larger block size is
preferred in contrast to small block size. Small block size means more data
transfers therefore, more log maintenance in comparison to large block size
with fewer transfers and less log maintenance on DSMS.

 Thrashing: As many processes may be concurrently accessing the same
data reference present in a particular data block. This competing process
from different nodes may be trying to update the data instance causes an
exponential increase in data transfers over the network stalling the program
execution efficiency. This current updating requests made by processes on
the same data block causes thrashing. More data block has more changes
of more thrashing overheads in comparison to small data blocks as small
data may result in fewer data operations.

 False Sharing: When two different processes from separate nodes requests
to access two different data instances residing on the same data block causes
no data to be transferred across the network have a direct impact on the
productive aspect of DSMS. More data block size has more chances for
false sharing in comparison to small data block size.

2. Using Page Size as Block Size.

The above-mentioned factors make it challenging to frame the architectural design
for DSMS, address these issues and to ensure efficient data operations among the
different processes residing on different nodes of the network. Whether it is a
large data block or small data block both are vulnerable to challenges. Therefore,
to fix the granularity of a particular data block is itself a challenge to specify a
block size to be flashed over the DSMS. To overcome this granularity several
DSM architectures address this issue by using page size approaches of a
conventional virtual implementation. The implementation of page size in comparison
to block size has advantages as mentioned below:

1. The implementation of paging scheme exploits the existing mechanism used
to address the overheads like page-faults to separate routines are required.

Introduction to DSM

NOTES

Self-Instructional
76 Material

The memory consistency, cache coherence are resolved by page-fault
handlers itself.

2. Integrates the access right mechanism associated with paging to fulfill shared
memory access.

3. No undue overhead is imposed on DSMS until the page size overruns
packet.

7.5 STRUCTURE OF SHARED MEMORY SPACE

The structure of the shared memory defines the abstract view of the shared
memory space accessed by different processors from different nodes on DSMS
that may appear to its programmers as storage for words or storage for data
objects.

The commonly used approach to build a shared memory space of a DSM system
are:-

1. No Structuring

2. Structuring by data type

3. Structuring as a database

1. No Structuring: In most of the DSM systems the shared memory space
is not structured but is simply an arrangement of liner array of words. The
main advantage of this unstructured DSM space is its connivance in choosing
any suitable page size to represent a particular data block. When there is
no fixed structure for page size it is, therefore, easy to implement in designing
DSMS.

2. Structuring by data type: In this approach, the shared memory layout is
structured and the memory space is organized either as a collection of objects
or as a collection of variables in the source language. Therefore, the
granularity of the unit is also defined either as an object or a variable. Since
the behavior of object or variable is not fixed but is varying in nature and
depends on the fundamental of application and its underlying language
manifestations therefore, DSM systems use variable grain size. This behavior
or dependency of grain size on the application nature creates overheads in
the design and implementation of DSMS.

3. Structuring as a Database: In this particular approach of designing a
DSMS, the shared memory is well structured like a database. The shared
space in this approach is organized into ordered structures called as tuple
space. Tuples are commonly designed as a row/column format. The data
within the tuple space is accessed and addressed by the content that the
tuples are holding. In order to perform any transaction over the network,
the processes select the tuples by directly targeting the tuples by specifying

NOTES

Self-Instructional
Material 77

Introduction to DSMthe number of their fields and their values or types. Apart from tuple
organization, the access mechanism is non-transparent which in contrast is
transparent in other DSMS approaches.

7.6 CONSISTENCY MODELS

Different applications that run on DSMS have different consistency requirements
attributed to them. The architectural design mentioned above clearly represents
that in the DSMS network the count of nodes and their processors is not limited.
Therefore, the shared space that is obtained as a virtual global space resulted from
the all individual local memory spaces associated with each processor in the whole
DSMS. As the memory is shared among the processes therefore, the consistency
of the data instances needs to be consistent. The consistency model describes the
degree of consistency that is being maintained for the successful and correct data
access. Consistency models are designed on the basis of certain protocols that the
competing processes must follow to ensure consistency of the share data instances
in DSMS. To provide consistent data to a different application in DSMS several
approaches were considered to design various consistency models among them
the most popular ones are discussed below:

 Strict Consistency Model: The consistency models in real essence enforce
“principle of coherence” on the DSMS to grant mechanism for consistent
data. Strict Consistency model is considered as the strongest model
approach that strictly adheres to “principle of coherence”. The DSMS is
said to be a strict consistency model if the process intended to read any
variable from some data block on shared memory, the data variable to be
accessed is the latest copy of the data variable written in shared memory. In
a general context, it can be said that if there is any kind of update operation
on any data variable that the latest copy of the data is instantly updated at all
places of its existence. The implementation of strict consistency model requires
the absolute global clock to synchronize the processes, variables or objects
with persistence.

 Sequential Consistency Model: It is proposed by Lamport is the design
mechanism of shared memory where all the processes of the network has
got a similar order to access the shared memory to execute different
operations. However, there is no restriction on interleaving among the
different access operations like read, write. Let’s consider that there are
three processes to perform read, write and read operations. The DSMS
that supports the implementation of sequential consistency model ensures
that no operation on the shared memory that lasts till other previous operation
is completed. Sequential consistent memory provides one-copy/single copy
semantics as all the processing sharing the memory location will encounter
the same data contents stored sequentially on DSMS.

Introduction to DSM

NOTES

Self-Instructional
78 Material

 Causal Consistency Model: It is proposed by Hutto and Ahamad
represents a weakening of sequential consistency approach that it makes a
refinement between events that are possibly causally related and those that
are most certainly not. In other words, causal consistency represents that
all the execution are the same as if causally-related read/write operations
were executed in an order that reflects their causality. All concurrent
operations may be seen in different orders. Memory reference operations
that are not potentially causally related may be seen by different processes
in a different order. Any two memory reference can be treated as casual if
the first processes get influenced by another process in any way. A shared
memory system is, therefore, said to support the causal consistency model
if all the specific operation on shared memory are potentially causally related
and are seen by all other processes in the same order. The implementation
of Casual Consistency Model takes into account the dependability of
processed with each other which is achieved by maintaining a dependency
graph for shared operations.

 Pipelined Random-Access Memory Consistency Model: It is proposed
by Lipton and Sandberg provides again a weaker consistency semantics
and is also known as FIFO consistency. All the processes see that all the
write operation order made by some process looks different to another
process only ensures that all write operations performed by a single process
are seen by all other processes in the order in which they were performed
as if all the write operations performed by a single process are in a pipeline.
Write operations performed by different processes may be seen by different
processes in different orders”. In this model, the consistency is preliminarily
posed on write operations.

 Weak Consistency Model: It is proposed by Dubois et al. is the consistency
approach where the “Synchronization accesses (accesses required to perform
synchronization operations) are sequentially consistent. Before
synchronization access can be performed, all previous regular data accesses
must be completed. Before regular data access can be performed, all
previous synchronization accesses must be completed. This essentially leaves
the problem of consistency up to the programmer. The memory will only be
consistent immediately after a synchronization operation”. The write
operations made by some processes is not necessary to be shown to another
process. In order to fulfill the operational mechanism of weak consistency
model following recommendations must be adopted.

 All accesses made to synchronization variables must be performed under
sequential consistency semantics.

 All the necessary update or write operations on some data variable in shared
memory must be completed before access to synchronization variable is
permitted.

NOTES

Self-Instructional
Material 79

Introduction to DSM All operations on the synchronization variable must be furnished before
making access to any non-synchronized variable.

 Release Consistency Model: Release consistency is essentially the same
as weak consistency, but synchronization accesses must only be processor
consistent with respect to each other. Synchronization operations are broken
down into acquiring and release operations. All pending acquires (e.g., a
lock operation) must be done before a release (e.g., an unlock operation) is
done. Local dependencies within the same processor must still be respected.
Release consistency is a further relaxation of weak consistency without a
significant loss of coherence.

 Entry Consistency Model: Like other variants of release consistency
model, it requires the programmer (or compiler) to use acquires and release
at the start and end of each critical section, respectively. However, unlike
release consistency, entry consistency requires each ordinary shared data
item to be associated with some synchronization variable, such as a lock or
barrier. If it is desired that elements of an array be accessed independently
in parallel, then different array elements must be associated with different
locks. When an acquisition is done on a synchronization variable, only those
data guarded by that synchronization variable are made consistent.

 Processor Consistency Model: Writes issued by a processor are observed
in the same order in which they were issued. However, the order in which
writes from two processors occur, as observed by themselves or a third
processor, need not be identical. That is, two simultaneous reads of the
same location from different processors may yield different results.

 General Consistency Model: A system supports general consistency if all
the copies of a memory location eventually contain the same data when all
the writes issued by every processor have completed.

7.7 REPLACEMENT STRATEGY

The space that is made available to cache the shared data on DSMS and facilitates
the dynamic migration or replacement of data blocks in the local cache with new
or demanded data blocks must consider the following issues to ensure efficient
caching and withdrawing data blocks from the local cache of a node in DSMS.

1. Prediction of the block to be replaced to accommodate the new or demanded
data block in DSMS

2. Prediction of space to hold the thrashed or replaced block from cache.

3. Block replacement prediction: In order to understand the replacement
mechanism in DSMS, we have replacement paradigms or algorithms used
to perform page replacement for main memory operations and also in shared-
memory multiprocessor systems. The classification and categorization of

Introduction to DSM

NOTES

Self-Instructional
80 Material

various replacement algorithms or paradigms mainly are based on the
following specified criteria.

 Frequency of usage: In this case of DSMS the replacement algorithm
monitors the usage of a particular data block in cache and the frequency of
access operations referenced. If the particular data block within the cache
has been cited to be referenced or accessed more frequently than that data
block is not replacement with the demand page and accommodated within
the DSM. The block that is observed to be the least referenced will be
replaced with the incoming data block.

 Fixed space or variable space: The fixed space algorithms are designed
on the principle that the underlying memory-space or cache is of fixed size
while as the variable size algorithms assume that the size of the cache is
dynamically fixed on the basis of the data block to be accommodated in the
cache. That means in variable space approach the cache size depends on
the data block size. The replacement in fixed space approach replacement
simply selects the particular cache and in case of variable space the fetch
operation performed to acquire the data from within the shared memory
does not correspond to a replacement approach similarly a swap-out can
execute even with a fetch operation. Variable space approach is usually not
recommended approach in DSMS design.

 Read-owned and Writable Blocks for which a copy of the data block exists
on a cache of any other node in the DSMS network. The block in the
cache that holds like data has the highest priority to get replaced. Before
replacement, the ownership of the current block is transferred to the cache
that holds the mirror copy.

 Read-Owned and writable blocks for which the particular node had solely
the ownership status that means that particular node cache holds the data
block have the lowest priority of replacement. The lowest priority is assumed
because of the overhead associated with the transfer of block and block
ownership right to another node.

4. Space prediction to accommodate the replaced page or block

After the replacement of a particular block from cache is accepted the important
factor that the page replacement approach has to consider is, to ensure that the
data that held by the block to be replaced is not lost. Therefore, the space in
shared memory needs to be defined to accommodate such replaced blocks
from a cache of different nodes in DSMS. However, the block that is
accommodating unused, nil or read-only status has to be replaced without
reconsideration to data loss. Similar, replacing and not backing up the page
which is read-owned and writable and whose replica is not present on other
nodes in DSMS will probably lead to data loss. It is, therefore, very much
important factor to consider the best approach to undertake this replacement so

NOTES

Self-Instructional
Material 81

Introduction to DSMsafeguard the replaced pages with information which otherwise may be lost or
problematic. The best-preferred approaches opted to undertake the replacement
guarantee this situation are:

1. Storing/ saving the replaced block on secondary store associated with nodes
in network or

2. Or extending to memory space of other nodes to make the replica of the
block predicted to be replaced from parent cache.

7.8 THRASHING

As mentioned earlier, thrashing is the situation that emerges in the system usually in
shared-memory systems when the allocated cache is filled with the pages that may
no longer is needed by processes. The occupation of cache or shared memory by
pagers other than the pages that might be required by the processor to get a
particular process executed causes the processor to wait till the page is made
available in the cache. Process that to looks into the cache to access the page and
the cache is full, the available pages need to be flushed away from the shared
memory to free space required for pages to remove the chances of further page
faults or page misses. The availability of multiple pages in cache facilitates
multiprogramming efficiently. However, the logic that can build a standard approach
to fill cache with those blocks of data that are an immediate requirement for the
processor to perform multiprocessing and avoid those pages of the process to
loaded into cache that are not an immediate requirement or necessary to be loaded
into cache to avoid unusual filling and frequent page replacement. This unusual
page faults and page misses keep processors busy in thrashing pages in and out
from cache and reduces the efficiency of a processor to perform multiprogramming
efficiently. Various conditions in DSMS that can result in page faults or may cause
thrashing are discussed below:

1. Interleaved data access by a processor on multiple nodes results into the
movement of data block back and forth across these nodes.

2. Invalidation of data blocks with read-only permission just after their
replication in other nodes.

Strategies to overcome the overhead caused by thrashing in DSMS

1. Implementation of an efficient local replacement algorithm.

2. Implementation of application-controlled locks to lock the data block from
being accessed by other nodes for a short duration.

3. Locking the data block associated/accessed by some node in DSMS by
barring another node to accesses or take away the data block until a specific
or designated time period completes.

Introduction to DSM

NOTES

Self-Instructional
82 Material

4. By modifying or training the cache coherence algorithm in DSMS as per
the context related to a particular data block. In order works, it means that
there is a need to have separate coherence algorithm/protocols for each
data block based on its characteristics to reduce the overheads caused by
thrashing.

Check Your Progress

1. What does structure of the shared memory provides?

2. What does consistency model describes?

3. What is thrashing?

7.9 ANSWERS TO CHECK YOUR PROGRESS

1. The structure of the shared memory defines the abstract view of the shared
memory space accessed by different processors from different nodes on
DSMS that may appear to its programmers as storage for words or storage
for data objects.

2. The consistency model describes the degree of consistency that is being
maintained for the successful and correct data access.

3. Thrashing is the situation that emerges in the system usually in shared-memory
systems when the allocated cache is filled with the pages that may no longer
is needed by processes.

7.10 SUMMARY

 The distributed shared memory can be built by interconnecting or organizing
various nodes or simply systems in a distributed network arrangement. Each
node has one or more processing units that are CPU and associated local
memory.

 A memory-mapping manager that is in each node of the architecture maps
local memory onto the shared memory to constitute a virtual address space,
which is global and accessible to all the connected nodes.

 The structure of the shared memory defines the abstract view of the shared
memory space accessed by different processors from different nodes on
DSMS that may appear to its programmers as storage for words or storage
for data objects.

 The consistency model describes the degree of consistency that is being
maintained for the successful and correct data access. Consistency models
are designed on the basis of certain protocols that the competing processes
must follow to ensure consistency of the share data instances in DSMS.

NOTES

Self-Instructional
Material 83

Introduction to DSM Thrashing is the situation that emerges in the system usually in shared-memory
systems when the allocated cache is filled with the pages that may no longer
is needed by processes.

7.11 KEY WORDS

 Distributed Shared Memory: It is a memory architecture in which
addresses the physically separated memories as one logically shared address
space.

 Thrashing: It is the situation that emerges in the system usually in shared-
memory systems when the allocated cache is filled with the pages that may
no longer is needed by processes.

7.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Define the term granularity and thrashing.

2. What are the parameters that effect to decide the unit of granule?

3. What do you understand by replacement strategy?

Long Answer Questions

1. Explain the general architecture of DSM.

2. What are the design and implementation issues of DSM? Explain.

3. What are the commonly used approach to build a shared memory space of
a DSM?

4. Describe the various types of consistency models.

7.13 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

Approaches to DSM

NOTES

Self-Instructional
84 Material

UNIT 8 APPROACHES TO DSM
8.0 Introduction
8.1 Objectives
8.2 Design Approaches of DSM
8.3 Heterogeneous DSM
8.4 Advantages of DSM
8.5 Answers to Check Your Progress Questions
8.6 Summary
8.7 Key Words
8.8 Self Assessment Questions and Exercises
8.9 Further Readings

8.0 INTRODUCTION

You have learnt that the distributed shared memory is a memory architecture in
which addresses the physically separated memories as one logically shared address
space. In this unit, you will learn about the design approaches of DSM and
heterogeneous DSM. In case of a Heterogeneous System Architecture, the memory
management unit (MMU) of the CPU and the input–output memory management
unit (IOMMU) of the CPU have to share certain characteristics, like a common
address space.

8.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the design approaches of DSM

 Explain the heterogeneous distributed shared memory

 Discuss the advantages of DSM

8.2 DESIGN APPROACHES OF DSM

On the basis of cache management in distributed shared memory system (DSMS),
there are three main design approaches of DSMS. These approaches are as follows:

1. Management of data caching by operating System.

2. Management of data caching by Memory Management Unit (MMU)

3. Management of data caching by language runtime system

1. Management of Data Caching by Operating System: In this design
approach, each node in DSMS has got their local cache/memory and in
order to access data block available on other cache associated with any

NOTES

Self-Instructional
Material 85

Approaches to DSMother node on DSMS the underlying operating system triggers trap interrupt.
The operating system establishes communication between the nodes through
message passing and helps the node to fetch and acquire the desired data
block. The different processes like communication process & fetch process
the acquiring and migrating data blocks across the nodes on DSM are
controlled by operating system. Some of the examples of this design
approach of DSMS are IVY and Mirage systems.

2. Management of Data Caching by Memory Management Unit (MMU):
This design approach uses multiprocessors with hardware cache for
designing DSMS. The implementation of DSM is completed either by fully
or partially using hardware. The behaviour of cache design in DSM depends
on bus orientation. If the processors are interconnected using a single bus
topology, the cache corresponding to individual node or processor is kept
consistent by snooping on the bus and implementation of DSM is carried
out in hardware mode. However, if the interconnection topology is connected
using switches the directories are used in addition to hardware cache. The
persistence of data blocks on different cache blocks associated with
individual nodes on DSMS implemented in hardware is controlled by
memory management unit. One of the examples where this approach is
implemented is DEC Firefly workstation.

3. Management of Data Caching by Language Runtime System: In this
approach, the data caching on DSM is controlled & managed by language
runtime system and the nature of DSM is structured. The DSM is collection
of various programming construction, tokens or objects. In this approach
the placement, replacement or migration of various programming constructs
or objects is performed using language runtime systems in coordination
with the operating system. In order words it can be said that if any process
needs to access any variable the language runtime system accepts the access
request and later in coordination with operating system completes the access
operation of DSMS.

8.3 HETEROGENEOUS DSM

DSMS is a an integrated heterogeneous system wherein systems with varying
architectural configuration are interconnected and is also known as distributed
shared memory system. The heterogeneous nature is more exclusively related to
the individual components in DSMS like personal PC’s, multiprocessors or
supercomputers have different specifications attributed to them on the basis of
their functionality and objectivity. This heterogeneous environment establishes more
dynamic and computable platform to perform diverse operations. The
heterogeneous DSMs describe a system with multiple nodes having different

Approaches to DSM

NOTES

Self-Instructional
86 Material

architectural makeup to access shared-memory paradigm efficiently in order to
fulfill the desired objective successfully. The overhead associated with
heterogeneous DSM is to cast data variables into acceptable format and to fix
acceptable granularity that is selection of proper block size. These two overheads
along with other related parameters are described below.

1. Type casting or Data conversion

In DSMS, different nodes may possess different byte ordering or floating point
representations on the basis of their underlying architectural specification. Type
casting or data conversion becomes implicit implementation in DSMS while trying
to transfer or share information between any two nodes which are of different
type. Therefore, it is very important in DSMS to perform type conversion of data
variables as per the specification available at the source node before starting the
data access at the destination node. It is important to mention here that the DSMS
itself doesn’t have any idea about the type & application layout that the destination
data variable or block possess. Therefore, the DSM takes application programmers
into account to acquire the type, details of the data block to be accessed. There
are two approaches that are being adopted to perform block or data conversion
in DSMS.

a. By structuring the DSMS as a collection of source language object:
In this particular approach the DSM is designed in a structured manner
where all the programming constructs are identified as collection of variables
or objects in the source language in order to start the data transfer process
in terms of objects rather than blocks. The type conversion of programming
constructs in source language into objects is carried out by implementing
compiler having embedded type conversion routines. The functioning of
this conversion scheme is to access the data within the shared-memory.
The DSM in turn first checks the type of the data on both source and
destination nodes prior to initiating the process of data access. In case the
type of data is same then no type conversion are required. However, type
conversion is performed before the actual data is accessed from shared-
memory or before starting the transfer of data.

b. By allowing a single type of data in data blocks: In this approach the
data blocks are maintained as pages and each page can hold data blocks of
one type only. In order to identify the type associated with each page of
data the page table is created wherein all the pages and their corresponding
type and extent of data contained in that page is notified. This indexing of
page and page type in page table helps in identifying the type of page
requested by any remote node on shared-memory in DSMS. Whenever
the request to a page is made if the type of page is not identical to that of the
access request node then the type conversion is performed prior to the
migration of page.

NOTES

Self-Instructional
Material 87

Approaches to DSM2. Block Size Selection

Due to heterogeneous architecture of different nodes connected in DSMS network
the page or virtual page size may also have varying size in DSMS. Therefore,
selection of particular block size or standard granularity among the nodes with
varying setup is complex which results in complex situation which need to be
handled and are the matter of concern while designing DSMS. In order to mitigate
the impact of this problem different algorithmic models have been developed in
order to solve this problem. Some of the solutions to mitigate the impact of this
problem are given below:

a. Largest page size algorithm: In this approach the page size or block size
taken into account is as large as the maximum size of a virtual page of any
node in DSMS network. This approach helps to reduce frequent page
faults cited because of small page size.

b. Smallest Page Size algorithm: In this approach the page size or block
size taken into account is as large as the smallest virtual page size of any
node in DSMS network. This algorithm reduces data contention however,
the demerit of this approach is increased influx of communication and table
management overheads.

c. Intermediate page size algorithm: This approach tries to minimize the
implications caused by either large or small virtual page blocks and
maximizing the efficiency in migrating and replacing pages among the
communicating nodes on DSMS network. The block size in this scheme is
always between smallest and largest virtual memory size associated with
nodes in whole heterogeneous DSMS network.

8.4 ADVANTAGES OF DSM

 Hide data movement and provide a simpler abstraction for sharing data.
Programmers don’t need to worry about memory transfers between
machines like when using the message passing model. Easier to implement
than RPC since the address space is the same

 Nodes implementing data blocks using sequential programming constructs/
paradigms directly run on DSMS.

 In DSMS complex data structures or data blocks are migrated across nodes
on network by simply passing reference by simplifying the algorithmic
approach for distributed applications.

 The principle of “locality of reference” facilities the movement the entire
page containing the data requested rather than just transferring a small piece
of data.

 DSMS is comparatively cheaper architectural design approach than
multiprocessor systems to perform parallel executions.

Approaches to DSM

NOTES

Self-Instructional
88 Material

 In DSMS the much larger virtual memory space is built by combining all the
local memory associated with each local processor or node in DSMS. The
formation of large shared memory space helps to reduce or overcome the
overhead caused by disk latency like swapping in case of traditional distributed
systems.

 In DSMS large number of heterogeneous nodes can be connected to form
DSMS network therefore, much larger shared-memory system accessed
by nodes dynamically. While as in case of multiprocessor systems where
main memory is accessed via a common bus topology limiting the size of the
multiprocessor system.

 The programs developed to share or access shared memory space in
multiprocessors can run on DSM systems easily.

 The migration of data blocks from one node to another node on DSMS is
comparatively easy to handle as both the processors/processes are accessing
the same shared address/ memory space.

Check Your Progress

1. What are the design approaches of DSM based on cache management?

2. What are the two overhead associated with heterogeneous DSM?

8.5 ANSWERS TO CHECK YOUR PROGRESS

1. The design approaches of DSM based on cache management are as follows:

(i) Management of data caching by operating System.

(ii) Management of data caching by Memory Management Unit (MMU)

(iii) Management of data caching by language runtime system

2. The two overhead associated with heterogeneous DSM are type casting
and block size selection.

8.6 SUMMARY

 Distributed shared memory is a memory architecture in which addresses
the physically separated memories as one logically shared address space.

 Management of data caching by operating System, management of data
caching by memory management unit (MMU) and management of data
caching by language runtime system are the three design approaches of
DSMS.

 The heterogeneous DSMs describe a system with multiple nodes having
different architectural makeup to access shared-memory paradigm efficiently.

NOTES

Self-Instructional
Material 89

Approaches to DSM The two overhead associated with heterogeneous DSM are type casting
and block size selection.

8.7 KEY WORDS

 Memory Management Unit (MMU): It is a computer hardware unit
having all memory references passed through itself, primarily performing
the translation of virtual memory addresses to physical addresses.

 Distributed Shared Memory: It is a memory architecture in which
addresses the physically separated memories as one logically shared address
space.

8.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What do you understand by heterogeneous DSM?

2. Discuss the overhead associated with heterogeneous DSM.

Long Answer Questions

1. Explain the various design approaches of DSM.

2. What are the advantages of DSM?

8.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

Synchronization

NOTES

Self-Instructional
90 Material

UNIT 9 SYNCHRONIZATION
9.0 Introduction
9.1 Objectives
9.2 Clock Synchronization and Event Ordering

9.2.1 Logical Clocks
9.2.2 Physical Clocks

9.3 Clock Synchronization Algorithms
9.3.1 Cristian's Algorithm
9.3.2 Berkeley's Algorithm
9.3.3 Averaging Algorithms
9.3.4 Multiple External Time Sources

9.4 Mutual Exclusion
9.4.1 Centralized Algorithm
9.4.2 Distributed Algorithm
9.4.3 Token Ring Algorithm

9.5 Election Algorithms
9.5.1 Bully Algorithm
9.5.2 Ring Algorithm

9.6 Deadlocks in Distributed Systems
9.6.1 Distributed Deadlock Detection

9.7 Answers to Check Your Progress Questions
9.8 Summary
9.9 Key Words

9.10 Self Assessment Questions and Exercises
9.11 Further Readings

9.0 INTRODUCTION

In this unit, you will study synchronizing clocks in distributed systems. Clocks are
divided into logical and physical clocks for simplicity in computers. Computers
that do not need to synchronize their clocks with real time, implement a logical
clock whereas computers that need to synchronize their clocks with real time
implement a physical clock. Different algorithms, such as Cristian's algorithm, are
used to synchronize the computer clock called timer with the other systems in a
distributed environment or with the real-time clock.

In addition, some methods are required to prevent/separate the different
processes operating in a computer system from interfering with each other's data
and variables, which is referred to as mutual exclusion. A number of algorithms,
centralized and decentralized, have been developed to achieve mutual exclusion.
All these algorithms make use of a coordinator process to act as head and make
the other processes coordinate with each other. Therefore, a method is needed to
elect the coordinator process. Election algorithms such as the Bully algorithm, are
the methods used to elect the coordinator process. Mutual algorithm techniques
require you to fully concentrate on the working of processes and details of low-
level processes.

NOTES

Self-Instructional
Material 91

Synchronization
9.1 OBJECTIVES

After going through this unit, you will be able to:

 Analyze the basics of clock synchronization

 Understand clock synchronization algorithms

 Evaluate algorithms for mutual exclusion

 Explain the algorithms used to elect a coordinator

 Analyze the deadlocks in distributed systems, their prevention, detection
and avoidance

9.2 CLOCK SYNCHRONIZATION AND EVENT
ORDERING

Synchronization is very important in distributed systems. Since distributed systems
make use of shared memory, it is important to achieve proper communication
between the processes. Distributed algorithms are used when the information is
not collected in one place and some processes examine it to make certain decisions
regarding the tasks to be carried out. Distributed algorithms are characterized by
the following properties:

1. The relevant information is distributed across multiple machines.

2. The processes make decisions only on the basis of local information.

3. The system should not have a single point of failure.

4. A common clock or some other source of precise global time must exist in
a distributed system for synchronizing time.

The first three points emphasize that all the information should not be
collected at a single place for processing: for example, it is unacceptable to send
all the requests for processing to a single-manager process. This puts a heavy
burden on the process, especially in large systems. Also, a single point of failure
renders the system unreliable, which opposes the concept of distributed systems.
This is because a distributed system should be more reliable than an individual
system so that if one system fails, the other systems should be able to continue
the function. In distributed systems, if the resource allocator machine goes down,
it will result in the failure of a large number of systems. Therefore, it is important
to achieve synchronization without centralization of processes. The fourth
property of distributed algorithms is crucial in itself. The reason is in a centralized
system, time is unambiguous because it is known only by making a system call
to the central machine. Thus, a process A will get a different time value from a
process B that has asked the time after process A. Since there is a single-time
component, the time value received by process A will be lower than that received
by process B.

Synchronization

NOTES

Self-Instructional
92 Material

The problem that occurs due to the non-implementation of a global time
can be best understood by the example of the Unix make program. In Unix,
large programs are split into a number of files so that if one source file is changed,
only that particular file needs to be recompiled, which greatly increases the speed
of processing. When a programmer finishes changing the entire source files, the
make program examines the times at which the changes were last made to the
source and the object files. Suppose a source file xyz.c has time 11:51 and its
corresponding object file xyz.o has the time 11:50, then the compiler knows that
the source file has been changed and needs to be recompiled. On the other
hand, if xyz.c has time 11:43 and xyz.o has time 11:44, then no recompilation is
required.

The above-described scenario will be completely different in a distributed
system where there is no global time agreement. Suppose xyz.c has time 11:44
and shortly after some time it is modified and assigned time 11:43 because that
machine’s clock is slightly slower. Now, as per norms, make will not call the compiler
and the resulting program will contain a mixture of object files from old and new
sources. As a result, it won’t work as desired and the programmer will not be able
to understand why. Thus, a measure is required to synchronize all the clocks in a
distributed system.

9.2.1 Logical Clocks

All computers are equipped with a timer to keep track of time. A timer is a machined
quartz crystal, with a number of crystals which, when kept under tension, oscillates
at a well-defined frequency. The frequency depends on the type of crystal used,
how it is cut and the amount of tension generated. There are two registers associated
with each crystal, a counter register and a holding register. With each oscillation of
the crystal, the counter decrements by one. An interrupt is generated each time
when the counter goes to zero and is reloaded from the holding register. It is
possible to generate an interrupt of sixty times within a second, where each interrupt
is referred to as one clock tick.

When the system boots initially, it asks you to enter the date and time,
which is then converted into a number of ticks and stored in the memory. The
interrupt service procedure adds one to the time stored in the memory after
every clock tick, thus keeping the computer’s clock up to date. In a single-
computer system, if the clock differs from a small amount, it does not make
any difference because all the processes use the same clock and will be internally
consistent with respect to each other. Therefore, the users here are concerned
with relative times and not actual times. However, consider the situation in a
distributed system with multiple Central Processing Units (CPUs), each having
its own clock. It is not possible to run the crystals in each CPU exactly at the
same frequencies, although their frequencies are quite stable. This leads to all
the clocks of a distributed system going out of sync and give different time
values. This difference in time values is called clock skew and as a result of

NOTES

Self-Instructional
Material 93

Synchronizationthis, the programs dependent on time (as in the case of the make program)
can fail.

Thus, in an attempt to achieve clock synchronization, the computer scientist
Lamport suggested that clock synchronization does not need to be absolute.
Therefore, if two processes do not communicate, it is not necessary that their
clocks be synchronized, as the lack of synchronization will not be noticeable and
not cause any problem. Lamport also specified that when processes interact, it is
important that the events occur in an order and the value of time does not really
matter. It only matters whether xyz.c is older or newer than xyz.o.

In many cases, it is required that the machines should agree on the same
time but it may not be according to the real time. This means that all the machines
must show a time value of say, 11:00 but the actual time is 11:02: for example, in
case of make program, it is only required that all the machines should agree to a
common time, say 11:00, even if in real time it is 11:02. The clocks implementing
such algorithms are called logical clocks. When the constraint that the clocks must
be in accordance with the real time and also show a common time is applied, then
such clocks are called physical clocks.

For synchronization of logical clocks, Lamport defines a relation called happens-
before. The expression, a b is read as a happens-before b and means that all
the processes agree to the fact that the event a occurs first and then the event b.
This relationship can happen in two situations, which are as follows:

1. If a process has events a and b such that a occurs before b, then a b is
true.

2. If a is an event of sending a message by a process to event b of another
process, where event b is the event of receiving the message, then a b
is true. This is because an event cannot receive a message before it is
sent.

Also, Lamport defines happens-before relationship to be transitive, i.e. if
a b and b c, then a c. If two processes have different events, x and y and
they do not interact with each other by any means, they are said to be concurrent
and the order of their occurrence does not matter.

Now, a way is needed to calculate time, C(a) for an event so that all the
processes agree to it. Also, if a b, then C(a) < C(b) and the clock time, C must
always move forward and not backward. Therefore, time can be corrected by
adding a positive value to it and not subtracting it.

Lamport’s algorithm for assigning time to events can be explained by
considering the following scenario. There are three processes running on three
different machines and each has its own clock running at its own speed. Figure 9.1
shows the clocks of three processes running at different frequencies.

Synchronization

NOTES

Self-Instructional
94 Material

Fig. 9.1 The Clocks of Three Processes running at Different Rates

When the clock of process 0 ticks 6 times, the clock of process 1 has
ticked 8 times and that of process 2 has ticked 10 times. Every clock runs at a
constant rate but the rates of each clock vary due to differences in crystals. At
the 6th tick, process 0 sends a message P to process 1. The time taken by the
message to reach a process depends on the selected clock. In Figure 9.1, when
the message arrives at process 1, its clock reads 16. Therefore, if the message
carried the starting time as 6 with it, process 1 will consider that it took 10 ticks
for the message to make the journey. Similarly, when process 1 sends the message
O to process 2, it takes 16 ticks to make the journey. Both these cases are
plausible. Now, message R is sent by process 2 to process 1. The message
starts at time 60 and reaches at time 56. Similarly, message S starts at time 64
and reaches at time 54. Both these cases are not possible and such situations
must be prevented.

Lamport provides the solution to this situation directly from the happens-
before relationship. Since message R left at 60, it must arrive at a time value
greater than 60. Since each message carries the sending time (starting time)
according to the sender’s clock, therefore, when a receiving clock shows a time
value prior to the sending time, it fast-forwards its clock by one more than the
sending time. Figure 9.2 shows how Lamport’s algorithm solves the problem of
clock synchronization.

NOTES

Self-Instructional
Material 95

Synchronization

Fig. 9.2 Lamport’s Algorithm corrects the Clocks

In Figure 9.2, by applying Lamport’s algorithm, message R now reaches at
time 61 and message S arrives at time 70. Also, if an additional constraint is
applied between every two events, the clock must tick at least once and that
makes this algorithm meet the requirements for global time. Therefore, if a process
sends two messages in quick succession, the clock must tick by at least one in
between the sending of two messages.

Some cases also require imposing an additional constraint that no two events
can occur at the same time. To accomplish this constraint, the process number in
which an event occurs can be attached to the lower-order end of the time, separated
by a decimal point. Therefore, this algorithm provides you a way to allot time to all
events in a distributed system and hence order them properly.

9.2.2 Physical Clocks

While many systems can do with absolute times, some systems require proper
synchronization with real time. Such systems require external physical clocks, and
to achieve efficiency and provide redundancy, multiple clocks are required.
However, this leads to the problem of synchronizing them with real-world clocks
and synchronizing them with each other as well.

In order to solve the above problems, you first need to understand how
time is actually measured. In the seventeenth century, time was measured in an
astronomical way by using the sun. The event when the sun reaches its highest
point in the sky is called the transit of the sun and the interval between two

Synchronization

NOTES

Self-Instructional
96 Material

consecutive transits is called the solar day. As there are 24 hours in a day, with
each hour containing 3600 seconds, a solar second is 1/86400th of a solar day.
Figure 9.3 shows the geometry of calculating the mean solar day.

Fig. 9.3 Computation of the Mean Solar Day

However, it was discovered in 1940 that the period of the earth’s rotation is
not constant as the earth is slowing down attributed to tidal friction and atmospheric
drag. The variations also occur in the length of a day due to turbulence in the
earth’s core of molten iron. Therefore, astronomers computed the length of the
day by taking a large number of days and dividing it with 86,400. This measurement
was called a mean solar second.

In 1948, the atomic clock was invented, which made it possible to measure
time much more accurately and independent of the earth. This clock measured
time by counting the transitions of the Cesium 133 atom. Now, physicists defined
the second to be the time taken by the Cesium 133 atom to make exactly
91,92,631,770 transitions. Currently, many laboratories around the world have
Cesium 133 clocks. Periodically, each laboratory informs the Bureau International
de l’Heure (BIH) how many times their clock has ticked. BIH then produces
International Atomic Time (TAI) by averaging the BIH times.

TAI is highly stable but has one problem associated with it. TAI seconds
counted to 86,400 and are 3 msec less than a mean solar day as it is getting longer
all the time. However, BIH solved this problem by introducing leap seconds. Leap
seconds are introduced whenever time discrepancy between TAI and solar time
grows to 800 msec. This correction gives rise to a new time system based on
constant TAI seconds called Universal Coordinated Time (UTC). UTC remains
in phase with the apparent motion of the sun. Nowadays, UTC has replaced the
old time system, Greenwich Mean Time (GMT) that was based on astronomical
time.

NOTES

Self-Instructional
Material 97

SynchronizationPower companies base their clocks on UTC so that when BIH announces
a leap second, the companies raise the frequency of their clocks by 1 Hz for 50 or
60 seconds. Since 1 second is a noticeable time for computer, a special software
is required to account for it.

The National Institute of Standard Time (NIST) operates a shortwave radio
station, WWV from Fort Collins to provide precise UTC time to people. At the
start of each UTC second, WWV broadcasts a short pulse, the accuracy of which
is itself ±10 msec. As a result, it is difficult to obtain time with extremely high
accuracy.

9.3 CLOCK SYNCHRONIZATION ALGORITHMS

Clock synchronization algorithms aim at keeping all other machines synchronized
to the machine having the WWV receiver. In case no machines have WWV
receivers, every machine keeps track of its own time and aims at keeping its times
as close as possible. The various algorithms designed for synchronization are as
follows:

 Cristian’s algorithm

 Berkeley’s algorithm

 Averaging algorithm

 Multiple external time sources

All the algorithms have a common underlying system model, where every
machine has a timer that generates an interrupt H times a second. The interrupt
handler increments one to the software clock when the timer goes off. Suppose
that the value of this clock is C and when the UTC time is t, the value of time on a
machine p is C

p
(t). In a perfect case, C

p
(t) = t for all p and t or you can say that

dC/dt = 1.

However, real timers do not interrupt exactly H times a second. An ideal
timer having H = 60 should generate 2,16,000 ticks per hour. In practice, the
error in modern chips is 10-5, which means that a machine will get a value in the
range of 2,15,998 to 2,16,002 ticks per hour. In other way, let there be a constant
 such that,

1 – <
dc

dt
 < 1 +

Then, the timer is said to work within its specification. The manufacturer
determines the constant and is known as the maximum drift rate. Now, if two
clocks start to drift from the UTC time in the opposite directions, at a time t, then
they are 2t apart. Therefore, if you want that the clocks do not differ from each
other by a time more than , then you need to re-synchronize the clocks every
/2 seconds.

Synchronization

NOTES

Self-Instructional
98 Material

9.3.1 Cristian’s Algorithm

Under this algorithm, one machine, called time server, is equipped with a WWV
receiver, and the algorithm aims at synchronizing all the other machines with the
time server. Periodically, i.e. in a time less than or equal to /2 seconds, every
machine sends a message to the time server, requesting for the current time value.
The time server machine responds as soon as possible with a message carrying
the current time (C

UTC
). Figure 9.4 shows how a machine gets the current time

from the time server.

Fig. 9.4 Getting the Current Time from the Time Server

Now, the sender can set its clock to C
UTC

 as soon as it gets the reply.
However, there are two problems associated with this algorithm. The first problem
is that time must not run backward. Therefore, if the sender’s clock is faster than
the receiver’s clock, accepting the C

UTC
 can cause serious problems, such as an

object file compiled a little while after the clock has changed, having a time earlier
than the source that was modified just prior to the clock change. In such cases, the
change must be gradual: for example, if a timer generates 100 interrupts per second,
each interrupt will ideally add 10 milliseconds (msec) to the time. So, to slow
down the clock, the interrupt is set to add only 9 msecs each time till the time value
has been corrected. In a similar way, you can make a slow clock fast by adding 11
msecs at each interrupt till the correct time value has been achieved.

The other problem associated with this algorithm is that it takes a non-zero
amount of time for the server’s reply to reach back the sender. This delay can
even get longer depending on the network load. To deal with this, the computer
scientist Cristian devised a way to measure it. The sender can easily and accurately
measure the interval between sending the request and arrival of reply. Both these
times, i.e. sending time, T

0
 and arrival time, T

1
 are measured with the same clock

and therefore, will be accurate. When no other information is present, the
propagation time is given as (T

1
– T

0
)/2. Therefore, when the reply is received, the

sender can add the propagation delay to the C
UTC

 time. However, this estimate

NOTES

Self-Instructional
Material 99

Synchronizationtime can be further improved if it is known how much time the server takes to
handle the interrupt and process the request. Let I be the time taken to handle the
interrupt. Then, the time devoted for propagation of message is (T

1
 – T

0
 – I).

Therefore, the best estimation of one-way propagation is (T
1
 – T

0
 – I)/2.

In addition, to improve the measurement, Cristian suggested taking a number
of measurements, discarding the measurements that exceed certain threshold value
and calculating the average of rest of the measurements. Another way can be to
consider the message that came back the fastest assuming that it was not the
victim of network traffic.

9.3.2 Berkeley’s Algorithm

Berkeley’s approach is entirely opposite to Cristian’s approach, where the time
server was passive. In Berkeley’s approach, the time server keeps polling every
machine periodically for their current time. On the basis of the reply, it calculates
the average of all the times and informs each machine to advance or slow their
clocks according to the new time. Figure 9.5 shows the working of Berkeley’s
algorithm.

Fig. 9.5 Working of Berkeley’s Algorithm

Synchronization

NOTES

Self-Instructional
100 Material

In Figure 9.5 (a), the time daemon sends messages to other machines at
time 3:00, telling them its time and requesting them to send their time. In Figure 9.5
(b), the machines respond by sending a positive or negative value that indicates
how far ahead or behind they are from the time daemon. With these values, the
time daemon computes the average value of time and informs all the machines to
adjust their clocks accordingly, as shown in Figure 9.5 (c). Thus, Berkeley’s
algorithm is suitable for a system where no machine has a WWV receiver. Also,
the clock for the time daemon has to be set manually.

9.3.3 Averaging Algorithms

Both the algorithms, Cristian’s and Berkeley’s, are centralized algorithms with
usual disadvantages, such as a single point of failure associated with them. However,
decentralized algorithms are also known to compute time by averaging the time
values of all the machines. One of the decentralized algorithms divides time into
fixed-length re-synchronization intervals. The starting time for ith interval is T

0
 + iR

and the ending time is T
0
 + (i + 1)R, where R is a system parameter and T

0
 is some

past time. All the machines broadcast their current times at the beginning of each
interval. Since the clocks on different machines run at different rates, these
broadcasts do not occur simultaneously.

After a machine has broadcasted its time, it starts a local timer to collect the
other broadcasts during an interval S. After all the broadcasts have arrived, an
algorithm, such as averaging the values, computes the new time using the values
from these broadcasts. A variation for the averaging algorithm can be achieved by
discarding m highest and m lowest values prior to averaging. This greatly enhances
accuracy as it discards up to m number of faulty clocks from sending out the
wrong timing.

Another variation for the averaging algorithm can include an estimation of
the propagation time to each message. The estimate can be made from the network
topology or by computing the time it takes for probe messages to be echoed.

9.3.4 Multiple External Time Sources

In systems where extremely accurate synchronization is required with UTC, the
system can be equipped with multiple receivers for WWV, Geostationary Earth
Orbit Satellite (GEOS) and other sources. However, as all the sources are inherently
inaccurate and deflect from each other due to fluctuations in the signal path, it is
best to establish a time interval in which UTC falls. Generally, different time sources
produce different time ranges so that the machines attached to them need to come
to an agreement.

To come to an agreement, every processor having a UTC source broadcasts
its range periodically. However, no processor will receive the time packets instantly.
Furthermore, the transmission-reception delay depends on the cable distance and
the number of gateways through which the packets have to pass which is different

NOTES

Self-Instructional
Material 101

Synchronizationfor each (UTC source, processor) pair. In addition, delays due to collisions also
play an important role. Additional uncertainty to time can be added if a processor
is busy in handling a previous request. In such a case, the processor may not even
look at the request for some time.

Check Your Progress

1. What are the properties of distributed algorithms?

2. Define a second in terms of Cesium 133 clock.

3. Name a few clock synchronization algorithms.

9.4 MUTUAL EXCLUSION

Critical regions are used to program multiprocess systems such that when a process
has to read or update shared data structures, it has to enter a critical region so as
to achieve mutual exclusion. This ensures that no other process uses shared data
structures at the same time. In single-processor systems, semaphores and monitors
are used to protect critical regions. In distributed systems, mutual exclusion is
implemented using centralized, decentralized and token ring algorithms.

9.4.1 Centralized Algorithm

In a centralized algorithm, one of the many processes is elected as a coordinator.
A coordinator can be a machine with the highest network address. When a process
wants to enter a critical region, it sends a request message to the coordinator. The
message states the critical region that the process wants to enter and asks for
permission. The coordinator replies with a message granting permission, if no
other process is using the critical region in question currently. Figure 9.6 shows the
working of a centralized algorithm.

Fig. 9.6 Working of Centralized Algorithm

Synchronization

NOTES

Self-Instructional
102 Material

Figure 9.6 (a) shows process 1 requesting the coordinator, C to grant access
to the critical region. Since the queue was empty and no other process was using
the critical region, C replied granting access to process 1. In Figure 9.6 (b), process
2 requests permission to have access to the same critical region that is being
accessed by process 1. So, the coordinator knows that it cannot grant permission
as some other process is using the demanded critical region. Therefore, it does not
reply, thereby blocking process 2, which is now waiting for the reply from the
coordinator. It can also send a ‘permission denied’ message, depending on the
implementation of the operating system.

Process 1 sends a release message to the coordinator when it exits the
critical region. The coordinator then sends an OK message to process 2 granting
its request to the critical region, which was previously occupied by process 1.
Figure 9.6 (c) shows the connection release of process 1. The coordinator takes
the first item from the queue and grants it the permission to enter the critical region.

This algorithm guarantees mutual exclusion as the coordinator allows only
one process at a time to enter a critical region. It is also just because requests are
granted in the order in which they are received and so there is no starvation. Also,
this algorithm only requires three messages per use of critical region.

However, a centralized algorithm also has certain drawbacks. It follows a
centralized approach that has a single point of failure, i.e. the coordinator. If the
processes block after making a request, then they cannot distinguish between a
dead coordinator and permission denied state, as no message is sent in both the
cases. A single coordinator can also cause performance bottleneck in large systems.

9.4.2 Distributed Algorithm

To avoid a single point of failure, distributed algorithms were developed, such as
Ricart and Agrawala. This algorithm requires a complete ordering of the events in
the system. A process wanting to enter a critical region sends a message containing
its process number and current time to all the other processes, including itself. The
messages sent are acknowledged either singly or using group communication.

When a request message is received by a process from some other process, the
action taken by it depends on the state of the process with respect to the critical
region requested in the message. Three actions can be taken, which are as follows:

 If the receiver process is not using the critical region and is not interested in
entering the critical region, it will send an OK message to the sender process.

 If the receiver is already in the critical region, it queues up the request and
does not send any reply.

 If the receiver wants to enter the critical region, but has not entered it as yet,
it compares the timestamp in the incoming message with the timestamp of
the message it sent to everyone. On the basis of this comparison, the following
two actions are possible:

NOTES

Self-Instructional
Material 103

Synchronizationo If the timestamp of the incoming message is lower than that of the sent
message, an OK message is sent by the receiving process.

o If the timestamp of the receiver’s own message is lower, the receiver
queues up the request and does not send a reply.

After sending requests to enter the critical region, the process waits till it
receives permission from other processes, after which it can enter the critical region.
When a process exits the critical region, it sends back OK messages to all the
other processes on its queue and deletes them from the queue.

This algorithm works very properly if there is no conflict. However, let’s
see how it works in case of a conflict, i.e. when two processes demand the same
critical region simultaneously. Figure 9.7 shows the scenario when two processes
have a conflict.

Fig. 9.7 Two Processes trying to enter a Critical Region Simultaneously

In Figure 9.7 (a), process 0 and process 2 send a request to every other
process, including them. However, process 0 has the timestamp of 8 while process
2 has the timestamp 12. Since process 1 is not interested in entering the critical
region, it sends an OK message to both the requesting senders, as shown in Figure
9.7 (b). However, process 0 and 2 find the conflict and compare the timestamps.
Since process 2 has a higher timestamp than process 0, it losses and sends an OK
message to process 0. When process 0 has finished its work in the critical region,
it removes the request of 2 from its queue and sends an OK message to process
2. Figure 9.7 (c) depicts the scenario of process 0 sending an OK message to
process 2 so that it can enter the critical region.

Thus, in the distributed algorithm 2(n-1), messages are required to enter a
critical region, where a system has n number of processes. Also, there is no single
point of failure. However, instead of a single point of failure, now there exist multiple
(n) points of failure. This is because if any process crashes, it will not respond to
the requests, which would be interpreted by other processes as the denial of
permission. This will block all the attempts of all the processes from entering the
critical region. However, this problem can be corrected by sending a denial message
also if permission is not to be granted.

Synchronization

NOTES

Self-Instructional
104 Material

This algorithm is associated with another problem that it must use either a
group communication or every process must maintain a group membership list.
The group membership list must include the processes entering a group, the
processes leaving the group and the processes that have crashed.

9.4.3 Token Ring Algorithm

In a token ring algorithm, there is a bus network with unordered processes. In
software, a logical ring is created and each process is assigned a space on the ring.
Figure 9.8 shows the bus and the logical ring structures.

Fig. 9.8 Bus and Logical Ring Structures used in Token Ring Algorithm

In the token ring algorithm, the processes need to be ordered in some way,
such as according to their network addresses or process ID. It is important that
each process knows its next neighbouring process. Initially, process 0 is given the
token that circulates around the ring. The token is passed from process k to k+1
in point-to-point messages. When a process acquires a token, it checks whether
or not it wants to enter the critical region. If the process wants to enter the critical
region, it enters the critical region, completes its work, exits the region and passes
the token to the next process in the ring. A process cannot enter a second critical
region with the same token. When no process on the ring wants to enter a critical
region, the token keeps on passing from one process to another across the ring.

This algorithm ensures that only one process enters a critical region at a time
as only one process gets hold of the token at any instant of time. Also, since the
token circulates around the ring in a well-defined manner, no starvation occurs. At
the most, a process will have to wait for every other process to enter and leave a
critical region, before it gets the permission to enter the region.

However, there are certain problems associated with this algorithm too.
The token must be regenerated if it is lost. Even before that, it is difficult to detect
that the token has been lost because the time of successive appearances of the
token on the network is unbounded. Furthermore, it is not necessary that the
token is lost if it hasn’t been spotted on the network for a long time. This can also
mean that some process is still using it.

NOTES

Self-Instructional
Material 105

SynchronizationAnother problem is that of process crashing. In such a case, the algorithm
can be programmed in such a way that a process acknowledges the receipt of the
token to the process from which it receives it. Therefore, when a sending process
does not receive acknowledgement, it takes it like the process is dead and sends
the token over the dead process to the next process.

9.5 ELECTION ALGORITHMS

As discussed earlier, most distributed algorithms require one process to act as a
coordinator, distributor or sequencer. Any process can take up this responsibility,
but some algorithms need to determine or elect the coordinator process. If every
process is the same, with no distinguishing characteristics, there is no way to
select a process. Therefore, it is assumed that every process has a unique number
or ID, such as the network address. Generally, the election algorithms attempt
to trace the process with the highest process number and designate it as the
coordinator. It is also assumed that each process knows the process ID of
every other process, but they do not know which of the processes are active
(currently up) and which are currently down. The aim of any election algorithm
is to elect the new coordinator and make all the processes agree to it. Various
election algorithms are as follows:

 The bully algorithm

 The ring algorithm

9.5.1 Bully Algorithm

Bully algorithm was devised by Garcia–Molina in 1982. Under this algorithm, a
process initiates an election when it fails to receive response from another process.
The election is held by a process, P by performing the steps as follows:

1. An ELECTION message is sent to all the processes with higher process
numbers than P.

2. If no process sends a response, P wins the election and becomes the
coordinator.

3. If a higher numbered process answers, it takes over the job from P.

When a higher-numbered process receives an ELECTION message from
a lower-numbered process, it sends an OK message indicating that it is alive and
will take over. The receiver then holds an election in a similar way as explained
above. Ultimately, all the processes give up, and one process that is left is the new
coordinator. The new coordinator sends a message to all the other processes
announcing its victory and telling them to start immediately.

If a process that was previously down comes back, it holds an election and
if it is the highest-numbered process running, it will win and become the coordinator.
Thus, the algorithm gets its name from the fact that biggest-numbered process

Synchronization

NOTES

Self-Instructional
106 Material

wins and bullies the smaller ones; hence the name, bully algorithm. Figure 9.9
shows the working of a bully algorithm.

Fig. 9.9 Working of a Bully Algorithm

In Figure 9.9, there are eight processes (0 to 7) in a group. Process 7 was
the coordinator but it has crashed and therefore, a new coordinator needs to be
elected. Process 4 is the first one to notice that the coordinator has failed. Therefore,
it sends an ELECTION message to all the other process, higher than it, i.e. to
processes 5, 6 and 7, as shown in Figure 9.9 (a). Since process 7 was previously
dead, it does not respond, while processes 5 and 6 send an OK message, as
shown in Figure 9.9 (b). As soon as process 4 gets a response, it knows that its
job is over, so it sits back and waits for the coordinator to be elected. As shown in

NOTES

Self-Instructional
Material 107

SynchronizationFigure 9.9 (c), both processes 5 and 6 hold the election and send an ELECTION
message to higher processes, i.e. process 5 sends a message to processes 6 and
7, and process 6 sends a message to process 7. In Figure 9.9 (d), process 6
informs process 5 that it will take over and process 6 already knows that process
7 is dead as it does not receives a response from process 7. Now, process 6
knows that it is the winner and when it is ready to take over, it sends a coordinator
message to all the other processes.

When process 4 receives the coordinator message, it can continue with its
operation, which it was previously trying to accomplish. In case, process 7 ever
starts again, it will send a coordinator message to all others.

9.5.2 Ring Algorithm

A ring algorithm uses a ring structure without a token and assumes that each process
knows its successor. Also, the processes are logically or physically ordered. When
a process realizes that the coordinator is dead, it builds an election message,
which contains its own process number and sends the message to its successor
process. In case the successor is down, the sender process keeps on skipping the
processes till it finds a running process. The sender keeps on adding its own
process number to the list in the message, at every step.

In a matter of time, the initiating process gets back the message and it
recognizes this event when it sees its own process number in the message. At this
point of time, a coordinator message is circulated to inform everyone of the new
coordinator. When the coordinator message has been circulated once, it is
discarded and the processes return to their work. Figure 9.10 shows the ring
election algorithm.

Fig. 9.10 Ring Election Algorithm

Synchronization

NOTES

Self-Instructional
108 Material

In Figure 9.10, processes 2 and 5 simultaneously discover that the
coordinator has crashed. Therefore, both these processes build an ELECTION
message each, with their own process numbers and circulate it. In the end, both
the messages will go round the ring and processes 2 and 5 will convert them into
coordinator messages. Thus, in this way an extra message will circulate, which is
of no harm. It just uses some extra bandwidth.

9.6 DEADLOCKS IN DISTRIBUTED SYSTEMS

Deadlock is a situation in which two or more processes attempt to access a resource
that is locked by another process. Deadlocks in distributed systems are similar to
deadlocks in single-processor systems. There are two kinds of distributed
deadlocks: communication deadlocks and resource deadlocks. A communication
deadlock is a situation in which each member process is trying to communicate
with another member process but is unable to communicate as they both wait for
each other to answer a query. Resource deadlock is a situation in which member
processes are arguing over exclusive access to I/O devices, files, locks or other
resources. The various strategies that are used for handling deadlocks in distributed
systems can be classified into four major groups: ostrich algorithm, deadlock
detection, prevention and avoidance. Ostrich algorithm is popular in distributed
systems as it is in single-processor systems. In distributed systems, it is used for
programming, process control and office automation. Deadlock detection and
recovery techniques allow deadlocks to occur and then apply certain methods to
recover from the deadlock. These techniques are very difficult to implement. Due
to the presence of atomic transactions, deadlock prevention is also possible in
distributed systems.

Finally, the deadlock avoidance techniques acquire information in advance
about which resource a process will claim at which stage of execution. Distributed
operating system can assume that deadlock will never happen or rarely occur and
fully ignore it.

9.6.1 Distributed Deadlock Detection

Since it is very difficult to find out the methods for preventing or avoiding distributed
deadlocks, researchers have started dealing in detecting the occurrence of
deadlocks in distributed systems. Deadlock detection detects the state of the system
to determine whether a deadlock has occurred or not. It also helps processes to
recover from the deadlock condition. The presence of atomic transactions in some
distributed systems make a major conceptual difference. If a deadlock is detected
in a conventional operating system, you can break the deadlock by killing one or
more processes. When a deadlock is detected in a system, which is based on
atomic transactions, then abort all the deadlocked processes. This means, one of
the deadlocked processes is aborted and it is verified whether the deadlock is
over or not. This procedure is continued until a system reaches safe state.

NOTES

Self-Instructional
Material 109

SynchronizationCentralized deadlock detection

In a centralized deadlock detection algorithm, each machine has a resource graph
for its own processes and resources and the deadlock detection coordinator
maintains the resource graph for the entire system. When the coordinator detects
a cycle, it destroys one process in order to break the deadlock. In distributed
systems, due to delay in information many deadlock algorithms generate false
deadlocks. Figures 9.11 (a), (b), (c) and (d) show the different processes running
on different machines.

Fig. 9.11 Different Processes running on Different Machines

In Figure 9.11, processes A and B are running on machine 0 and process C
is running on machine 1. X, Y and Z are the three resources that are used by these
machines. In Figures 9.11 (a) and (b), process A holds resource Y but it wants
resource X, which is being used up by process B. Process C holds resource Z but
it wants to use resource Y. Figure 9.11 (c) shows the coordinator’s view of the
world. When process B is finished, resource X is used by process A, which in turn
releases the resource Y for process C.

After some time, when process B releases resource X, it requests for
resource Z, which is perfectly legal and safe swap. Machine 0 then sends a message
to the coordinator to release resource X and machine 1 sends message to the

Synchronization

NOTES

Self-Instructional
110 Material

coordinator that process B is waiting for its resource Z. However, the coordinator
receives the first message from machine 1 leading the coordinator to create the
graph as shown in Figure 9.11 (d). Here, the coordinator is mistaken that a deadlock
exists and therefore, destroys some process. This situation is called false deadlock.

Chandy–Misra–Haas algorithm

In the Chandy–Misra–Haas algorithm, the processes request for multiple resources
at once due to which there is an increase in the growing phase of transaction. But
the result of this change in model is that the process has to wait on more than two
resources at the same time. Figure 9.12 shows the Chandy–Misra–Haas algorithm.

Fig. 9.12 Chandy–Misra–Haas Algorithm

NOTES

Self-Instructional
Material 111

SynchronizationIn Figure 9.12, process 3 residing on machine 1 is waiting for two resources
where one resource is held by process 4 and another by process 5. In this algorithm,
when a process waits for some resource, a special probe message is created,
which is then sent to the process containing the required resources. This message
consists of three numbers: the process that is blocked, the process that is sending
the message and the process that is receiving the message.

When the message appears, the recipient verifies whether it itself is waiting
for any process or not. In case the recipient is waiting for any process, then the
message is updated by keeping the first number unchanged and replacing the
second and third numbers by their corresponding process numbers. The message
is then sent to the process containing the required resources. After travelling all the
way, if the message comes back to the original sender that initiates the probe, then
a cycle exists and the system is deadlocked.

Check Your Progress

4. Name a distributed algorithm for achieving mutual exclusion.

5. Mention some problems associated with the token ring algorithm.

6. What is the principle of bully algorithm?

9.7 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Distributed algorithms are characterized by the following properties:

A. The relevant information is distributed across multiple machines.

B. The processes make decisions only on the basis of local information.

C. You should avoid a single point of failure in the system.

D. A common clock or some other source of precise global time must
exist.

2. A second is defined as the time taken by Cesium 133 atom to make exactly
9,19,26,31,770 transitions.

3. Some of the clock synchronization algorithms are as follows:

A. Cristian’s algorithm

B. Berkeley’s algorithm

C. Averaging algorithm

D. Multiple external time sources

4. Ricart and Agrawala is a distributed algorithm for achieving mutual
exclusion.

Synchronization

NOTES

Self-Instructional
112 Material

5. Some problems associated with the token ring algorithm are as follows:

A. It is difficult to detect a lost token.

B. If lost, the token must be regenerated.

C. Process crashing

6. Bully algorithm is based on the principle that the highest-numbered process
is elected as the coordinator.

9.8 SUMMARY

 Synchronization is very important in distributed systems. Since distributed
systems make use of shared memory, it is important to achieve proper
communication between the processes.

 Some systems require the processes to be synchronized with each other,
irrespective of the real time. Such processes are said to follow absolute
time and implement logical clocks.

 Systems that require to be synchronized with real time implement physical
clocks. A physical clock nowadays remains in sync with the UTC that has
replaced the GMT.

 Clock synchronization algorithms have been developed for synchronizing
the clocks with each other and with the BIH or UTC time. Some algorithms,
such as Cristian’s, involve a passive time server called time daemon,
whereas, some others, such as Berkeley’s, involve an active time server.

 Mutual exclusion in distributed systems can be achieved either through
centralized algorithms that make use of a coordinator process or through
distributed algorithms like Ricart and Agrawala.

 Centralized algorithms make use of a coordinator and other algorithms also
require one process to act as the leader or serve a particular responsibility,
election algorithms are needed to choose this process. Since all these
algorithms require you to get highly involved with the intricacies of the
processes and the system, transactions were introduced as a clean and
efficient way of synchronization in distributed systems.

 Deadlock detection involves detecting the deadlock and trying to recover
from it. Deadlock prevention involves making deadlocks structurally
impossible, whereas deadlock avoidance involves avoiding deadlocks by
carefully allocating the resources.

9.9 KEY WORDS

 Timer: A timer is a machined quartz crystal, with a number of crystals which,
when kept under tension, oscillate at a well-defined frequency.

NOTES

Self-Instructional
Material 113

Synchronization Transit of the sun: The event when the sun reaches its highest point in the
sky is called the transit of the sun.

9.10 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What are the properties of distributed algorithms?

2. Explain Lamport’s algorithm for assigning time in logical clocks.

3. What is the centralized algorithm for mutual exclusion?

4. Trace the differences between the three mutual exclusion algorithms.

Long Answer Questions

1. Explain the concept of clock synchronization. Explain any two clock
synchronization algorithms.

2. Explain token ring algorithm for mutual exclusion.

3. Explain Bully algorithm.

9.11 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

Introduction to DFS

NOTES

Self-Instructional
114 Material

BLOCK - IV

DISTRIBUTED FILE SYSTEM

UNIT 10 INTRODUCTION TO DFS
10.0 Introduction
10.1 Objectives
10.2 DFS
10.3 Desirable Features
10.4 File Modes
10.5 File Accessing Models
10.6 Answers to Check Your Progress Questions
10.7 Summary
10.8 Key Words
10.9 Self Assessment Questions and Exercises

10.10 Further Readings

10.0 INTRODUCTION

In this unit, you will learn about the distributed file system (DFS). The DFS has the
facility of sharing the files among all the clients who are authorized to access the
content and a client can store the information locally as well. The distributed
environment allows all the computers or nodes share the data stored as per the
requirement and can be stored locally or on the server as the access rights given to
a node within the distributed computing environment.

10.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the distributed file system

 Discuss the desirable features of DFS

 Understand the various types of file models and file assessing models

10.2 DFS

Distributed File Systems (DFSs) are designed to support the sharing of information
across a network in the form of files. If the system is designed well then it provides
the same reliability and performance in accessing the files stored at the server as
files stored on some local host. In computing, it allows the programs to store and
access files remotely from any computer in an intranet. Thus, multiple users on
multiple computer systems can share files and resources. The client systems can

NOTES

Self-Instructional
Material 115

Introduction to DFSaccess the storage over the network using its protocol. The design of the protocol
restricts access to the file storage depending on the access lists on both the server
side and client side. All the machines have equal access to the storage when the
file system is located in shared disk and the access control on these systems resides
on the client. Distributed file systems must cover the facilities of scalability, fault
tolerance and replication. In distributed file systems, files are stored on one or
more systems which are called servers and these files are accessible by various
systems which are clients. It is easy to provide backups and security of the data in
the distributed file systems as it needs only servers to be secured and backed up.
There are a lot of problems in designing a proper distributed file system. Accessing
many files over the network may create network bottlenecks and server overload
which may slow down the performance of the network. Security of the data is
also an important issue. Network and server failures may also create problems in
designing a distributed file system. Most often, client computers are more reliable
in comparison to the network connecting them.

Some services, such as authentication service, printing service and name
service can easily be implemented in DFS or Distributed File System. In the
organizations where Web servers are used for external and internal access through
intranet, these Web servers access and store data from a distributed file system.

In distributed object oriented programming, there is a requirement for the
storage and distribution of the shared objects. This can be achieved by serializing
the objects and storing and retrieving the serialized objects using the files. But if
the objects change rapidly then this will not work and therefore, some more direct
approaches have been developed. Java RMI and CORBA provide access to
remote, shared objects but they do not ensure the persistence of the objects.

The current developments include Distributed Shared Memory, i.e., DSM
and persistent objects stores for the distribution of the distributed information.
DSM copies segments or memory pages at each host which provides an emulation
of the shared memory. For optimizing the performance of the distributed programs
all storage systems depend on caching. When the replicas of the memory pages or
segments are used then it is difficult to achieve strict consistency. The Web uses
caches both at the client and the proxy server sides. The explicit user actions
maintain consistency between the replicas stored at original server, proxy server
and the client caches. A client must keep the local copies of the data up to date
explicitly as the updation on the server side is not notified to the client side.

10.3 DESIRABLE FEATURES

The desirable characteristics of a distributed file sharing environment are listed
below:

(i) Transparency: In a distributed file sharing environment, a client can store
a file or data at a centralized location which can be a server or a memory

Introduction to DFS

NOTES

Self-Instructional
116 Material

storage device mapped to the server or other clients designated for storing
data by the distributed operating system kernel. The storage process is
either initiated by a client with a user process or by a kernel of an operating
system to store the data or file. However, the process of storage and the
storage media along with location should be transparent in order to allow all
the corresponding nodes which want to store information. A client node
stores the data at a centralized location where a server can store the data or
file at one location or more than one location in order to ensure data integrity
and security of data. The characteristic of providing transparency to the
clients related to storage mechanism and the location where data is stored
is also known as structural transparency.

A client while retrieving a file or data should be able to access the same
irrespective of whether a client is requesting the access remotely or locally.
The transparency in the access mechanism is also known as access
transparency. This characteristic enables a client to access a data using any
of the two methods without being dependent of the mode of accessing the
data within a distributed file sharing system.

A client should be able to copy or move a file stored in a distributed file
sharing environment from one node to another without making any changes
to the names of a file. This allows transparency in the naming structure
within a distributed file sharing environment and the same is also known as
naming transparency. In case a client replicates a file or data at different
nodes, the distributed file sharing environment should not make the details
of all the copies available and the storage locations to any clients providing
transparency to the replication procedures and policies within a distributed
file sharing environment.

(ii) Portability: The distributed file sharing environment should be designed to
allow users to store data or files while working on any nodes which is
connected the network of a distributed operating system in order to provide
better flexibility. This feature provides portability to a user in order to access
the data or file from any node which is connected to the network of distributed
operating system.

(iii) Scalability: The distributed file sharing environment should provide better
flexibility by adapting the new developments in order to be scalable for
futuristic use. The technological advancements need to be implemented by
developing new routines which need to be incorporated in the distributed
file sharing environment. Any increments or incorporation made in the
distributed file sharing environment should not reduce the performance like
time taken to respond to the request, load balancing, data storage and retrieval
time taken.

(iv) Performance: The performance in a distributed file sharing environment is
measure based on the turnaround time that a client is required to wait from

NOTES

Self-Instructional
Material 117

Introduction to DFSthe time of initiating a process for retrieval or storage of data and receiving
the resources from the node where data is stored. The turnaround time
includes the time taken while communicating the request from client to server
and retrieving the file or data from the node where data is stored.

(v) Ease-of-Use: The user interface provided should be easy to use in order
to allow a user to understand the syntax and the method of writing a request
should be simple to understand to the users. The design of a distributed file
sharing environment should have relevance with the conventional file systems
in order to make the system easy to use at user level.

(vi) Reliability: Any operating system when used may encounter failures at
any time, however, a good operating system is one which will handle the
failure situations effectively and mitigate the impact of failures by ensuring
that the system doesn’t stop working. Similarly a reliable distributed file
sharing system may also encounter failures as discussed in chapter 2 of this
book where failures related to message passing where discussed in details
and the how to handle to failure situation were also discussed. A good file
sharing system will ensure that the failures will be handled efficiently and
effectively by ensuring the integrity, correctness and completeness of data
within a distributed operating system.

(vii) Security: A distributed file sharing environment should provide better security
to the data stored on any node in order to ensure the privacy of data. This
feature is also proportional to the reliability of a distributed file sharing
environment. Any unauthorized users should not be allowed access to the
data on the network within a distributed operating system. However, only
authorized users should be allowed to access the data stored at a node in a
distributed file sharing environment. Similarly only authorized users should
be allowed to modify or edit the data in order to ensure privacy of data
which will result in increase in the reliability quotient of a system.

(viii) Data Integrity: In a distributed file sharing environment more than one
users may be accessing same data or file simultaneously which will lead to
the data consistency problem. For example if two users are accessing same
data or file and one of the users modifies data and saves the changes but
before saving the changes another user is reading the data from the data
store which will fetch information which is not updated. In order to resolve
this problem more than one user are allowed to read a file simultaneously
but when a write instruction is to be executed, the same is given by activating
locks in order to block any other write request from another process within
a network. Once the write operation is completed read requests are executed
to provide updated data or file to the end-user.

(ix) Heterogeneity: At present different technologies have been developed
which work on different file systems and platforms which results in a challenge
of data migration from one platform or file system to other. In order to

Introduction to DFS

NOTES

Self-Instructional
118 Material

address this problem a distributed file sharing environment should facilitate
the transfer of data from one file system to another without any hassles. This
increases the ease-of-use level and reliability of a distributed file sharing
environment. Similarly the storage device used at one node may vary when
compared with another node where the storage media can be different. A
distributed file system should have the facility to store data or file on different
storage media without compromising on the performance of the system.
This feature of facilitating the storage & retrieval of data across platforms is
also known as heterogeneity.

Check Your Progress

1. What is the significance of DFS?

2. What do you understand by the structural transparency?

10.4 FILE MODES

The basic file model is based on the structure used in a file system within a distributed
file sharing environment and the same are categorized as structured and unstructured
files. The second categorization of file models within a distributed file sharing
environment is based on modifiability are mutable and immutable files.

(a) Structured File System: In this file system, the details of a file are known
to the storage server where the files are stored. Every file in the system is a
collection of records which are in an ordered sequence. The record is the
lower most unit is this file system which can vary in size from one file to the
other. The sharing of files in this file system are not as simple as unstructured
file system. The structured file system is used using two methods as indexed
and non-indexed method. The indexed file system stores the records in an
indexed sequence where any record can be accessed by specifying the
value of one or more key field and the same can be addressed by giving the
values of the key fields. In structured file system method the records of a file
are maintained using structures and one of the commonly used architecture
is B-Tree. However, in non-indexed file system a record is traversed by
mentioning the position of a record in a file. For example if the 8th record in
a file needs to be accessed the traversing is executed by exploring the first
record of the file first and then moving to eighth record in order to retrieve
the data from the storage server.

(b) Unstructured File System: This file system is the simplest form of a file
system where the details about a sub structure are not known to the storing
server where the files are stored. The distributed operating system kernel
does not require to know about the sub structures of or details of file and
data stored on the storage servers which gives applications the access to

NOTES

Self-Instructional
Material 119

Introduction to DFSunderstand the details of the sub structures of the data stored. Some of the
examples where this method of storage was used are MS-DOS and UNIX.

Another categorization of file models based on modifiability are given below:

(a) Mutable Files: Once a file is stored on a storage server, the possibility of
modifying the contents of a file is required. When the content of a file are
modified the file is not re-created rather the existing file is updated by
overwriting the existing file with a new file. This method is known as mutable
file method. This method is commonly used in most of the operating system
at present as the method reduces the overheads required to manage the
number of in case every modification request re-creates a file again and
again.

(b) Immutable Files: In this file system the contents are modified by re-creating
a file. In this method every modification requests will create a new file and
the information about the previous versions of a file is stored as history of
the file modified. A separate subroutine is used for managing the versions of
a file which helps the operating system to find out the recent updated file.
This increases the load on the operating system and increase the quantum
of storage space required to store a file.

10.5 FILE ACCESSING MODELS

The file accessing modes are the methods of accessing a file within a distributed
file sharing environment and the list of the generally used file accessing modes is
given below:

(a) Accessing Remote Files: In order to access a file in a distributed file
sharing environment different modes are used one of them is access remote
files method where a file is accessed remotely from any location which is
having access to the network. The two different methods of Access Remote
Files are given below:

(i) Remote Service model: In this method of file access the client
requests for file access and the file is sent to server. The server
processes the client’s request and the output is sent to client. The file
is not sent to the client node rather the file is delivered to the server.
The server processes all the requests and the output is deliver in the
form of a message to the client. The communication between the client
and the server is in the form of data packets. In this file access mode
method the communication overheads & message overheads are more
while communicating a request from a client to server and while
communicating the output from a server to the client. The protocols
for communication and file access need to be designed appropriately
in order to minimize the overheads generated by communication and
messages.

Introduction to DFS

NOTES

Self-Instructional
120 Material

(ii) Data caching model: This model of file access mode helps in reducing
the load of communication channel in comparison with Remote Service
Model method of file access. In this model when a client has a file
access requests, the availability of file is first checked locally on the
node and if the file is not available locally then a copy of the file from
the server is stored locally on the client node. The client node processes
the files access request locally and generates the output from the locally
stored file. The file is stored locally in the cache of the client node.
However, a file can be stored locally at one or more client nodes
simultaneously but while updating the file on the server all the nodes
have to perform write operation. Therefore, the write operation will
lead to increase in overheads as the write operation from more than
one client needs to be managed by ensuring the integrity and consistency
of data stored. The bottleneck in this file access mode is to ensure that
the data stored on the cache of client node is consistent at the server
node as well is also known as cache consistency problem.

(b) Unit of Data Transfer: The data caching model of file access mode a
copy of the file from the server is stored locally on the client node cache.
However, the size of the data packet transferred needs to be fixed in the
design of the operating system. In this file access mode the categorization
is done based on the unit of the size transferred and the same are given
below:

(i) File Level Transfer Model: In this file access mode type when a
client requests for access to a file from the server, the complete file is
transferred from the server to the client. This method reduces the file
access at the server node and improves the performance and scalability
of the distributed file sharing environment. However, this method
requires more storage space in order to store a complete file on the
local storage of the client node. In case the client node does not require
the access to complete file then the storage of complete file will lead
to wastage of storage space resource.

(ii) Block Level Transfer Model: In this file access mode type when a
client requests for access to a file from the server, the file blocks are
copied from the server to the client. The file blocks are arranged in
contiguous blocks where the size of the file block is fixed. However,
in some cases the file block size is equal to the page size of virtual
memory which is known as page level transfer model of file access.
The storage space required at the client side is not more as compared
with the file transfer model of file access. However, this method also
increases the communication overheads as the traffic on the network
will increase when a file is transferred in file blocks resulting in
degradation of performance.

NOTES

Self-Instructional
Material 121

Introduction to DFS(iii) Byte Level Transfer Model: In this file access mode type when a
client requests for access to a file from the server, the data transfer
happens in bytes which are copied from the server to the client. This
file access method is more flexible in comparison with the previous
methods of file access. However, the cache management becomes
more difficult as the number of bytes in a file are more in number.

(iv) Record Level Transfer Model: As discussed earlier, about
structured file models where a file is a collection of records. Therefore,
this file access mode will transfer the data of file in unit of records
where a complete record will be transferred from the server node to
the requesting node. This method of transfer is more suitable for
structured file access method.

Check Your Progress

3. What are the two types of file models based on modifiability?

4. What are the two models for accessing a remote file in DFS?

10.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Distributed File Systems (DFSs) are designed to support the sharing of
information across a network in the form of files. If the system is designed
well then it provides the same reliability and performance in accessing the
files stored at the server as files stored on some local host.

2. The characteristic of providing transparency to the clients related to storage
mechanism and the location where data is stored is also known as structural
transparency.

3. There are two types of file models based on modifiability i.e. mutable and
immutable.

4. The two types for accessing a remote file in DFS are:

(i) Remote service model

(ii) Data caching model

10.7 SUMMARY

 Distributed File Systems (DFSs) are designed to support the sharing of
information across a network in the form of files. If the system is designed
well then it provides the same reliability and performance in accessing the
files stored at the server as files stored on some local host.

Introduction to DFS

NOTES

Self-Instructional
122 Material

 Distributed file systems must cover the facilities of scalability, fault tolerance
and replication. In distributed file systems, files are stored on one or more
systems which are called servers and these files are accessible by various
systems which are clients.

 There are a lot of problems in designing a proper distributed file system.
Accessing many files over the network may create network bottlenecks
and server overload which may slow down the performance of the
network.

 The distributed file sharing environment should be designed to allow users
to store data or files while working on any nodes which is connected the
network of a distributed operating system in order to provide better
flexibility.

 The basic file model is based on the structure used in a file system within a
distributed file sharing environment and the same are categorized as structured
and unstructured files. The second categorization of file models within a
distributed file sharing environment is based on modifiability are mutable
and immutable files.

 The two types for accessing a remote file in DFS are: remote service model
and data caching model.

10.8 KEY WORDS

 Distributed File System (DFS): It is a method of storing and accessing
 files based in a client/server architecture.

 File Accessing Modes: These are the methods of accessing a file within a
distributed file sharing environment.

10.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What do you understand by the distributed file system?

2. List the various types of file models.

Long Answer Questions

1. What are the desirable features of distributed file system? Explain.

2. What are the various types of file models? Explain.

3. Explain the various types of file access models in distributed environment.

NOTES

Self-Instructional
Material 123

Introduction to DFS
10.10 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

File Sharing and
Replication

NOTES

Self-Instructional
124 Material

UNIT 11 FILE SHARING AND
REPLICATION

11.0 Introduction
11.1 Objectives
11.2 Basic Concept of File

11.2.1 File Attributes
11.2.2 Semantics of File Sharing

11.3 Mechanisms of DFS
11.3.1 Naming
11.3.2 Remote File Access
11.3.3 Cache Mechanism
11.3.4 File Replication
11.3.5 System Structure

11.4 Directory Structures
11.4.1 Single-Level Structure
11.4.2 Two-Level Structure
11.4.3 Hierarchical Structure

11.5 Answers to Check Your Progress Questions
11.6 Summary
11.7 Key Words
11.8 Self Assessment Questions and Exercises
11.9 Further Readings

11.0 INTRODUCTION

In this unit, you will learn how a file is shared in a distributed file system. Various
semantic models have been introduced such as UNIX semantics and immutable
files that specify the manner in which files can be shared. A file system in a distributed
operating system is assigned the work of storing, controlling and managing data,
which is stored on the disks in the form of files. The management of a file system
helps to maintain the consistency of data when multiple users access the files
simultaneously.

11.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the concept of files and a file system

 Discuss the semantics of file sharing

 Understand the different mechanisms of DFS

 Explain the structure of directory in DFS

NOTES

Self-Instructional
Material 125

File Sharing and
Replication11.2 BASIC CONCEPT OF FILE

Files are stored permanently on secondary storage devices, such as a hard disk.
The file system is a part of the distributed operating system that is responsible for
controlling the secondary storage space. It provides a uniform logical view to the
users. The various functions of the file management system are as follows:

 It enables the users to give user-defined names, to create, modify and delete
files.

 It maps the user-defined names with low-level identifiers, which are the
names in machine understandable format. Low-level identifiers help to identify
a file uniquely.

 It provides a uniform logical view of data to users rather than a physical
view, i.e., internal structure by giving a user-friendly interface.

 It controls the transferring of data blocks between secondary storage and
main memory and also between different files.

 It provides semantics or file sharing rules among multiple processes and
users.

 It allocates and manages space for files on secondary storage devices, such
as disks or magnetic tapes. Space management is an important function of
file management system.

 It protects the files from system failures and applies measures for recovery
and backup of the files.

 It provides security measures for confidential data, such as electronic funds
or criminal records.

 It also provides encryption and decryption facilities to the users. Encryption
is a mechanism of converting data into some format that cannot be read by
everyone except the recipient.

The file system is implemented as a layer of distributed operating systems
and is placed between the kernel and the memory manager. It consists of utility
programs which run as constrained applications that are used to control the access
on files. The users can access files through the file system only.

11.2.1 File Attributes

A file attribute is required by a file system to manage a file. It is the information
about a file that is linked with every file. Some of the attributes, such as file location,
name and date and time of creation of the file, are unique for each and every filein
the disk. Among them, only few attributes are accessible to the users, such as
access privileges, name or size of a file; whereas some of them are specifically
assigned to a file for the file system usage.

File Sharing and
Replication

NOTES

Self-Instructional
126 Material

File attributes vary from one operating system to the other, but some of them are
common to each and every operating system. Every file can contain different
attributes, which are as follows:

 User-defined attributes

 System-defined attributes

User-Defined Attributes

User-defined attributes contain those file information, which are specified by a
user. The different types of user-defined attributes are as follows:

 File name: It is an identifier chosen by a user to address the file. Usually, a
string of alphanumeric characters and some operating systems allow the
use of special characters, such as #, *, or $ in file names and must be unique
in its file directory.

 File type: It refers to the type of information stored, i.e. binary file, text file,
picture file or program file.

 Owner: It refers to the name of the creator of a file that controls and provides
access privileges, such as read only or read-write to other users.

 Permitted privileges: It contains information that determines read privileges,
write privileges and execute privileges.

System-Defined Attributes

System-defined attributes contain the file information, which are not specified by a
user. An operating system automatically stores some of the information related to
the creation and storage location of the files. The different types of system-defined
attributes are as follows:

 Location: It is the address of the sector or the memory area where the file
is stored on the disk. Usually, this information is used as a pointer, which is
a value used by programs to find the location of certain file.

 Low-level identifier: It is a computer understandable name, usually in binary
digits, that is used by hardware to identify a file by mapping it with the user-
defined name. This attribute also consists of numbers.

 File size: It is the current size of a file in bytes, words or blocks.

 Allocated size: It is the total allocated size of a file by the file system.

 Creation date: It contains the date and time of file creation.

 Date of last modification: It contains the date and time of the last updation,
insertion and deletion in a file.

All the attributes of a file are stored in the directory where the file exists. The
storage of attributes takes more than 1 KB space per file. Some of the attributes,
such as file size or creation date are stored in the header record associated with
each file.

NOTES

Self-Instructional
Material 127

File Sharing and
Replication

11.2.2 Semantics of File Sharing

When two or more users share a file at the same time in a network, it is called file
sharing. In a single-processor system, such as UNIX, the read operation follows
the write operation and the value that is returned by the read operation is the value
that is just written. Similarly, when two write operations are executed in a sequential
order after the read operation, then the value read is the value that is stored by the
last write. This kind of model is called UNIX semantics. This model is easy to
understand, as all the updates are immediately visible when the operation is
performed. In the distributed system, UNIX semantics can be accomplished easily
as there is only one file server and the clients also do not cache files. All the read
and write operations issued by the processors are directly transferred to the file
server to be executed sequentially in a program. This will cause performance
problem in a distributed system, as the clients have to go to the server for every
single operation. The performance problem can be solved with the help of cache
caching in which one client can modify the cached file and another client reads the
file from the server. The second client will get an obsolete file because the file has
been locked for modification by the first client.

One way to solve this problem is by making all the changes to the cached
file back to the server. Another solution is to reduce the semantics of file sharing.
If it is required to read the effects of all the write operations, the user can use one
rule, which states that the changes to an open file are initially visible only to the
process that modified the file. When the file is closed, the changes are visible to
other processes also. When the user closes the file, it sends a copy back to the
server so that the reads command can take a new value. This semantic rule is
implemented and is called session semantics. When a file is opened, it is fetched
from the server and is placed in cache on the local disk. All reads and writes are
then carried out on the cache copy. When the file is closed, it is uploaded back to
the memory.

Another approach to the semantics of file sharing in a distributed system is
to make all the files immutable. It means that the files can be opened only for
creating and reading operations. The file cannot be opened for modifications. If it
is required to modify a file, then the user has to create a new file or directory under
the previous existing file.

Atomic transaction is yet another approach to the semantics of file sharing
in the distributed system. In this approach, the process first executes BEGIN
TRANSACTION primitive to signal that all the operations should be executed
indivisibly for accessing a file or a group of files. After completing all the tasks, an
END TRANSACTION primitive is executed. If more than two transactions are
performed at the same time, then the system makes sure that the final output is the
same as if they were all running in the some sequential order.

File Sharing and
Replication

NOTES

Self-Instructional
128 Material

11.3 MECHANISMS OF DFS

The distributed operating system uses various mechanisms for enhancing the speed
of Input/Output and CPU performance. Using these mechanisms, a user can
overcome the bottleneck of centralized file system that occurs when the file server
of a centralized system is heavily loaded with a large number of requests. The
various mechanisms used by the distributed file system include naming schemes,
remote file access or caching files and file replication.

11.3.1 Naming

Every object, which includes files, has a name associated with it. These names are
referred by the end users and are mapped with low-level machine understandable
identifiers that are used for identifying a file. Low-level identifiers are made up of
binary digits, 0 and 1.

Naming service refers to the process of mapping user-defined file names with
transparency. It is used when the users do not know the location of a file: for
example, if the clients access a remote file with the help of naming service, it
appears to them that the file is located on their own computer. In a distributed
system, naming service is of two types, which are as follows:

 Multi-level mapping: It is the mapping of names in hierarchy. In this scheme,
a file is identified by the user with the help of its textual name. The machine,
on the other hand, identifies a file by machine level or low-level identifiers.
Now, in order to find a file, these user-defined names and low-level identifiers
should be mapped with each other. The mapping of user-defined names
and low-level identifiers with the location of file in the network is known as
multi-level mapping.

 Multi-valued mapping: The concept of multi-valued mapping arises with
the replication of files. In case of distributed systems, the resources are
shared to satisfy the simultaneous requests. The files are replicated on
different servers and are controlled by distributed operating system. The
textual name is sent by the user to access a file. This user-defined name is
then mapped with the names of all the replicated files and the mapping
returns different values. After mapping, the users are provided with a set of
derived values that denote the different locations of all the file replicas on
the network.

The objectives of a distributed system that are required before implementing the
naming services are stated below:

 Name transparency: It refers to the hiding of actual location of a file to
make it look like the file is located on the local disk.

 Location independence: It specifies that the user-defined name cannot be
changed by changing the location. This name remains the same and is used

NOTES

Self-Instructional
Material 129

File Sharing and
Replication

frequently by an end user irrespective of the file location. This is the most
important feature of naming service as it allows mapping of the same user-
defined name of a file with different locations at different times.

 Replication transparency: It specifies that an end user does not see any
duplicate files. However, when the end user works on any duplicate file, it
seems as if he is working on the original file.

 Adapt accordingly for change in file location: The naming service should
be capable of handling the address changing dynamically by the distributed
system.

Approaches to Naming Schemes

The distributed system can use any of the three approaches to implement the
naming service. A proper implementation of naming service is very important for
an effective distributed system network. The three approaches to the naming
scheme are as follows:

 In the first approach, the file name is made up of two parts: local name and
location address. The following code shows the two parts of a file name:

<Local-name: Path>

This approach is not useful because it does not provide transparency, as
the location of file in the network is visible to the user.

 In the second approach, the remote directory tree structure of a file system
is mapped with the local directory tree structure of the file system. This
mapping is performed to provide transparent access to the users.

 In the third approach, a global name structure is provided to all the files and
directories that cover all the types of files and directories present in the file
servers.

The various ways that are used to implement naming services are as follows:

 Static map: It is a very simple mechanism, which is used where the location
of a file or a directory does not change. It does not support resource or file
migration because it statically binds the resource name with its address. It
maps the resource name with the location of the resource. Every host in the
network maintains static maps.The structure of a static map is shown below:

Hostname: Resource address

For example:

Site s/Host 9: D:/Bin/prog

 Broadcasting: In this mechanism, the desired resource name is broadcast
to all the servers and the server that has the required resource or file gives
reply to the host. Broadcasting is the best way to save the cost incurred on
maintaining the server names or making table names.

File Sharing and
Replication

NOTES

Self-Instructional
130 Material

Broadcasting does not require any global table name as the name of the
resources is broadcast. Hence, it saves the cost of maintaining global table
name. The main problem with this mechanism is that it provides very poor
performance because every name server has to search its local table name
for finding the required resource. Also, the servers that do not have the
desired resource have to bear the cost in terms of time for searching the
table name.

 Name servers: These are the special servers, which are installed on a
network to control the naming service. These servers return the host address
after receiving the request for resource location.

The name servers can support resource migration because they are capable
of decoupling the names. But the main problem with these servers is that
there is degradation in their performance because these servers cause
communication delay during installation.

 Prefix table: It is a combination of static tables and broadcasting names of
files or resources. Every host maintains a table related to a complete path
or partial path of all the resources, which it has accessed in the past. The
host searches the longest matching part of pathname in the prefix table and
directs the request to the related server. If the host does not find the required
path in the path table, then it broadcasts the request to all the servers. The
server that contains the required path sends a message to the host along
with its own ID. When the host receives the message, it updates the prefix
tables dynamically.

11.3.2 Remote File Access

In a distributed system, the files are located on specialized servers. These servers
are responsible for holding large disks, such as Redundant Array of Inexpensive
Disks (RAID) for storing files. These disks provide an entire file or a part of the
file that is requested by a host to perform I/O operation or data processing. This
mechanism of accessing files is known as remote file access. It provides
transparency to an end user who can access any file remotely, regardless of its
location. You can perform remote file access in the following ways:

 Uploading: In this method, queries are sent to the location of the files for
processing. This method reduces the bottleneck that occurs in the network
but leads to an overloading of the server because all the processing is done
at the server side.

 Downloading: In this method, files are sent to the host or the client side.
This mechanism is considered as the simple and efficient method when the
client requires the entire file for processing. The problem associated with
this method is that the entire file is processed when a portion of it is only
required. In such case, this method becomes expensive and uses a lot of
disk space and time in downloading a complete file.

NOTES

Self-Instructional
Material 131

File Sharing and
Replication

 Remote access: In this method, the client remotely access the files that are
present in the network. The client does not interfere with the application
that is running either at the server side or at the client side. If the application
is running at the server side, then the client sends the query to the server.
The query is processed at the server and the result is forwarded to the
client. If the application is running at the client side, then a portion of the
requested file is transmitted to the client and the processing of query is done
locally. Moreover, an operating system stores files in the cache to avoid
repeated searching.

Remote file access uses cache for increasing the performance of network
by reducing the network traffic and disk I/O because transferring of complete file
is not required.

11.3.3 Cache Mechanism

Cache is a temporary storage area where blocks of files are stored for fast recovery.
If the desired block is not present in the cache, then a copy of this block is accessed
from the file server where it is stored.

Cache contains data, which is a copy of the master file stored on the server. This
means when the end user modifies the copy of data, the master copy also needs to
be modified so that consistency of data can be maintained. The cache is always
consisted of more data than it requires in order to satisfy the different requests
simultaneously. Figure 11.1 shows the working of cache in the distributed system.

Fig. 11.1 Working of Cache in Distributed System

In the cache mechanism, the client machine requests a query and searches
its local cache for the required block of data. If the client machine is not able to
find the required data, then it searches the required block in the server cache.
Again, if the client machine does not get the required block, the query is transferred
to the server. The server performs the required search and stores the desired
block into its cache from where the block is transferred to the client’s cache.

If the data in the cache is modified, then the modified data is sent back to
the server for permanent storage and to maintain data consistency.

File Sharing and
Replication

NOTES

Self-Instructional
132 Material

Location of the Cache

Data is cached at the server side as well as the client side. It is an important
issue for distributed operating system to select the appropriate place for cache
mechanism. Generally, the cached data is stored at two places, which are as
follows:

 Main memory

 Disk

The main memory and the disk have their own advantages and disadvantages.
Disk caches are reliable and can survive system crash because the data can be
recovered from the disk, as it is stored permanently on the disk. On the other
hand, memory caches are faster than the disk cache because speed of searching
data from the main memory is faster than the speed of searching data from a disk.
Hence, they help in increasing the performance of a system. The four different
places where blocks of files are cached are enumerated below:

 Client main memory: When the client main memory is used as a cache,
the access speed of memory gets increased but network traffic is reduced.
It also causes file inconsistency, which occurs when various processes
modify the data in the main memory and the system crashes before storing
it permanently.

 Client disk: When the client disk is used as cache, it reduces network
traffic and the performance of a system.

 Server main memory: When the server main memory is used as cache, it
increases the disk access rate but on the other hand slows down the
performance of a system.

 Server disk: When the server disk is used as cache, it allows all the clients
to access the files and provides huge space for cache mechanism. The major
problem with this cache is that it increases the network traffic.

Cache-Update Policy

Blocks of data are transferred from files to server and from server to files constantly
through cache. This transfer of data makes data inconsistent, which is critical for a
file system. For maintaining the consistency and reliability of files, distributed
operating system has to adopt some policies for writing the modified data onto the
master copy. The policies adopted by the distributed operating system are as
follows:

 Write-through: It is the most reliable policy that maintains data consistency
even if the system crashes. In this policy, the master copy is updated as
soon as the data in cache is modified. This policy has a disadvantage that it
provides poor performance because the system has to perform an update
function for master copy after every modification of data in the cache.

NOTES

Self-Instructional
Material 133

File Sharing and
Replication

 Delayed write: In this policy, data is updated in cache and the master
copy is updated after a short interval of time. The drawback of this policy is
its poor reliability because the system crashes result in loss of unwritten
data.

 Write-on-close: This policy is a new version of delayed write policy. It is
suitable when files are required for a long period of time and are accessed
frequently. In this policy, the master copy is updated only after the file is
closed. The main disadvantage of this policy is that the user might loose the
data when the system crashes.

 Write periodically policy: In this policy, the master copy is updated after
a definite interval of time: for example, the master copy is updated after
every 40 seconds. It is also the new version of the delayed write policy. In
this policy, the data can be lost only at the last interval of time

Cache Consistency

The block of files, which reside in the cache, become outdated after the request is
satisfied. In this, more than one process can access the same block of data multiple
times. For this, the latest copy of the file is required to be cached. The file system
adopts the following two approaches for verifying the validity of data blocks:

 Server initiated approach: In this approach, a server maintains the records
of each file that resides in the client cache. It also detects the potential
conflicts that arise by caching a file by two or more clients and solves these
conflicts by implementing session semantics. Session semantics describe
that writes are visible only after the completion of a session or a short time
interval and after the client closes the file in which the client is working.
Server also notifies the client that is using same file for checking the invalidity
of that cache file. Clients have to declare the mode of operation before
opening the file. If two or more clients want to write on the same cache,
then server disables the cache.

 Client initiated approach: In this approach, the clients check the validity
of a cache file. The client contacts the server and asks if the copy of the file,
which is present in the cache, is consistent or not with the master copy. The
client initiates the check after every access or after a definite interval of time
or at the time of opening the file.

11.3.4 File Replication

In a distributed file system, file replication is broadly used. File replication improves
the availability of files to clients as clients can access the replica of the file stored at
the nearest site in the network. Hence, it helps in saving the server service time
and also reduces the delay time while communicating.

File replication is also important in case of system failures. Replicas of files are
stored on the machines in which failure does not occur. These machines are linked

File Sharing and
Replication

NOTES

Self-Instructional
134 Material

with other replicas. When any of the machines on which the copy of a file is
stored, crashes, then the machine, which contains another copy of this file, continues
the processing. File replication can be created in the following three ways:

 Explicit file replication: A programmer controls the complete process of
the replication of files. To create multiple copies of a file, a programmer
needs the permission of the directory server. This directory server associates
the address of each copy of file along with the file name.

 Lazy file replication: In a distributed system, the server controls the
replication of files. In this type of replication, a programmer creates the
copy of a file on the server. After the copy is created on the server, the
server further creates multiple copies of the same file on other servers also.
The server creates multiple copies only when the system is not heavily loaded.

 Group communication based replicas:The system calls are sent to all the
servers that create multiple copies at the same time when the original was
made.

The replication of files should be transparent to the clients. Every replica
should have the same user-defined names. It is the task of the distributed system-
naming scheme to map single high-level names with multiple low-level names.

Files are distributed in a distributed system. The files available on single
server are considered as groups. Every file in a file-group is associated with a
unique ID. All the replicas of a file have the same ID number. Hence, the files are
uniquely identified by a pair < file-group id: file-id >.

File replication also leads to a consistency problem. Any update in one replica is
reflected in all other replicas. A distributed operating system uses update protocol
algorithms in order to ensure consistency between the replicas. The following are
the two most commonly used protocols:

 Primary copy replication algorithm: According to this protocol, updated
replica is sent to the primary server that holds the master copy. This primary
server makes some permanent changes in the master copy and issues
commands to the secondary servers. These secondary servers hold the
replicas of this file to make necessary changes.

 Voting: According to this protocol, clients require permission from multiple
servers that hold the replicas before performing any I/O operation, such as
read or write on any of the replica. The file replication scheme improves the
load-balancing feature of the distributed operating system: for example, if
two processes require the same information, then one of the two processes
can be sent to some other client machine to continue processing by using
the replica of that information.

11.3.5 System Structure

System structure is the basic arrangement of file servers and directory servers in
an organization. In some systems, there is no difference between clients and servers.

NOTES

Self-Instructional
Material 135

File Sharing and
Replication

All the machines run on one single software. Here, offering of file service is similar
to exporting the names of directories so that other machines are able to access
them. In other systems, such as client-server model and distributed systems, clients
and servers are basically different machines in terms of hardware or software. A
single organization combines the file service and directory service into a single
server and then manages all the directories and file calls itself. Since files and
directories are not related to each other, keeping them separate is more flexible.
Consider a situation where directory and file servers are separated from each
other. In general, a client sends a symbolic name to the directory server, which in
turn returns the binary name that can be easily understood by the file server. In
Figure 11.2, a directory hierarchy is partitioned among multiple servers.

Fig. 11.2 Directory Hierarchy among Multiple Servers

In Figure 11.2, there is a system consisting of the current directory on server
1 having x entry, another directory on server 2 having entry y. The third directory
on server 3 contains entry z along with its brand name. To look up x/y/z, the client
sends message to the server 1 where it finds entry x but then observes that the
binary name refers to another server. Now, server1 has two choices that it can tell
the client which server contains the entry y and the client will look up y/z by itself.
Another choice is that the server can forward the remainder of the request to the
server 2 itself. This entire process of looking up path names in multiple directories
becomes very complex. Thus, the performance of this process can be improved
by maintaining a cache on the hard disk. When the file is opened, the directory-

File Sharing and
Replication

NOTES

Self-Instructional
136 Material

by-directory look-up is skipped and the binary address is taken from the cache to
view the path name.

Consider a file server that has commands open, read, write and close files. When
a file is opened, the client is provided with a file descriptor that uses call to identify
the file. When the server receives the request, it uses file descriptor to find out
which file is required. File servers can be classified as namely, stateless servers
and stateful servers. Stateless servers are those servers, which do not maintain
information related to the state of the client. This means that when a client sends a
request to the server, the server receives the request, processes it and sends back
the response to the client. The server then deletes all the information related to the
client from its internal table. Stateful sever is that server, which maintains information
about the state of the client even after the request has been processed and response
sent. The advantages of stateless servers are as follows:

 OPEN and CLOSE calls are not required in stateless servers. As a result,
there is reduction in the number of messages passed between the server
and the client.

 Server space is not wasted on tables.

 Multiple files can be opened by clients while using the tables.

 If a client crashes when a file is opened, there will not be any problem with
the stateless server.

The advantages of stateful servers are as follows:

 There are shorter request messages and the network bandwidth is also
less.

 It gives better performance as the information about the open files are kept
in the main memory when the files are closed.

 In stateful servers, file locking is done by a special lock server.

11.4 DIRECTORY STRUCTURES

Directories are considered as symbolic tables of files that store all the related
information about the file it holds along with the content. This information includes
file attributes, location type and access privileges. They are also known as containers
for files. A directory is itself a file that is owned by the distributed operating system.

Millions of files present in the system need to be managed. Directories provide the
means to organize files in a structure. Each entry in a directory contains information
about a file. Similar to the files, operations, such as insertion, deletion and searching
can be performed on it. The following operations can be performed on different
entries in a directory:

 Searching a file: Whenever a file is referenced, the directory must search
for the related entry.

NOTES

Self-Instructional
Material 137

File Sharing and
Replication

 Create a file: An entry for every newly created file needs to be added in
the directory.

 Delete a file: Whenever a file is deleted, related entry should be removed
from the directory.

 List directory: List of files in a directory is shown whenever a user requests
for it.

 Rename a file: The name of the file should be changeable when the use of
file changes or its location changes.

 Update directory: Whenever a file attribute changes, its corresponding
entry needs to be updated.

Based on these entries and its operations, the structure of directories can be
organized in different ways. The three most common structures for organizing a
directory are as follows:

 Single-level structure

 Two-level structure

 Hierarchical structure

11.4.1 Single-Level Structure

It is the simplest form of directory structures having only one level of directories.
The entire files are contained in the same directory. It appears as the list of files or
a sequential file having file names serving as the key. The logical structure of single-
level directory is shown in Figure 11.3.

Fig. 11.3 Single-Level Structure

This directory structure was implemented in old versions of single-user
system. It becomes outdated and inadequate in multiple-user system. Even for
single user, it is difficult to keep track of the files if the number of files increases.
Moreover, files are of different types, such as graphic files, text files and executable
files, and if the user wants to arrange these files in an organized manner, such as
group files by type, this structure becomes inconvenient.

The files in a single-level directory should have unique names because they
are contained in a single directory. In shared system, unique naming becomes a

File Sharing and
Replication

NOTES

Self-Instructional
138 Material

serious problem. These drawbacks lead us to design another logical structure of
directories named as two-level structure.

11.4.2 Two-Level Structure

This structure is divided into two levels of directories, i.e. a master directory and
user directories. The user directories are subdirectories of the master directory. A
separate directory is provided to each user and all these directories are contained
and indexed form in master directory. The user directory represents a list of files of
a specific user.

The two-level structure looks like an inverted tree of height 2 cm. The root
of this tree is the master directory having user directories as its branches. The files
are the leaves of these branches. The logical structure of two-level directories is
shown in Figure 11.4.

Fig. 11.4 Two-Level Structure

The user name and the file name are the pathname for a file. This structure
solves the problem of unique names upto a certain extent, i.e. the user can assign
duplicate names to the files, provided that the files are present in different directories.
The names need to be unique in the user’s own directory because two file names
cannot be same in a single directory. A user searches a file in his own directory and
only then allows different users to have files with same names.

Adistributed operating system uses user’s directory to perform the various
operations related to the files, such as create and delete a file in two-level structure,
because the user directory is used to initiate the commands. The distributed
operating system uses system calls to create or delete a user directory. This system
program creates or deletes a user directory entry from the master directory.

This two-level structure provides no help in grouping the files of different
types. In a shared system, one user wants to access another user's files because

NOTES

Self-Instructional
Material 139

File Sharing and
Replication

the files are shared in a shared system network, which again creates problem of
uniqueness in the file names. The user has to give a complete pathname to name a
file in other user's directory.

11.4.3 Hierarchical Structure

This is the most powerful and flexible structure and is implemented in almost
every operating system. The two-level structure is extended into more
advanced hierarchical structures of arbitrary levels. It uses the same concept
of two-level structure of master directory having user-directories as
subdirectories. In addition, each user-directory in turn has subdirectories and
files as its branches and leaves. A typical hierarchical structure of directories
and files is shown in Figure 11.5.

Fig. 11.5 Hierarchical Structure

Users can create their own subdirectories to organize the files of different
types, such as a separate subdirectory for the graphic files or a separate subdirectory
for the text files. System calls are used to create or delete directories. Internal
format is the internal structure in which details of directories are stored. Each
directory has an entry that stores a special bit representing a subdirectory or a file.
The 0 bit represents a file and 1 bit represents a directory.

A user always works on the file in the current directory. The current directory
holds all the files, which a user currently requires. The distributed operating system
searches the current directory for reference to a file. In the hierarchical structure,
a user can access a file, which is not in the current directory by giving the pathname.
The user can change the current directory also through a system call.

File Sharing and
Replication

NOTES

Self-Instructional
140 Material

In the hierarchical structure, a file can be referenced in two ways: absolute
pathname and relative pathname. The absolute pathname starts from the root and
ends at the required file following a path of directories and subdirectories. The
relative pathname starts from the current directory to the file.

A user can access another user’s file by giving its pathname. In hierarchical
structure, pathname to a file can be longer than the two-level directory. This increases
the search time for a file that resides in other user directory. Process scheduling is
a technique that ensures efficient multitasking of processes. The process manager
assigns the CPU time and other resources to carry out the process of multitasking.

The process scheduling maximizes the utilization of CPU by simultaneously
executing multiple processes. The main purpose of process scheduling is to switch
CPU among different processes frequently, so that the CPU can process all the
programs simultaneously. In order to meet these objectives, the process scheduler
selects a process from the available processes that are ready for execution in
CPU. The process scheduler examines the information in the process control block
that helps in selecting a process for execution. In case of a single-processor system,
there is only one process that is to be executed. If there is more than one process
in the queue, then the processes have to wait for the CPU to get free for processing.

Check Your Progress

1. What are the two types of naming services in a distributed system?

2. List the three ways to create file replication.

3. Name the two locations where cached data can be stored.

4. Explain the operations that can be performed on different entries in a
directory.

11.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The two types of naming services in a distributed system are as follows:

A. Multi-level mapping

B. Multi-valued mapping

2. The three ways to create file replication are stated below:

A. Explicit File Replication

B. Lazy File Replication

C. Group Communication Based Replicas

3. The two places where the cached data can be stored are:

A. Main memory

B. Disk

NOTES

Self-Instructional
Material 141

File Sharing and
Replication

4. The operations that must be performed on different entries in a directory
for managing them, are as follows:

A. Searching a file: Whenever a file is referenced, the directory must
search for the related entry.

B. Create a file: An entry for every newly created file needs to be added
in the directory.

C. Delete a file: Whenever a file is deleted, the related entry should be
removed from the directory.

D. List directory: The list of files in a directory is shown whenever a
user requests for it.

E. Rename a file: The name of the file should be changeable when the
use of the file changes or its location changes.

F. Update directory: Whenever a file attribute changes, its
corresponding entry needs to be updated.

11.6 SUMMARY

 A file attribute is required by a file system to manage a file. It is the information
about a file that is linked with every file. Some of the attributes, such as file
location, name and date and time of creation of the file, are unique for each
and every file in the disk.

 User-defined attributes contain those file information, which are specified
by a user.

 System-defined attributes contain the file information, which are not specified
by a user. An operating system automatically stores some of the information
related to the creation and storage location of the files.

 When two or more users share a file at the same time in a network, it is
called file sharing.

 Every object, which includes files, has a name associated with it. These
names are referred by the end users and are mapped with low-level machine
understandable identifiers that are used for identifying a file.

 Naming service refers to the process of mapping user-defined file names
with transparency. It is used when the users do not know the location of a
file.

 In a distributed system, the files are located on specialized servers. These
servers are responsible for holding large disks, such as Redundant Array of
Inexpensive Disks (RAID) for storing files. These disks provide an entire
file or a part of the file that is requested by a host to perform I/O operation
or data processing. This mechanism of accessing files is known as remote
file access.

File Sharing and
Replication

NOTES

Self-Instructional
142 Material

 Cache is a temporary storage area where blocks of files are stored for fast
recovery.

 In a distributed file system, file replication is broadly used. File replication
improves the availability of files to clients as clients can access the replica of
the file stored at the nearest site in the network.

 System structure is the basic arrangement of file servers and directory servers
in an organization.

 Directories are considered as symbolic tables of files that store all the related
information about the file it holds along with the content.

11.7 KEY WORDS

 File Server: It is a machine where the files are stored. It also implements
the file services.

 File System: It is a part of a distributed operating system that is responsible
for controlling the secondary storage space.

 File Type: It refers to the type of information stored, i.e., binary file, text
file, picture file or program file.

 File Sharing: When two or more users share the same file at the same
time, it is called file sharing.

 Naming Service: It refers to the process of mapping user-defined file names
with transparency.

 Multi-Level Mapping: The mapping of user-defined names and low-level
identifiers with the location of the file in the network is known as multi-level
mapping.

 Static Map: It is a very simple mechanism, which is used where the location
of file or directory does not change.

11.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Discuss the semantics of file sharing.

2. Discuss the various attributes of a file.

3. Discuss the use of file replication.

4. Does a file system replicate all the files at a single time during file replication?
Give an example of a kind of file that is not worth replicating.

NOTES

Self-Instructional
Material 143

File Sharing and
Replication

Long Answer Questions

1. Explain the concept of remote file access.

2. Explain the concept of naming.

3. Why directory structure is needed for files? Explain the different types of
directory structure.

11.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
144 Material

UNIT 12 FAULT TOLERANCE AND
TRANSACTION IN DFS

12.0 Introduction
12.1 Objectives
12.2 Fault Tolerance
12.3 Atomic Transactions and Design Principles
12.4 Answers to Check Your Progress Questions
12.5 Summary
12.6 Key Words
12.7 Self Assessment Questions and Exercises
12.8 Further Readings

12.0 INTRODUCTION

In this unit, you will learn about the fault tolerance and atomic transactions. A
distributed system should exhibit fault tolerance and withstand component failures
to be able to provide quality services to its clients. You will learn that to achieve
fault tolerance, systems use two phase-based commit protocols.

12.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the concept of fault tolerance with respect to distributed
systems

 Discuss the properties of transactions

 Explain the two-phase commit protocol

 Understand how to achieve concurrency

12.2 FAULT TOLERANCE

In a distributed system, it often happens that one or more components of the
system undergo failure leaving other unaffected components functioning normally.
This quality of the system to continue functioning even when some of its components
have failed is termed as fault tolerance.

The ability to function, albeit with reduced capability, in the situation
of a failure in itself or in one or more of its associated components is the
basic characteristic of a fault-tolerant system.

NOTES

Self-Instructional
Material 145

Fault Tolerance and
Transaction in DFS

Such failures might arise due to power failures, disk failures, communication
failures, memory failures and general component failures. In the event of any of
these happenings, a fault tolerant system will resist a complete failure and would
continue to operate in a reduced functionality mode. This attribute of a fault-tolerant
system is known as graceful degradation. The decrease in the operational quality
is proportional to the failure.

Fault-tolerant systems are deployed in mission critical systems, life-support
systems, aviation, hazard-oriented systems, financial systems, banking, stock
markets, etc. Common examples include air traffic, medical apparatuses used in
intensive care units, bank ATMS, electronic transaction equipment at merchant
establishments, power backup systems in data centre.

Fault tolerance is a holistic attribute of system; a system being composed of
smaller constituent participating entities. It is a cooperative characteristic of the
system to recover and continue functioning in the event of a failure.

Fault Tolerance in Network Systems

As an example, connection-oriented network protocols exhibit fault tolerance. In
the event of a link failure at a network node, the receiver/sender employs an
acknowledgement policy. If the sender does not receive an acknowledgement
from the receiver within a specific time period the packet is retransmitted.

The retransmitted packet is then routed through a network in which all the
intermediate links are functional. The TCP network layer is an example of such a
fault-tolerant system.

An interesting quality of a fault-tolerant system is that it allows for correction
of the faulty component without having to shutdown the entire system. For example,
in the event of a network failure due to link breakdown, the router (a component
in the distributed network system) will send packets over an alternate link till the
fault is recovered.

Fault tolerance is often achieved by employing redundancy in systems. In
certain cases, a fail-safe operation is duplicated across multiple systems and if a
failure happens on one of the systems, a fall-back system takes over the operation
and continues from the point where the original system left off.

Systems that are fault tolerant in nature have a well-defined recovery path.
Two widely used recovery techniques are roll-back and roll-forward. In the
case of the former, in the event of a failure, the system reverts back it state to the
last non-erroneous point of operation and resumes processing; in the case of
the latter, the system on detecting an error, corrects itself and continues with the
processing.

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
146 Material

Attributes of Fault-Tolerant Systems

For a distributed system to be able to resist complete failures, or in other words to
be fault tolerant, it should be dependable. A dependable system should satisfy the
requirements of availability, reliability, safety and maintainability.

Availability is the metrics of a system which tells us the probability that the
system is functioning properly at any given instance in time. If a system fails and
consequently recovers within a very small amount of time—the system to a user
will be unavailable only for that very short duration. Thus, the probability of the
system being available would be high.

On the other hand, reliability is the metrics of a system which indicates the
ability of a system to operate without failures over a period of time. In the context
of reliability, it is necessary for a system to function without failures. A highly available
system does not necessary imply a highly reliable system. A system which stops
functioning every now and then, but for a very small duration of time, is a highly
available system—as the probability of finding it up and running is high; but since
the system does not function without interruptions over an extended period of
time, it cannot be said to be reliable.

A system is said to exhibit safety if a failure in it does not lead to disaster. A
typical example would be the flight control systems found in passenger airplanes.
They are designed taking into account that a failure in one of its component does
not affect the functioning of the system.

In the context of dependable systems, maintainability implies that in the
event of a failure, the system can be repaired within a reasonable timeframe and
without much effort. A maintainable system can in some cases be designed to
automatically detect and correct errors. These self-recovery mechanisms are often
present in high availability systems.

Errors, Failures and Faults

A distributed system provides a set of services to its users. When one or more of
these services become unavailable and does not perform as expected, the system
is said to have failed. A failure in such systems is typically due to the erroneous
state the system reaches as a result of a fault in one or more of its components. In
order to build fault-tolerant distributed systems, it is very important to study how
failures occur.

Failures are the effect of error in the system; the error manifests itself in the
form of component failure in the distributed system, and occurs due a fault. As can
be noticed, this cause-effect sequence, i.e., the relationship between fault, error
and failure is present in all cases of system malfunction. Analysis of each of these
components, help us design effective fault-tolerant systems.

NOTES

Self-Instructional
Material 147

Fault Tolerance and
Transaction in DFS

Fault Categories

Faults can be categorized into the following types:

Permanent: A permanent fault is one that remains until the defective part is changed.
As an example, a failure in a database server due to a hard disk fault remains
uncorrected until the bad disk is replaced with a good one followed by restoration
of data.

Transient: A transient fault happens once and then does not reappear; for example,
a cellular phone fails to detect the mobile network in places such as tunnels and
underground railway systems, but once the person comes out in the open, the
system re-establishes connection with the nearest base station. Another example
of a transient fault would be the disruption in the wireless transmission due to solar
flares. Solar flares are explosions in the sun’s outer atmosphere which results in
the huge release of electromagnetic radiation into space. These radiations sometimes
disrupt telecommunication which automatically disappears once the effect of the
solar flare subsides.

Sporadic: As the term suggests, these types of faults occur on and off. For example,
due to a malfunction in the cooling system, a processor shuts down to prevent its
circuit burn-out, thereby bringing the system to a halt; once the temperature drops,
the processor starts functioning again. Sporadic failures are the most difficult to
detect and isolate. This makes them the most difficult to correct and accounts for
most of the system failures.

Failure Models

In accordance with a specific failure classification scheme, failures can be
categorized by their types into crash failures, omission failures, timing failures,
response failures and arbitrary failures.

Crash Failure: This occurs when a server stops due to a system malfunction.
Before the crash happened, the server was functioning correctly. A server program
termination by the operating system due to an illegal memory address access would
be a typical example of a crash. To recover from such situations, the server program
needs to be restarted.

Omission Failure: Such failure takes places when a server does not send its
response to a request. It might very well be the case that the server never received
the request to start with. It might also be due to a transient failure in the
communication media, which resulted in the total loss of network traffic. An omission
failure can also occur in a situation when the server has failed to transmit the
response after processing the request.

Timing Failures: These are noticed when a system is not able to respond to the
requestor within a predefined time period. As an example, if a http request takes

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
148 Material

a long time to complete by a Web server, a timing failure happens—the result of
which is the familiar ‘408 Request Timeout’ response displayed by the browser. A
timing failure might also happen if the server responds later than it is expected to.
Timing failures might arise due to high server loads when the request was issued,
low communication bandwidth, etc. Timing failures also arise due to response sent
by the server too quickly, when the client was not expecting it.

Response Failures: These are more severe forms of failures. When a system
responds incorrectly to a request, a response failure is said to have taken
place. Response failures are of two distinct types, value failure—in which the
response to the request is incorrect and state transition failure. A state transition
failure occurs when the system receives a request that it is not designed to
handle. The system might process the request incorrectly and generate an
incorrect response.

Arbitrary Failures: These are the most serious forms of failures. These failures
are also known as Byzantine failures. Byzantine refers to the Byzantine General’s
problem, in which a number of generals separated by distances need to decide
upon whether to attack the enemy or retreat. Each general communicates the
decision to the nearest general. To aggravate the problem, it might be that some of
these generals are traitors and might maliciously alter the message. An arbitrary
failure happens when the system responds incorrectly because of the presence of
faulty components within it. For example, if a server interacts with several other
servers for processing a request and if some of these servers are faulty, then the
system fails to produce the correct output.

The manner in which a server system exhibits a crash failure can differ
from system to system. Some systems might halt altogether due to a fault.
Exigency handling in such systems might broadcast that it is about to stop. Such
failures are known as fail-stop. Fail-silent systems are those which do no intimate
the interested parties that it is about to halt. In these systems, observer’s
processes monitor the servers and initiate appropriate action, such as to restart
the failed system, inform interested parties, and so on. The other class of systems
is referred to as fail-safe. These systems, in the event of a failure will respond to
requests in such a manner that other processes would understand that all is not
well with the server.

Fault Tolerant Design Techniques

Redundancy

Redundancy is often used to build fault-tolerant systems. Take the case of a
passenger aeroplane which typically has more than one engine. In the event of an
engine failure, the other takes over. In other words, a redundant engine is installed
to be used in the event of primary engine failure. Similarly, enterprise databases

NOTES

Self-Instructional
Material 149

Fault Tolerance and
Transaction in DFS

are replicated and hosted on different systems. In the event of a disk crash on any
of the system, the other systems still continue to function normally. In yet another
example, multiple copies of a critical process are run in a server. If any of the
processes fail, the others still continue to function, thus providing uninterrupted
service. This type of redundancy, where more than one instances of a critical
system is deployed in known as physical redundancy. Patterns exist that are
employed to address fault tolerance using physical redundancy. Triple Modular
Redundancy (TMR) is a technique where two instances are deployed for each of
the components in a system. Each of these systems at a particular stage receives
input at all the three components of the previous stage, and so on. A component in
a particular stage accepts an input if it was provided by two or more of the
components of the previous stage. If three different inputs are received, the system
state is undefined.

Temporal Redundancy, on the other hand, involves recording a series of events
that happen in a system, and playing them back in case of a failure. This technique
is heavily used in database transactions. A transaction can be started, a series of
operations can be made, and then the transaction can be committed. If a system
failure occurs, the transactions that have been logged can be replayed to bring the
system to the state where it was before the crash happened. Temporal redundancy
is used in scenarios where transient faults or sporadic faults occur.

Another technique used in the design of fault-tolerant systems is information
redundancy. In this case, extra data is added to the transmission which helps
in detecting and correcting errors at the receiver’s end. An example of such
an algorithm is the Hamming code. Extra parity bits are added to the transmitted
data in such a way, that the receiver on inspecting the data will be able to
ascertain whether the data is in error, and in certain cases, could also correct
the data.

12.3 ATOMIC TRANSACTIONS AND DESIGN
PRINCIPLES

Atomic transactions provide synchronization at a higher level of abstraction. The
user does not have to bother about how the algorithm and the processes work
together. The first atomic transaction model was inspired by the business world,
where if two parties are bound by a contract, they need to complete a signed
transaction. However, if they are not legally bound, any party can revert any time.
Similarly, in computer, a process announces its wish to initiate a transaction with
other processes. They can create and delete objects and perform other operations,
such as read on the processes. Now, the initiator announces that it wants all the
other processes to commit the changes they have done so far. If all the processes

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
150 Material

agree to the changes, the results of change are made permanent. However, even if
one process disagrees, the changes are rejected and the transaction is reverted to
the original state.

Transaction Model

A transaction model consists of some processes capable of failing at random. The
communication is unreliable in the sense that the messages can be lost. However,
lower levels can use a timeout and retransmission protocol to recover lost messages.
Thus, it is assumed that the software transparently handles the communication
errors. Since transactions make use of databases to store relevant information,
some kind of storage is required. Some primitives are also required to establish
proper communication between the communicating processes.

Stable storage

In the transaction model, a stable storage is required that can survive any crashes
except for calamities, such as floods and earthquakes. A pair of ordinary disks can
be used to implement a stable storage. There are two drives, drive 1 and drive 2.
Each block on drive 1 is copied to the corresponding block on drive 2. A block to
be updated is first updated on drive 1 and verified and then copied to drive 2.
Now, suppose a system crashes after updating drive 1 but not drive 2. When the
system recovers, the disk can be compared block by block and when the
corresponding blocks in the two disks differ, the block of drive 1 is copied to
drive 2.

Another problem can be the spontaneous decay of a block from exposure
to dust particles or may be general wear and tear with time. Thus, in such cases, a
previously valid block may suddenly result in a checksum error. The bad block
can be regenerated from the corresponding block on the other drive. Due to its
high tolerance to failures, stable storage is well suited for applications, such as
atomic transactions.

Transaction primitives

Special primitives are required for programming transactions. These primitives
must either be supplied by the operating system or by the language run-time system.
Some of the examples of primitives are as follows:

 BEGIN_TRANSACTION: It marks the start of a transaction.

 END_TRANSACTION: It terminates a transaction and tries to commit
it.

 ABORT_TRANSACTION: It is used to kill a transaction and restore the
previous values.

 READ: It is used to read data from a file or object.

 WRITE: It is used to write data from a file or object.

NOTES

Self-Instructional
Material 151

Fault Tolerance and
Transaction in DFS

The BEGIN_TRANSACTION and END_TRANSACTION primitives
delimit the scope of a transaction, whereas the primitives and operations inside
them form the body of a transaction. Either all of them execute or none of them is
executed.

Properties of transactions

Transactions are characterized by four essential properties that are collectively
known as ACID properties. These properties are enumerated below:

 Atomic: It ensures that each transaction either occurs completely or not at
all. Also, if at all it happens, it should occur in a single indivisible action. This
means that other processes must not be able to view the intermediate states
of the transaction.

 Consistent: It says that a system should be consistent before and after a
transaction. This means that if some invariants apply to a system before
transaction, they must hold true even after the transaction is complete: for
example, in a banking system, the law of conservation of money must always
hold true, i.e. money should not be lost during a transaction.

 Isolated: This means that transactions should seem to be occuring serially
independent of each other. If two transactions are running simultaneously to
each other and to the other proceses, the final result should seem as if the
transactions occurred sequentially.

 Durable: It specifies that if a transaction has been committed, no matter
what, the transaction proceeds forward and its results become permanent.
Thus, the results cannot be undone, once a transaction has been committed.

Nested transactions

When a transaction consists of sub-transactions, it is called a nested transaction.
The top-level process or the parent process may give rise to child processes that
may run parallel to each other on different processors to gain performance. Each
of the child processes may also fork further into sub-transactions. However, sub-
transactions result in a problem. Consider a situation where a parent transaction
has several sub-transactions running in parallel. Now, suppose one of the sub-
transactions commits itself and makes its results visible to the parent process.
After a while, the parent aborts itself, restoring the entire system to its initial state.
Now, the results of the committed sub-transaction must be reverted. Thus, even
after a sub-transaction commits itself, the changes may not be permanent.

Since nesting can be done up to any level, it requires a considerable amount
of administration. Therefore, as a general semantics whenever a transaction or
sub-transaction starts, it is given a separate copy of all the objects in the entire
system to manipulate according to its needs. Therefore, if the process aborts, its

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
152 Material

private copy vanishes as if it never existed and if it commits, its private copy
replaces the original copy.

Implementation of Atomic Transactions

A clean way is required to implement atomic transactions so as to maintain their
ACID properties. The methods commonly used for implementation are private
workspace and writeahead log.

Private workspace

Under this method, a separate (private) workspace is given to the process when it
starts a transaction and all the changes and operations it performs are done on its
private copy until it commits the changes. However, the cost of copying all the
objects to a private workspace is quite high. It can be restricted with certain
optimizations.

The first optimization is based on the fact that when a process reads a file
but does not modify it, there is no need for a separate private copy. As a result,
when a process begins a transaction, initially the private workspace created consists
only of a pointer that points back to the parent workspace. Therefore, when a
transaction is at the top-most level, its private workspace is the real file system. If
a process opens a file for reading, the pointers are followed backward till the file
is located in the parent’s workspace. When the file is opened for writing, it is
located in the same manner as for reading; however, this time it is copied to a
private workspace first.

There is another optimization that removes most of the copying processes.
Rather than copying the entire file, only its index is copied to the private workspace.
The file index specifies where the file’s disk blocks reside. Figure 12.1 depicts the
implementation of private workspace through the file index.

Fig. 12.1 Implementation of Private Workspace

NOTES

Self-Instructional
Material 153

Fault Tolerance and
Transaction in DFS

Figure 12.1(a) shows the file indices and disk blocks for a three-block file.
Using the index, it is possible to read a file from the original location itself as the
index contains the disk addresses for the original copy. However, when a file
block is modified, the block is copied and its address is inserted into the index.
Figure 12.1(b) shows that the process running the transaction sees the modified
version of files, i.e. 0’ and 3’, whereas the other processes continue to see the
original file. When a transaction aborts, the private workspace is simply deleted.
However, if a transaction is committed, the private indices are moved to the parent
workspace as shown in Figure 12.1(c).

Writeahead log

Writeahead log or intentions list is another method of implementing atomic
transactions. Under this method, the files are modified in their original location.
However, before a block is modified, a record is written to the writeahead log on
a stable storage. The writeahead log specifies which transaction is making the
change, to which file and block is the change being made and what are the old and
new values. The file is changed only when the log has been successfully written.
Figure 12.2 shows the working of the writeahead log.

Fig. 12.2 Working of Writeahead Log

Figure 12.2(a) shows a simple transaction using two shared variables, x
and y, initialized to 0. A log record will be written for each of the three statements
inside the transaction before they are executed. The old and new values are
separated by a slash. Figures 12.2(b), (c) and (d) depict the state of the log after
each of the three statements are written to it.

When a transaction is successful and commits itself, a commit record is
written to the log, without any need to change the data structures, as they are
already updated. However, if the transaction aborts, the log is used to restore the
system to its previous state. The log is read from the end towards beginning and
the described change is undone. This process is called rollback.

You can also use the log to recover from crashes. Consider a situation
where the process writing the log fails at the time of writing the last log, as shown
in Figure 12.2(d). As a result of failure, it is not able to write the last x value to the

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
154 Material

log. Therefore, when the machine reboots after the crash, the log is checked to
see if any transactions were in process at the time of crash. When the value of x is
found to be 2, the system knows that the crash occurred before the update and x
is changed to the current value of 25.

Two-Phase Commit Protocol

A transaction must be committed atomically as a single indivisible unit. It may
require multiple processes on different machines to communicate with each other
in a distributed system. This is because each of these processes holds variables,
files, databases and other objects that are used and modified by the transaction.
The two-phase commit protocol is used to achieve atomicity of commit process in
a transaction. Figure 12.3 shows the two-phase commit protocol.

Fig. 12.3 Two-Phase Commit Protocol

The process executing the transaction acts as the coordinator. The
protocol begins when the coordinator writes a log entry stating that it is beginning
the commit protocol. The coordinator then sends a message to all the
subordinate processes informing them to prepare for commit. Upon receiving
the message, a subordinate checks if it is ready to commit. If yes, it makes a
log entry and sends the decision back to the coordinator. When the coordinator
receives responses from all the subordinates, it knows whether to commit or
abort. If all the subordinate processes are ready to commit, the transaction
commits itself; otherwise, it is aborted. In both the cases, a log entry is written
by the coordinator and a message is sent to each of the processes informing
them about its decision.

The protocol is highly flexible in the face of crashes because the log is stored
on a stable storage. In case the coordinator crashes after writing the initial log

NOTES

Self-Instructional
Material 155

Fault Tolerance and
Transaction in DFS

record, after recovering, it can continue from where it left. If it crashes after writing
the result to the log, after recovering, it can inform all the subordinates about the
result. Also, if a subordinate crashes before replying to the first message, the
coordinator keeps sending messages until it gives up and if the subordinate crashes
later, it can view the log and continue from where it left.

Concurrency Control

When multiple transactions occur simultaneously in different processors or
processes, a method is required to keep them from interfering with each other.
This method is called concurrency control algorithm. The most commonly used
concurrency control algorithm is locking.

Whenever a process needs to write to a file involved in a transaction, the
process must first lock the file. You can lock a file by using either a centralized lock
manager or with a local lock manager on each machine. In both the cases, a list of
locked files is maintained by the lock manager and all attempts to lock an already
locked file is rejected. Since setting up a lock keeps a process from interfering
with another process, it ensures that the file will not change during the lifetime of
the transaction.

The simple implementation of locks is overly restrictive and it can be greatly
improved by distinguishing between read and write locks. When a read lock is set
on a file, other read locks are permitted on that file, as they do not modify the
contents of a file. However, if a write lock has been set on a file, no other lock can
be permitted on that file. Therefore, it can be said that read locks are shared but
write locks are exclusive.

Till now it is assumed that an entire file can be locked. However, a lock may
be set on a smaller unit, such as a single record or a page or may be on a larger
unit than a file, such as an entire database. The size of an item to be locked is
called granularity of locking. A lock can be more precise if the granularity is finer
and more parallelism can be achieved with finer granularity.

Two-phase locking is used by most transactions to acquire or release locks.
Under this system, a process first acquires all the locks needed by it during its
growing phase. It then releases the locks acquired during the shrinking phase.
Figure 12.4 shows the two-phase locking system.

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
156 Material

Fig. 12.4 Two-Phase Locking

However, in many systems there is no shrinking phase until the transaction has
completed and has either committed or aborted. This is called strict two-phase
locking and it has the following two advantages:

 Since a value written by a committed transaction is always read by other
transaction, there is no need to abort a transaction because its calculations
were based on a file it should not have seen.

 The acquisition and release of locks can be handled in a way transparent
to the transaction. This is because locks are acquired when a file is to
be accessed and locks are released when a transaction has been
finished.

Two-phase locking can lead to a deadlock if two processes try to acquire a
same pair of locks in an opposite order. This problem is resolved by acquiring all
the locks in some canonical order so as to prevent hold-and-wait cycles. Deadlock
detection is also possible if an explicit graph of processes and locks is maintained.
The graph should specify which process has which locks and which locks are
required by it. Then, this graph can be checked for cycles. Now, when it is known
in advance that a lock cannot be held longer than t seconds, a timeout scheme can
be used in which if a lock remains under the same ownership for a long time, then
there must be a deadlock.

Check Your Progress

1. Define the term fault tolerance.

2. What are the requirements of to be satisfied by a dependable system?

3. What are the four essential properties of transactions?

NOTES

Self-Instructional
Material 157

Fault Tolerance and
Transaction in DFS12.4 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. Fault tolerance is a holistic attribute of system; a system being composed
of smaller constituent participating entities. It is a cooperative
characteristic of the system to recover and continue functioning in the
event of a failure.

2. A dependable system should satisfy the requirements of availability,
reliability, safety and maintainability.

3. The four essential properties of transactions are:

(i) Atomic

(ii) Consistent

(iii) Isolated

(iv) Durable

12.5 SUMMARY

 Fault-tolerant systems are deployed in mission critical systems, life-support
systems, aviation, hazard-oriented systems, financial systems, banking, stock
markets, etc. Common examples include air traffic, medical apparatuses
used in intensive care units, bank ATMS, electronic transaction equipment
at merchant establishments, power backup systems in data centre.

 Fault tolerance is a holistic attribute of system; a system being composed of
smaller constituent participating entities. It is a cooperative characteristic of
the system to recover and continue functioning in the event of a failure.

 The retransmitted packet is then routed through a network in which all the
intermediate links are functional. The TCP network layer is an example of
such a fault-tolerant system.

 An interesting quality of a fault-tolerant system is that it allows for correction
of the faulty component without having to shut down the entire system.

 Fault tolerance is often achieved by employing redundancy in systems. In
certain cases, a fail-safe operation is duplicated across multiple systems
and if a failure happens on one of the systems, a fall-back system takes
over the operation and continues from the point where the original system
left off.

 A dependable system should satisfy the requirements of availability,
reliability, safety and maintainability.

Fault Tolerance and
Transaction in DFS

NOTES

Self-Instructional
158 Material

 Atomic transactions provide synchronization at a higher level of abstraction.
The user does not have to bother about how the algorithm and the processes
work together. The first atomic transaction model was inspired by the business
world, where if two parties are bound by a contract, they need to complete
a signed transaction.

 Transactions are characterized by four essential properties that are collectively
known as ACID properties.

 A transaction must be committed atomically as a single indivisible unit. It
may require multiple processes on different machines to communicate with
each other in a distributed system. This is because each of these processes
holds variables, files, databases and other objects that are used and modified
by the transaction. The two-phase commit protocol is used to achieve
atomicity of commit process in a transaction.

 When multiple transactions occur simultaneously in different processors or
processes, a method is required to keep them from interfering with each
other. This method is called concurrency control algorithm.

12.6 KEY WORDS

 Fault tolerance: The quality of a system to continue functioning even when
some of its components have failed.

 Atomicity: It is a property of atomic transaction that ensures that each
transaction either occurs completely or not at all.

 Consistency: This means that if some invariants apply to a system before a
transaction, they must hold true even after the transaction is complete.

 Isolation: This means that transactions should seem to be serialized. If two
transactions are running simultaneously to each of them and to the other
processes, the final result should seem as if the transactions occurred
sequentially.

 Durability: It specifies that if a transaction has been committed, no matter
what, the transaction proceeds forward and its results become permanent.

12.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Write a short note on fault tolerance.

2. What are the attributes of fault tolerant systems?

NOTES

Self-Instructional
Material 159

Fault Tolerance and
Transaction in DFS

3. Discuss the fault tolerant design techniques.

4. What are the ACID properties of transaction?

Long Answer Questions

1. Explain the various categories of fault.

2. What are the various failure models? Explain.

3. Explain the implementation of atomic transactions.

4. Explain the two phase commit protocol.

12.8 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

Introduction to Security

NOTES

Self-Instructional
160 Material

BLOCK - V

 SECURITY

UNIT 13 INTRODUCTION TO
SECURITY

13.0 Introduction
13.1 Objectives
13.2 Security Attacks
13.3 Cryptography and Encryption
13.4 Authentication
13.5 Answers to Check Your Progress Questions
13.6 Summary
13.7 Key Words
13.8 Self Assessment Questions and Exercises
13.9 Further Readings

13.0 INTRODUCTION

In this unit, you will learn about the various concepts related to security. Computer
security is a branch of information security as applied to computers. Computer
security involves the security of computer programs and data. The objectives of
computer security include:

 Protection of data and programs from theft and corruption,

 The prevention of program subversion, and

 The preservation of availability

Security is an important issue for all computer users, particularly for developers.
The main reason behind the insecurity of computer programs is the flexibility in the
programming of hardware instructions to build programs. That is, there are many
ways to build a computer program to meet a specific requirement. This is actually
a desirable feature that makes computer programming easier. However, this flexibility
in programming makes it very difficult to ensure the correct behaviour of computer
programs.

13.1 OBJECTIVES

After going through this unit, you will be able to:

 Identify security threats and attacks from inside and outside a system

 Discuss attacks employing Trojan horses, Spoofing, Logic bombs and Trap
doors

NOTES

Self-Instructional
Material 161

Introduction to Security Discuss attacks from Viruses and Worms

 Discuss the fundamentals of cryptography in computing

 Discuss symmetric-key encryption, public-key encryption and digital
signature

 Describe various techniques of user authentication

13.2 SECURITY ATTACKS

Attacks on a system may be from insiders who have logged into the system or
outsiders who prompt an innocent legitimate user to download free of cost a
malicious program such as Trojan horses or Viruses or Worms masquerading as
an exciting game or music. These intruders may be thrill-seeking adolescent hackers
or professional hackers stealing vital information for sale or disgruntled employees
who want to damage the system for revenge or profit. A secure system administrator
must monitor physically and by employing appropriate auditing of the usage of
resources the following activities:

 Unauthorized attempt to use computers by any insiders

 Browsing through system libraries and files, and modification and destruction
of information by users

 Programming denial of service attack such as creating large number of
processes by a user

 Users trying to access security auditing functions and files without permission
or authorization

Outsider attacks are mainly from computers connected through Internet.
Intelligence departments all over the world collect information exploiting the security
flaws in the Internet and by attracting users through irresistible web page contents.
Any computer system connected to the insecure Internet is vulnerable to attack,
and Internet is a comfortable place for attackers to engineer attacks and remain
anonymous. Easier-to- use automated tools are available for attackers to plant
attacks that cause huge destructions in minutes. There are different categories of
external attackers, such as freelance information brokers, foreign or domestic
competitors, terrorist organizations and crime syndicates.

A significant threat of recent importance is the use of Internet for Information
warfare. Information warfare weapons are changing the nature of war from the
traditional gunpowder and high-cost high-tech nuclear weapons. Information
warfare weapons are low cost and affordable even by small countries or groups.
The operations of telecommunications, power, transportation and financial systems
are now increasingly linked to the Internet, and they are the targets of attacks from
abroad exploiting the vulnerabilities of Internet connected computers. Even a small
terrorist organization can attack computers of defence department of a highly

Introduction to Security

NOTES

Self-Instructional
162 Material

developed nation for destroying and stealing sensitive information which may amount
to weakening the security of military communication and consequent failures in
operations.

Attacks from Inside the System

An insider is a person who has logged into a computer using legitimate username
and password. In a system with long and special symbol based passwords, breaking
them to login may be difficult. However, week passwords may be broken easily
and the intruder can cause damages to the user information or steal them. A person
who has logged in can also exploit the system vulnerabilities (bugs or loop holes)
to gain entry into other users’ area including administrators and work in the system
with their privileges. These attackers are also called crackers, as they break the
password system to gain unauthorized entries into other users’ area. Attacks by
insiders include:

 Trojan Horses

 Login Spoofing

 Logic Bombs

 Trap Doors

 Buffer Overflow

In this section, we will discuss the attacks engineered by attackers or crackers.

Trojan Horses

A Trojan Horse is a program that appears legitimate and innocent but performs
illicit activity when it is run, such as stealing passwords, making the system more
vulnerable to future entry or simply destroying programs or data on the hard disk.
This program may even steal valuable information and send it to the site of the
attacker. The Trojan has to be placed in some directory of the user and get executed
from there without the knowledge of the user. An easy technique is to place the
program on the Internet site as freely downloadable attractive programs like games
or other useful applications. When users download and execute the program, the
Trojan is executed do all nasty things like removing files or reading passwords or
send information to the attacker’s site.

There are various other ways to get the Trojan executed many times without
the knowledge of the user. In UNIX, when we type a program for execution the
system searches the program in the directories given under the PATH environment
variable. Suppose the attacker is able to put the Trojan in any of those directories,
for example to bin directory, with a name (ld) that represent common typing errors
for a very often executed command ls (list directory). Now, if the user mistakenly
types ld instead of ls, the Trojan gets executed, and it does all disastrous things for
which the Trojan is programmed to do by the attacker. If the user now reports to
the supervisor of the system about the problem like loss of some files, the supervisor

NOTES

Self-Instructional
Material 163

Introduction to Securitymay try to execute the ls command in the user directory with super user privilege.
If the super user, by chance, types ld out of the same mistake in typing ls, the
Trojan gets executed with super user privileges, acquiring the power to access
and destroy the entire system. The Trojan may now replace the genuine version of
ls with one containing a Trojan horse inside so that the Trojan will get executed
when ever any user type ls command.

Login Spoofing

This is a technique for collecting usernames and passwords of users of the system
by an attacker who is an ordinary user of the system. The attacker or cracker logs
in to the system and executes a program which displays a login window exactly
looking like that of normal login window of the system. He then leaves the seat and
may work on some other terminal in the multiuser system. When a new user sits
down and enters the username and password, the hacker program collects the
same and stores in a file, and then sends a signal to kill its shell. This logs out the
attacker and triggers the execution of the real login program which displays the
real login window. The user, unaware of the fact that his username and password
are stolen, now again enters his username and password to login to the system and
works as usual. The cracker may do the trick on other terminals many times to
collect the username and password pairs of all users of the system.

If the users start the login sequence by pressing a key combination that the
user program cannot catch, this spoof attack can be bypassed or prevented.
Windows system uses control-alt-del keys combination for this purpose.

Logic Bombs

This is a piece of code that programmers (who are current employees) of a company
secretly inserted into the companies production operation system or companies
applications. The logic in the inserted code will be to bring down the whole system
when the programmer gets fired, so that the company will be forced to rehire him
to set the things right. For example, as long as the programmer logs in everyday or
alternate days, the system functions normally. If the programmer did not login for,
say two continuous days, the logic bomb goes off leading to things like erasing
files at random and malfunctioning of the whole system.

Trap Doors

Trap Door is another security hole caused by the programmer. This is done by
secretly inserting some code to the operating system (or application) code that
bypass some normal check. For example, a programmer may add code to the
login program to login using a name ‘SAHARA’ whatever be the password string.
So, the programmer can login to computers of any company that loads this operating
system or application.

Introduction to Security

NOTES

Self-Instructional
164 Material

Buffer Overflow

Another major source of attack is the buffer overflow vulnerability of some
programming languages like C and C++. These programming languages do not
provide any built-in protection against accessing or overwriting data in any part of
memory. There is no array bounds check done while writing data to arrays. Thus
any attempt to store data beyond the boundaries of fixed-length buffer overwrites
adjacent memory locations which may be part of other buffers, variables, return
address of functions, etc. This may lead to erratic program behaviour, incorrect
results or program crash. Attackers exploit the buffer overflow to inject code and
get it executed to gain illegal entry to the system even with supervisor privileges.

Example: Suppose a C++ program has the following data structures defined:

int A = 35; char B[10]; int C=33; int D=9;

Assume that integers take two bytes each, and characters take 1 byte each.
B is initially empty; means B contain all null characters (zero value in all elements
of B). The memory allocated for A, B, C and D with the values in the memory
locations will be as given below:

A B C D

00 35 00 00 00 00 00 00 00 00 00 00 00 33 00 09

Suppose the program during execution copies the string “BufferOverRun”
to the character array B. This copies 13 characters of the string and the null character
(ASCII value 00) to the array B. The result of the copy operation will be as given
below:

A B C D

00 35 ‘B’ ‘u’ ‘f’ ‘f’ ‘e’ ‘r’ ‘O’ ‘v’ ‘e’ ‘r’ ‘R’ ‘u’ ‘n’ 00

The contents of variables C and D are overwritten and their values become
different. If these variables are allocated on stack, then it will lead to stack buffer
overflow and may cause overwriting other variables and return address of functions.
If the buffer is sufficiently large, an intruder can even copy the code of a program
to the buffer and the return address on the stack may be overwritten with the start
address of this intruder program. Thus, the intruder program gets the privilege of
the program which is broken.

There are other techniques to exploit buffer overflow like heap overflow
and NOP sled. Interested readers may refer to Wikipedia for details on the topic.

Attacks from Outside the System

Major security threats of outsider attacks are through viruses and worms. These
can easily enter in to the system and spread to other systems through the Internet.

NOTES

Self-Instructional
Material 165

Introduction to SecurityViruses

A virus is a program fragment that is attached to legitimate popular programs
like games or other utilities with the intention of infecting other programs.
Normally, the virus code segment will be attached to the beginning part of the
executable file so that, when anybody executes it, the virus code will b executed
first causing damages to the system. The virus segment also includes the code to
search for other executable files in the system and add itself to the beginning
part of those files. In this way, after a few hours of infecting one of the files in the
system, most of the executable files in the system might get the virus infection
leading to wastage of CPU time, and other resources. As a consequence, the
system response will become unacceptably low. A virus writer can also include
in it the code to cause damages to data and delete files. For a virus to spread to
another computer, one must first place a virus affected file in that computer
manually or through emails.

The viruses are given names based on the method of attack or the media
attacked or the location they reside. Following are some of the known viruses:

 Companion virus

 Executable program virus

 Memory resident virus

 Boot sector virus

 Device driver virus

 Macro virus

 Sources code virus

A detailed description of these can be found in the book by Andrew S Tanenbaum
for further reading.

Worms

A worm is also like virus, but it can automatically spread to other computers
through the Internet. A worm has two parts, the bootstrap code and the main
worm code. The main worm code does all damages to the system under attack.
The bootstrap code may be inserted to the machine exploiting the bugs in the
system. When the bootstrap code gets executed on the system under attack, it
gets connected to the attacker’s machine from which it came. The attacker’s
machine uploads the main worm to the system under attack and executes it there
causing damages to the system. The worm then hides its presence and then spreads
the worm to other machines by sending the bootstrap code to all other machines
connected to the attacked machine. The process of attack again continues from
its new location. Thus, the whole networked machines can be brought down in a
few hours.

Introduction to Security

NOTES

Self-Instructional
166 Material

13.3 CRYPTOGRAPHY AND ENCRYPTION

The huge growth of the Internet has changed the way businesses are conducted.
Buying and selling of goods have changed from the traditional ways to Internet-
based techniques. Sellers need not display items in a physical showroom to lure
buyers. Sellers display the items on web pages which can be viewed by buyers all
over the world sitting in front of their Internet connected computers. Orders and
payments can be made through computers (using credit card numbers or bank
accounts), and the seller can dispatch the item to the homes of buyers quickly.
However, the security of sensitive information like credit card numbers and pins
sent over the Internet is a serious concern for both the sellers and buyers. Other
sensitive information we may send over internet may include social security number,
private correspondence, personal details and company information. These
informations are to be secured during transit over Internet for the security of the
buyers and sellers.

There are a number of techniques by which information is secured during
transactions and during communications between parties over the Internet. Encoding
the sensitive information before transmission over the Internet using some key
called the Encryption is the widely used technique in today’s secure transactions
and communications. The received information may be decrypted using decoding
key to view and use the information in the original form. The process of encryption
and decryption falls under the traditional topic of cryptography.

Cryptography is the process of representing information using secret codes
for providing security and confidentiality of information in a system. Cryptography
is used to encrypt a plain text like ASCII strings into the ciphertext (coded form of
plaintext) in such a way that only the authorized people know how to convert it
back to the plaintext.

In the rest of this section, we will learn about encryption-decryption techniques
using public-key system and symmetric-key system.

Encryption

Encryption is the process of transforming information (referred to as plaintext)
using an algorithm (called cipher) to make it unreadable to anyone except those
possessing special knowledge, usually referred to as a key. The result of the process
is the encrypted information (in cryptography, referred to as ciphertext). That is,
the encryption is actually the coding process of cryptography. However, in many
contexts, the word encryption also implicitly refers to the reverse process,
decryption. For example, software for encryption can typically also perform
decryption, to make the encrypted information back to readable form. In a loose
sense, encryption and cryptography actually mean the same thing in the context of
computer security.

NOTES

Self-Instructional
Material 167

Introduction to SecurityEncryption has long been used by militaries and governments to facilitate
secret communication. Encryption is now used in protecting information within
many kinds of civilian systems, such as computers, storage devices, networks,
mobile telephones, wireless microphones, wireless intercom systems, Bluetooth
devices and bank automatic teller machines. Encryption is also used in digital rights
management to prevent unauthorized use or reproduction of copyrighted material
and in software also to protect against reverse engineering.

Encryption can protect the confidentiality of messages, but other techniques
like digital signatures are still needed to protect the integrity and authenticity of
messages.

P
Ciphertext

C = E(P, K)E P = D(C, K)D

K Encryption keyE K Decryption keyD

Encryption
algorithm

Decryption
algorithm

E D
Plaintext

Fig. 13.1 Encryption-Decryption Process and Relationship
between Plaintext and Ciphertext

Let us look at the process of encryption and decryption in greater detail.
Figure 8.1 depicts the encryption and decryption processes and the relationships
between plaintext and ciphertext. The encryption algorithm, E takes the plaintext
(information in the normal readable form), P and a key, called encryption key, K

E

to produce the ciphertext (coded form- not in a readable form for ordinary users),
C= E(P, K

E
). Information in the form of ciphertext is not useful for normal users.

However, the ciphertext can be converted to the original plaintext using the
decryption algorithm, D and the decryption key K

D
. That is, the plaintext P= D(C,

K
D
). The secrecy of the information depends on the keys used. Depending up on

the number of keys used, we have two types of encryption techniques as given
below:

 Symmetric-key encryption or Secret-key encryption

 Public-key encryption

Each of these techniques is described below.

Symmetric-key Encryption

In the symmetric-key encryption technique, both the parties involved in the
communication uses the same key to send information between them. Each
computer has a secret key (code) that it can use to encrypt a packet of information
before it is sent over the network to another computer. Symmetric-key requires
that you know which computers will be talking to each other so you can install the

Introduction to Security

NOTES

Self-Instructional
168 Material

key on each one. Symmetric-key encryption is essentially the same as a secret
code that each of the two computers must know in order to decode the information.
The code provides the key to decoding the message.

Let us look at an example to illustrate the process of symmetric-key
encryption. A coded message (ciphertext) is create by substituting each letter in
the message by a letter two down in the alphabet. That is, replace ‘A’ by ‘C’, ‘B’
by ‘D’, ‘C’ by ‘E’ and so on. So, the secret code is ‘shift by 2’. The secret key
should be told to the person (receiver) to whom you want to send the coded
message so that he can decode the message and read it correctly. Anybody else
receiving the message cannot make a sense out of it and hence cannot read it.
However, it is possible to extract such simple secret keys just by analysis of the
ciphertext using statistical properties of natural languages. Computers can easily
break the ciphertext produced using simple keys. So, keys must be much longer
to use with computers.

The first major symmetric algorithm developed for computers in the
United States was the Data Encryption Standard (DES), approved for use in
the 1970s. The DES uses a 56-bit key. Because computers have become
increasingly faster since the 1970s, security experts no longer consider DES
secure, although a 56-bit key offers more than 70 quadrillion possible combinations
(70,000,000,000,000,000), an attack of brute force (simply trying every possible
combination in order to find the right key) could easily decipher encrypted data in
a short while. DES has since been replaced by the Advanced Encryption Standard
(AES), which uses 128-, 192- or 256-bit keys. Most people believe that AES
will be a sufficient encryption standard for a long time coming: A 128-bit key, for
instance, can have more than 300 billion-trillion-trillion key combinations. However,
the problem with symmetric-key (secret-key) cryptography is the difficulty to send
the secret key to the receiver of the information.

Public-key Encryption

Public-key encryption is also known as asymmetric-key encryption. It uses a
pair of keys—a private key and a public key so that one is used for encryption
and the other is used for decryption. The private key is known only to your
computer, while the public key is given by your computer to any computer that
wants to communicate securely with it. As the keys are chosen based on the prime
long numbers, it is very difficult to guess the private key from the known public
key. This makes the system extremely secure, because there is essentially an infinite
number of prime numbers available, that is, there are nearly infinite possibilities for
keys. To send a secret message, the message is first encrypted by the receiver’s
public key and then sends to the receiver. The receiver uses its own private key to
decode the message. No other parties can decode the message without the private
key of the receiver. So, the receiver keeps its private key secret, the secrecy or
confidentiality of the message will not be lost. Pretty Good Privacy (PGP) is an
example of public-key encryption system.

NOTES

Self-Instructional
Material 169

Introduction to SecurityLarge scale implementation of public-key encryption requires support from
independent certificate authority to issue digital certificates for trusting web
servers/ users involved in the communication. A digital certificate is basically a
unique piece of code or a large number to certify that a web server/ user is trusted.
The certificate authority acts as a middle man for authenticating the computers
involved in the communication. The certificate authority provides its public key to
each of the parties (computers) wishing to communicate. For sending messages
between two computers, the certificate authority provides the digitally signed name
and public key of each of the computers to the other.

SSL and TLS

A brief understanding of SSL (Secure Socket Layer) and TLS (Transport Layer
Security) is essential for people who use online banking and other transactions.
SSL is a popular implementation of public-key encryption. SSL was originally
developed by Netscape as an Internet security protocol used by Internet browsers
and web servers to transmit sensitive information. SSL has now become part of
the TLS. TLS is known as the overall security protocol for Internet communication.

In the browser, we can make out when we are using a secure protocol,
such as TLS by two ways. We can notice that the ‘http’ in the address line is
replaced with ‘https,’ (https stands for secure http) and we can see a small padlock
in the status bar at the bottom of the browser window. When we are accessing
sensitive information, such as an online bank account or a payment transfer service
like PayPal or Google Checkout, we can see this type of format change which
tells us that the information will be passed securely along the communication path.

TLS and its predecessor SSL make significant use of certificate authorities.
Once the browser requests a secure page and adds the “s” onto “http”, the browser
sends out the public key and the certificate, checking three things: 1) that the
certificate comes from a trusted party; 2) that the certificate is currently valid; and
3) that the certificate has a relationship with the site from which it is coming.

The browser then uses the public key to encrypt a randomly selected
symmetric key. Public-key encryption takes a lot of computing, so most systems
use a combination of public-key and symmetric key encryption. When two
computers initiate a secure session, one computer creates a symmetric key and
sends it to the other computer using public-key encryption. The two computers
can then communicate using symmetric-key encryption. Once the session
(communication session) is finished, each computer discards the symmetric key
used for that session. Any additional sessions require that a new symmetric key be
created, and the process is repeated.

Digital Signature

In the paperless office, there is no way to use the normal signature to keep as
proof of having issued some orders or agreed up on a contract or done some
other commitments by people involved. After having done something like issuing

Introduction to Security

NOTES

Self-Instructional
170 Material

an order or instruction, the denial of the same at a later occasion is called repudiation.
So, it is necessary to sign documents digitally to prevent repudiation of orders
issued or commitments made through emails or other messages in the paperless
office system.

13.4 AUTHENTICATION

The security of a system involves two parts: one, the task of authenticating a subject
(process or people) who attempts to access a secure entity, and two, the task of
determining if the subject is authorized to have access to each specific secure
entity. When a user logs on to a computer, the operating system wants to determine
who the user is. This process is called user authentication.

More formally, authentication is the task of ensuring that a subject who
attempts to access the secure entity is actually the subject that it claims to be.

Authorization is that task after authentication to ensure whether the subject
has the right to access a secure entity in the system. That is, a person is an
authenticated user of the system, but has he got (authorized) the right, for example,
to print on the laser printer?

Most applications today need to access information over networks such as
a LAN (local area network) or WAN (wide area network). The information may
be secure inside the computer hardware, but the networks are open to anybody
to peep in. So, another important aspect of security and protection is to ensure
that the information is not copied or confidentiality is not compromised while in
transit. The modern technique to ensure the security of information in transit is
through cryptography. Cryptography can also protect information in persistent
storage state.

Most authentication techniques are based on the general principle of
identifying what he (the subject accessing the resource) knows or what he has or
what he is. This leads to various authentication schemes with varying complexities
and security properties. Some of the major schemes are:

 Authentication using password

 Authentication using physical object

 Authentication using biometrics

 Authentication using digital signatures

We will briefly discuss each of these schemes below.

Authentication using password

The use of a user name and password provides the most common form of
authentication. You enter your name and password when prompted by the computer.
It checks the pair against a secure file to confirm. If either the name or the password
does not match, then you are not allowed to proceed further.

NOTES

Self-Instructional
Material 171

Introduction to SecurityAuthentication using physical object

These physical objects are made in the form of plastic cards with magnetic strips
for recording information. User identification information is recorded in these cards.
The card has to be inserted into a scanning machine for it to read and authenticate
the user like the credit cards. These pass-cards can be even a sophisticated one
like a smart card with more memory to carry detailed information and having
embedded computer chip inside.

Authentication using biometrics

Biometric techniques are used recently in home and office computers for effective
authentication. Biometric authentication is based upon physical or behavioural
attributes of individuals. There are many biometric features that can be used,
depending on the sophistication required in the authentication process. Biometric
authentication techniques include:
 Fingerprint scan

Retina scan

Face scan

Voice identification

Keystroke dynamics based identification, and

Palm-print based identification

Authentication using digital signature

A digital signature is basically a way to ensure the authenticity of electronic
documents such as e-mail, spreadsheet, text file and Java Applets. We have digital
signature standard based on a combination of public-key and private-key
encryption techniques and employing a digital signature algorithm. Digital
signature standard is the format for digital signatures that has been approved by
many countries. The digital signature algorithm consists of a private key, known
only by the originator of the document (the signer), a public key (known to others)
and a hash algorithm. The digital signature is attached as a signature block to the
document before sending it to the destination. Any change made to the document
during the transit (by a snooper or eavesdropper or intruder) causes a change in
the digital signature when re-computed at the receiving end. The snooper will not
be able to change the signature block appropriately to hide the change in the
document as it requires the private key of the sender. Therefore, by comparing the
signature in the signature block of the document and the re-computed signature
enable the receiver of the document to determine any integrity violation of the
document made during transit. We will discuss this topic further in the section on
cryptography.

Introduction to Security

NOTES

Self-Instructional
172 Material

Check Your Progress

1. What is login spoofing?

2. What is a logic bomb?

3. What is cryptography?

4. How many keys are used in symmetric encryption?

5. What is a digital certificate?

6. What is user authentication?

13.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Login spoofing is a technique for collecting usernames and passwords of
users of the system by an attacker who is an ordinary user of the system.

2. Logic bomb is a piece of code that programmer (who is a current employee)
of a company secretly inserted into the companies production operation
system to bring down the entire system when the programmer is fired (when
he losses his job).

3. Cryptography is the process of representing information using secret codes
for providing security and confidentiality of information in a system.

4. Only one key called the secret-key is used in symmetric encryption.

5. A digital certificate is basically a unique piece of code or a large number to
certify that a web server or user is trusted.

6. When a user logs on to a computer, the operating system wants to determine
who the user is. This process is called user Authentication.

13.6 SUMMARY

 Attacks on a system may be from insiders who have logged into the system
or outsiders who prompt an innocent legitimate user to download free of
cost a malicious program such as Trojan horses or Viruses or Worms
masquerading as an exciting game or music.

 An insider is a person who has logged into a computer using legitimate
username and password.

 A Trojan Horse is a program that appears legitimate and innocent but
performs illicit activity when it is run, such as stealing passwords, making
the system more vulnerable to future entry or simply destroying programs
or data on the hard disk.

NOTES

Self-Instructional
Material 173

Introduction to Security Login spoofing is a technique for collecting usernames and passwords of
users of the system by an attacker who is an ordinary user of the system.
The attacker or cracker logs in to the system and executes a program which
displays a login window exactly looking like that of normal login window of
the system.

 A virus is a program fragment that is attached to legitimate popular programs
like games or other utilities with the intention of infecting other programs.

 Cryptography is the process of representing information using secret codes
for providing security and confidentiality of information in a system.

 Encryption is the process of transforming information (referred to as
plaintext) using an algorithm (called cipher) to make it unreadable to anyone
except those possessing special knowledge, usually referred to as a key.

 In the symmetric-key encryption technique, both the parties involved in the
communication uses the same key to send information between them.

 Public-key encryption is also known as asymmetric-key encryption. It
uses a pair of keys—a private key and a public key so that one is used for
encryption and the other is used for decryption.

 The security of a system involves two parts: one, the task of authenticating
a subject (process or people) who attempts to access a secure entity, and
two, the task of determining if the subject is authorized to have access to
each specific secure entity.

13.7 KEY WORDS

 Cryptography: The process of representing information using secret codes
for providing security and confidentiality of information in a system.

 Encryption: The process of transforming information (referred to as
plaintext) using an algorithm (called cipher) to make it unreadable to anyone
except those possessing special knowledge, usually referred to as a key.

 User Authentication: The process in which if a user logs onto a computer,
the operating system wants to determine who the user is.

 Authorization: The task after authentication to ensure whether the subject
has the right to access a secure entity in the system.

13.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. List three objectives of computer security.

2. What are the important measures for safeguarding system security?

Introduction to Security

NOTES

Self-Instructional
174 Material

3. What are the major biometric techniques for authentication?

4. What is the process of authentication using digital signature?

5. What are the popular techniques of insider attacks?

6. What are Trojan horses? How do they enter into the system and start
attacks?

7. How does Login spoofing collect usernames and passwords?

8. Explain the working of logic bombs.

9. What are virus programs? How do they spread into other files?

10. What is a worm? Explain the intrusion techniques of worms.

11. What are the applications of encryption/cryptography?

12. What is a digital signature? How can you digitally sign a document?

13. What is symmetric-key encryption?

14. What is public-key encryption?

15. How can you enforce non-repudiation using digital signatures in a paperless
office?

16. What are the advantages of public-key encryption over symmetric-key
encryption?

Long Answer Questions

1. What are the four major classes of techniques for user authentication? Explain
each.

2. What are the popular techniques of insider attacks? Explain each of them.

3. Describe the encryption and decryption processes in cryptography.

13.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

NOTES

Self-Instructional
Material 175

Access Control and
Design PrinciplesUNIT 14 ACCESS CONTROL AND

DESIGN PRINCIPLES
14.0 Introduction
14.1 Objectives
14.2 Protection Mechanism and Access Control

14.2.1 Access Control List (ACL)
14.3 Digital Signatures
14.4 Design Principles for Security
14.5 Answers to Check Your Progress Questions
14.6 Summary
14.7 Key Words
14.8 Self Assessment Questions and Exercises
14.9 Further Readings

14.0 INTRODUCTION

Nowadays, most of the organizations serving domains such as banking, education,
finance and telecommunication rely on the use of computers for their day-to-day
activities. These organizations store huge amount of data in computers. Since the
data is highly valuable, it is important to protect it from unauthorized access. In
addition to data, the protection of computer resources, such as memory, I/O
devices, etc., is also necessary. In this unit, you will learn about the protection
mechanisms, digital signature and design principles of security.

14.1 OBJECTIVES

After going through this unit, you will be able to:

 Explain the two protection mechanisms i.e. protection domain and access
control list

 Discuss how to create digital signature

 Discuss the design principles of security

14.2 PROTECTION MECHANISM AND ACCESS
CONTROL

One of the aspect that operating system provides is protection, which deals with
protecting user’s data and programs from other user’s interference. Implementing
protection requires policies and mechanisms. Policy decides which data should be
protected from whom and mechanism specifies how this policy is to be enforced.
In the discussion of protection, we focus on mechanism rather than on policy
because policy may change from application to application.

Access Control and
Design Principles

NOTES

Self-Instructional
176 Material

There are many protection mechanisms used in a system, each having some
advantages and disadvantages. However, the kind of protection mechanism used
depends on the need and size of the organization. In this section, we will discuss
two protection mechanisms, namely, protection domain and access control list.

Protection Domain

A computer system consists of a set of objects that may be accessed by the
processes. An object can be either a hardware object (such as, CPU, memory
segment and printer) or software object (such as, file, database, program and
semaphore). Each object is referred to by a unique name and is accessible by the
processes using some pre-defined operations. For example, a process can perform
wait() and signal() operations on a semaphore object.

Since an object is the basic component of a computer system, a mechanism
is required to ensure that a process accesses only those objects for which it has
got permission from the operating system. Moreover, it must be ensured that a
process performs only those operations on the object that it currently requires to
complete its task. To facilitate this, the concept of protection domain is used which
specifies the objects that a process may access.

A domain is a collection of access rights where each access right is a pair
of <object-name,rights_set>. The object_name is the name
of the object and rights_set is the set of operations that a process is permitted
to perform on the object_name. For example, a domain D with access right
<A,[R, W]> specifies that any process in domain D can perform read and
write operation on the object A.

A system can specify a number of domains. These domains may be disjoint
or share access rights with each other. To understand this, consider Figure 14.1,
which shows three domains D1, D2 and D3 with five objects A, B, C, D and E.
The domain D1 is disjoint while domains D2 and D3 share the access right
<C,[Print]> and thus, overlap.

Fig. 14.1 Protection Domain

From this figure, it is clear that a process in domain D1 can only read the
object A; however, a process in domain D2 can write as well as execute the
object A. In addition, a process executing in either of the domain D2 and D3 can
print the object C.

Each process, at a given time, executes in some protection domain with
access to objects specified in domain and the specified set of rights on those
objects. The association between a process and domain may be either static or

NOTES

Self-Instructional
Material 177

Access Control and
Design Principles

dynamic. In the former case, a process is allowed to access only a fixed set of
objects and rights during its lifetime, while in the latter case, the process may
switch from one domain to another during its execution (termed as domain
switching).

14.2.1 Access Control List (ACL)

Access control list is an alternative method of recording access rights in a computer
system. It is often employed in file systems. In this method, a list is associated with
each object such as file that stores user names (or processes) which can access
the object and the type of access allowed to each user (or process). This list is
known as Access Control List (ACL). When a user (or process) tries to access
an object, the ACL is searched for that particular object. If that user is listed for
the requested access, the access is allowed. Otherwise, the user is denied access
to the file. Figure 14.2 shows a sample access control list for five files and four
users. It is clear from the figure that user A has access to File 1, File 2 and
File 5, user B has access to File 1, File 2 and File 3 and user C has
access to File 2, File 3 and File 4.

FIle name Protection info

File 1 A:R; B:RWE

File 2 A:RW; B:R; C:RE

File 3 B:RWE; C:R; D:R

File 4 C:RW; D:RWE

File 5 A:RWE; D:RW

Fig. 14.2 A Sample Access Control List

This system of access control is effective but, in case if all users want to
read an object, say the file F, the ACL for this file should list all users with read
permission. The main drawback of this system is that, making such a list would be
a tedious job when number of users is not known. Moreover, the list needs to be
dynamic in nature as the number of users will keep on changing, thus, resulting in
complicated space management.

To resolve the problems associated with ACL, a restricted version of the access
control list can be used in which the length of the access control list is shortened by
classifying the users of the system into the following three categories.

 Owner: The user who created the file.

 Group: A set of users who need similar access permission for sharing the
file is a group, or work group.

 Universe: All the other users in the system form the universe.

Access Control and
Design Principles

NOTES

Self-Instructional
178 Material

Based on the category of a user, access permissions are assigned. The
owner of the file has full access to a file; and can perform all file operations (read,
write and execute) whereas, a group user can read and write a file but cannot
execute or delete a file. However, the member of the universe group can only read
a file and is not allowed to perform any other operations on a file.

The above method of classifying users in groups will not work, when one
user wants to access file of other user (for performing a specific file operation).
For example, say, a user comp wants to access the file abc of other user comp1,
for reading its content. To provide file-specific permissions to a user, in addition to
the user groups, an access control list is attached to a file. This list stores the user
names and permissions in a specific format.

The UNIX operating system uses this method of access control, where the
users are divided into three groups, and access permissions for each object is set
with the help of three fields. Each field is a collection of bits where, three bits are
used for setting protection information and an additional bit is kept for a file owner,
for the file’s group and for all other users. The bits are set as –rwx where r
controls read access, w controls write access and x controls execution. When all
three bits are set to –rwx, it means a user has full permission on a file whereas, if
only –r–– field is set, it means a user can only read from a file and when –rw–
bits are set, it means user can read and write but cannot execute a file. The scheme
requires total nine bits, to store the protection information. The permissions for a
file can be set either by an administrator or a file owner.

14.3 DIGITAL SIGNATURES

Digital signatures can be generated by simply taking the mathematical summary of
the message, which will give a fixed size message known as hash code. The hash
code is used for identifying the message and if even small changes take place in the
original message then this will dramatically change the hash code. The next step is
to sign this hash code with the private key of the sender. This signed message is
now appended with the original message and sent.

The receiver of this message can verify the signature using the sender’s
public key. The encrypted hash code is decrypted first and the new hash code is
generated using the appended original message. Now, the received hash code
and the new computed hash code at the receiver end is compared. If the hash
codes are same, then the receiver has verified that the message has not been
altered. This also ensures authentication because only that sender has the private
key which was used for signing. Digital signatures are used for providing
authentication as well as integrity of the data.

Hash algorithms, such as MD5 and SHA, are used for generating the hash
code. For these algorithms, an arbitrary length message is the input and fixed

NOTES

Self-Instructional
Material 179

Access Control and
Design Principles

length message is the output. These are one-way functions. It is computationally
infeasible to find two different messages which produce the same hash value.

There are many other digital signature algorithms, such as RSA, DSA,
ElGamal signature scheme, SHA with RSA, ECDSA, Rabin Signature algorithm,
and so on.

For example,

Alice has two keys, one is the public key and the other is a private key.
Anyone can access Alice’s public key and the private key is only known to Alice.
These keys are used to encrypt the information. Any one of the keys can be used
for encryption and the other one for decryption.

Any of Alice’s co-workers can encrypt a message using her public key and
any person who knows the public key may access that encrypted message. But
without knowing the private key it is worthless, as no one can decrypt it and know
the contents of the original message.

With the private key, Alice can append the digital signature with the original
data which is unique and difficult to forge.

Message Message Digest

Hash

Alice will first generate the small fixed size message by applying the hashing.
This fixed size message is called message digest.

Message Digest
Digital Signature

Encryption using
the Private Key

Alice will then encrypt the message digest with the private key which will
give the digital signature.

Digital Signature

Original Message
+

Signature

Append the
Message

Now digital signature is appended with the original message.

Original Message

+
Signature

Hash

Decryption with
the Public Key

Message Digest

Message Digest

Access Control and
Design Principles

NOTES

Self-Instructional
180 Material

At the receiver side, Bob decrypts the signature using Alice’s public key
which will produce the message digest. If it works then it proves that Alice is the
sender because only he has the private key. Now, Bob generates the hash code of
the message, i.e., message digest and if this message digest is the same as the
message digest created by decrypting the signature then Bob confirms that the
message has not been changed.

The following are some of the applications of digital signatures:

(a) Authentication

Messages may sometimes include the information about the sender of the message
but that information may not be correct. Digital signatures, therefore, can be used
to authenticate the sender of message. Valid signature shows that the message
was sent by that sender only who is claiming to be a sender because there is only
one unique owner of a specific digital signature. Digital signatures are most often
used in the context of financial matters.

(b) Integrity

Digital signatures may be used in such cases when the sender and receiver of a
message need assurance that the message is not altered by anyone during
transmission. Message is transmitted in the encrypted form which conceals the
matter of the message, but it is possible to change the message without the
knowledge of it. Non-malleable encryption algorithms prevent this but not others.
So if digital signatures are used then any change in the contents of the message will
invalidate the signature. It is not feasible to modify a message and its signature
which can validate the signatures at the receiver end.

(c) Private Key Storage on a Smart Card

Security of public and private key cryptosystems depends mainly on the secrecy
of the private key. This private key may be stored on an end-user’s computer and
can be protected by that local machine’s password. It has some disadvantages as
the sender can digitally sign the document on that computer and the security of the
key depends on the security of that local machine.

One way to provide more security is to save the private key on the smart
card. Smart cards are designed so that the data stored in it cannot be altered but
some of these designs have already been broken. In the implementation of the
digital signature the hash code is sent to the smart card, CPU will now encrypt this
hash code using the private key and returns the encrypted hash code. A user can
activate the smart card using his personal identification number, i.e., a PIN code
which provides the two factor authentication. If somehow the smart card is stolen
then the attacker will also need the PIN number to generate the digital signature.
So access of any one of the PIN code or private key will not work. Loss of the
smart card may de detected very easily and the owner will revoke the
corresponding certificate immediately.

NOTES

Self-Instructional
Material 181

Access Control and
Design Principles

A numeric keypad is required for entering a PIN code to activate the
smart card. Some card readers hold their individual numeric keypad which
is safe in comparison to using a keyboard integrated to a system. The main
difference between a digital signature and written signature is that in the
case of digital signature a user cannot see the sign, while in written, he can
see it.

One of the main differences between a digital signature and written signature
is that the user does not ‘see’ what he signs. The user application presents a hash
code to be encrypted by the digital signing algorithm using the private key. An
attacker who gains control of the user’s PC can possibly replace the user application
with a foreign substitute, in effect replacing the user’s own communications with
those of the attacker. This could allow a malicious application to trick a user into
signing any document by displaying the user’s original on screen, but presenting
the attacker’s own documents to the signing application. A digital signature is applied
to a string of bits. Humans and applications believe that digital signature is the
semantic interpretation of those bits which will be meaningful sentences. WYSIWYS
(What You See Is What You Sign) is the property which is required for digital
signatures which says what you see is what you sign. It means that the signed
message does not contain any type of hidden information that the signer does not
know about. But it is difficult to guarantee that this property will hold because the
complexity of the computer systems is increasing very fast.

14.4 DESIGN PRINCIPLES FOR SECURITY

Designing a secure operating system is a crucial task. While designing the operating
system, the major concern of designers is on the internal security mechanisms that
lay the foundation for implementing security policies. Researchers have identified
certain principles that can be followed to design a secure system. Some design
principles presented by Saltzer and Schroeder (1975) are as follows:

 Least Privilege: This principle states that a process should be allowed the
minimal privileges that are required to accomplish its task.

 Fail-Safe Default: This principle states that access rights should be provided
to a process on its explicit requests only and the default should be no access.

 Complete Mediation: This principle states that each access request for
every object should be checked by an efficient checking mechanism in order
to verify the legality of access.

 User Acceptability: This principle states that the mechanism used for
protection should be acceptable to the users and should be easy to use.
Otherwise, the users may feel a burden in following the protection mechanism.

 Economy of Mechanism: This principle states that the protection
mechanism should be kept simple as it helps in verification and correct
implementations.

Access Control and
Design Principles

NOTES

Self-Instructional
182 Material

 Least Common Mechanism: This principle states that the amount of
mechanism common to and depended upon by multiple users should be
kept as minimum as possible.

 Open Design: This principle states that the design of the security mechanism
should be open to all and should not depend on ignorance of intruders. This
entails to the use of cryptographic systems where the algorithms are made
public while the keys are kept secret.

 Separation of Privileges: This principle states that the access to an object
should not depend only on fulfilling a single condition; rather more than one
condition should be fulfilled before granting an access to the object.

Check Your Progress

1. What is a domain?

2. What is the use of access control list?

14.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A domain is a collection of access rights where each access right is a pair of
<object-name,rights_set>.

2. An access control list, for each object, stores the user names (or processes)
and the type of access allowed to each user. When a user (or process) tries
to access an object, the ACL is searched for that particular object. If that
user is listed for the requested access, the access is allowed. Otherwise,
the user is denied access to the file.

14.6 SUMMARY

 One of the aspect that operating system provides is protection, which deals
with protecting user’s data and programs from other user’s interference.

 There are many protection mechanisms used in a system, each having some
advantages and disadvantages. However, the kind of protection mechanism
used depends on the need and size of the organization.

 A domain is a collection of access rights where each access right is a pair
of <object-name,rights_set>. The object_name is the
name of the object and rights_set is the set of operations that a
process is permitted to perform on the object_name.

NOTES

Self-Instructional
Material 183

Access Control and
Design Principles

 Access control list is an alternative method of recording access rights in a
computer system. It is often employed in file systems. In this method, a list
is associated with each object such as file that stores user names (or
processes) which can access the object and the type of access allowed to
each user (or process).

 Digital signatures can be generated by simply taking the mathematical
summary of the message, which will give a fixed size message known as
hash code. The hash code is used for identifying the message and if even
small changes take place in the original message then this will dramatically
change the hash code. The next step is to sign this hash code with the
private key of the sender. This signed message is now appended with the
original message and sent.

 Designing a secure operating system is a crucial task. While designing the
operating system, the major concern of designers is on the internal security
mechanisms that lay the foundation for implementing security policies.

14.7 KEY WORDS

 Domain: A collection of access rights where each access right is a pair of
<object-name,rights_set>.

 Access Control List (ACL): A method of recording access rights in a
computer system that is often employed in file system.

14.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What do you mean by domain switching?

2. Access control list is an alternative method of recording access rights in a
computer system. Justify this statement.

3. What is the use of digital signature? How does it work?

Long Answer Questions

1. Explain protection mechanism illustrating use of protection domain and access
control list.

2. What is the importance of design principles for security? Explain some of
these principles.

Access Control and
Design Principles

NOTES

Self-Instructional
184 Material

14.9 FURTHER READINGS

Tanenbaum, Andrew S. and Maarten Van Steen. 2006. Distributed Systems:
Principles and Paradigms. New Jersey: Prentice Hall.

Garg, Vijay K. 2002. Elements of Distributed Computing. New Jersey: Wiley-
IEEE Press.

Sinha, Pradeep K. 1996. Distributed Operating Systems: Concepts and Design.
New Delhi: Prentice-Hall of India.

	prelims.pdf
	intro.pdf
	unit 1.pdf
	unit 2.pdf
	unit 3.pdf
	unit 4.pdf
	unit 5.pdf
	unit 6.pdf
	unit 7.pdf
	unit 8.pdf
	unit 9.pdf
	unit 10.pdf
	unit 11.pdf
	unit 12.pdf
	unit 13.pdf
	unit 14.pdf

